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1. Introduction

Globally, public health systems face increasing and lengthy
wait times for a wide range of medical services. Although
in some cases these waits may have little medical impact,
in others, excessive wait times can potentially impact health
outcomes (Sanmartin 2004). Thus, health-care managers
and policymakers face considerable political and commu-
nity pressure to better manage health-care resources in
order to reduce wait times to acceptable levels without
undue additional costs. One key lever for effective manage-
ment is through improved patient scheduling—particularly
when patients may be classified into priority categories with
different medically acceptable wait times. For example,
some conditions may require urgent immediate treatment,
whereas in other cases it may be medically acceptable to
wait up to several weeks. Because less-urgent patients are
booked further into the future, this raises the question as
to how much resource capacity to reserve for later-arriving
but higher-priority demand? Whereas this paper focuses on
scheduling diagnostic imaging resources, our methods and
results apply more broadly.

Demand for a diagnostic resource (such as a computed
tomography (CT) scanner) arises from multiple sources.
Within the hospital, demand arrives either from the emer-
gency department or from the wards. In both cases, requests
are given varying degrees of priority, ranging from “imme-
diate” to “within 24 hours.” The resource manager of the
diagnostic facility will generally have no prior knowledge
of the extent of emergency (EP) and inpatient (IP) demand
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to expect. As Figure 1 illustrates, this demand can vary
significantly from day to day. In addition, most hospitals
also serve a significant outpatient (OP) population. In the
hospital setting we studied, outpatient demand arrived in
the form of faxed requisitions from specialists. These were
accumulated and sent to a staff radiologist in batches for
priority classification. In British Columbia, there exist three
OP priority classes with allowable wait times of 7, 14, and
28 days, respectively. These targets were determined by a
panel of experts in collaboration with the BC government.
A booking clerk, who we refer to as a scheduler, collects
the prioritized requests and assigns future appointments to
each one.

The daily challenge facing the scheduler is to allocate
the available capacity between the priority classes so as to
minimize the number of patients whose wait time exceeds
a prespecified, priority-specific target, with greater weight
given to any late bookings of higher-priority demand. This
requires significant foresight because each days’ decision
will clearly impact what appointment slots are available
for future demand. If lower-priority patients are booked
too soon, then there may be insufficient capacity for
later-arriving higher-priority demand. Conversely, if lower-
priority patients are booked too far into the future, there is
the potential for idle capacity.

This research is motivated by a study that a team (includ-
ing the authors Patrick and Puterman) from the Center for
Operations Excellence (COE) at the University of British
Columbia carried out in collaboration with the Vancouver
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Figure 1. Day-to-day variation in the number of
requests for CT scans at a Vancouver
hospital.
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Coastal Health Authority (VCHA). VCHA management
were concerned that OP wait times for CT scans were
excessive. They arranged for the COE team to determine
the extent of the problem and to suggest methods for
improving throughput. Our analysis revealed that over a
specific period, a significant proportion of the scheduled
appointments for outpatients exceeded medically appropri-
ate wait-time targets; the wait times of half of the highest-
priority class, two-thirds of the second-priority class, and
three-quarters of the lowest-priority class exceeded the tar-
gets. Although our initial recommendations focused on
operations and system use issues such as increasing the
efficiency of the porter system (Odegaard et al. 2007) and
improving the scheduling of diagnostic imaging technol-
ogists, it was clear that the VCHA also faced a signifi-
cant scheduling challenge. Current practice relies entirely
on the expertise of the booking clerk, who has no com-
puter system or clear procedures supporting this com-
plex patient-scheduling challenge. Thus, we undertook to
develop a more systematic approach to patient schedul-
ing, which is described in depth here. A related nontech-
nical paper (Patrick and Puterman 2008) communicates
our results and other observations regarding wait times to
health-care managers.

