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Objectives:  Bayesian  networks  (BNs)  are  rapidly  becoming  a leading  technology  in applied  Artificial  Intel-
ligence,  with  many  applications  in  medicine.  Both  automated  learning  of  BNs  and  expert  elicitation  have
been  used  to  build  these  networks,  but the  potentially  more  useful  combination  of  these  two  methods
remains  underexplored.  In this  paper  we  examine  a number  of  approaches  to  their  combination  when
learning  structure  and  present  new  techniques  for  assessing  their  results.
Methods  and  materials:  Using  public-domain  medical  data,  we  run an  automated  causal  discovery  system,
CaMML,  which  allows  the  incorporation  of  multiple  kinds  of prior  expert  knowledge  into  its search,  to
test and  compare  unbiased  discovery  with  discovery  biased  with  different  kinds  of  expert  opinion.  We
use adjacency  matrices  enhanced  with  numerical  and  colour  labels  to assist  with  the  interpretation  of the
results. We  present  an algorithm  for  generating  a  single  BN  from  a set of  learned  BNs  that  incorporates
user  preferences  regarding  complexity  vs  completeness.  These  techniques  are  presented  as  part  of  the
first detailed  workflow  for hybrid  structure  learning  within  the  broader  knowledge  engineering  process.
Results:  The  detailed  knowledge  engineering  workflow  is  shown  to be useful  for  structuring  a  complex
iterative  BN development  process.  The  adjacency  matrices  make  it clear  that  for  our  medical  case  study
using the  IOWA  dataset,  the  simplest  kind  of  prior  information  (partially  sorting  variables  into  tiers)

was more  effective  in aiding  model  discovery  than  either  using  no  prior  information  or  using more
sophisticated  and  detailed  expert  priors.  The  method  for generating  a single  BN  captures  relationships
that  would  be overlooked  by other  approaches  in the  literature.
Conclusion:  Hybrid  causal  learning  of BNs  is an  important  emerging  technology.  We  present  methods
for  incorporating  it into  the  knowledge  engineering  process,  including  visualisation  and  analysis  of  the
learned  networks.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Bayesian networks (BNs) [1,2] are rapidly becoming a lead-
ng technology in applied Artificial Intelligence. By combining a
raphical representation of the dependencies between variables

ith probability theory and efficient inference algorithms, BNs
rovide a powerful and flexible tool for reasoning under uncer-
ainty. Medicine is a complex domain where experienced medical
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practitioners hold much of their knowledge implicitly, making an
appealing target for expert systems development. BNs are particu-
larly suited to medical applications due to their ability to explicitly
model causal interventions, to reason both diagnostically and pre-
dictively, and to help visualise their relations graphically, assisting
with their understanding.

BNs may  be built either by eliciting expert knowledge or by
automated causal discovery. There have been many medical appli-
cations of BNs, including early elicited networks such as the ALARM

network for monitoring patients in intensive care [3],  diagnos-
ing oesophageal cancer [4],  mammography [5] and diagnosing
liver disorder [6];  see [2, Ch. 5] for a recent survey. To avoid
the long development times required by expert elicitation, other
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http://www.sciencedirect.com/science/journal/09333657
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2.2.1. BNs for medical applications
The simplest structure for a medical diagnostic BN is the
82 M. Julia Flores et al. / Artificial Inte

pproaches have been taken. In previous research we  built BNs
or predicting coronary heart disease in two other ways [7,8]:
1) knowledge engineering BNs from the medical literature, using
ublished epidemiological models of coronary heart disease, sup-
lemented by medical expertise to clarify interpretation; and (2)
pplying the causal discovery program CaMML  [9,10] to learn BNs
rom data from the Australian Busselton study [11]. Other examples
f medical BNs learnt from data include emergency medical ser-
ice data [12] and tuberculosis epidemiology [13]. The PROMEDAS
edical decision support tool [14] also uses BNs, automatically

ompiling both the network and an interface from the underlying
edical database (which currently covers the areas of endocrinol-

gy and lymphoma diagnostics).
Both approaches to building BNs have limitations: expert elicita-

ion is expensive, time-consuming and relies on experts having full
omain knowledge, while automated learning is often ineffective
iven small or noisy datasets. This has led to hybrid approaches
hich incorporate prior expert information into the causal dis-

overy process. For example, the Tetrad IV BN learner can use
nformation about causal “tiers” [15], while CaMML  has been
xtended to use more diverse forms of expert information [16]. One
pplication of such a hybrid approach, using information obtained
rom textual analysis of the literature together with learning from
ata, has produced a BN clinical model of ovarian cancer [17]. How-
ver, to our knowledge, different kinds of expert elicited structural
riors to inform causal discovery have not been used in medical
r other applications to date. One reason is that most BN learning
oftware provides only limited support for it. Another is that while
ethodologies have been developed for the knowledge engineer-

ng of BNs (e.g., [18,19]), no detailed methodology is available for
uilding the network structure using the hybrid approach.

In this paper we present a detailed case study of the use of expert
riors in combination with automated causal learning to model
eart failure, using the so-called Iowa dataset [20]. Heart failure is

 difficult and complex problem, and this publicly available dataset
as many limitations, including no variable for the actual heart fail-
re diagnosis, and no recording of times for past events. Thus, the
ajor contribution of this paper is not new results for the domain,

ut instead the presentation of a comprehensive methodology for
his hybrid approach to constructing BNs, together with new ways
f analysing and visualising these structures.

In Section 2 we describe the medical case study, including the
escription of the dataset and preliminary data analysis to select
ttributes/variables, and give some background on “knowledge
ngineering” of BNs. In Section 3 we describe CaMML  and how
t can incorporate different types of expert knowledge. We  then
escribe all the steps in the knowledge engineering process we
ndertook for the case study, including data preprocessing (Sec-
ion 4.1), the domain information elicited from our expert (Sections
.2–4.4) and our experimental methods for incorporating those pri-
rs into CaMML  (Section 5). In Section 6 we systematically test and
ompare unbiased discovery with discovery biased with different
inds of expert opinion; the results and their analysis are presented
sing graphs, edit distance and new kinds of adjacency matrices for
nhancing comparisons. In Section 5.7 we demonstrate that a BN
coring metric can be used to generate a single BN from a set of
earned BNs, trading off complexity vs completeness.

. Background

.1. Case study
Our case study involves a public dataset, the so-called
owa dataset [20]. Last updated in 1998, this dataset contains
4,456 records and reports data from patients in four different
e in Medicine 53 (2011) 181– 204

US states. The Inter-University Consortium for Political and
Social Research (ICPSR) from the University of Michigan pub-
lished their research results based on distinct questionnaires
answered between 1981 and 1993. The id number of the ICPRS
study is 9915; see http://webapp.icpsr.umich.edu/cocoon/ICPSR-
STUDY/09915.xml1 for more detailed information. From this study
we have focused on part I, called Baseline Data. The full IOWA
dataset contains 253 variables, spanning an enormous range of
medical conditions. We  decided to limit the case study to a sin-
gle condition, heart failure, chosen because it is common, costly,
disabling and deadly.

Heart failure is a disorder that may  result from any structural or
functional disorder that decreases the ability of the heart ventricle
to fill with or eject blood. Although there are numerous ways of
assessing cardiac function there is no single diagnostic test, which
makes diagnosis difficult, and at least six scoring methodologies
have been developed to assess it. Investigations using echocardiog-
raphy have found that only 50% of participants with left ventricular
dysfunction are symptomatic, hence the diagnosis is largely based
on a careful history and physical examination [21]. The value of dif-
ferent symptoms in predicting heart failure in a study of referred
patients [22] had suggested that while dyspnoea on exercise is a
sensitive measure of heart failure (100%) it is not specific (17%)
while a history of paroxysmal nocturnal dyspnoea (which is severe
shortness of breath occurring at night when the patient is lying
down) is only 39% sensitive but has a markedly higher specificity
(80%).

Essentially heart failure is a probabilistic clinical diagnosis
relating to a constellation of symptoms occurring in a variety of
conditions stressing the heart with no definitive objective test.
Thus, unsurprisingly, the Iowa dataset does not contain a vari-
able for heart failure diagnosis; instead we model the relationships
between the relevant variables representing background factors,
past health and current symptoms.

In developing countries around 2% of adults suffer from heart
failure, with this figure increasing to 6–10% for those over the age
of 65 [23]. Heart failure is associated with high health expendi-
ture, especially the costs of hospitalisation. It is also associated
with significantly reduced physical and mental health, resulting
in a markedly decreased quality of life. The introduction of learned
models with the ability to incorporate expert priors offers the pos-
sibility of extending our understanding of the factors contributing
to heart failure in community settings.

2.2. Bayesian networks

A Bayesian network [1] is a directed acyclic graph (DAG) whose
nodes represent random variables and arcs represent direct depen-
dencies (e.g., causal relationships). Each node has a conditional
probability table, quantifying the relationship between connected
variables. Users can set the values of any combination of nodes
in the network that they have observed. This evidence propagates
through the network, producing a new probability distribution over
all the variables in the network. There are a number of efficient
exact and approximate inference algorithms for performing this
probabilistic updating, providing a powerful combination of pre-
dictive, diagnostic and explanatory reasoning. Fig. 1(a) shows an
example BN, a variant of the well-known “Asia” BN from [24].
so-called naive Bayes model, shown in Fig. 1(b), where the

1 Last access on 20 January 2010.

http://webapp.icpsr.umich.edu/cocoon/ICPSR-STUDY/09915.xml
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Fig. 1. (a) Example BN for the “Asia network”, for the scenario: A patient has been suffering from shortness of breath (called dyspnoea) and visits the doctor, worried that
he  has lung cancer. The doctor knows that other diseases, such as tuberculosis (TB) and bronchitis, are also possible causes. She also wants to find out whether or not the
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atient  is a smoker (increasing the chances of cancer and bronchitis) or has recently
ung  cancer. (b) Generic BN structures for medical diagnosis, naive Bayes model; (c

isease (D) node has values for the candidate diseases, while
indings (F) nodes represent both symptoms and test results.
here are two simplifying assumptions in this network that
ften go wrong: that the patient can have only a single dis-
ase and that symptoms are independent of each other given the
isease.

