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ABSTRACT
With the growing awareness and enforcement of patient rights, pa-
tients are empowered with increasing control on their medical in-
formation. In many situations, laws and regulation rules require the
acquisition of patients’ consent before one can access the patients’
health data. However, in practice, patients oftentimes have diffi-
culties determining whether they should permit or deny a certain
access request. In this article, we propose an analytical approach to
assist patients in the consent management of their medical informa-
tion. Our consent management system employs a statistical learn-
ing method that evaluates the benefits and risks associated with ac-
cess requests, so as to make personalized recommendation on con-
sent decisions. Multiple factors are considered in the assessment
process, including the importance of the request, the sensitivity of
the requested information, and correlation information. We have
implemented a prototype of our solution and performed evaluation
with large-scale medical records.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Security, Algorithms, Experimentation

Keywords
Access control, Privacy Protection, Machine Learning, Data Ana-
lytics

1. INTRODUCTION
With the continuous migration to electronic healthcare systems

all over the world, more and more hospitals are storing and trans-
mitting medical information in electronic form. Regional and na-
tionwide health information exchange (HIE) systems further pro-
mote the availability of medical data by allowing a patient’s health
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records originated from different places to be accessed via com-
puter networks in a centralized manner. HIE systems not only make
it easier for healthcare providers to exchange medical information
with each other, but also enable patients to put their medical data
to work by downloading and sharing the data with online service
providers. For example, patients may gain personalized services
from vendors by sharing their medical data via online health man-
agement platforms, such as Google Health [7].

The increased availability and sharing of patient data brought
by electronic healthcare systems calls for enhanced access con-
trol on such data. Recent laws and regulation rules such as
HIPAA/HITECH [17] empower patients with more privileges to
monitor the access to their medical information. In many situa-
tions, a health service provider is required to gain a patient’s con-
sent before accessing or sharing her certain medical records. While
patients have been granted more control to preserve their privacy,
in reality, it is oftentimes difficult for a patient to decide whether
she should approve or deny a request on her medical records. On
the one hand, refusing to provide the needed medical information
may prevent the patient from getting the desired services. On the
other hand, releasing sensitive medical information to others could
lead to privacy breaches.

Consent management systems aim to assist patients in making
access control decisions on their medical data. In this paper, we
propose to enhance the consent management of medical informa-
tion with analytical techniques. Our design rationale is to compare
the benefit and the risk associated with an access request when de-
termining whether to permit or deny it.

• The benefit of a request may be determined by the degree of
importance of the targeted task. The more important a task
is, the more benefit the patient will gain if the task is ac-
complished, and thus the more likely the patient is willing to
provide the requested information for the task. For instance,
requests from primary care physicians are highly important
and should almost always be granted. In contrast, requests
from a drug store with the purpose on targeted advertisement
are much less critical.

• The risk of a request may be determined by two factors: sen-
sitivity and relevance. First, the more sensitive the requested
information, the more risky the request. In reality, people
are more reluctant to release their sensitive medical records
than giving away the less sensitive ones. Records in certain
categories such as sexually transmitted diseases (STD) are
generally considered to be highly sensitive. Furthermore, the
sensitivity of medical records is highly personalized, as indi-
viduals may have very different opinions on how sensitive a
certain record is. Second, according to the security principle
of need-to-know, one should disclose only the information
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that is relevant to the requestor’s tasks. A request that asks
for irrelevant information is thus associated with higher risk
than one that queries highly relevant information.

When determining the consent decision on a request, our con-
sent management solution compares the associated benefit and risk
through a statistical learning method that combines the above three
factors, that is, importance, sensitivity, and relevance. Intuitively,
if a requestor requests information that is necessary to an important
task, the request should be granted, because doing so will gain the
patient a lot of benefit. On the contrary, if someone offering a sec-
ondary service asks for certain apparently irrelevant information,
the patient will be suggested to decline the request, because giving
away the requested information increases privacy risk while doing
the patient little good.