1.1. Related Literature

The allocation of medical capacity in the presence of mul-
tiple patient classes has received limited attention. Com-
prehensive reviews of the broader appointment scheduling
literature include Magerlein and Martin (1978), Cayirli and
Veral (2003), Denton and Gupta (2003), and Mondschein
and Weintraub (2003). In their review of surgical schedul-
ing, Magerlein and Martin classify scheduling systems into
those that schedule patients in advance of the service date,
referred to as “advance scheduling,” and those that schedule
available patients on the day of service, referred to as “allo-
cation scheduling.” Our work and those we survey below
fall into the first stream of “advance scheduling.” An exam-
ple of allocation scheduling is the work of Green et al.
(2006), who analyze the within-day scheduling of patients

to a diagnostic facility when a fixed number of outpatient
scans have already been booked. Specifically, they seek to
determine which patient to serve next when both inpatients
and outpatients are waiting for scans.

Kolesar (1970) proposed the use of Markov decision pro-
cesses for hospital admission scheduling. He formulates
several models that are closely related to that considered
in this paper, especially one for “scheduling reservations
over a planning horizon.” However, he neither solves nor
analyzes the model, but notes that “for admissions plan-
ning models that the writer envisions treating, the lin-
ear programs would be of a size that can be handled
by contemporary computing capabilities.” Clearly he was
not envisioning solving problems of the magnitude con-
sidered in this paper. Subsequently, Collart and Haurie
(1976) develop a semi-Markov population demand model
for emergency and elective patients and formulate an opti-
mal stochastic control problem to determine an admission
policy that minimizes long-run average costs. Noting that
the “computation of a closed-loop solution appears to be
a practically insurmountable task,” they propose an open-
loop suboptimal control policy that they evaluate through
simulation. Rising et al. (1973) present a case study of
simulation models designed to test decision policies for a
scheduling challenge with two customer classes—walk-ins
and advanced appointments—for an outpatient clinic. The
focus is on the impact of various decision policies on physi-
cian utilization and patient throughput.

More recently, Gerchak et al. (1996) determine the opti-
mal number of elective patients, when facing both elec-
tive and emergency demand, to accept each day to a sur-
gical department. They demonstrate that the optimal pol-
icy for maximizing revenue is not a strict booking limit
policy, but one where the number of elective surgeries
accepted increases in conjunction with the number waiting.
Our paper differs in a number of respects. Most impor-
tantly, we consider an arbitrary number of priority classes
rather than two. Second, although a cost is associated with
each day of delay in an elective patient’s surgery, Ger-
chak et al.’s, model does not quantify the actual wait times
for these patients, and thus does not account for multi-
ple elective patient priority classes. Because our model
includes several lower-priority classes, it requires different
late booking penalty functions for each class. Our model
explicitly allows for each priority class to have a viable
booking window with class-specific costs for late booking.

Gupta and Wang (2008) consider the effect of patient
choice on scheduling in a primary-care clinic where patients
may have preference for physician and date of service.
Patients are divided into those that request same-day service
and those that seek an advanced appointment. Although a
penalty function is included to penalize the clinic if it can-
not meet the request of a patient, the model is not designed
to track patient wait times.

Extensive work has been done in revenue management—
particularly in the airline industry—on capacity allocation
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in the presence of multiple fare classes (for examples, see
Bertsimas and Popescu 2003, Brumelle and Walczak 2003,
and van Ryzin and Vulcano 2008). Although helpful in our
analysis, airline revenue management demonstrates some
significant differences from patient scheduling. Airline rev-
enue management has the advantage of concentrating on a
small number of flights over a finite horizon. In diagnostic
imaging, each potential booking day could be viewed as a
flight, and although the booking horizon is finite, it is also
continuously evolving, leading to an infinite-horizon prob-
lem. Moreover, passengers for a flight can choose which
“priority” class to enter, whereas in diagnostic scheduling,
their priority class is a function of the urgency for a scan.
Finally, airline revenue management does not consider the
impact of a given policy on passenger wait times.

An interesting alternative application of scheduling with
multiple customer classes is presented by Bertsimas and
Shioda (2003). Their work focuses on the seating of cus-
tomers at a restaurant based on the size of the group and
the presence of reservations. They seek to maximize rev-
enue while controlling for customer wait time and ensuring
equity.

