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Abstract
Partially observable Markov decision process (POMDP) mod-
els have been used successfully to assist people with dementia
when carrying out small multi-step tasks such as hand wash-
ing. POMDP models are a powerful, yet flexible framework
for modeling assistance that can deal with uncertainty and util-
ity. Unfortunately, POMDPs usually require a very labor in-
tensive, manual setup procedure. Our previous work has de-
scribed a knowledge driven method for automatically generat-
ing POMDP activity recognition and context sensitive prompt-
ing systems for complex tasks. We call the resulting POMDP
a SNAP (SyNdetic Assistance Process). In this paper, we for-
malise this method using a relational database. The database
encodes the goals, action preconditions, environment states,
cognitive model, user and system actions, as well as relevant
sensor models, and automatically generates a valid POMDP
model of the assistance task. The strength of the database is
that it allows constraints to be specified, such that we can ver-
ify the POMDP model is, indeed, valid for the task. To the best
of our knowledge, this is the first time the MDP planning prob-
lem is formalised using a relational database. We demonstrate
the method on three assistance tasks: handwashing, and tooth-
brushing for elderly persons with dementia, and on a factory
assembly task for persons with a cognitive disability.

1 Introduction
Quality of life (QOL) of persons with a cognitive disability
(e.g. dementia, developmental disabilities) is increased sig-
nificantly if they can engage in “normal” routines in their own
homes, workplaces, and communities. However, they gener-
ally require some assistance in order to do so. For example,
difficulties performing activities of daily living at home, such
as preparing food, washing, or cleaning, or in the workplace,
such as factory assembly, may trigger the need for personal
assistance or relocation to residential care settings (Gill and
Kurland 2003). Moreover, it is associated with diminished
QOL, poor self-esteem, anxiety, and social isolation for the
person and their caregiver (Burns and Rabins 2000).

Technology to support people in their need to live indepen-
dently is currently available in the form of personal and social
alarms and environmental adaptations and aids. Looking to
the future, we can imagine intelligent, pervasive computing
technologies using sensors and effectors that help with more
difficult cognitive problems in planning, sequencing and at-
tention. In the example of assisting people with dementia, the
smart environment would prompt whenever the residents get
stuck in their activities of daily living.

The technical challenge of developing useful prompts and
a sensing and modelling system that allows them to be de-
livered only at the appropriate time is difficult, due to is-
sues such as the system needing to be able to determine the
type of prompt to provide, the need for the system to rec-
ognize changes in the abilities of the person and adapt the
prompt accordingly, and the need to give different prompts
for different sequences within the same task. However, such
a system has been shown to be achievable through the use
of advanced planning and decision making approaches. One
of the more sophisticated of these types of systems is the
COACH (Hoey et al. 2010). COACH uses computer vision to
monitor the progress of a person with dementia washing their
hands and prompts only when necessary. COACH uses a par-
tially observable Markov decision process (POMDP), a tem-
poral probabilistic model that represents a decision making
process based on environmental observations. The COACH
model is flexible in that it can be applied to other tasks (Hoey
et al. 2005). However, each new task requires substan-
tial re-engineering and re-design to produce a working assis-
tance system, which currently requires massive expert knowl-
edge for generalization and broader applicability to differ-
ent tasks. An automatic generation of such prompting sys-
tems would substantially reduce the manual efforts neces-
sary for creating assistance systems, which are tailored to
specific situations and tasks, and environments. In general,
the use of a-priori knowledge in the design of assistance
systems is a key unsolved research question. Researchers
have looked at specifying and using ontologies (Chen et al.
2008), information from the Internet (Pentney, Philipose, and
Bilmes 2008), logical knowledge bases (Chen et al. 2008;
Mastrogiovanni, Sgorbissa, and Zaccaria 2008), and pro-
gramming interfaces for context aware human-computer in-
teraction (Salber, Dey, and Abowd 1999).