The multiply connected network of Fig. 1(c) is a more realis-
ic, but clearly more complex, model. It contains a Boolean node
or each disease under consideration, while the Background (B)
odes represent patient history, such as the age, sex and smok-

ng. While avoiding the distorting simplifications above, in practice
his structure is likely to be too complex, requiring probabilities for
he combined effect of every disease on each finding. An example
f this two-level network structure is that of the “quick medical
esponse decision-theoretic (QMR-DT)” project [25], a probabilis-
ic version of the frame-based CPCS knowledge base for internal

edicine. In QMR-DT, the problem of complexity was  ameliorated
ith the so-called binary ‘noisy-or’ model, where it is assumed the

ffect of a disease on its findings is independent of other diseases
nd findings. One version of the QMR-DT network (described in
26]) had 448 nodes and 908 arcs, including 74 background nodes
which they called “predisposing factors”); more than 600 proba-
ilities were estimated, a large but not an unreasonable number
iven the scope of the application.

In this paper, we are looking at building BNs for a specific med-
cal condition (e.g., heart failure), where we have a fair amount of
ata, from which we will learn both the structures and the param-

ters. However the crucial insight is that in a properly structured
ausal BN, the background factors should be parents (or ancestors)
f the diseases, which in turn are ancestors of the physical effects
hey generate.
d Asia (as TB is more prevalent there). A positive X-ray would indicate either TB or
iply connected network [2, Fig. 5.1].

2.2.2. Knowledge Engineering Bayesian networks (KEBN)
Knowledge Engineering can be viewed as an engineering disci-

pline that involves integrating knowledge into computer systems
in order to solve problems normally requiring a high level of human
expertise. The aim is to construct a so-called ‘expert system’, a
model able to give answers similar to those of an expert human.
In our case study, the result of the knowledge engineering process
will be an expert system consisting of a Bayesian network (with
the knowledge represented in the graph structure and the condi-
tional probabilities) and an ability to reason given evidence, using
powerful belief updating techniques (e.g., [27]).

When developing a BN for a specific domain, the knowledge
engineering process involves constructing a model that is suffi-
ciently complex to realistically represent the problem features,
while being simple enough to be tractable in terms of both devel-
opment and application. The KEBN life cycle [18, Fig. 6.1], as
reproduced in Fig. 2, describes at a high level the initial devel-
opment of a network, utilising any number of iterations over its
stages, each iteration producing some refinement of the network.
KEBN methods include both elicitation from experts and learning
from data; the combination is the focus of this paper. The develop-
ment of any BN will follow a particular path through this generic
workflow; in Section 5.1 we  discuss the detailed KEBN process for
Stage 1 we  followed.

2.2.3. Learning Bayesian networks
There is one key limitation when learning BNs from observa-
tional data only—there is usually no unique BN that represents the
joint distribution. More formally, two BNs in the same statistical
equivalence class (SEC) [28] can be parameterised to give an iden-
tical joint probability distribution. There is no way  to distinguish
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tion about relationships between variables. While both specific
and accurate information is ideal, we generally prefer accuracy
over specificity. For example, an expert might know that there is a
dependency between chronic heart disease and smoking, without
Fig. 2. KEBN li

etween the two using only observational data (although they may
e distinguished given experimental data).

BN structural learning algorithms can be classified into
onstraint-based and metric-based. Constraint-based methods
e.g., PC [29], RAI [30]) use information about conditional inde-
endencies gained by performing statistical significance tests on
he data. Metric-based methods (e.g., K2 [31], CaMML  [32]) search
or a BN to minimise or maximise a metric; many different met-
ics have been used, (e.g., K2 uses the BDe metric, CaMML  uses an
ML metric; see [2, Ch 9]).  Metric-based BN structural learners

lso vary in the search method used and in what is returned from
he search; some learners (e.g., K2) return a DAG, others (e.g., GES
33]) learn only the SEC. The metric-based methods can incorpo-
ate expert knowledge about the relationships between variables

 the focus of this paper – by using them as structural priors that
lter the “score” given to a BN. Here we use CaMML, as it provides
ore types of structural priors (described in the next section) than

ny other BN learner, metric or constraint based.
These methods have been applied to learning medical BN appli-

ations. Acid et al. [12] compare 4 different BN learning algorithms
including PC and two metric based methods), using emergency

edical service data. Antal et al. [17] use a Bayesian metric learn-
ng method combined with information from the literature to build
Ns as clinical models of ovarian tumours. Getoor et al. use a metric-
ased method for learning both BNs, and a variant called “statistical
elational models”, using epidemiological data on tuberculosis,
hile CaMML has been applied [7] to the Australian Busselton
ata [11].

. CaMML: a tool for learning BNs
CaMML attempts to learn the best causal structure to account
or the data, using a minimum message length (MML) metric with a
wo-phase search, simulated annealing followed by Markov Chain
e [18, fig. 6.1].

Monte Carlo (MCMC) search, over the model space. Both MML
[34,35] and the better known MDL  [36] are inspired by infor-
mation theory, and make a tradeoff between prior probability
(model complexity) and goodness of fit. With both, the problem
becomes one of encoding both the model and the data, and the
best model is then one that minimises the message length for
that encoding. The differences between MDL  and MML  are largely
ideological: MDL  is offered specifically as a non-Bayesian infer-
ence method, which eschews the probabilistic interpretation of its
code, whereas MML  specifically is a Bayesian technique.2 Across
a range of problems, CaMML  has matched the best alternative
programs [39–41].

The full details of MML  encoding are not required for this paper,
but we can write the relationship between the message length, the
model and the data given the model as:

msgLen ∝ − log(P(Model)) − log(P(Data|Model)).

The CaMML  metric is a combination of the message of the MML
encoding of the BN, incorporating three parts: (1) the network
structure, (2) the parameters given this structure, and (3) the data
given the network structure and these parameters.

O’Donnell et al. [16,42] modified the original CaMML  encoding
of the BN structure to incorporate expert priors. We  now look at
the forms of these structural priors.

CaMML  supports multiple ways of describing prior informa-
2 Lam and Bacchus [37] developed the first MDL  encoding for BNs, while Suzuki
[38] proposed an alternative MDL  implementation (see also [2, Ch 9.3]); neither is
available in a BN learner software package.
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Underweight, if BMI ≤ 18.5; Normal, if BMI  ∈ (18.5,25); Overweight,
if BMI ∈ [25,30); and Obesity, if BMI ≥ 30. In the dataset, we  call this
M.  Julia Flores et al. / Artificial Inte

nowing through which variables it operates. If the information we
equire is too specific, an expert may  refuse to give anything useful.
ence, CaMML allows several levels of structural information, each
f which can be accompanied by a confidence level. These levels,
rom most specific to most general, are:

Full structure. An expert may  supply a fully specified net-
work. Alternatively, an expert may  supply a proper subnetwork,
describing only the variable relations he or she is confident
about.
Direct causal connections between variables may  be indicated (e.g.,
A → B). This requires a high level of knowledge in the workings of
the causal processes between the variables.
Direct relation (A–B). It may  be known that two variables are related
directly, but the direction of causality is unknown.
Causal dependency (A ⇒ B). This allows an expert to indicate that
one variable is an ancestor of the other, when the mechanism
between them remains unknown. For example, it is generally
accepted that smoking causes lung cancer, however little is known
about the detailed process.
Temporal order (tiers) (A≺B). In many domains it is clear that some
variables come before others; CaMML  allows that to be indicated
independent of other information. More generally, CaMML  allows
us to specify causal tiers—that is, causal relationships between sets
of variables, based on the notion that tiers separate the variables
on a timeline and that causality only occurs in the forward time
direction. This use of “temporal tiers” to give a partial ordering that
constrains arcs in a causal network is standard in BN learning (e.g.,
Tetrad IV and K2). For example: {A1, A2, ...Am} ≺ {B1, B2, ...Bn} where
≺ means that the variables Ai occur before the Bj, which for CaMML
becomes the structural constraint the Ai cannot be descendants of
the variables Bj. Note that this is weaker than defining a tier in
terms of ancestors, since there is no need to have directed paths
from each Ai to each Bj (or, indeed, any paths at all between A’s
and B’s).
Correlation (A∼B). The most general sort of information CaMML
uses is correlation. This implies that there is some connection
between the nodes. It may  be a causal dependency in either direc-
tion or via a common ancestor.

Other BN learners also support the use of structural knowledge,
ut they have been limited to specifying one or two of these kinds
f priors. K2 [31] requires a total ordering; Heckerman and Geiger
43] relax this requirement by proposing the use of a Minimum

eighted Spanning Tree (MWST) algorithm to learn a tree-like BN
tructure, which can then be used to initialise K2. Tetrad IV and
eNIe both support tiers, Hugin Lite [44] allows the user to pro-
ide directed arcs, while BDe/BGe require full or partial networks
o be specified [45]. Antal et al. [17] use only undirected pairwise
riors, comparing “text-based” priors obtained by statistical analy-
is of the literature to expert elicited priors. However, these are all
ard constraints. Heckerman and Geiger [43] proposed soft con-
traints by computing a prior distribution from the edit distance
etween an expert specified structure and the candidate structure,
hile Castelo and Siebes [46] use a prior over directed arcs. To our

nowledge, neither soft constraint method is yet supported in any
N structural learning package.

With CaMML the expert may  provide a full structure or any com-
ination of the prior types above. Experts may  also provide their
onfidence for each piece of information they are providing. While
his confidence is provided to CaMML  in the form of a probability,

ther forms may  be used during elicitation (e.g., a discrete numer-
cal scale, or a verbal scale) and later mapped into probabilities.
aMML then uses a system based on the MML  encoding of each
ind of structural prior and the confidence probabilities, together
e in Medicine 53 (2011) 181– 204 185

with the default arc probability, to synthesise the information into
a coherent whole.