The rest of this paper is organized as follows. We first present an
overview of our solution in Section 2. We then provide technical
details on information gathering and risk assessment in Sections 3
and 4, respectively. After that, we evaluate our solution in Sec-
tion 5. Finally, we study related work in Section 6 and conclude in
Section 7.

2. OVERVIEW
The architecture of our system is given in Figure 1. In our sys-

tem, all the requests from information consumers that require pa-
tients’ approval will be forwarded to the consent manager. The
consent manager will evaluate every request and provide personal-
ized suggestion on consent decision to the corresponding patient.
The consent manager will then take the patient’s decision, either
“permit” or “deny”, and act accordingly.

DEFINITION 1 (ACCESS REQUEST). An access request is
represented as a tuple ⟨r, u, t, p⟩, where r is the identity of the
subject who issues the request, u is the patient whose data is be-
ing asked for, t is the type of the requested records, and p is the
purpose of the request.

The identity r uniquely identifies a requestor in an electronic
healthcare system. Each requestor may be in a certain role or group.
Example roles include “primary care physicians”, “insurance rep-
resentatives”, “CDC (Centers for Disease Control) agents”, and so
on. We denote G(r) as the set of requestors in the same role or
group with the subject r in the system.

A patient’s medical records may be classified into different types
based on schemes such as ICD9 (the International Classification of
Diseases, 9th Revision). We assume that a requestor may only ask
for one type of medical information in a single request. Should
multiple types of information are needed, the requestor may issue
multiple requests, one for each type.

The purpose of a request may either be specified by the requestor
or be automatically determined by factors such as the relationship
between the requestor and the patient, the requestor’s role and af-
filiation, and so on. For example, a request from a dentist may be
labeled with the purpose “dental” by default.

Our consent management solution consists of two phases: infor-
mation gathering and decision recommendation. First, the consent
manager creates and maintains its knowledge bases in the infor-
mation gathering phase. The details of information gathering will
be given in Section 3. Second, the consent manager assesses the
benefits and risks associated with access requests using the infor-
mation in its knowledge bases. The approach to perform decision
recommendation will be presented in Section 4.
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Figure 2: Data flow in the consent manager

3. INFORMATION GATHERING
Our consent management system creates and maintains three

knowledge bases in the information gathering phase. The three
knowledge bases, Importance, Sensitivity, and Correlation, corre-
spond to the three factors that affect patients’ decisions on consent
management as stated in Section 1. The data flow among the com-
ponents of the consent management system is shown in Figure 2.

DEFINITION 2 (IMPORTANCE MEASURE). The importance
knowledge base is represented as a function fimp : R× P ×U →
R, where R is the set of requestor identities, P is the set of pur-
poses, U is the set of patients, and R is the set of real numbers. In
other words, the importance function fimp takes a requestor iden-
tity, a purpose, and a patient identity as input, and outputs a real-
number importance value. The larger the returned value, the more
important the corresponding scenario is.

The importance knowledge base contains information on the im-
portance levels of various scenarios. The importance levels may be
pre-defined by administrators. For example, an administrator may
specify that the importance level of emergent care is high, daily
medical care is medium, and secondary usage of medical records
(such as research and targeted advertisement) is low. It is also pos-
sible to design a computer program that takes the patient’s current
medical conditions as input and automatically evaluate the severity
of the situation. Important levels of requests may be affected by
the roles of requestors as well. For instance, requests from doctors
may be more important than those from receptionists in a hospital.
We expect the importance levels to be relatively universal and may
apply to most users. However, we also allow an individual user to
personalize the importance levels for different scenarios if desired.

DEFINITION 3 (SENSITIVITY MEASURE). The sensitivity
knowledge base is represented as a function fsen : U × T → R,
where U is the set of patients, T is the set of medical record types,
and R is the set of real numbers. In other words, the sensitivity
function fsen takes a patient identity and a medical record type as
input, and outputs a real-number sensitivity value. The larger the
returned value, the more sensitive the medical record type is with
regards to the patient.