1.2. Paper Structure

This paper proceeds as follows. We formulate the schedul-
ing problem as a discounted infinite-horizon Markov deci-
sion process (MDP) and transform it into the equivalent
linear program (LP) that, if solvable, would return the
optimal value function for the MDP. However, neither the
MDP nor the LP are tractable due to the size of the state
space. Therefore, we use approximate dynamic program-
ming (ADP) techniques to produce an approximate linear
program (ALP) that has a manageable number of vari-
ables (although an unmanageable number of constraints).
We solve the ALP through column generation on the dual to
derive an estimate of the value function in the MDP. Using
this approximate value function, we derive a booking policy
that we test through simulation. We also present the sur-
prising result that, under certain very reasonable conditions
on the cost structure, we can determine the optimal linear
approximation and the consequent policy without having
to solve the ALP. We then discuss a fundamental unre-
solved issue within ADP theory—that of producing useful
bounds on the “cost” associated with using an approximate
value function. We conclude with potential extensions of
the model and policy insights.

It could be argued that an average reward MDP would
be more appropriate because the objectives are nonmon-
etary and the future should not be valued less than the
present. We instead use a discounted model with a dis-
count factor very close to one because it best reflects the
medium-term planning horizon that is most often applica-
ble in the hospital setting. By discounting only slightly, we
insure that, over the short term, costs are relatively simi-
lar, but that far distant costs are less valued. The chang-
ing nature of both supply and demand within health care,

we would argue, makes this a reasonable model. Moreover,
the discount model is tractable (in the approximate setting),
whereas the average reward model is generally multiclass
and requires new ADP methods.

2. A Markov Decision Process Model for
the Scheduling Problem

This section formulates a discounted infinite-horizon MDP
model by providing the decision epochs, state space, action
sets, transition probabilities, and costs.

2.1. Decision Epochs and the Booking Horizon

We consider a system that has the capacity to perform C,
fixed-length procedures each day. At a specific point of
time in a day, referred to as the decision epoch, the sched-
uler observes the number of booked procedures on each
future day over an N-day booking horizon and the number
of cases in each priority class to be scheduled. The book-
ing horizon consists of the maximum number of days in
advance that hospital management will allow patients to be
scheduled. In practice, this is usually not specified; how-
ever, we find that the length of the booking horizon is of
little consequence because the policy that emerges from the
model is independent of N provided that N exceeds the
wait-time target of the lowest-priority class.

As mentioned in the introduction, demand arises from
two sources, inpatients and outpatients. In practice, most
inpatient demand is known at the beginning of each day
once morning rounds have been completed on the wards.
Outpatient demand arrives throughout the day, and thus
is not completely known and prioritized until the end of
the day. Because the scheduler will give preference to
inpatients over outpatients regardless, we assume that all
decisions are made once inpatient demand has been deter-
mined. Consequently, outpatient demand is never booked
into day 1 (for any scenario involving inpatients and outpa-
tients). Thus, we assume that decision epochs correspond
to the beginning of each day.

Our model is complicated by the fact that the horizon
is not static, but rolling. Thus, day n at the current deci-
sion epoch becomes day n — 1 at the subsequent decision
epoch. Because no patient is scheduled more than N days
in advance, at the beginning of each decision epoch, the
Nth day has no appointments booked.

2.2. The State Space
A typical state takes the form

XNV Yas e V1)

where x, is the number of patients already booked on
day n, y, is the number of priority i patients waiting to be
booked, and / is the number of priority classes. The state
space, S, is therefore

S={(X.yx,<C, 1
0<y;<0;, 1<

s=(X,¥) = (x, x5, ..

n<N;
I, (X,y) e Zy x Z;},

N A
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where C, is the daily base capacity expressed in terms
of the number of fixed-length procedures that can be per-
formed each day and Q; is the maximum number of prior-
ity i arrivals in a given day. (Truncating arriving demand is
necessary to keep the state space finite, but the maximum
number of arrivals can be set sufficiently high as to be of
little practical significance.) We assume that each patient
requires one appointment slot and that all appointment slots
are of equal length. In our setting, the procedures required
either 15, 30, 45, or 60 minutes. Because all slots were
multiples of 15 minutes, it is not unreasonable to convert
demand into 15-minute slots, although to be more realistic
one should then consider batch arrivals. Simulation results
suggest that the impact of multiple appointment lengths is
minimal.