4. Structural priors for the case study

4.1. Pre-processing

From the original Iowa dataset, our medical expert3 selected
those variables he considered most relevant for the present study.
As noted earlier, there is no single variable representing a diagno-
sis of heart failure. The selected variables span a combination of
patient background, relevant medical history and current symp-
toms. For example, SHBRLIE represents severe shortness of breath
occurring at night when the patient is lying down, which is likely
to be most specifically a symptom of congestive heart failure albeit
occurring only in a minority of patients. The 253 variables in the
original dataset were whittled down to 28, with all 14,456 cases
being retained. The raw data was then converted to Weka’s ARFF
format, which is also used by CaMML. Table 1 shows descriptions
and possible values for the chosen variables. (The last column indi-
cates the tier to which each variable was initially assigned; these
tiers will be explained in Section 4.2). We  can see from this table
that the dataset holds only patient reported data and does not pro-
vide times of past events, however this is a common problem with
medical datasets.

Pre-processing is a crucial step in data mining [47, Ch. 2];  it
is clear that without useful data, there can be no useful results!
Among the many pre-processing tasks that can be performed, we
undertook the following four, which were required for our pur-
poses.

4.1.1. Data cleaning
There were a number of missing attribute values in the data

set. It proved worthwhile working directly with the expert because
many of these missing values were in fact known. In many such
cases, a missing value indicated a negative answer, in particular for
the cases: HADHRTAT (56 missing values), ABLWALK (469), HADSTRKE
(29), HADCANCR (23), HADDBTES (30), TKINSLN (90% of the values
for this variable were missing and the expert suggested that this
clearly indicated a negative answer, plus where there were values,
less than 5% were positive) HADHGHBL (41), TKMEDBLD (50%; the
expert’s reasoning was the same as for TKINSLN), PAINWLK (33%),
TKMEBLD (55%) and SHRBRLIE (6%).

Following the recommendation of our expert, missing entries for
the variable EVRSMKCG were supplied with the new state Unknown.
Finally, for the remaining variables we  used imputation techniques
to provide the missing value. These were WEIGHT (889), HEIGHT
(1324), SCDSYSTL (1232), SCDDSTLC (1238) and SMKCGNW (59).

4.1.2. Normalization and aggregation
Examining the previous variables, it does not seem reasonable

to treat WEIGHT and HEIGHT as distinct factors. Separately, they do
not allow us to say very much about the possibility of heart failure;
combined, they are much more valuable. Conveniently, there is a
already an index for combining weight and height that is commonly
accepted in the medical world: the Body Mass Index or BMI. Given
that the dataset is based on US units of pounds and inches, BMI  was
computed by WEIGHT × 703/HEIGHT2 and aggregated according to
the categories given in http://www.nhlbisupport.com/bmi/,  that is:
new attribute the BMIKind.

3 One of the authors, Dr Andrew Brunskill.

http://www.nhlbisupport.com/bmi/
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Table 1
Description of the attributes and assignment to tiers.

Nr Name Description Values Tier

i SITE Location 1 = East Boston, 2 = Iowa, bg2

ii ID Subject ID 3 = New Haven, 4 = Duke numeric
iii SEX  Gender 1 = male, 2 = female bg1

iv  RACE Race 1 = White & other Non-black, 2 = black bg2

v AGEINT Age of the subject 1 = age <70, 2 = 70–74, 3 = 75–79, 4 = 80–84, 5 = age > 85 bg1

vi  EVRMARRD Have you ever been married? 1 = Yes, 2 = No bg2

vii  MARTSTAT Marital status 1 = NowMarried,2 = Separated,3 = Divorced bg2

viii  CURRWRK Currently working at paying job 1 = Yes, 2 = No ci

ix RETIRED Are  you retired? 1 = Yes, 2 = No ci

x  AGE Answer to How old are you? 1 = Incorrect, 2 = Correct, 3 = Refused –
xi NDHLPWLK Need help—walk in doors? 1 = NoHelp, 2 = Help, 3 = Unable ci

xii  ABLWALK Able to walk 1/2 mile without help 1 = Yes, 2 = No ci

xiii  HADHRTAT Dr ever told you had heart attack? 1 = Yes, 2 = Suspect, 3 = No p

xiv  HADSTRKE Dr ever told you had stroke? 1 = Yes, 2 = Suspect, 3 = No p

xv HADCANCR Dr ever told you had cancer? 1 = Yes, 2 = Suspect, 3 = No p

xvi TKINSLN Currently taking insulin 1 = Yes, 2 = No cd

xvii  HADDBTES Dr ever told you had diabetes? 1 = Yes, 2 = Suspect, 3 = No p

xviii HADHGHBL Dr  ever told you high blood pressure? 1 = Yes, 2 = Suspect, 3 = No p

xix  TKMEDBLD Currently taking medication for high blood 1 = Yes, 2 = No cd

xx PAINWLK Get pain when walking at ordinary pace? 1 = Yes, 2 = No cd

xxi  PRSSCHST Ever had any pressure in chest? 1 = Yes, 2 = No cd

xxii  WEIGHT Weight in pounds Numeric –
xxiii  HEIGHT Height in inches Numeric –
xxiv  SCDSYSTL Second blood pressure reading-Systolic Numeric cd

xxv SCDDSTLC Second blood pressure reading-Diastolic Numeric cd

xxvi SMKCGNW Do you smoke cigarettes (regularly) now? 1 = Yes, 2 = No –
xxvii EVRSMKCG Did you ever smoke cigarettes (regularly)? 1 = Yes, 2 = No bg2

4

r
t
t
p

4

s
s
T
p
n
d

d
l

4

i
w
s
r
b

d
n
a
t

4

(

There were some variables that did not fall neatly into any of
xxviii  SHRBRLIE Short of breath when you are lying flat? 

.1.3. Data reduction
The number of variables in the original dataset was already

educed by our expert to 28. However, there was a further attribute
hat was clearly unnecessary for our task: the person identifica-
ion number ID. This would be unique in each instance, and hence
rovide no predictive value.

.1.4. Numerical data discretisation
We  did not directly perform this task in the preprocessing phase,

ince many of the variables were already discrete. The discreti-
ation of BMI  into the attribute BMIKind was described earlier.
he only remaining numeric variables were those related to blood
ressure. We  left those as they were since CaMML  can discretise
umerical attributes directly, using the method most suited to the
ata (supervised or unsupervised).

By performing the above pre-processing tasks, we  produced a
ataset, with no missing values, that was suitable for use in the

earning experiments. Here, we call this dataset DataHF.

.2. Grouping into tiers

In Section 2.2.1 we saw a generic BN causal structure for med-
cal applications: background factors are parents of disease nodes

hich are parents of finding nodes. However, this structure is too
implistic for most real cases; for example, there are often temporal
elationships or complex interactions between background factors,
etween diseases, or between symptoms and test results.

However, as we have seen, CaMML  can capture some expert
omain knowledge in the form of partial orderings based on the
otion of ‘temporal tiers’, such as groups for background, disease
nd findings. We  now describe how we applied this approach to
he case study.
.2.1. Background variables
The background variables for this dataset are: location (i), sex

iii), race (iv), age (v), ever married (vi), marital status (vii) and ever
1 = Yes, 2 = No cd

smoked regularly (xxvii). We  further postulated that of these age (v)
and sex (iii) are more fundamental, potentially influencing (though
not directly causing) the other background factors. Therefore, in
Table 1, we  label background variables as type bg, with bg1 referring
to the more fundamental background variables and bg2 referring
to the remainder.

4.2.2. Disease and finding variables
In our case study, it was  less clear how to choose mean-

ingful disease variables. This dataset contains information about
what doctors have told the patient in the past, including events
(heart attack, stroke), disease (cancer, diabetes) and symptoms
(high blood pressure), rather than direct information about a
patient’s current disease. Therefore, we decided to divide non-
background variables into ‘past’ and ‘current’. The ‘past’ variables
are: had heart attack (xiii), had stroke (xiv), had cancer (xv),
had diabetes (xvii) and had high blood pressure (xviii). These are
shown as type p in Table 1. ‘Current’ variables, which correspond
to “findings” in the generic medical BN (see Fig. 1(c) were fur-
ther divided into direct and indirect indicators of current health.
Direct symptoms are: currently taking insulin (xvi), currently tak-
ing medication for high blood pressure (xix), pain walking (xx),
ever had pressure in chest (xxi), shortness of breath when lying
flat (xxviii), second blood pressure readings (xxiv, xxv). Indirect
indicators are: currently working (viii), whether retired (ix), need
help to walk indoors (xi), and able to walk 1/2 mile without
help (xii). These current health indicators are shown as type c
in Table 1, with cd for direct indicators and ci for the indirect
indicators.

4.2.3. Unclassified variables
the above categories. These non-tiered variables are marked with
“–” in Table 1. Note that weight (xxii) and height (xxiii) were
removed from the dataset, while BMIKind was not added to any
tier.
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Fig. 3. Pairwise relations obtained

.2.4. Tiers
Given this classification of variables into sets bg = bg1∪bg2, p,

nd c = cd∪ci,  the natural tiers that arise are:

g1  ≺ bg2 (1)

g  ≺ p ≺ c (2)

.3. Expert priors on pairwise relationships

In this study we focused on capturing expert understanding of
elationships between variables, and did not attempt to capture a
ull or partial BN structure from the expert. Instead, we used the fol-
owing pairwise elicitation method. The expert was provided with

 cross-table of 26 rows and 26 columns. For each cell in row R and
olumn C, the expert indicated the relation, if any, that he believed
xists between variable R and variable C. We  briefly described to
he expert the difference between the types of structural infor-

ation CaMML  takes: →,  –, ⇒,  ≺ and ∼. For the relations where
rder matters (→,  ⇒,  ≺) the direction was always Row relationship
ol. Note that we could have given the expert only the upper tri-
ngle, adding complexity with additional symbols for the reverse
irection relationship, although reducing the possibilities of incon-
istent information. In order to reduce the elicitation burden on

he expert, we did not elicit a confidence in the relationship; we
nvestigated this parameter experimentally. We  also note that the
xpert was located remotely from the knowledge engineers and
ost communications were electronic.
gh the expert elicitation process.