The sensitivity knowledge base contains information on the per-
sonalized sensitivity levels of patients’ various medical records.
Unlike the importance levels, which are largely the same among

574



Consent Manager Medical DataData

Personalized 

Suggestions Decisions

Alice Bob Carl David

Patients

Requestors

Federal & Local 

Regulation Rules

Doctor 

@ Hospital W

Nurse 

@ Hospital X

Representative 

@ Insurance Y

Sales 

@ Pharmacy Z

Access

Requests Data

Figure 1: System architecture of the consent management system

all users, sensitivity is highly customized and personalized. First,
different local laws and regulation rules may have different defini-
tions on sensitive medical information. Second, people may have
various opinions on how sensitive a certain medical record is. To
create the knowledge base, we first assign high sensitive values to
all the disease categories that are classified as sensitive by any ap-
plicable regulation rule. Furthermore, we allow every patient to
specify his/her perceived sensitivity degree of each type of medical
information. A patient may also update the sensitivity degree of
any records at any time.

Finally, the system maintains information on how different types
of medical records are related to various purposes. Because the
number of combinations between medical record types and pur-
poses is very large, it is infeasible to specify and maintain such
information manually. Our consent manager logs all the access re-
quests and consent decisions. For example, the function fn(r, p, t)
returns the total number of past requests issued by the requestor r
on medical record type t to serve the purpose p. For another ex-
ample, the function fn(G(r), p, t) returns the total number of past
requests issued by any requestor in G(r) on medical record type t
to serve the purpose p, where G(r) is the set of requestors in the
same role/group as r. Such information will be used to automati-
cally infer the correlation among the requestors, request purposes,
and medical record types. Intuitively, if the record type ti is fre-
quently requested to serve purpose pj , ti and pj has strong corre-
lation. Similarly, if many requests from G(r) are on purpose pj , it
is likely that pj is relevant to the tasks performed by requestors in
the corresponding role/group.

4. BENEFIT-AND-RISK-BASED CONSENT
RECOMMENDATION

In this section, we study the problem of determining whether an
access request should be approved or denied by a patient.

Assume that we are given an access request X = ⟨r, u, t, p⟩.
The consent manager attempts to determine whether X should be
classified into Category 0, which represents denial, or into Cat-
egory 1, which represents approval. In the decision process, the

consent manager quantifies and compares the benefit and the risk
associated with denying and approving X . We describe the quanti-
fied benefit or risk by a loss function λ(i|j,X), where i, j ∈ {0, 1}.
The value of λ(i|j,X) is a real number that represents the loss
incurred when the consent manager decides X is in the cate-
gory i while X should really be in the category j. For instance,
λ(0|1,X) is the loss when the consent manager suggests to deny
X , while X should actually be approved. We assume here that
λ(0|0,X) = λ(1|1,X) = 0, that is, there is no loss when the
consent manager classifies X correctly.

With the loss function, we may compute the expected loss value
of classifying X into category i (i ∈ {0, 1})) as follows:

L(i,X) = λ(i|1, X)P (1|X) + λ(i|0, X)P (0|X)

where P (1|X) and P (0|X) are the estimated probabilities that
X belongs to categories 1 and 0, respectively. Given a request
X , the consent manager computes L(0, X) and L(1, X). If
L(0, X) ≤ L(1, X), the consent manager suggests to deny X ,
as denial leads to less expected loss than approval; otherwise, if
L(0, X) > L(1,X), it recommends to approve X .

Next, we study the computation of L(i,X). Recall that
λ(0|0,X) = λ(1|1, X) = 0. We have

L(1, X) = λ(1|0, X)P (0|X)

L(0, X) = λ(0|1, X)P (1|X)

We need to compare λ(1|0, X)P (0|X) with λ(0|1, X)P (1|X).
As stated earlier, a patient’s consent decision is determined by the
three factors, importance, sensitivity, and relevance. Here, we take
importance and sensitivity into account when computing λ. Intu-
itively, denying a request by mistake leads to loss of benefit, while
approving a request by error results in privacy risk. The more im-
portant the request X is, the larger loss incurs when denying it by
mistake (i.e. a larger λ(0|1,X)); the more sensitive the requested
information in X is, the larger loss incurs when approving it by er-
ror (i.e. a larger λ(1|0,X)). The relevance factor is then modeled
by the probability P (i|X). The multiplication of λ and P effec-
tively combines the three factors that affects consent decisions. In
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the rest of this section, we first discuss how to estimate the prob-
ability P (i|X) and then study how to compute λ(j|i,X), where
i ∈ {0, 1} and j = 1− i.