2.3. The Action Set

The scheduler’s task is to decide at each decision epoch
which available appointment slots to assign to each unit
of waiting demand. However, if this were the only action
available, then s/he would have very little recourse should
base capacity prove insufficient for the realized demand.
Thus, we assume the resource manager has the ability to
“divert” patients to an alternative capacity source at an
additional cost. This is often referred to as “surge” capac-
ity (see Patrick and Puterman 2008). Surge capacity may
be in the form of overtime or outsourcing. Alternatively,
the scheduler may postpone scheduling to the next day or
even reject some demand. Although the ethical implications
of this last alternative would clearly depend on the avail-
ability of alternative services, it is not without precedent.
In New Zealand, for example, a system has been imple-
mented where a level of priority is prespecified for which
the hospital can reasonably guarantee a wait time below
a certain target level. All other demand is returned to the
referring physician as insufficiently urgent to be booked at
this time (MacCormick and Parry 2003).

In Vancouver, most hospitals function with limited over-
time availability. If necessary, hospitals within the same
health authority and even across health authorities may act
as an additional source of surge capacity. To be realistic,
therefore, we impose a limit on the number of patients who
can be diverted per day. Thus, a vector of possible actions
can be written as (d, 7) = {a;,, z;}, Where q;, is the number
of priority i patients to book on day n and z; is the num-
ber of diverted priority i patients. To be valid, any action
must satisfy the following constraints, insuring that the base
capacity is not exceeded:

I
x,+> a, <C; Vnefl,...,N}, (1)
i=1

that no more than C, patients are diverted,

1

Zzi <G, (2)

i=1

that the number of bookings and diversions does not exceed
the number waiting,

N
Ya,+z <y Yie{l,... I}, (©)
n=1

and that all actions are positive and integer,
(d,2) €Z;y x Z;. “)

We denote the action set, A, for any given state, s = (X, y),
as the set of actions, (d, Z), satisfying Equations (1) to (4).

2.4. Transition Probabilities

Once a decision is made, the only stochastic element in the
transition to the next state consists of the number of new
arrivals in each priority class. Demand that was not booked
nor diverted also reappears in the next day’s demand. If the
number of new arrivals is represented by y’, then the state
transition,

S XN V1 Yas oo es V)

I 1
— (xz—f—Zaiz,...,xN—i—Za[N,O;
i=1

i=1

(x), x5, ..

N N
yi +¥ _Zaln_zlv~-~»y;+)’1_zaln_zl>»
n=1 n=1

occurs with probability p(y') =II/_, p(y}), where p(y)) is
the probability that y; priority i patients arrive on a given
day. We assume that demand for each priority class is inde-
pendent and that each day’s demand is independent as well.
Because demand arises from multiple independent sources
(the hospital wards and the specialists in the region ser-
viced by the hospital), independence between classes seems
a reasonable assumption.

In practice, demand may be seasonal, but for the sake
of tractability, we have chosen not to incorporate this into
the model. This is not out of line with the literature as sea-
sonality is not considered in any of the models referred to
in the literature review. If seasonal patterns are significant,
the model can be resolved with different demand patterns
to determine the appropriate policy for each season of the
year. Surprisingly, the optimal policy is extremely robust
to changes in the specific data and thus re-solving may be
unnecessary.

2.5. Costs

The cost associated with a given state-action pair derives
from three sources: a cost associated with booking a patient
beyond the priority-specific wait-time target, a cost associ-
ated with using surge capacity, and a cost associated with
demand that was neither booked nor diverted. We write the
costs as

c(a,z?)

= Zb(i’ n)ai,n +Zd(i)zi + Zf(l) ()’i - Zam _Zi)’

n=1
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where b(i, n) is the cost of booking a priority i patient on
day n, d(i) is the penalty for diverting a priority i patient,
and f(i) is the cost associated with delaying a priority i
patient’s booking. We represent the wait-time target for
class i by T(i). The choice of b(i, n), although arbitrary,
should include certain characteristics. It is clearly reason-
able to assume that it will be decreasing in i and that b(i, n)
should be zero if n < T(i). Furthermore, it would seem
advisable to insure that the cost of delaying a patient’s
booking k days and then booking him/her within the tar-
get should be equal to the cost of booking the patient k
days late initially. Thus, a natural form for the booking
cost is