In our previous work, we have developed a knowledge
driven method for automatically generating POMDP activity
recognition and context sensitive prompting systems (Hoey
et al. 2011). The approach starts with a description of a
task and the environment in which it is to be carried out that
is relatively easy to generate. Interaction Unit (IU) analysis
(Ryu and Monk 2009), a psychologically motivated method
for transcoding interactions relevant for fulfilling a certain
task, is used for obtaining a formalized, i.e., machine inter-
pretable task description. This is then combined with a speci-
fication of the available sensors and effectors to build a work-



ing model that is capable of analyzing ongoing activities and
prompting someone. We call the resulting model a SyNde-
tic Assistance Process or SNAP. However, the current system
uses an ad-hoc method for transcoding the IU analysis into
the POMDP model. While each of the factors are well de-
fined, fairly detailed and manual specification is required to
enable the translation.

The long-term goal of the approach presented in this paper
is to allow end-users, such as health professionals, caregivers,
and family members, to specify and develop their own con-
text sensitive prompting systems for their needs as they arise.
This paper describes a step in this direction by defining a rela-
tional database that serves to mediate the translation between
the IU analysis and the POMDP specification. The database
encodes the constraints required by the POMDP in such a
way that, once specified, the database can be used to gener-
ate a POMDP specification automatically that is guaranteed
to be valid (according to the SNAP model). According to the
best of our knowledge, this is the first time the MDP planning
problem is formalised using a relational database. This novel
approach helps coping with a number of issues, such as vali-
dation, maintenance, structure, tool support, association with
a workflow method etc., which were identified to be critical
for tools and methodologies which could support knowledge
engineering in planning (McCluskey 2000). This paper gives
the details of this relational database, and shows how it solves
these various issues. It then demonstrates the application of
this method to specify a POMDP in three examples: two are
for building systems to assist persons with dementia during
activities of daily living, and one is to assist persons with
Down’s syndrome during a factory assembly task. We show
how the method requires little prior knowledge of POMDPs,
and how it makes specification of relatively complex tasks a
matter of a few hours of work for a single coder.

The remainder of this paper is structured as follows. First,
we give an overview of the basic building blocks: Knowledge
engineering requirements, POMDPs, and IU analysis. Then,
Section 3 describes the relational database we use, frames the
method as a statistical relational model, and shows how the
database can be leveraged in the translation of IU analysis to
POMDP planning system. Section 4 shows how the method
can be applied to three tasks, and then the paper concludes.

2 Overview of the method
2.1 Requirements from Knowledge Engineering
The IU analysis and the sensor specification need to be trans-
lated into a POMDP model, and then the policy of action can
be generated. The relational database provides a natural link
between these two elements of the prompting system, and
the use of the database represents additionally a novel ap-
proach to knowledge engineering (KE) for planning. For an
extensive review of challenges which KE for planning faces,
the reader is referred to (McCluskey 2000). This area is es-
sentially investigating the problem of how planning domain
models can be specified by technology designers who are not
necessarily familiar with the AI planning technology. In (Mc-
Cluskey 2000), authors collected a number of requirements
which such a methodology should satisfy. Some of most im-
portant ones are: (1) acquisition, (2) validation, (3) mainte-
nance, and additionally the representation language should

be: (4) structured, (5) associated with a workflow method,
(6) easy to assess with regard to the complexity of the model,
(7) tool supported, (8) expressive and customizable, and (9)
with a clear syntax and semantics. In our work on the SNAP
process, we found that these requirements can be to a great
extent supported when one applies the relational database for-
malism to store and to process the domain model. The ac-
quisition step (1) does not have its full coverage in our case
since, e.g., the types of planning actions are known, as well
as the structure of the IU analysis. This allows specifying the
structure of the relational database and designing SQL-tables
beforehand and reusing one database model (see Section 3)
in all deployments of the system. The database technology
is a standard method of storing data, and checking validation
(2) of the data is highly supported. This includes both simple
checks of data types, as well as arbitrarily complex integrity
checks with the use of database triggers. Once the database of
a particular instance is populated, the designer can automati-
cally generate a SNAP for a particular user/task/environment
combination taking input for the sensors through the ubiqui-
tous sensing technician’s interface, and the POMDP can be
fed into the planner, and then simulated. Since, the overall
process is straightforward for the designer, this allows for a
traditional dynamic testing of the model, where the designer
can adjust the domain model easily via the database interface,
generate a new POMDP file, and then simulate it and assess
its prompting decisions. This shows that also maintenance
(3) is well supported in our architecture. The SQL relational
language is also flexible in representing structured (4) ob-
jects. In our work, it is used in conjunction with a workflow
method (5), where the technology designer follows specific
steps which require populating specific tables in the database.
The relational database technology is one of the most popu-
lar ways of storing data, and it is vastly supported by tools
and those tools are nowadays becoming familiar even to a
standard computer user. In our implementation, a PHP-based
web interface is used, which from the user’s point of view
does not differ from standard database-based systems.