4.1 Probability Estimation
As stated in Section 1, we incline to grant access to records that

are relevant to one’s tasks and decline those that are irrelevant, so
as to comply with the security principle of need-to-know.

Given a request X = ⟨r, p, t, u⟩, the conditional probability
P (1|X) measures the likelihood that X is a relevant request, while
P (0|X) measures the likelihood that X is an irrelevant request.
We assume that such relevance information is independent of indi-
vidual users, that is, P (i|r, p, t, u) = P (i|r, p, t). 1 The rationale
behind this assumption is two-folded:

• In reality, whether the requested information is relevant to a
certain purpose is oftentimes independent of individual pa-
tients. For example, if a certain type of medical records are
required to determine whether treatment w is suitable for Al-
ice, the same type of medical records are probably useful in
deciding whether w is suitable for Bob as well. Therefore,
the independence assumption is consistent with real-world
scenarios.

• From computation point of view, in practice, we may not be
able to gather enough data for each individual user to cor-
rectly estimate those probabilities that are dependant on in-
dividuals. We can thus perform better estimation by relaxing
the dependance on individuals. This independent assumption
also reduces the complexity of parameter estimation.

According to the independence assumption and Bayes’ rule, we
have

P (i|X) = P (i|r, p, t) = P (i)P (r|i)P (p|r, i)P (t|p, r, i)
P (r, p, t)

Since P (r, p, t) is common in P (1|X) and P (0|X), for the pur-
pose of comparison, we just need to estimate the values of P (i),
P (r|i), P (p|r, i), and P (t|p, r, i). As stated in Section 3, the con-
sent manager logs all the requests issued by subjects in the elec-
tronic healthcare system. The logged activities are now used as
observed instances in the estimation of probability values.

To begin with, we have P (i) = fn(i)/(fn(0) + fn(1)), where
fn(i) is the number of past requests in the category i. In other
words, the value of P (i) is the percentage of past requests that are
in the category i.

As to P (r|i), a straightforward solution is to have P (r|i) =
fn(r, i)/fn(i), where fn(r, i) is the number of requests issued by
r that are in the category i. However, if r is a new user, we will have
fn(r, i) = 0, which leads to P (r|i) = 0 and then P (i|X) = 0. To
address this issue, we employ a smoothing method that takes into
account the past requests from requestors in the same role/group as
r. More specifically, we have

P (r|i) = αfn(r, i) + (1− α)fn(G(r), i)

fn(i)

where α ∈ [0, 1], and fn(G(r), i) is the total number of past re-
quests issued by the requestors in G(r) that are in the category i.

The estimation of P (p|r, i) and P (t|p, r, i) are similar. We have

P (p|r, i) = βfn(p, r, i) + (1− β)fn(p,G(r), i)

βfn(r, i) + (1− β)fn(G(r), i)
1We will see later that the computation of λ depends on individual
users. Hence, the computation of L(i,X) is still personalized.

where fn(p, r, i) is the number of past requests that are issued by r
with the purpose p and are in the category i, and fn(p,G(r), i) is
the total number of such requests that are issued by the requestors
in G(r). And we have

P (t|p, i, r) = γfn(t, p, r, i) + (1− γ)fn(t, p,G(r), i)

γfn(p, r, i) + (1− γ)fn(p,G(r), i)

where fn(t, p, r, i) is the number of past requests on record type t
that are issued by r with the purpose p and are in the category i,
and fn(t, p,G(r), i) is the total number of such requests that are
issued by the requestors in G(r).