n—T(i)
) Y YUG)  forall n> T (i),
b(i,n)=1 =

0, otherwise,

where f (i) is a decreasing function of i. There is certainly
an argument to be made for a booking cost function that
increases at a faster rate in n. We have experimented with
such a cost function and discovered no difference in terms
of the policy dictated by the model. Even with the above
booking cost function, the policy (for all reasonable values
of f(i) and d(i)) only books a patient late as a last resort.
Causing the booking cost to increase at an even faster rate
only further strengthens this policy conclusion. In fact, the
analytical results given later provide minimal conditions on
b(i, n) that include any function that increases at a faster
than linear rate.

The cost function explicitly balances the cost to the
patient in wait time and the cost to the system in having to
resort to surge capacity. The scheduler’s role is to maintain
reasonable wait times in a cost-effective manner. The spe-
cific value to assign to f(i) is difficult to determine due to
the nebulous nature of the cost of booking a patient later
than the wait-time target. Determining these costs would
be the role of the panel of medical experts who determined
the wait time targets. Of particular difficulty is the relation-
ship between the late penalty for each priority class and the
diversion costs. The diversion cost is also potentially chal-
lenging to quantify and will clearly depend on the available
source of surge capacity. The most obvious source is over-
time, in which case there exists a specific overtime cost
that is independent of the priority class. However, it may
be more difficult to determine the cost for other sources
of surge capacity. Fortunately, we show that for reasonable
choices of d(i) and f (i), the derived policy is very robust
to changes in these cost parameters so that the arbitrary
nature of their specific values is of less concern.

2.6. The Bellman Equation

The value function v of the MDP specifies the minimum
discounted cost over the infinite horizon for each state

and satisfies the following optimality equations for all
(X,y)€S:

1
v()?,jz')z( min {C(Zi,Z)+'yZp()')”)v(x2+2ai2,...,x,\,
i=1

a.7)edz; VeD

1 N
+Y a0y v =Y a, =z,
n=1

i=l

+)’1_§‘11n_11)}, ©)

where vy is the daily discount factor and D is the set of
all possible incoming demand streams. It is here that “the
curse of dimensionality” becomes apparent. In particular,
the dimension of the state space is C)'II/_, Q;. Reasonable
values of C;, N, I, and Q lead to very high dimensions,
making a direct solution impossible.

3. Approximate Dynamic Programming

Over the past few decades, research in approximate dynam-
ic programming has focused on developing methods for
addressing the curse of dimensionality. These methods
restrict the value function to lie within a specified class of
functions and then seek to find the optimal value function
within this class. Challenges include determining the best
class of functions to use for a given problem, determining
the optimal approximation within a chosen class of func-
tions and bounding the gap between the cost of the policy
determined by the approximate solution and the true cost
had we been able to determine the optimal policy. Although
recent work by Klabajan and Adelman (2007) promises to
provide more rigor to the appropriate choice of approxi-
mating class, this issue currently remains as much an art as
a science.

Simulation and analytical approaches have been used to
determine the optimal approximation within a given class.
Simulation-based solutions generate sample paths of the
problem and seek to update the parameters that deter-
mine the chosen class of functions in an iterative fashion.
Such methods suffer from the fact that not only is the
true value function approximated, but a further source of
approximation is introduced through sampling error. This
paper focuses on an analytical solution first developed by
Schweitzer and Seidmann (1985), with more recent work
by Adelman (2005, 2004) and de Farias and Van Roy
(2004b, a; 2003). The method of solution proceeds as
follows:

1. Transform the MDP into its equivalent LP.

2. Approximate the value function by assuming a spe-
cific parameterized form.

3. Use the chosen approximation in the LP to create the
ALP.
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4. Solve the ALP to obtain the optimal linear value func-
tion approximation, v, p.