The result of the expert elicitation was  the set of priors for pair-
wise relations shown in Fig. 3. We  expected that most cells would
indicate no relation, and this was  indeed the case, with 444 empty
cells out of 676 (65.68%). Note also that when our expert indicated
a non-directional relationship (i.e., – or ∼), say in cell (R,C), we  did
not require him to duplicate it in (C,R) (although he did so in a few
cases). In summary, there were 84 →,  4 – (plus one symmetrical
not explicitly indicated), 16 ≺ and 89 ∼ (plus the 38 symmetrical
ones not explicitly indicated) pairwise relationships specified by
the expert, which provided 232 of the 676 possible pairwise rela-
tionships. Note that there are no ⇒ relationships, as our expert did
not consider non-direct causality a natural relationship to spec-
ify. The elicitation was done iteratively; that is, the initial table
provided by the expert was checked by the knowledge engineers
with inconsistencies identified and some entries queried because
they seemed to contradict “commonsense”. Interestingly, the elici-
tation process highlighted differences between medical and causal
BN terminology. For example, in causal BN terminology, when a
variable is said to directly precede another, that means that in
a causal process the first one comes before the other. However,
we found that our expert initially confused this with the diagnos-
tic reasoning process, with the effect “leading to” the cause. For
example, the expert used TKINSLN → HADDBTES,  to represent “if
you are taking insulin this means that you had diabetes”. However,

in causal language having diabetes results in taking insulin, repre-
sented by HADDBTES → TKINSLN. This confusion as to whether a BN
arc represents the causal process or the diagnostic reasoning has
been seen in other BN modelling case studies (e.g., [48]). The expert
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Parc, which is used in the calculations for the MML  encoding.
In these experiments, we  set Parc = 0.5; that is, CaMML starts by
assuming there is a 50% chance there is an arc between any two  vari-
ables. Expert priors can obviously override this general arc prior.
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evised the pairwise relations after the clarification of the relation-
hip semantics, and as a result of discussions with the knowledge
ngineers.

We found that there were no outright contradictions in the
xpert’s pair-wise priors, however in some cases the expert sug-
ested both A → B and B ∼ A, which CaMML  does not allow. We  must
hoose one or the other, since the second relation is more general
han the first (and thus includes it). When this occurred, we chose
o keep the more restrictive relation, A → B.

The expert also specified two cases that appeared unusual to the
nowledge engineers: HADHRTAT → EVRSMKCG and AGEINT → AGE.
hen raised with the expert, he indicated that these relationships
ere misunderstandings. For HADHRTAT → EVRSMKCG,  the expert

uggested that it is quite possible to have a heart attack without a
istory of smoking and to have a history of smoking without having
ad a heart attack.  He suspected that he initially included this rela-
ionship because of clear evidence showing that suffering a heart
ttack is a potent reason for giving up smoking (i.e., for someone to
ove from SMKCGNW to EVRSMKCG)  but this is a separate issue. For

GEINT → AGE, the expert agreed that the relationship was erro-
eous and he had been confused when it was introduced. He added
hat the only issue that might have given rise to this response was
hat AGEINT is a partial check for whether the patient has correctly
ecalled their age. If a patient cannot recall their age correctly, this
uggests that their other answers may  be unreliable or incorrect or
hey may  be having early memory or dementia problems (or both).
owever, these are not sufficient grounds for establishing a direct
ausal edge in this case.

Ordinarily, these discoveries would suggest repeating the exper-
ment after removing the two incorrect priors. We  decided not to
o so, in part to keep the volume of results manageable, but also
ecause we wanted to see whether combining the tier and the
air-wise priors is a way to overcome incorrect priors.

Another common way to validate expert opinion is to elicit
nformation independently (using the same elicitation method)
rom multiple experts, and use a process such as the Delphi method
49] to reach a consensus. Our decision to use a single expert was
ictated partly by practical considerations – we had only a single
xpert at our disposal – and partly because the focus of this study
as on combining different types of expert priors with data in the
N learning process, and we wanted to avoid adding the additional
omplexity to the KEBN process.

.4. Combined priors

Intuitively, it seems reasonable to use a combination of tier pri-
rs and expert pairwise priors, rather than either set of priors alone.
ur early experimental results backed this intuition. Several inter-
sting issues arose when we merged these two sources of prior
nformation, discussed below.

.4.1. Redundant priors
Many of the priors indicated by the expert were already present

n the tiers; for example, SEX precedes all the rest in the tier prior,
aking redundant the expert’s 21 ≺ and → pair-wise priors.

.4.2. Tier violations
There were three relationships provided by the expert

hat violated tier information, namely, SCDSYSTL → HADHRTAT,
CDSYSTL → HADSTRKE and SCDSYSTL → HADHGHBL.  Note that
hese might be further examples of the expert specifying arcs in
he diagnostic direction; e.g., in answer to the question, “What

oes the SCDSYSTL reading tell us about the patient’s past?”
ut it may  also be that high blood pressure is a chronic condi-
ion, therefore current high readings are very likely to indicate
igh pressure also in the past, which is clearly causally related
e in Medicine 53 (2011) 181– 204

to the occurrence of the cardiovascular events. This demon-
strates how complex the assignment of causal relationships with
undated non-specific and gradual onset symptoms can be. In this
case, we decided to use the tiers priors for the combined prior
experiments.

5. Experimental methodology

5.1. Our application of the KEBN process

First we describe how we  applied the KEBN process (Section
2.2.2) in our case study. Our workflow is pictured in Fig. 4, show-
ing how we are focusing on finding the BN structure (Stage 1);
other stages of the KEBN process (including parametrisation) were
omitted.

The input to our process is simply the IOWA dataset presented
in Section 2.1.  First, we  preprocessed the data by cleaning it up,
removing inconsistencies, reducing the number of variables, defin-
ing a new summary variable (BMIKind) and discretising continuous
variables (Section 4.1); each of these is depicted as an alterna-
tive method during preprocessing (and, of course, others could be
added).

The preprocessed data is then given to CaMML, our BN learner;
the KEBN workflow diagram shows the alternatives available of
using data only, or first eliciting either tier priors or pair-wise priors.
Priors are given to provided to CaMML  together with confidences.

CaMML  has a number of parameters that can be adjusted, includ-
ing the number of runs and how many BNs to be returned from each
run. This is represented in the “Set Learner Config” step.

Finally, once CaMML  has been run over the data with the appro-
priate configuration for each experiment, it outputs the learned
BNs. We  analysed the BN structure using the range of measures and
visualisations described in Sections 5.4 and 5.6,  then generated a
single BN from the set of learned BNs (Section 5.7).

Note that KEBN is fundamentally iterative, and our experience
in this study was no different. Fig. 4 (below) shows the paths
taken through the workflow diagram for each iteration. These paths
roughly correspond to the experiments described in the following
section; the order of these paths and the choices for each iteration
were motivated by analysis of previous results.

5.2. CaMML configuration

CaMML  has a number of parameters that can be varied. Here we
describe those that remained fixed in our experiments.

5.2.1. Number of samples used in CaMML’s MCMC search
The default setting for these experiments is 3,515,200 samples

for the MCMC  search. We  undertook some preliminary investi-
gations, comparing the default with a tenth of the number of
samples (351,200) and found there was  no significant variation
in the results. Computation time was not an issue so we  ran all
experiments reported below with the default value.

5.2.2. Prior arc probability
CaMML  requires a probability for the existence of an arc, called

4

4 If not explicitly set, CaMML estimates Parc from the number of arcs found in the
best model from the simulated annealing phase of its search.
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Fig. 4. Workflow showing KEBN methodology applied to dataset.
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ntuitively, if the starting arc probability is low, then it takes longer
nd/or more data for CaMML  to “find” an arc that does in fact exist.5

.2.3. CaMML’s output
While CaMML  can produce a set of the best BNs, ranked by

robability, in this paper we ran CaMML  in single BN output mode.

.2.4. Number of runs
CaMML uses a stochastic search, so we did N = 30 runs for each

rior confidence setting to produce statistically significant results.
ll experimental results presented herein are based upon these 30
Ns.

.3. Variation in structural priors

In the experiments of Section 6, we vary the structural priors in
 ways:

. Grouping of variables into the tiers described in Section 4.2.
a) Original tiers: bg1 ≺ bg2 ≺ p ≺ c. Range of confidence: 0.99,

0.9999, 0.999999, 1.
b) Revised tiers: (bg1 ∪ bg2) ≺ p ≺ c. Range of confidence: 0.9,

0.99, 0.9999, 0.999999, 1.
. Using expert (non-tier) pair-wise priors (Fig. 3), as described in

Section 4.3. Range of confidence in pair-wise priors: 0.6, 0.8, 0.99.
. Combining tier and pair-wise priors (Section 4.4), with a con-

fidence of 0.9999 for the tier priors and varying confidence in
pair-wise priors through 0.6, 0.8, 0.99.

The higher (and narrower) confidence range for the tier pri-
rs reflects the temporal basis of orderings. The lower confidence
alues used for the pair-wise priors reflect (i) the expert’s acknowl-
dgement that many interactions in the domain are not well
nderstood, (ii) the expert’s lack of experience in providing these
air-wise causal relationships, and (iii) the chance of individual cell
rrors when using the large grid format.

.4. Evaluation measures

In BN learning research, there are a number of accepted eval-
ation measures. If the experiments are done on data generated
rom a known model, then both the structure of the learned BN
nd the predictions made by the learned BN, can be compared to
he original model and its predictions.

However, when learning BNs using real data, as here, we can-
ot evaluate the resultant BN against a “gold standard”. In this case,
he typical approach is to learn the BN using a certain portion of the
ata (say 90%) and then test its predictions on the remaining 10% of
he data. For each “case” (row in the data), the values of some vari-
bles are entered into the BN as evidence, belief updating is then
erformed, and the resultant posterior distribution for one or more
arget (query) variables are the model’s predictions. Different mea-
ures are available to assess these predictions. A common measure
s predictive accuracy: the value with the highest posterior proba-
ility is taken to be the prediction and if it matches the value in the

ata case, it scores 1, otherwise it scores 0. This is a very crude mea-
ure for assessing a probabilistic model, as it does not distinguish
etween a prediction of 0.99 (great if correct, a disaster if wrong)
nd 0.51 (very much sitting on the fence)—both score the same.