2.2 Partially observable Markov decision processes
A POMDP is a probabilistic temporal model of a system
interacting with its environment (Åström 1965), and is de-
scribed by (1) a finite set of state variables, the cross product
of which gives the state space, S; (2) a set of observation
variables, O (the outputs of some sensors); (3) a set of sys-
tem actions, A; (4) a reward function, R(s, a, s′), giving the
relative utility of transiting from state s to s′ under action a;
(5) a stochastic transition model Pr : S × A→ ∆S (a map-
ping from states and actions to distributions over states), with
Pr(s′|s, a) denoting the probability of moving from state s
to s′ when action a is taken; and (6) a stochastic observation
model with Pr(o|s) denoting the probability of making ob-
servation o while the system is in state s. Figure 1(a) shows
a POMDP as a Dynamic Bayesian network (DBN) with ac-
tions and rewards, where arrows are interpretable as causal
links between variables.

2.3 Specifying the task: Interaction Unit Analysis
Task analysis has a long history in Human Factors (Kirwan
and Ainsworth 1992) where this approach is typically used
to help define and break-down ‘activities of daily living’
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Figure 1: Two time slices of (a) a general POMDP; (b) a
factored POMDP for interactions with assistive technology.

(ADL)– i.e. activities that include self-care tasks, household
duties, and personal management such as paying bills. The
emphasis in task analysis is on describing the actions taken by
a user and the intentions (goals and sub-goals) that give rise to
those actions. There has been less emphasis on how actions
are driven by the current state or changes in the environment.
Syndetic modeling (Duke et al. 1998) remedies this omission
by describing the conjunction of cognitive and environmen-
tal precursors for each action. Modeling both cognitive and
environmental mechanisms at the level of individual actions
turns out to be much more efficient than building separate
cognitive and environmental models (Ryu and Monk 2009).

The task analysis technique (Wherton and Monk 2009),
breaks a task down into a set of goals, states, abilities and be-
haviours, and defines a hierarchy of tasks that can be mapped
to a POMDP, a policy for which will be a situated prompting
system for a particular task (Hoey et al. 2011). The tech-
nique involves an experimenter video-taping a person being
assisted during the task, and then transcribing and analysing
the video. The end-result is an Interaction Unit (IU) analy-
sis that uncovers the states and goals of the task, the client’s
cognitive abilities, and the client’s actions. A simplified ex-
ample for the first step in tea-making (getting out the cup and
putting in a tea-bag) is shown in Table 1. The rows in the ta-
ble show a sequence of steps, with the client’s current goals,
the current state of the environment, the abilities that are nec-
essary to complete the necessary step, and the behaviour that
is called for. The abilities are broken down into ability to re-
call what they are doing, to recognise necessary objects like
the kettle, and to perceive affordances of the environment.

A second stage of analysis involves proposing a set of sen-
sors and actuators that can be retrofitted to the user’s envi-
ronment for the particular task, and providing a specification
of the sensors that consists of three elements: (1) a name
for each sensor and the values it can take on (e.g. on/off);
(2) a mapping from sensors to the states and behaviours in
the IU analysis showing the evidentiary relationships, and
(3) measurements of each sensor’s reliability at detecting the
states/behaviours it is related to in the mapping.

The IU analysis (e.g. Table 1) can be converted to a
POMDP model by factoring the state space as shown in Fig-
ure 1(b). The method is described in detail in (Hoey et al.
2011), here we give a brief overview. The task variables are a
characterisation of the domain in terms of a set of high-level
variables, and correspond to the entries in the state column in
Table 1. For example, in the first step of tea making, these

include the box condition (open, closed) and the cup contents
(empty or with teabag). The task states are changed by the
client’s behavior, B, a single variable with values for each
behaviour in Table 1. For the first IU group in tea making,
these include opening/closing the box, moving the teabag to
the cup, and doing nothing or something unrelated (these last
two behaviours are always present). The client’s abilities are
their cognitive state, and model the ability of the client to re-
call (Rl), recognise (Rn) and remember affordances (Af). For
the first IU group, these include the ability to recognise the
tea box and the ability to perceive the affordance of moving
the teabag to the cup.