5. Use v, p to determine the “best” action for any visited
state.

A fundamental result in MDP theory (Puterman 1994)
implies that solving the optimality Equation (5) is equiva-
lent to solving the following LP for any strictly positive a:

max > alX, y)v(x, ) (6)

X, yes

subject to

I 1
(@3 +vy [P(d)v(xﬁ'zaiz’~~-’xN+Za"N’O;
i=1

deD i=1

N N
yQ +y1_Zaln_Zl""’y;+y1_za1n_zl):| >v(X,y)

n=1 n=1

V(a, Z) € Ai,; and (;é, ;) es. (7)

Without loss of generality, we assume that « is a proba-
bility distribution over the initial state of the system. The
conversion to an LP does not avoid the curse of dimen-
sionality because the LP has a variable for every state and
a constraint for every state-action pair. A possible solution
is to approximate the value function, v, with a linear com-
bination of basis functions. As mentioned earlier, choosing
a good set of basis functions remains a challenge within
ADP. A reasonable starting point in our model is the fol-
lowing affine approximation:

N 1
v(;’)_;):WO—i_ZVn'xn—i_Zmyi' (8)

n=1 i=1

The advantage of this simple approximation is that
the parameters are easily interpreted. V, represents the
marginal infinite-horizon discounted cost of an occupied
slot on day n, and W, represents the marginal infinite-
horizon discounted cost of having one more patient of pri-
ority class i waiting to be booked. We impose the further
restriction that all V, and W, are nonnegative, whereas W,
is unconstrained. Reformulating the LP in terms of this
approximate value function yields the following ALP:

N I
max ) _a(X,5) <W0+2ann+ZW,«yi) €))
VW i5 n=1 i=1
subject to

N 1 . N-1
WO+ZVn'xn+ZVViyi_’yz |:p(d)<W0+ Z Vn

n=1 i=1 den n=1

I I N
: (xn+l +Zai,n+l> +ZWz <yz{+yi - Zam _Zi))i|
n=1

i=1 i=1

<c(d,z) Y(a.Z)eA,, and (X,y)€S,
V,W>0.

Rearranging terms and using the assumption that « is a
probability distribution transforms the ALP into

maz&{Wo+iEa[xn]vn+iEa[mw,-} (10)

n=1 i=1

subject to

N 1
(1 - Y)WO+Z Vn <xn —YXu1— yzai,n+l>
i=1

n=1

+XI:VVi((1 —Y)yi+7<§:am+z,-—E[Yi]>> <c(a,?)

i=1 n=1

V(d,z)€A;; and (X,y) €S,
V,W>0.

The additional variables xy., and a; y,, are constrained
to be zero (because no bookings occur beyond day N). X,
and Y; are random variables, with respect to the probabil-
ity distribution «, representing the number of appointment
slots already booked on day n and the number of prior-
ity i patients waiting to be booked, respectively. Although
the ALP has only N + I + 1 variables, the number of con-
straints remains intractable. We therefore formulate the dual
of the ALP:

min Y X(X,y.d,Z)c(d,2) (11)
(X,y)es
(a,2)€Az 5
subject to
(1-y) ¥ X@E5.ai=1, (12)
(%, 5)es
(a,2)eAs 5

I
Z X(f’§’57z)(xn_7xn+l_yzai,n+1> >Ea[xn]
(%,5)eS i=1

(a,2) €Az 5

Vn=1,...,N, (13)

3 xoay,aia((l—y)y,-w(%a,-ﬁzi—E[Yi]))

(X,5)es n=1
(a,9)eAz 5
>E|[Y] Vi=1,...1, (14)
X>0. (15)

Solving the dual has the advantage of a reasonable number
of constraints, but at the expense of creating an intractable
number of variables—one for each state-action pair. Col-
umn generation solves this problem by starting with a small
set S’ of feasible state-action pairs to the dual and then
(using the dual prices as estimates for W, V,, and W,) find-
ing one or more violated constraints in the primal. It then
adds the state-action pair(s) associated with these violated
constraints into the set S’ before re-solving the dual. The
process iterates until either no primal constraint is violated
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or one is “close enough” to optimality to quit. In general,
it may be difficult both to find an initial feasible set S’
and to find a violated primal constraint. Fortunately, in our
model, an initial feasible state-action pair for the dual con-
sists of a state with no available slots and where all incom-
ing demand is diverted. Finding a most violated primal
constraint involves solving the following integer program:

Z(V,W)
I N
= ({nj)ns [Zb(i’n)aizz+zd(i)zi+f(i)<yi_Zain_Zi>
e in i=1 n=1
(a,2)eAz 5

N 1
- Z Vn (‘xn - y('xn+l) - Zai,n-H)
n=1 i=1

_X[sz((l —v)yl-ﬂ(i“f"“"_Em))

i=1 n=1

—(1-v) WO]-
Rearranging terms yields
2V, W)
N /1
= min [Z (Z(b(i, N+ = (D =YW)a,
*, n=1 \i=1
(a,2) €Az 5

+ (7‘/n—1 - Vn)xn>

+2_((d @) = (D) =y W)z + (f () + ¥ W, — W)y;)

+vaE[x]—<l—y)Wo]. (16)

i=1

The coefficients on a;, in Equation (16) have a nice intu-
itive interpretation in terms of balancing the costs versus
the benefits of each action. For each action a;, there is a
cost, b(i,n) 4+ yV,_,, due to a (possibly) late scan and the
loss of available capacity tomorrow as well as a benefit,
f () +yW,, due to the fact that the booking decision is not
delayed and the patient does not reappear in tomorrow’s
demand. For each action, z;, there is a cost, d(i), due to
diverting the patient, which is likewise weighed against the
benefit of not delaying the booking decision and therefore
not having the patient appear in tomorrow’s demand.

4. The Form of the Optimal Linear Value
Function Approximation

Once the dual is solved, the prices associated with each
constraint determine the coefficients in the best linear value
function approximation (denoted by v, p). Investigating
the properties of solutions to a wide range of numerical
instances led to a conjecture of the form of the optimal
primal solution. This leads to the theoretical results in this

section, which provide interpretable conditions under which
the optimal solution to the primal ALP, v,;p, can be solved
directly.

The form of v,;, depends to some extent on the nature
of the cost functions. Earlier discussion suggested that a
reasonable choice for the booking cost is

n—T(i)
_ Y YUfG)  forall n> T(i),
b(i,n) =1 =

0, otherwise.

(In fact, we present some minimal restrictions on the form
of b(i, n) to achieve our results. These conditions include
any scenario where late costs increase at a faster-than-linear
rate in the days.) More critical is the form of the cost for
diverting patients to an alternative capacity source. If that
alternative capacity source is overtime, then it would seem
reasonable to assume that the diversion cost is independent
of i because overtime costs are a function of the length
of the scan and not the priority of the patient. Alterna-
tively, if diversion means that demand is sent elsewhere
(i.e., rejected by the hospital in question), then it would
seem reasonable to assume that the diversion cost is strictly
decreasing in i. Such a cost function reflects the fact that
demand that is sent elsewhere often faces an additional
delay, and thus is more costly for higher-priority demand.
We present two theorems that give the optimal form of v, p
for these two scenarios.

4.1. The Optimal Linear Value Function
Approximation with Overtime

The first theorem gives the optimal linear value function
approximation, v,;p, for the scenario where d(i) is con-
stant. (The proof appears in the appendix.)

THEOREM 1. Assume that the cost of diverting a patient is
constant for all i (i.e., d(i) =d), T(i) is decreasing in i,
and the late booking cost, b(i, n), is nondecreasing in n
and nonincreasing in i with b(i,n) =0 for all n < T(i).
Assume further that

b(i,n) +v" TVd > b(i, T(i)) +y" D TWq (17)

for all n > T (i) and for all i,

P A T B < S )
o 1= m=n -y
foralln>T(1); and
0«2V A O L, - T, - 1
pri n=1 -
< (19)

l—vy



Patrick, Puterman, and Queyranne: Dynamic Multipriority Patient Scheduling for a Diagnostic Resource