5 We  ran some preliminary experiments with our data, varying the starting arc
robability from 0.1 to 0.8 and found no significant differences in the BNs learnt.
rom this we  concluded that we had sufficient data for this starting arc probability
o  be quickly overcome by the data; we therefore chose to use the value of Parc = 0.5
n  all the experiments.
e in Medicine 53 (2011) 181– 204

More suitable quantitative measures include the AUC (area under
the curve) of the ROC curves and Bayesian information reward [50]
that also considers the calibration of the probabilistic predictions
being made.

However, our focus here is to investigate the impact of struc-
tural priors on BN learning and assessing learned BN structurally
as a causal model before parameterising the network. Predictive
measures therefore are not suitable. Instead, we primarily use
qualitative measures to assess and compare structures (and only
structures) of the learned BNs.

In particular, we  take CaMML’s “best guess” BN from each of
the 30 runs for a given configuration, and compute the following
measures to evaluate and compare BN sets across different exper-
imental configurations.

• Average arc density (# Arcs/# Nodes) and its standard deviation
(s.d.);
• Average # structural prior violations;
• List actual arcs that are violations of structural priors (and the

frequency with which they occurred in the 30 BNs)

Note that arc density is a commonly used metric for summaris-
ing the complexity of a BN. In general, a lower density is preferable,
as a simpler network is easier to understand and requires fewer
parameters. However, of course, it may  be that a denser BN is a
more faithful model.

5.5. Structural prior violations

Structural priors provided by the expert are violated when
CaMML  produces a BN that does not obey the priors (ignoring the
confidence assigned to priors). An individual prior can be violated
in the following ways, depending on the kind of prior:

• T he priors r ≺≺ c and r ≺ c are violated when r is a descendant of
c;
• T he priors r → c and r ⇒ c are violated when there is no directed

arc or chain from r to c;
• T he prior r – c is violated when there is no undirected arc from r

to c;
• T he prior r ∼ c is violated when there is no directed chain between

r and c and no common ancestor.

5.6. Visualisation of results

5.6.1. Summary models
To aid our interpretation, we also use the arc frequency matrix

produced by CaMML, depicted as a so-called weighted “summary
model”. This shows each arc that appeared more than a particular
threshold frequency, with different line styles indicating differ-
ent arc frequencies.6 Fig. 5 shows two example summary models,
showing all non-zero arc frequencies (above) and using a thresh-
old for display of 20% frequency (below). Clearly, the 20% threshold
version is significantly less cluttered. We  found these summary
models useful for viewing CaMML’s output for a single experi-
mental configuration, in a form that could be presented to the
expert. Nevertheless, we found them cluttered, even with the 20%
threshold, particularly when they included arcs in both directions

between two variables (i.e., when CaMML  is confident about an arc,
but not its direction). For example, in Fig. 5(b) there are arcs in both
directions between HADHRTAT and HADSTRKE.

6 This format was used in [7],  but there the summary was used to show frequencies
in  the top 10 BNs when running CaMML  in the mode that produces a set of BNs for
each run.
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Fig. 5. Two example summary models showing arc frequencies for BNs produced by CaMML from 30 runs of one configuration (tier confidence = 0.9999, revised tiers): (a)
all  arc frequencies and (b) arc frequencies with the 20% threshold.
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Another difficulty we encountered was that the graph layout
ackage we used changed the layout when the arcs changed, mak-

ng it very hard to compare BN structures that in fact are very
imilar. This made it hard to make qualitative comparisons between
odels produced with different configurations (e.g., different prior

onfidences).

.6.2. Summary matrices
The need to evaluate the qualitative aspects of a set of learned

Ns at a glance led us to develop a so-called “summary matrix”, an
xample is given in Fig. 7. In this visualisation, the matrix shows
he frequency of the arc from row to column; an entry of 1.00 indi-
ates that arc was present in all 30 BNs, while 0.00 indicates it was
resent in none. We  used a (green) colour gradient for the cells
o reflect the arc frequencies, which draws the eye to the most
requent arcs. We  note however that this format is not as useful
or identifying arcs for whose direction CaMML  is uncertain; For
xample, in Fig. 7, the opposing arcs NDHLPWLK → ABLWALK (0.30)
nd NDHLPWLK → ABLWALK (0.70) are both close to the diagonal and
herefore each other, however others like SHRBRLIE → HADHRTAT
0.23) and HADHRTAT → SHRBRLIE (0.77) are very far apart.

We added a final feature to the summary matrix to highlight
tructural tier violations. Violation of a tier prior Y ≺ X is indicated in
he cell in row Y, column X by a red rectangle overlay (for interpre-
ation of the references to color in this figure, the reader is referred
o the web version of the article). The opacity of that tier violation
ectangle ranges from completely opaque (the violation occurred in
00% of the BNs) to completely transparent (the violation occurred

n no BN). For example, in Fig. 7, the cell for SEX → TKMEDBLD has
 red rectangle, indicating many BNs violated the tier prior SEX ≺
KMEDBLD. In this case, the violation seems mainly due to the exis-
ence of a direct arc, TKMEDBLD → SEX, which was present in 40% of
he BNs, as can be seen from the 0.40 in the cell for TKMEDBLD → SEX.

Note that it is also possible for a tier to be violated when there
s no direct arc. For example the cell for NDHLPWLK → HDHRTAT has
he entry 0.00, indicating no BNs contained that arc, but the par-
ially transparent (i.e., pale pink) violation rectangle for the cell
ADHRTAT → NDHLPWLK indicates that NDHLPWLK is an ancestor of
ADHRTAT in at least some of the 30 BNs (though a small number).
e  did consider adding the actual frequency of the violation, but

ound no way to include it without making the summary matrix
mpossibly cluttered.

.6.3. Difference matrices
Difference matrices allow us to compare the output from differ-

nt experiments. They do this by showing the difference between
wo summary matrices, each of which summarises the 30 BNs
earnt in the 30 runs for each experiment.

In these matrices, we show the variables both vertically
columns) and horizontally (rows). When the cell (i,j)7 displays a
lus symbol, the first experiment set contains more arcs of type
ari→ varj than the second. The minus symbol has the oppo-
ite meaning; that is, the first experiment set contains fewer arcs
f type vari→ varj than the second. Colouring and intensity of
olour is used to indicate the intensity of this difference, with red
ndicating one extreme (positive/maximum) and black the other
negative/minimum). An empty (i.e., white) cell indicates that there
s no difference in the number of arcs between the two sets of runs.

Fig. 8(c) shows an example difference matrix (explained in more

etail in the experimental results for Experiment 1). From this
atrix, we can see that the first experiment had fewer BNs with

rcs from AGE → SITE, but more BNs with the arc in the opposite
irection, from SITE → AGE.

7 Here, i is the row header and j the column header.
e in Medicine 53 (2011) 181– 204

5.6.4. Edit distance
Edit distance (ED) is a measure that counts the number of arcs

that differ between two  BNs. We  use the standard three arc editing
actions: addition, deletion and reversal. To produce an ED measure,
our ED computation sums over the total number of edit actions
needed to make one of the BNs assume the same structure as the
other. For our experimental configuration, which produces a set of
30 BNs, we need to compute an average ED between the results of
one configuration and another. Since performing 30 ×30 compar-
isons could in some sense be interpreted as double counting, our
implementation takes 30 random pairings (accounting for every BN
exactly once) and takes the average ED over all the pairs.

We note that the ED is a somewhat crude measure, because it
fails to take into account certain qualitative information. For exam-
ple, A → B → C is 1 away from A → B ← C in ED, but represents a
completely distinct set of causal relations. Nonetheless, as we will
discuss in Section 6.5, this measure can give us a general under-
standing of learning behaviour.

5.7. Generating a single BN

While ensembles of BNs can be used for prediction or reasoning,
in many applications the aim is to produce a single BN. Also, a num-
ber of qualitative evaluation methods (such as sensitivity analysis
and scenario reviews) can be only be applied to an actual BN. Thus,
the final stage of the KEBN process for our case study is to produce
a single BN structure from the 30 produced by one CaMML  run, for
given configuration and set of priors and confidences.

We generate a single BN from the list of arc frequencies as fol-
lows (see Algorithm 5.7). Intuitively, we  want to include in the
single BN the arcs that appear with the highest frequency in the
set. However we know that sometimes the data is such that the BN
learner finds it hard to determine the direction of an arc; we have
seen this uncertainty in reflected in the summary matrix by a split
in the frequency, say between A → B and B → A. Therefore we com-
bine the frequency of each arc with the frequency of its reverse
arc. These combined arc frequencies are then sorted from most
common (i.e., appearing in 100% of generated networks) to least
common. Arcs are then added to the single BN beginning with the
most common, continuing down to arcs with frequencies above or
equal to a user-supplied threshold. Each arc is assigned the direc-
tion that is most frequent—for example, if ABLWALK → HADSTRKE
has a frequency of 40%, but the reverse arc ABLWALK → ABLWALK
has a frequency of 53%, then the arc direction in the single BN is
taken from the latter arc. If both directions have equal frequency, a
random direction is chosen. If adding the arc produces a cycle, the
reverse arc is added instead. Algorithm 1 thus produces as output a
valid (i.e., acyclic) network whose arcs reflect the highest frequency
arcs in the input set of BNs, down to a user specified arc frequency
threshold.

The choice of threshold frequency will depend on the domain
and the data, and involve at least two factors: (1) the user’s prefer-
ence for a simpler network with fewer arcs (high threshold) and (2)
a trade-off to include as many arcs as possible that represent struc-
tural priors while not including arcs that generate prior violations.
Overall, this is a more general and flexible version of Hodges et al.’s
approach [51], which creates a single consensus network (but not
a BN) from a set of BNs by only adding arcs with a (combined)
frequency of 100%.

Another possibility is to search for the threshold that gives the
“best” single structure, using any of the metrics for scoring a BN

(e.g., CaMML’s MML  metric, the BDe [31], an MDL  metric [37,38]).
In Section 7 we  report CaMML’s MML  cost metric for the single BN
generated for a range of thresholds, then look in more detail at the
single BNs generated using the user threshold of 70%.
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aMML

A

Fig. 6. Base experiment: summary model produced by C

lgorithm 1 (Generating a single BN).