The system actions are prompts that can be given to help
the client regain a lost ability. We define one system ac-
tion for each necessary ability in the task. The actions
correspond to a prompt or signal that will help the client
with this particular ability, if missing. Task and behav-
ior variables generate observations, O. For example, in a
kitchen environment there may be sensors in the counter-
tops to detect if a cup is placed on them, sensors in the
teabags to detect if they are placed in the cup, and sen-
sors in the kettle to detect “pouring” motions. The sensor
noise is measured independently (as a miss/false positive rate
for each state/sensor combination) (Pham and Olivier 2009;
Hoey et al. 2011).

3 Relational Database

The technology designer should be able to define the prompt-
ing system (planning problem specification) easily and with
minimal technical knowledge of planning. The approach
we are proposing in this paper is to provide a relational
database which can be populated by the designer using stan-
dard database tools such as forms or web interface, and then
translating the database into the POMDP specification using
a generator software, which implements parts of the overall
relational model not stored in the database. This is in ac-
cordance with the main goal of the way relational databases
should be used. The database in itself explicitly stores the
minimum amount of information which is sufficient to repre-
sent the concept. Those relations which are not represented
explicitly are then extracted on demand using SQL queries.
We adhere to this standard in our design and our genera-
tor contains such implicit parts of the model which are not
stored in the database. Below, we show how our methodol-
ogy of specifying planning tasks is motivated and justified by
locating this work in the context of relevant AI research on
planning, and probabilistic and relational modelling.

In the application areas which are considered in this paper,
planning problems are POMDPs. POMDPs can be seen as
Dynamic Decision Networks (DDNs). In POMDP planners,
DDNs have propositional representation, where the domain
has a number of attributes, and attributes can take values from
their corresponding domains. The problem with designing
methodologies for such propositional techniques is that the
reuse of the model in new instances is not straightforward,
and a relational approach becomes useful. In the case of mod-
elling POMDPs, Statistical Relational Learning (Getoor and
Taskar 2007) is the way to make relational specification of
DDNs possible.



IU Goals Task States Abilities Behaviours
1 Final cup empty on tray, box closed Rn cup on tray, Rl step No Action
2 Final, cup TB cup empty on tray, box closed Af cup on tray WS Move cup tray→WS
3 Final, cup TB cup empty on WS, box closed Rl box contains TB, Af box closed Alter box to open
4 Final, cup TB cup empty on WS, box open Af TB in box cup Move TB box→cup
5 Final cup tb on WS, box open Af box open Alter box to closed

Final cup tb on WS, box closed

Table 1: IU analysis of the first step in tea making. Rn=recognition, Rl=Recall, Af=Affordance, tb=teabag, ws=work surface.

3.1 Statistical Relational Learning

Probabilistic Relational Models (PRM) define a template for
a probability distribution (Getoor and Taskar 2007), that
specifies a concrete distribution when ground with specific
data. The family of distributions that can be obtained from
a specific PRM is what we seek in the problem of specify-
ing POMDPs for prompting systems. Our goal is to have a
template which would be flexible and general enough to rep-
resent POMDPs for different tasks, but also specific enough
so that one relational model would be sufficient. Figure 2
shows the main components of the probabilistic model spec-
ified using the PRM.

The first element is the relational schemata which can be
formalised as a specification of types of objects, their at-
tributes, and relations between objects of specific types. The
two additional components are: for each attribute the set of

PRM

Relational schemata

Sets of parents for variables

CPDs

Relational skeleton

(data)

Probabilistic model (Bayesian network)

Figure 2: The probabilis-
tic model and its components
when specified as a PRM.

parents this attribute
probabilistically depends
on, and the corresponding
conditional probability
distributions. These
elements together with
the relational struc-
ture is exactly what is
shared between different
prompting systems which
we build for cognitively

disabled people, and this part of the model can be designed
beforehand using the outcomes of years of research in this
area which ranges from artificial intelligence to cognitive
psychology. We argue in this paper, that the relational
database is a good way of representing and specifying these
kinds of models which define POMDP planning problems.
The PRM part of the model is exactly what can be designed
beforehand by POMDP planning experts and cognitive
scientists, and every particular deployment of the system
will be reduced to populating the database by the technology
designer who is not required to have POMDP specific
knowledge.