1514

Operations Research 56(6), pp. 1507-1525, © 2008 INFORMS

where Iy, ., is equal to one if T(i) > n and zero other-
wise, A; is the arrival rate for demand from priority class
i, C, is equal to the base capacity, C, is the surge capacity
(i.e., overtime), and vy is the discount rate. Then, the opti-
mal linear value function approximation for the discounted
MDP will have the following form:
d forallne{l,...,T(1)},
V.={vV,., forallne{T(1)+1,...,N—1},

n n

0 forn=N,

(20)
W,=Vy, foralliefl,... I},
I o T@H)-T(1) C
W0=d<y27 /\I—T(l)C]—y—'y)
i=1 -

The above form of v,; » has considerable intuitive appeal.
From a cost standpoint, the marginal cost of each slot on
days up to and including 7' (1) are identical; thus, one
would expect to value these days equally. It is also intu-
itively appealing to assign a value equal to d for these days
because the availability of this capacity allows the manager
to avoid using surge capacity. After day 7'(1), the value of
an appointment slot on day # is equal to y times the value
of an appointment slot on day n — 1 because the capacity on
day n this decision epoch will be the capacity on day n — 1
by the next decision epoch. For this reason, V, = yV,_, is
reasonable.

Equation (17) requires that the cost of booking a patient
on day n > T (i) and then performing an overtime scan
n — T (1) days into the future be greater than the cost of
booking on day T(i) (assumed to be zero) and then per-
forming an overtime scan 7'(i) — T (1) days into the future.
This reflects the fact that by booking a patient late, the
scheduler has essentially only delayed the need for over-
time by n — T (i) days. Note that the less that future costs
are discounted, the more likely that Equation (17) will be
satisfied. For example, with y = 0.9, Equation (17) will
be violated if the cost of overtime, d, is approximately
10 times greater than the daily cost of a late booking, f(i).
If v =0.99, then d needs to be more than 100 times greater
than f(i). Therefore, the high choice of vy appropriate for
the health-care setting implies that even with a small late
booking penalty, Equation (17) will hold.

In traditional DP theory, the solution to the LP is known
to be independent of « provided « is strictly positive for all
states (Puterman 1994). However, in ADP, this is not the
case (see Adelman 2004 and de Farias and Roy 2003), but
the nature of the dependence of the optimal approximation
on « is not very well understood. In this instance, inter-
preting a as a probability distribution over the initial state
of the system gives Equations (18) and (19) concise inter-
pretations. Any choice of « satisfying these two equations
will yield the same v,;p. We leave until later a discussion
of the impact of violating these conditions.

Equation (18) requires that for any given day, n > T(1),
there is sufficient base capacity to schedule the average

demand for any priority class with a wait-time target ex-
ceeding n. In essence, this insures that overtime is only
required for the highest-priority class. This condition is
unlikely to be violated unless the system is either extremely
undercapacitated (in which case the overtime requirements
will become prohibitive) or the highest-priority class gener-
ates negligible demand in comparison to the other classes.

The first two terms in the body of Equation (19) equal
the present value of the expected demand over the infinite
horizon plus the present value of the expected number of
appointment slots initially filled. The last two terms repre-
sent the present value of the total base capacity over the
infinite horizon. (Recall that all slots are of equal value up
to day 7' (1) and are discounted by vy thereafter.) Thus, stat-
ing that the body of Equation (19) has to be greater than
zero is equivalent to insuring that total expected demand
exceeds total available capacity. In other words, capacity
is a legitimate constraint. Stating that the body of Equa-
tion (19) has to be less than C,/(1 — ) insures that there
is sufficient overtime capacity available to insure that ap-
propriate scheduling can avoid exploding queues. This
upper bound is of significant practical importance because
it determines the necessary overtime capacity commitment
for a given base capacity in order to meet the wait-time
targets.

Although the three conditions place significant restric-
tions on the parameter values, they nonetheless allow for a
wide range of realistic scenarios. Their intuitive interpreta-
tions also demonstrate their plausibility. Even if these con-
straints are violated, the ALP still yields a value function;
it simply does not have the form given in Theorem 1.

4.2. The Optimal Linear Value Function
Approximation with Rejected Demand

A similar analysis for the scenario where d (i) is decreasing
in 7 yields the following theorem.

THEOREM 2. Assume that the cost of rejecting demand,
d(i), satisfies

d(i) > y"O-TOg(1) (21)

for all i < I; that T(i) is decreasing in i; and that the
late booking cost function is nondecreasing in n and non-
increasing in i with b(i,n) =0 for all n < T(i). If

Y OO, )y Od(1) > d(1) (22)
for all n > T (i) and for all i,

1 T(z) n . Cl
Z 