Input: B = a set of BNs, each containing the same set of variables V, � = arc
frequency threshold

Output: G = a single BN, containing same variables V
Variables:

a: an arc
f: a frequency
A: list of arc, frequency pairs (a, f)

A ← [] //Empty list
foreach possible arc a that exists in B do

f ← frequency (a + reverse(a) in B)
A ← A + (a, f)

end
A ← sort A from highest frequency to lowest
G  ← a BN containing every variable in V and no arcs
foreach pair (a, f) in A do

if f < �% then
BREAK

else if adding a to G does not produce cycle then
add arc a to G
else
add arc reverse(a) to G

end
end
 from 30 runs of one configuration (arcs with freq > 0.2).

6. Experiments

6.1. Base experiment: no structural priors

Our base experiment (see workflow in Fig. 4) was  to run CaMML
with no structural priors, providing a base against which to com-
pare the results from our subsequent experiments with structural
priors.

The average arc density of the learned BNs is 2.46 (with s.d.
0.0655), indicating that CaMML  learns a relatively sparse network
from the data only. This corresponded to the average number of
arcs being about 64. This suggests that the 84 causal relation-
ships → (which correspond to an arc in the BN), specified by our
expert, may  not be supported by the data.

The summary model is given in Fig. 6, with the corresponding
summary matrix shown in Fig. 7. Clearly, there are many low fre-
quency arcs and very few “certain arcs”; for example, only 15 arcs

with frequency 1.00. CaMML  is also often uncertain of the arc direc-
tion; there are 24 “pairs” of nodes X,Y where both X → Y and Y → X
have frequency > 0.2 (the threshold used for including in the sum-
mary model in Fig. 6). This shows how difficult it is for a BN learner,
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Fig. 7. Base experiment: summary matrix

ven with what would be considered a reasonable amount of data,
o learn a BN with this many variables.

For the purpose of later comparisons, we note that the average
umber of tier prior violations in these BNs (for the original tiers)

s 48.03 (with s.d. 16.93), while the average number of violations
f the expert pair-wise priors is 71.23 (with s.d. 2.87) (although
f course the priors were not provided to the CaMML  learning
lgorithm in this experiment). This suggests, even before we  run
xperiments incorporating them, that the tier priors agree more
ith the data than the pair-wise priors.

Overall, the base experiment confirms the premise underpin-
ing this research: that often BN learners find it difficult to learn
seful models when there are large numbers of variables involved.

n this case, the resulting networks are complex, with a lot of uncer-
ainty about the structure, and even ignoring the weakest arcs (as
n Fig. 5(a) and (b)), make no sense as causal models of the domain.

.2. Experiment 1: expert tier structural priors

In this experiment we incorporated tier priors, following the
MR model (Section 2.2.1) and our analysis of temporal aspects of

he problem (described in Section 4.2). The experiment was  per-

ormed in two iterations:

[Iteration 1:] Original tiers, over confidence values {0.99, 0.9999,
0.999999, 1}.
uced by CaMML with no structural priors.

[Iteration 2:] Revised tiers, over confidence values {0.9, 0.99,
0.9999, 0.999999, 1}.

with the tiers revised for Iteration 2 after analysis of results from
Iteration 1 (see below).

The arc density (see Fig. 8(a)), which represents the mean num-
ber of arcs per node, varies between roughly 2.3 and 2.4 with only
the value for tier prior confidence value 1 (original tiers) being
statistically significantly different (lower) than the others. The arc
densities from the revised tier runs with confidence 0.9, 0.9999999
and 1.0 are also significantly lower than the arc density for the base
(no priors) experiment. These results indicate that incorporating
priors may result in sparser (and simpler) models, even though the
original model was  fairly compact anyway.

Fig. 8(b) shows the average number of structural tier violations.
In all cases the number of violations is always under 10, and far
fewer than the 48.03 in the base experiment. Adding the tier pri-
ors makes a substantial difference in the structures CaMML  learns.
The higher the confidence level in the tier priors, the fewer tier vio-
lations in the learned networks, (although there is no significant
difference in violations for the 0.9999 and 0.999999 confidence).
This is exactly what we would expect; by giving higher confidence

in the tier priors, CaMML  is giving greater weight to the prior, so
it is harder for the data to overcome the tiers, and hence there are
fewer violations. Also, for each confidence level, the revised tiers
produced fewer violations. Again, this is expected, as tier priors
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hat lead to violations in the original tiers used in Iteration 1 were
emoved for the Iteration 2 (revised tiers).
Table 2 shows a list of the tier priors violated, for the two  sets of
riors. There were two main types of violations. First, there were
any that were of the form bg2→ bg1, violating bg1 ≺ bg2. This

ndicated that the distinction we had made between different kinds

able 2
xperiment 1: listing of tier violations.

Tier Expt 1 (original tiers) 

0.99 0.9999 0.999999 

SEX ≺ SITE 0.40 0.07
SEX ≺ EVRSMKCG 1.00 1.00 1.0
AGEINT ≺ SITE 0.30 0.07
AGEINT ≺ EVRSMKCG 1.00 1.00 1.00
HADHRTAT ≺ ABLWALK 0.97 0.50 0.63 

HADHRTAT ≺ TKINSL 0.60 

HADSTRKE ≺ NDHLPWLK 0.20 0.13 0.13 

HADSTRKE ≺ ABLWALK 0.97 0.50 0.57 

HADHRTAT ≺ SHRBRLIE

HADSTRKE ≺ SHRBRLIE 

HADSTRKE ≺ TKINSLN 

EVRMARRD ≺ HADHGHB

EVRMARRD ≺ ABLWALK 

EVRMARRD ≺ NDHLPWLK

EVRMARRD ≺ HADDBTES
e in Medicine 53 (2011) 181– 204 195

of background factors (that is, splitting bg into bg1 and bg2) was  not
warranted, and hence motivated the removal of this distinction in
our revised tiers.

The second type of violation involved interactions between
“past” variables (e.g., HADSTRKE and HADHRTAT),  and variables that
we considered indicators of current health (NDHLPWLK, ABLWALK,
TKINSLN). We  postulate that these tier violations are due to CaMML
having difficulties in getting arc directions correct when the impor-
tant variables are hidden. For example, if the true actual structure
is that of Fig. 10,  then if the Disease nodes are hidden (i.e., not
in the dataset), tier priors symptomt ≺ symptomt+1 with anything
less than confidence 1 may  not be enough for CaMML  to learn
symptomt→ symptomt+1. We  note that with the revised tiers, these
violations no longer occurred (even though there were no changes
to the tiers involving these variable), and those remaining occurred
much less often.

We  also note that, for the lower confidence of 0.9, the revised
tiers resulted in a set of tier violations involving EVRMARRD and
two variables from the ‘past’ (p) tier and again two  from the ‘current
indirect’ (ci) tier. They all occurred just over half the time (frequency
0.57).

In the summary matrices for both iterations (Fig. 9(a) and (b), top
halves only shown due to space), now, in contrast to the base exper-
iment, there are more “extreme” values in the edge frequencies
with many 1.0 (present in all BNs) and 0.0 (absent in all BNs) and
fewer “weak” (i.e., less frequent) edges. We  saw above in Fig. 8 that
the average number of tier prior violations for confidence 0.9999
dropped from 3 for the original priors to 1 for the revised priors.
The summary matrices show visually which tier priors are violated
and how often: 7 with the original priors, 5 for the revised priors
(listed in Table 2). Note that those with frequency less than 0.1 are
too faint to see clearly at this resolution.

Fig. 9(c) shows the difference matrix for the original and revised
priors. Most changes are minor (depicted by the pale pink and
pale grey). The use of intensity allows us to see quickly that the
main changes are in the links between SITE-SEX,  SEX-BMIKind
and AGE-AGENT. These are all background variables, which were in
the tier priors we  changed, so the reduction in the violations has
been achieved with minimal change to the network structure as a
whole.

Finally, Fig. 12 compares all four experiments – Base, 1, 2 and
3 – using differences matrices between each pair of experiments.
Recall from Section 5.6 that a difference matrix summarises which

arcs are the same (white), present more frequently (+ sign, redder
the higher) and present less frequently (– sign, darker the fewer).
While obviously the size of the matrices in this figure does not allow
a detailed analysis, it does allow us to identify general trends in the

Expt 1 (revised tiers)

0.9 0.99 0.9999 0.999999

1.00 1.00 0.40 0.70
1.00 0.63
0.97 0.23 0.10 0.10
1.00 1.00 0.47 0.70
0.03
0.03 0.07
0.30 0.03 0.03
0.57
0.57
0.57
0.57
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Fig. 9. Experiment 1 (a) Iteration 1: summary matrix (top half) from original priors, (b) Iteration 2: summary matrix (top half) from revised priors, (c) difference matrix (top
half)  comparing the revised priors with the original priors. All confidence 0.9999.
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ig. 10. BN fragment showing possible underlying “true” structure; symptomt→
ymptomt+1 should be learnt when Disease variables are unobserved.

omparative results. For example, the tier priors in Experiment 1
0.9999) clearly give a summary matrix that is quite different to that
earnt in the Base Experiment, with a number of darker red and
lack cells and many pale coloured cells. The symmetry of large
arts of the difference matrix suggests that many of the changes
elate to change in arc direction rather than arc existence. (We’ll
onsider other aspects of this figure as we look at the results for
ach experiment in turn.)