The relational schemata of the PRM can be represented di-
rectly as a standard relational database where tables and im-
plicit tables determined by SQL queries define objects, and
columns in tables define attributes. Relationships are mod-
elled as primary/foreign key constraints.

The two remaining elements of the PRM are also par-
tially incorporated in the relational database, defined as SQL
queries to the database, or explicitly encoded in the soft-
ware which reads the database and produces the final input
file for the POMDP planner. The PRM model contains ev-
erything which is required to obtain the probabilistic model

for the specific case, except for the data – objects, values of
their attributes, values of probabilities, and specifications of
some dependencies which are represented relationally in the
model – and this complementary element is named a rela-
tional skeleton in (Getoor and Taskar 2007). This skeleton
contains objects which adhere to relational constraints de-
fined in the relational model (database tables, SQL queries,
the generator implementation). Once this skeleton is pro-
vided, the PRM can be translated into a ground Bayesian
network in the original case, and into a ground DDN in our
implementation which has to model time (two slice Bayesian
network) and decisions.

3.2 Relational Schemata
The above discussion showed how our methodology origi-
nates from the state-of-the-art methods for relational prob-
abilistic modelling. In this paragraph, we show techni-
cal details of how the database was designed. Figure 3
shows the structure of the entire database. All tables which
have their names starting with t iu represent the IU ta-
ble, and the user interface shows the view of the full IU
table to the user (not individual tables separately). The
core table is t env variables values which stores do-
main attributes and their possible values. The sensor model,
t sensor model, associates environment variables with
sensors (t observations values). There is also a sen-
sor model for behaviours in the corresponding table. There is
a table for possible behaviours of the client in the modelled
domain (t behaviours) and dynamics of the client’s ac-
tions are defined in associated tables which store effects and
preconditions of behaviours. Essentially, the database encod-
ing of effects and preconditions of client’s actions contains
information which is equivalent to STRIPS operators in clas-
sical planning. One behaviour can have different effects de-
pending on the precondition. Additionally, our probabilistic
model can make use of the states in which a specific be-
haviour is impossible (t when is behaviour impos-
sible). Table t abilities stores client’s abilities which
are relevant to the task. Finally, rewards are defined in t re-
wards and the associated table allows specifying sets of
states which yield a particular value of the reward.

3.3 Relational Probabilistic Model
We present only one piece of the relational specification of
probabilistic dependencies: the client behaviour dynamics
model.

Let us assume that I is a set of rows in the IU table. T ,
T ′, B, B′, Y , and Y ′ are as specified in Figure 1b. ρ is a
random behaviour constant and is set to 0.01 in the current
implementation. We define the following functions:

1. row rel : I × T → {0, 1} is 1 for task states relevant in



Figure 3: Complete SNAP database diagram.

row, i, and 0 otherwise. We write this as of the row, i, only:
row rel(i) leaving the remaining variables implicit. The
same shorthand is applied to the other functions.

2. row rel b : I × T × B′ → {0, 1} is defined as
row rel b(i, b′) = row rel(i) ∧ behaviour(i, b′) where
behaviour(i, b′) = 1 when b′ is the behaviour of row i.

3. row abil rel : I × Y ′ → {0, 1} is 1 when all abilities of
row i are satisfied by y′, and 0 otherwise.

4. goal : T → {0, 1} is 1 when t is a goal state, 0 otherwise.
5. bn : B′ → {0, 1} is 1 when b′ = nothing, 0 otherwise.
6. same : B × B′ → {0, 1} is 1 when b = b′. This is a bias

which indicates that behaviours are likely to stay the same.
7. impossible beh : T → {0, 1} is 0 for states t when there

is no behaviour which is possible in t, and 1 when there is
at least one behaviour which is possible in t.

8. For all functions defined above, ¬f(x) is defined as
¬f(x) = 1− f(x) which defines a negation of f(x) when
0 and 1, the domain of f(x), are treated as boolean values.