Intuitively, P (p|r, i) measures how relevant (when i = 1) or ir-
relevant (when i = 0) the purpose p is with regards to the requestor
r’s tasks. In other words, whether r is supposed to claim the pur-
pose p. For example, it may be rare for a research institute to claim
the purpose “emergent care”. Similarly, P (t|p, r, i) measures how
relevant or irrelevant the medical record type t is with regards to
r’s purpose p. For instance, those records on sexually transmit-
ted diseases may not be correlated to the purpose of treating knee
injury.

In the computation of P (p|r, i) and P (t|p, r, i), we expand the
past requests from r with the requests from G(r) through smooth-
ing. This not only addresses the “zero count” issue for new users,
but also makes it difficult for an individual requestor to manipu-
late the correlation information. Assume that most requestors in
the system are honest. If a malicious requestor issues a large num-
ber of irrelevant queries, he might be able to increase fn(p, r, 1)
and fn(t, p, r, 1). But the malicious requestor is unable to have
significant impact on fn(p,G(r), 1) and fn(t, p,G(r), 1), espe-
cially when the size of G(r) is large. Hence, his ability to increase
the estimated P (p|r, 1) and P (t|p, r, 1) (which would make his re-
quests more likely to be approved) is limited. Furthermore, if a
malicious requestor issues too many irrelevant requests in attempt
to affect the overall correlation information in the knowledge base,
his abnormal behavior may be caught by a monitoring system due
to excessive amount of requests.

Finally, as the consent management system gathers more and
more data on access requests over time, it may re-estimate the
above probability values periodically, so as to stay updated with
the latest correlation information.

4.2 Loss Function Computation
As stated earlier in this section, importance and sensitivity are

the two factors that determine the value of λ(j|i,X).
On the one hand, λ(0|1, X) measures the loss of rejecting a

rightful request by mistake. Intuitively, the more important the re-
jected request is, the larger the loss. Also, the amount of loss is
irrelevant to sensitivity in this case, because the access is denied
and the requested data is not returned to the requestor. We have

λ(0|1,X) = λ(0|1, r, p, t, u) = fim(p, r, u)

where fim(p, r, u) is the importance function defined in Defini-
tion 2. When X is an important request, the cost λ(0|1, X) of re-
jecting it by mistake is large. Given P (1|X), a larger λ(0|1, X)
leads to a greater expected loss value L(0,X) on rejecting X ,
which makes it more likely for X to be approved.

On the other hand, λ(1|0, X) measures the loss of approving an
inappropriate request. Intuitively, the more sensitive the disclosed
information is, the more damage the mistake causes. We have

λ(1|0, X) = λ(1|0, r, p, t, u) = µ · fsen(t, u)

where fsen(t, u) is the personalized sensitivity function introduced
in Definition 3 and µ is a real number that makes the values of fim
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and fsen comparable. When a medical record of type t is sensi-
tive for the patient u, the cost λ(1|0, X) of disclosing it by mistake
is large. Given P (0|X), a larger λ(1|0, X) leads to a greater ex-
pected loss value L(1, X) on approving X , which makes it more
likely for X to be denied. An appropriate value of µ may be deter-
mined through training.

Finally, we may represent the above two cases in the following
unified form

λ(i|j,X) = i · µfsen(t, u) + j · fim(p, r, u)

where i+ j = 1. Note that both fsen and fim return personalized
values for individual patients.

5. EVALUATION
We have implemented the consent management solution. In this

section, we discuss the evaluation of our solution. The objective of
our experiments is three-folded.

• First, we would like to evaluate the overall effectiveness of
the consent manager. More specifically, whether the consent
manager is able to approve most valid access requests and
deny inappropriate ones.

• Second, we would like to examine how different test param-
eters, such as the number of requests, the percentage of mali-
cious requestors, and the probability of over-requesting, may
affect the performance of the consent manager. Such test pa-
rameters affect the amount of data and/or noise in the knowl-
edge base of the consent manager.

• Third, we would like to see how does the consent manager
perform on requestors in roles of various importance levels.