.3. Experiment 2: expert pair-wise structural priors

In this experiment we provide CaMML  with the expert’s pair-
ise (non-tier) priors (Fig. 3), with confidence values {0.6, 0.8, 0.9}.

irst, we can see from Fig. 11(a) that the average arc density of the
xperiment 2 networks is similar to those of the Base and Exper-
ment 1, ranging from 2.40 (99% confidence interval [2.37, 2.43])
or confidence 0.6–2.45 (confidence interval [2.42, 2.48]) for con-
dence 0.8. The slightly higher density for the higher confidences,
hough not statistically significant, indicates that when the pair-
ise priors are given more weight, the results BNs are slightly more

omplex.
In this experiment, when looking at the average number of prior

iolations, we distinguish between violations of the pair-wise pri-
rs (Fig. 11(b)) and violations of structural tier priors (Fig. 11(c)).
he number of violations (of both pair-wise and tier priors) for the
owest pair-wise prior confidence (0.6) is indistinguishable from
he Base Experiment, suggesting that such a low confidence is not
nough to influence CaMML’s search, given the amount of data
vailable. We  can see, however, that providing CaMML with the
tronger pair-wise priors decreases the average number of pair-
ise prior violations. It is striking that, even with the highest

onfidence (0.99) there are still many violations (about 67). This
uggests that the set of pair-wise priors, as a whole, are not in
greement with the data. Increasing the confidence in the pair-
ise priors also resulted in a slight reduction in the number of tier
rior violations, suggesting some overlap in the relationships being
epresented by the two  types of structural priors.

Fig. 13(a) shows the summary matrix for the 0.8 confidence run
the matrices for 0.6 and 0.99 are not included for reasons of space).
ooking first at the arcs that CaMML  is “certain” about (i.e., where
he arc frequency is 1.00), we see there are only 12 such arcs, less
han 19% of the average 64 arcs. There are also few high frequency
rcs; only 6 arcs have frequency between 0.90 and 1.00.

Fig. 13(a) also shows which pair-wise priors are violated in
he learned BNs, with the intensity of the red ovals indicating the
requency. While the violation visualisation does not distinguish
etween types of relationships (e.g., –– vs →),  it was straightfor-
ard to overlay the violations on the original priors (though not

ncluded here). This showed that the vast majority of the violations
re the direct causal pairwise relationships (→).
From Fig. 12 we can see that the pair-wise priors (0.8) make
elatively few changes to the Base Experiment matrix, compared to
he impact of tier priors in Experiment 1. The difference matrices
etween Experiments 1 and 2, on the other hand, show far more
Fig. 11. Experiment 2: learning with expert pair-wise priors, varying confidence 0.6,
0.8,  0.99. (a) Average arc density, (b) average no. of violations of pair-wise priors, (c)
average no. of tier prior violations. (All with 99% confidence interval.)

differences. In many cases, strong differences in cells between Base
to Experiment 1 (say red) are reversed in the difference matrix cells

between Experiments 1 and 2.

In summary, for this experiment with pair-wise priors only,
there are large number of weak arcs in the summary matrix, a lim-
ited reduction in the number of pair-wise prior violations, relatively
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experiments (first column) are all large (over 30), which we  might
expect—the priors are making a difference to the networks learner.
The most difference is between the Base and the combined priors
Fig. 12. Difference matrices a

ew changes from the base case and still many violations, especially
f the direct → priors. All this suggests that the pair-wise priors
o not fit the data. Clearly, despite the iterative communications
ith the expert, too many and too fine pairwise relationships were

licited.
Rather than continue iterating with variations in the pair-wise

riors (which, of course, is also a reasonable option), for the pur-
oses of this study we chose to keep the original, obviously flawed
et, and see what happened when we combined them with the tier
riors.

.4. Experiment 3: combining tier, pair-wise priors

In this experiment, we combine the tier and arc priors and com-
are the results with those of the two previous experiments, where
hey were applied separately. We  use a single confidence 0.9999
or the revised tier priors, but vary the confidence in the pair-wise
riors over the same range, namely 0.6, 0.8 and 0.99.

As we would expect, as the confidence in the pair-wise pri-
rs goes up, the average number of pair-wise prior violations
Fig. 14(b)) goes down, while on average the number of tier prior
iolations (Fig. 14(b)) goes up (although the only statistically sig-
ificant differences are between the lowest value and the others).

The average arc density results for Experiment 3 are shown in
ig. 14(a). While a confidence of 0.8 and 0.99 for the pair-wise
riors resulted in a similar average arc density to the previous
xperiments (around 2.4), interestingly, a confidence of 0.6 gave

 significantly lower average arc density, yielding the confidence
nterval [2.34, 2.38]. This is also significantly lower than the aver-
ge arc density obtained with tier priors with confidence 0.9999

Experiment 1, Fig. 8(a)).

Looking at the summary matrix from Experiment 3 (confidence
.8) (Fig. 13(b)) we can see that there are more “certain” arcs (cells
ith 1.00) than compared to Experiment 2, but slightly fewer than
whole experiment workflow.

for Experiment 1. We note that all the tier prior violations involve
ABLWALK (in the second position in the pair-wise relationships, i.e.,
X ≺ ABLWALK). Certainly not all strokes lead causally to persistent
failure to walk,8 however there is no obvious causal sequence in
the opposite direction. We  note however that the data contains no
time marks and hence gives no indication as to how longstanding
any walking ability difficult may  be, and whether it pre-dates any
past stroke; violation of this tier prior is therefore unsurprising.
Also, all of the remaining pair-wise prior violations involve the →
relationship given by the expert; the reduction in pair-wise prior
violations has been large in terms of the other relationships.

Finally, the difference matrices between Experiment 3 and the
other preceding experiments (Fig. 12)  show the 3 different “paths”
to the same outcome. The combined priors have resulted in only
slight differences, compared to tiers only. It’s clear that tier priors
in this case are providing the major assistance to causal discovery
and that arc priors have only had a modest impact.

6.5. Edit distance comparison across experiments

As described in Section 5.4,  we can look at the ED between
the 30 BNs produced for each configuration of each experiment.
Fig. 15 shows for each pair of experiments, the average ED and the
standard deviation, in figures, with the shading giving a visualisa-
tion of the ED (darker means higher average ED). The darker lines
across the grid delineate the different experiments, with each row
and column showing the confidence in the prior used.

The edit distances between the Base Experiment and all other
8 And, of course difficulty walking may  be due to non stroke causes such as arthri-
tis  or indeed congestive heart failure.
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threshold frequency, arcs labelled B show the first set of arcs
added (with frequency 96.67%), and so on for C (86.66%) including
ABLWALK → HADHRTAT which violates tier prior p ≺ c, D (83.33%), E
ig. 13. Summary matrices (top-half) (a) Experiment 2, pair-wise prior confidence =
iolations of pair-wise priors indicated by red ovals, tier prior violation indicated b

with no statistically significant difference when varying the
air-wise prior confidence). Otherwise, the bigger edit distances
re found between the Experiment 2 (pair-wise prior only experi-
ents) and both experiments 1 and 3, reconfirming the distinction

etween these indicated by the difference matrices.
Within an experiment, increasing the confidence sometimes

ncreased the average ED; for example, for when comparing Exper-
ment 1 with itself (column conf = 0.9), as the tier prior increased
rom 0.99 to 1, the average ED increases from 14.6 to 19.5. On the
ther hand, in some cases (e.g., Experiment 3, conf = 0.6, when com-
ared to Experiment 1), increasing the Experiment 1 confidence
rom 0.9 to 0.9999 (or higher) decreases the average ED; this is
ecause the run becomes closer to Experiment 3 with tier prior
onf = 0.9999.

. Generating a single BN
As described in Section 5.7,  the final stage of the KEBN process
or our case study was to generate a single BN structure, using a
hreshold frequency, from the 30 produced by one CaMML  run. We
erformed this procedure with thresholds from 100% down to 0%,
) Experiment 3, revised tiers, tier confidence = 0.9999, expert prior confidence = 0.8.
ectangle, intensity indicates frequency of violations.

using 1% steps, for Experiment 1 (tier conf = 0.9999) and Experiment
3 (tier conf = 0.9999, pair-wise conf = 0.8). Fig. 16 shows both the
number of arcs in the single BN generated for each threshold, and
the MML  cost for each structure. We can see that the steps are
coarser than the 1% threshold step, as there are no arcs at many
frequencies. The MML  score decreases for a while as the threshold
descrease,9 then increases as less frequent arcs are added.

Fig. 17 shows the single BN structure generated in Experiment
3 for the threshold frequency 70%, an example of a threshold
that gives a BN slightly simpler than the “best” BN according
to the MML  cost in each case. As mentioned in Section 5.7,
the appropriate trade-off will be user- and domain-specific. The
unlabelled arcs are those in the single BN generated with 100%
9 It is interesting to see that the MML  cost varies by only about 1–2% across all
frequencies. This is because the large amount of data for this case study means that
the  cost for representing the data given the BN far outweighs the cost for the BN.
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Fig. 14. Experiment 3 combined priors: varying confidence in expert pair-wise pri-
ors 0.6, 0.8, 0.99 (confidence in tier priors fixed at 0.9999) (a) average arc density, (b)
average no. of violations of pair-wise priors, (c) average no. of tier prior violations
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Table 3
Comparison of single BNs generated from Experiments 1 and 3: differences in arcs
(arcs violating tiers indicated with *).

Pair Tier–Tier Expt 1 Expt 3
Single BN Single BN

SITE -- SEX bg -- bg →
AGE  -- ABLWALK bg -- c →
SEX  -- HADSTRKE bg -- p →
HADHRTAT -- HADSTRKE p -- p →
HADHRTAT -- HADDBTES p -- p ←
HADHRTAT -- ABLWALK p -- c ←*
HADSTRKE -- ABLWALK p -- c → ←*
HADDBTES -- ABLWALK p -- c →
SHRBRLIE -- ABLWALK p -- c → ←
all  with 99% confidence interval).

80%) including ABLWALK → HADSTRKE,  which violates the same tier
rior and F (73.33%).
We next qualitatively examine the single BNs generated for
hreshold 70% for Experiments 1 and 3, which allows us to assess
he benefit of incorporating the expert prior.
SHRBRLIE -- PRSSCHST c -- c → ←

First, we  identified the differences between the two  BNs, in
terms of arc existence or direction, as shown in Table 3, and looked
at the arcs in relation to tiers. The combined priors (Experiment 3)
network had 3 more arcs in total (5 that were not in the Exper-
iment 1 network, and without two  that were in the Experiment
1 network), while the arc directions were also swapped for 3
arcs. There were only two  tier violations in the combined single
BN – HADHRTAT → ABLWALK and HADSTRKE → ABLWALK (both cur-
rent → past), and none in the tiers only (Experiment 1) BN. Both the
single BNs had the same 70 pairwise prior violations. The only arcs
into the un-tiered nodes AGE, SMKGNW, BMIKind are background
nodes; this suggests they might be considered part of the bg group-
ing. We  also note that the arcs to EVRMARRD in the summary graph
from Experiment 1 (as shown in Table 2) are not present in the
Experiment 1 single BN, as their 0.57 frequency was  less than the
70% threshold.