The above functions are used in the definition of the dynam-
ics of behaviours B′, beh dyn : B′ × Y ′ × T ×B → [0, 2].

beh dyn =∑
i∈I

[row abil rel(i) ∧ row rel b(i) ∧ p(i)∨ (1)

¬row abil rel(i) ∧ row rel(i) ∧ bn]∨ (2)∏
i∈I

[¬row rel(i)] ∧ bn∨ (3)

goal ∧ bn∨ (4)

After normalisation, beh dyn defines probability
P (b′|b, y′, t) of b′ when the previous behaviour was b,
the person will have abilities y′, and the system is in state
t. It is important to recall that non-invasive prompts are
assumed here which influence abilities Y ′ and not behaviours
B′ directly. The first term (1) of this equation is for rows
which have their abilities and state relevance satisfied. (2)
defines behaviour ‘nothing’ when state is relevant in the row
but abilities are not present. (3) sets behaviour ‘nothing’ in
all states which are not relevant in any row. (4) reflects the
fact that only behaviour ‘nothing’ happens when the goal
state has been reached. It is important to note here, that the
IU analysis in original SNAP (Hoey et al. 2011) has to have
task states in all rows disjunctive, which means that each
state can be relevant in one row only. This is of course not

always the case in practice, and we add an extension here
which specifies probability p(i) of a row, used in (2), when
there are other rows which have the same states relevant.

All the functions necessary to specify the POMDP are rep-
resented as algebraic decision diagrams (ADDs) in SPUDD
notation (Hoey et al. 1999). These functions are computed
with queries on the database. Each such query extracts some
subset of ADDs from the relational skeleton. The ADDs are
then combined using multiplication and addition to yield the
final conditional probability tables (CPTs). Some relations
are explicitly represented in the database whereas others need
to be extracted using more complex SQL queries. For exam-
ple, data for row rel(i), row rel b(i), and row abil rel(i)
is read from the IU table in the database. The example subset
of the relational skeleton for the IU analysis from Table 1,
and diagrams for selected functions are in Figure 4. SQL
queries extract compound algebraic decision diagrams from
the relational skeleton, and the generator software multiplies
those diagrams in order to obtain final functions, such as
P (b′|b, y, t′) = row rel b(i, b′). The following more com-
plex SQL query example for goal returns sets of states with
the highest reward:
SELECT var_name, var_value, reward_value,

t_rewards.state_set_id

FROM t_rewards_desc INNER JOIN t_rewards

ON t_rewards_desc.state_set_id=t_rewards.state_set_id

WHERE reward_value=(SELECT MAX(reward_value)

FROM t_rewards)

ORDER BY 4

A schematic is shown in Figure 4, where the CPT for client
behaviour dynamics is gathered from the relevant tables in
the relational skeleton. The original table schema in the PRM
for the relations in Figure 4 can be seen in Figure 3.
3.4 Advantages of Database Engines
The advantage of the relational database is that it allows for
easy implementation of the constraints required by the model.
The simplest example are constraints on attribute values. For
example, probabilities have to be in the range [0, 1], or liter-
als should follow specific naming patterns (according to the
requirements of the POMDP planner). These simple con-
straints are easily implemented in the definition of SQL ta-
bles. Some more complex constraints which involve more
than one attribute are also required. For instance in the plan-
ner which we use, sensors and domain attributes are in the
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same name space, which means that their names have to
be different. Such things can be easily implemented using
database triggers, and the user will be prompted at the input
time and informed about the constraint.

4 Demonstrative Examples
We demonstrate the method on three assistance tasks: hand-
washing, and toothbrushing with older adults with dementia,
and on a factory assembly task for persons with a develop-
mental disability. We show that once our relational system is
designed (i.e. the database and the generator which reads the
database and outputs the POMDP file), the system is generic
and allows the designer to deploy the system in different tasks
simply by populating the database for the new task. The IU
analysis for handwashing was performed by a professional
IU analyser, and handwashing was used as the testbed for our
method. The analysis for the other two tasks were performed
by two different biomedical engineers, with limited experi-
ence with POMDPs or planning in AI. As an example of the
power of our method, the factory task was coded in about six
hours by the engineer. This can be compared to a manual
coding of the system for handwashing (a smaller task), that
took at least three months of work resulting in the system
described in (Boger et al. 2006).

The IU analysis breaks an ADL down into a number of
sub-tasks, or sub-goals. For the factory task, there are six
sub-goals. The decomposition arises according to the ele-
ments of recall noted in the IU analysis videos. The six sub-
goals are partially ordered, and the partial ordering can be
specified as a list of pre-requisites for each sub-goal giving
those sub-goals that must be completed prior to the sub-goal
in question. Since each sub-goal is implemented as a sepa-
rate POMDP controller, a mechanism is required to provide
hi-level control to switch between sub-goals. We have imple-
mented two such control mechanisms. A deterministic con-
troller is described in (Hoey et al. 2011), and a probabilistic
and distributed method in (Hoey and Grześ 2011). All con-

trollers described in the last section are implemented in Java,
and run as separate processes and can be easily distributed
across several PCs ensuring scalability.

4.1 COACH and prompting
Examples of automatic generation of task policies using IU
analyses and a relational database were implemented for the
task of handwashing and toothbrushing. For these examples,
people with mild to moderate dementia living in a long term
care facility were asked to wash their hands and brush their
teeth in two separate trials.

Handwashing The washroom used for this task had a sink,
pump-style soap dispenser and towel. Participants were led
to the sink by a professional caregiver, and were encouraged
to independently wash their own hands. The IU analysis was
performed on videos captured from a camera mounted above
the sink. The task was broken into 5 steps, each comprised of
multiple substeps: 1) wet hands; 2) get soap; 3) wash hands;
4) turn off water; and 5) dry hands. Steps 1 and 2 can be
completed in any order, followed by step 3. After completion
of step 3, steps 4 and 5 can be completed in any order.

Toothbrusing The videos used for the analysis captured
participants in a washroom that had a sink, toothbrush, tube
of toothpaste and cup, as they tried to independently brush
their own teeth. A formal caregiver was present to provide
coaching and assistance if required. The IU analysis was
completed based on videos of several different people and
included multiple different methods of completing the task.
The task was divided into 6 main steps, each containing mul-
tiple sub-steps: 1) wet brush; 2) apply toothpaste; 3) brush
teeth; 4) clean mouth; 5) clean brush; and 6) tidy up. Steps
1 and 2 can be completed in any order, followed by step 3.
Steps 4 and 5 can also be completed in any order after step 3,
and step 6 is the final step following the first 5 steps.

A policy was generated for each sub-step entered into the
relational database. Simulations were run to test the hand-



washing and toothbrushing policies with a user assumed to
have mild-to-moderate dementia. To simulate a person with
mild-to-moderate dementia the user was forced to forget
steps of the task throughout the simulation (i.e., do noth-
ing) but respond to prompting if provided. Tables 2 (hand-
washing) and 3 (toothbrushing) show a sample of the be-
lief state of the POMDP, the system’s suggested action and
the actual sensor states for several timesteps of two simula-
tions. Probabilities of the belief state are represented as the
height of bars in corresponding columns of each time step.
In the handwashing example, the user is prompted to take the
towel (t=1). Detecting that the towel was taken (t=2), the
system prompts the user to dry his/her hands. The sensors
indicate the towel was returned to the surface without drying
the user’s hands (t=3) so the system again prompts the user to
take the towel. As a second example with the toothbrushing
simulation (t=1), the system prompts the user to turn on the
tap. The user does nothing, so the system tries to prompt the
user to take the brush from the cup (in this case either turning
the tap on or taking the toothbrush can happen first). The sen-
sors indicate the brush was taken (t=3), so the system returns
to prompting the user to turn on the tap.
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0 wet on surface Af take towel
1 wet on surface Af take towel
2 wet in hand Af dry
3 wet on surface Af take towel
4 wet in hand Af dry
5 dry in hand Af put down towel
6 dry on surface donothing

Table 2: Example simulation in the handwashing task. The
main goal shown in the subtask is to dry the hands after taking
the towel from the surface, while the secondary goal is to
return the towel to the surface.
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0 dry off in cup Af tap
1 dry off in cup Af tap
2 dry off in cup Rn brush cup
3 dry off in hand Af tap
4 dry on in hand Af water
5 dry on in hand Af water
6 wet on in hand donothing

Table 3: Example simulation in the toothbrushing task. The
goal in the shown sub-task is to turn on the tap, take the tooth-
brush from either the surface or the cup, and wet the brush.