The breakdown of the arcs (i.e., across tiers or within tiers)
is similar for the BNs from both experiments 1 and 3. There
are relatively few arcs within tiers. There are also quite a few
arcs from bg → c. This indicates that, although we provided the
tiers bg ≺ p ≺ c, this does not generate a clear sequence of
tiers; this makes sense given the definition of the tier relation-
ship ≺ as forbidding a descendant relationship, but not enforcing
an ancestor relationship. Finally, our expert qualitatively ana-
lysed the arcs which differed between the 2 single BNs, as
follows.

7.1.1. AGE → ABLWALK (Expt 3)

This direct arc was  a prior given by the expert. But when asked
for further explanation, our expert noted that, recalling that that
AGE is not the actual age of the subject, but rather the answer to
the question How old are you (incorrect/correct or refused), getting
one’s age incorrect is a sign of dementia. Dementing patients are
known to have diminished walking, but equally diminished walk-
ing is a known predictor of dementia. A possible mechanism for the
direction learned by CaMML  is “lack of volition”—you do not walk
when you are dementing because you cannot be bothered. Overall,
our expert agreed there should be an arc, but was  neutral on the
direction.

7.1.2. HADHRTAT → HADSTRKE (Expt 1)

Our expert saw no reason for there to be a direct arc, although
these may  be related by means of associated variables, some of

which are measured in this model (high blood pressure, diabetes)
and some of which are not measured in this model (cholesterol
levels).
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.1.3. HADHRTAT → ABLWALK (Expt 3)
This followed the expert’s pairwise prior. Upon further con-
ideration, our expert agreed that there are causal explanations
or arcs in both directions: a sedentary life in which you cannot

ig. 16. Number of arcs and MML  cost for single BNs generated for threshold frequency 

rior  conf = 0.9999 and (b) Experiment 3, tier prior conf = 0.9999 and pair-wise prior conf
viation) between the learned BNs from those experiments.

exercise because you cannot walk may  lead to a heart attack

(this is known mainly from associational studies, some ran-
domised trials, e.g., MRFIT [52], did not find this), however
having a heart attack might be associated with difficulty
walking through heart failure, or through angina induced

0% to 100%, in 1% increments, from the summary matrix for (a) Experiment 1, tier
 = 0.8.



202 M. Julia Flores et al. / Artificial Intelligence in Medicine 53 (2011) 181– 204

F ior co
s  labe
F

b
e

7

1
o
i
a

7

t
d
p
f
(
w
t
d

f
d
l
w
D
o
s
e
r
a

ig. 17. Single BNs generated from the summary matrix for Experiment 3 (tier pr
eparated by dotted lines, nodes covered with a dotted frame are non-tiered. Arc

 = 73.33%. Red arcs violate a structural prior.

y exercise, or through associated peripheral vascular dis-
ase.

.1.4. HADSTRKE – ABLWALK

Our expert supports the HADSTRKE → ABLWALK arc (Experiment
) rather than ABLWALK → HADSTRKE (Experiment 3), since there is
ften a direct causal mechanism of that kind. Our expert could not
dentify any direct causal relationship between stopping walking
nd having a stroke.

.1.5. HADDBTES → ABLWALK (Expt 3)

Our expert was able to provide the following domain justifica-
ions for an arc between these, although was uncertain about what
irection it should have (i.e., remaining with ∼ in original pairwise
riors). First, increasing exercise (with walking the most common
orm of exercise) is known to be able to reduce the risk of diabetes
e.g., randomised trials in Scandinavia [53]). Hence not being able to
alk half a mile (which is a relatively rigourous indicator of exercise

olerance) might be considered to be a potential risk for developing
iabetes, i.e., supporting HADDBTES → ABLWALK.

However patients with diabetes have an increased risk
or peripheral vascular disease with decreased circulation and
ecreased sensation problems in the legs,10 which can lead to

ower limb gangrene/infection, then toe or leg amputation—both of
hich clearly reduce the possibility of walking (i.e., a negative HAD-

BTES → ABLWALK relationship). In addition, progressive exercise is
ften advocated for patients with diabetes as it appears that it may
low the rate at which complications occur (including heart dis-

ase), which would be modelled as a positive HADDBTES → ABLWALK
elationship. This signals the need for further analysis of this arc
fter parameterisation of the network.

10 This is a known association, however randomised trials have not been done!
nf = 0.9999, pair-wise prior conf = 0.8), for thresholds 100% down to 70%. Tiers are
ls indicate threshold frequency for arc: B = 96.67%, C = 86.66%, D = 83.33%, E = 80%,

Our expert found the lack of a HADDBTES – ABLWALK relationship
in Experiment 1 surprising, as exercise is believed to be a moder-
ately powerful controller of onset of diabetes (i.e., one of the reasons
for an epidemic of type 2 diabetes is believed to be due to lack of
exercise).

7.1.6. ABLWALK, PRSSCHST, SHRBRLIE

In both the Experiment 1 and Experiment 3 single BNs,
these 3 nodes are connected to form a small subgraph, with
ABLWALK → PRSSCHST in both. Our expert noted that PRSSCHST
answered “Have you ever had pressure in your chest?”, which gives
a lifetime of opportunities to have this symptom, whereas the
other 2 variables refer to the present. This might suggest PRSSCHST
should be concomitant or preceding the other. Our expert found no
obvious direct causal explanations that would suggest one subnet
is to be preferred to another. Clinically however it would usually be
assumed that “pressure in the chest” indicated either angina, or, in
the acute case, a heart attack. Following this, some degree of chronic
heart failure signaled by SHRBRLIE is very possible, and the ability
to walk 1/2 a mile would also definitely be compromised. Overall,
the expert preferred the Experiment 3 structure, where ABLWALK
is a parent to both PRSSCHST and SHRBRLIE,  as the progress of
heart failure is most likely to produce restriction of walking before
shortness of breath lying down.

We  note that in both subgraphs, all the nodes are dependent—
adding evidence about any one variable will change the posteri-
ors in the other two. Given our expert’s explanation of the clinical
situation, we suggest that these nodes may  in fact have a unob-
served “common cause”, similar to Fig. 1(b). In such a structure,
the child nodes are dependent, when the common cause is not
known—which is exactly what the Experiment 1 and Experiment

3 single BNs show. (There may  also be additional arcs between the
children indicating a possible progression of symptoms.)

Overall, it is clear that the combined priors have produced
only slight differences in the single BN structure, compared to
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iers only. Although the differences where slight, in only one case,
ADHRTAT → ABLWALK did the expert clearly prefer the tier only

earned relationship. In all the others, the expert preferred the
ombined priors model, sometimes agreeing with both arc and
irection, in other cases agreeing with the existence of a direct arc,
ven though unsure of best causal direction. Another outcome of
his stage of the KEBN process were several changes to the expert’s
airwise priors, which could be used for another iteration.

. Conclusions and future work

In this paper we have presented a methodology for incorporat-
ng expert knowledge as structural priors when learning BNs. We
ave demonstrated its use in a medical case study of heart failure.
ur methodology is an iterative one, reflecting the way  in which
Ns are developed in practice. It also makes explicit the possible

nteractions between expert elicitation and automated learning
rom data. We  also presented novel visualisations of the learned
etworks, which support the interactive development process by
llowing the knowledge engineers to assess intermediate results
nd revise experimental parameters. These visualisations could
lso assist comparisons of BN learning algorithms (e.g., [12]).

For problems with more than a small number of variables, the
licitation burden on experts of providing pairwise priors is heavy.
his paper has shown how this burden can be reduced by a pre-
iminary classification of the variables (e.g., as either background,
ast health or current health) which provides natural tier priors.
hese tiers are general enough to be a template for other medi-
al BN applications. The experimental results show that, for our
ase study, the tier priors alone result in the majority of struc-
ural changes, compared to the base case learning from data only.
he pairwise expert priors conflicted more with the data; however,
hen combined with the tier priors, they provided some structural
ifferences that our expert felt better modelled the heart failure
omain.

In this paper, as part of our comparative experimental study, we
licited and applied the pairwise priors separately, which allowed
s to trial different confidence parameters. In practice, to reduce
he elicitation burden, we suggest that tiers be elicited first and
hen used as constraints, with the expert only being asked about
airwise relationships across tiers and within tiers. We  limited our
tudy to priors elicited from a single expert; an obvious area for
uture investigation is how to use multiple experts both to spread
he elicitation burden and to obtain ‘consensus’ priors of better
uality.

We  limited this case study to Stage 1 (structure building and
valuation) of the overall KEBN process. Further iterations within
tage 1 could use the pairwise priors revised in light of the expert’s
ingle BN evaluation (Section 7), or apply other evaluation meth-
ds (e.g., checking dependencies using the Matilda tool [48]). Of
ourse, Stage 2 (parameter estimation and evaluation) must further
e undertaken (possibly interleaved with more iterations within
tage 1) to produce a deployable BN. Here we have focused only
n the model building task. There is also much work to be done
efore we see learned BNs embedded in a useful decision support
ool (along the lines of TakeHeartII [54]) that will be adopted by
hysicians and used to improve their decision-making and clinical
are.

Finally, we note that the usefulness of any learned BN is lim-
ted by the data available. We  have seen with the Iowa dataset,

hich did not include variables on the actual disease, that parts
f the learned structure do not reflect the understood medical

ausal process. To overcome this, we plan to extend CaMML  to
earn BNs with unobserved variables (e.g., [55]), including allow-
ng experts to suggest these variables and provide structural priors
or them.

[

[
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Another area for future investigation is to extend CaMML to
learn dynamic Bayesian networks, which have an explicit repre-
sentation of time, not allowing arcs to go temporally backwards.
This would explicitly provide temporal tiers that would never be
violated.
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