4.2 Factory Assembly Task
In this example, workers with a variety of intellectual and de-
velopmental disabilities are required to complete an assembly
task of a ‘Chocolate First Aid Kit’. This task is completed at a

workstation that consists of five input slots, an assembly area,
and a completed area. The input slot contain all of the items
necessary to perform kit assembly-specifically the main first
aid kit container (white bin), and four different candy con-
tainers that need to be placed into specific locations within the
kit container. The IU analysis was completed based on video-
tapes of a specific adult worker who has Down’s Syndrome
completing this assembly task. The worker was assessed with
a moderate-to-mild cognitive impairment and was able to fol-
low simple instructions from a job coach. The IU analysis
broke this task into 6 required steps: 1) prepare white bin; 2)
place in bin chocolate bottle 1; 3) place in bin chocolate box
1; 4) place in bin chocolate box 2; 5) place in bin chocolate
bottle 2; and 6) finish output bin and place in completed area.
Steps 2, 3, 4, and 5 can be completed in any order. Through
a hierarchical task analysis (Stammers and Sheppard 1991)
each of these steps were further broken down into sub-steps.

Policies were generated for each of the required assembly
steps and were simulated by the authors for three different
types of clients: mild, moderate, and severe cognitive im-
pairment. Figure 5 is the output of sample timestamps for
step 2 for a user with severe cognitive impairment. Again,
probabilities of the belief state are represented as the height
of bars in corresponding columns of each time step. In this
specific example, the system is more active in its prompting
based on the fact that the user is assumed to have diminished
abilities with respect to the different aspects that needs to be
completed. For example (t=1), the worker has deteriorating
ability to recognize that the slot that holds the required choco-
late bottle is empty. As such, the system correctly prompts
the worker to recognize that the slot is empty and needs to be
filled. In another example (t=5), the system recognizes that
the worker has not placed the bottle in its correct location in
the white bin, and provides a prompt for the person to recall
that the bottle needs to be in that position in order to reach
the final goal state. When the worker does not respond to this
prompt, the system decides (t=6) to play a different, more
detailed, prompt (a prompt related to the affordance ability).

5 Conclusions and discussion
POMDP models have proven to be powerful for modelling
intelligent human assistance (Hoey et al. 2010). Unfortu-
nately, POMDPs, being propositional models, usually require
a very labour intensive, manual setup procedure. A stan-
dard approach which can make AI models portable and con-
figurable is to introduce the notion of objects and relations
between them and this is found in relational methods such
as Statistical Relational Learning. In this paper, we derive
a methodology for specifying POMDPs for intelligent hu-
man assistance which is motivated by relational modelling
in frame-based SRL methods (Getoor and Taskar 2007). The
core of our approach is the relational database which the user
populates in order to prepare the deployment of the system
for a specific task. The database and the POMDP genera-
tor have a structure that is designed based on experience in
the domain of assistance. Content provided by the designer
of a particular implementation then encodes the goals, ac-
tion preconditions, environment states, cognitive model, user
and system actions, as well as relevant sensor models, and
automatically generates a valid POMDP model of the assis-
tance task being modelled. The strength of the database is
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0 - - - - - - - - Rn bottle1 in slot
1 empty other Rn slot empty
2 empty other Rn slot empty
3 full in slot orange Rn bottle1 in slot
4 full in hand Rl bottle1 in hand
5 full in whitebin Af bottle1 to pos1
6 full in whitebin Rl botte1 in bin
7 full in whitebin Af bottle1 to pos1
8 full in whitebin pos1 do nothing

Figure 5: Example simulation in the factory assembly task. The goal in the shown sub-task is to take the bottle, named bottle
1, from the orange slot and to place the bottle in the white bin in pos1.

that it allows constraints to be specified, such that we can
verify the POMDP model is, indeed, valid for the task. We
demonstrate the method on three assistance tasks: handwash-
ing and toothbrushing for elderly persons with dementia, and
on a factory assembly task for persons with a cognitive dis-
ability. This demonstration shows that the system, once de-
signed using the relational approach, can be instantiated to
create a POMDP controller for an arbitrary intelligent human
assistance task. The use of the relational database makes the
process of specifying POMDP planning tasks straightforward
and accessible to standard computer users.
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