5.1 Experiment Design
We evaluate the performance of the consent manager through

simulation on real-world medical history records. Comparing to
user study, simulation has a number of advantages. Most impor-
tantly, simulation allows us to analyze the effectiveness of various
solutions in different settings with limited user effort. In contrast,
user study may better reflect the real-world effectiveness of our sys-
tem, but the study is much more expensive to carried out than sim-
ulation. In the future, we plan to complement our findings from
simulation with extensive user study.

The followings are the general steps of the simulation on our data
set.

1. Generate requestors in various roles based on test parame-
ters.

2. Separate the available medical history records into two dis-
joint sets: training cases and test cases.

3. Training: for each training case, randomly create a number
of access requests for selected requestors based on the cor-
responding probability distributions; store the created access
requests as well as the desired consent decisions to the cor-
relation knowledge base of the consent manager.

4. Testing: for each test case, randomly create a number of ac-
cess requests for selected requestors based on corresponding
probability distributions; ask the consent manager to make a
suggestion on each of the created requests; store the answer
and compare it with the correct answer.

Next, we describe the design of our experiments in detail.
Data. Our experiments are based on the real-world medical history
records provided by our hospital partners. Our dataset contains 2.9
million event entries from over 75000 patients. Each event entry
is represented as a tuple consisting of three elements: patient ID,
diagnosis code, and date. An entry indicates that a patient visited a
hospital for a certain health issue (indicated by the diagnosis code)
on a certain date. The diagnosis codes in the event entries are in
ICD-9. The earliest date of the entries is in 1962, while the latest
is in 2009. Note that due to some policy restrictions, we are un-
able to acquire the log on how healthcare practitioners accessed a
patient’s medical information during his/her visit. Hence, we need
to simulate the access requests for experimental purposes.
Settings. We assume that each of the requestors in the system may
be in one of the three roles {R1, R2, R3}. In our experiments, the
expected number of requestors in each role is set to 100, and we
have fim(p, r1, u) : fim(p, r2, u) : fim(p, r3, u) = 4 : 2 : 1
for any purpose p and patient u, where r1 ∈ R1, r2 ∈ R2, and
r3 ∈ R3. In other words, requests from subjects in R1 are more
important than those from R2, which are in turn more important
than those from R3. A requestor may be either honest or malicious.
As we will see later, a malicious requestor has a certain probability
to over-request patients’ data (i.e. intentionally ask for information
that is irrelevant to his current task). Whether a requestor is honest
or malicious is determined at the very beginning of a simulation
and the nature of a requestor will remain the same throughout the
simulation. The percentage of malicious requestors among all re-
questors is a test parameter.

The types of medical records are represented in ICD-9. For
each patient, we randomly select 2 ICD-9 main categories as high-
sensitive, 3 as medium-sensitive, and all others as low-sensitive to
the patient. The ratio of sensitivity value among the three categories
is 36:6:1 in our experiments. The purpose of an access request is
also an ICD-9 code, which represents the health problem the re-
questor attempts to treat.
Request Generation. To generate the access requests used in an
experiment, we process the patients’ visiting records one by one in
time order. Given a visiting record ⟨u, v, d⟩ in the dataset, where
u is the patient, v is an ICD-9 code representing the reason of the
visit, and d is the date of the visit, we generate access requests from
the record as follows:

1. Randomly assign a number of requestors to the visit. In our
experiments, we assign two requestors in each role to each
visiting record.

2. For each assigned requestor ri, we generate a number of ac-
cess requests for the visiting record. The expected number
of requests from a requestor is given as a test parameter. As-
sume that the expected number is θ. We sample a value k
from a Poisson distribution with expected value θ. The sam-
ple value k is the actual number of requests the requestor
issues for the current visiting record.

3. For each request X , its purpose p is the same as the ICD-
9 code v in the current visiting record. In other words, the
requestor is supposed to treat the patient on his/her current
health problem.

4. For each request X , we determine a target medical record
type t. If the requestor is malicious, we sample a random
number to determine if the requestor would over-request in
the current request. A normal request will be generated if
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over-request is not conducted. Note that honest requestors
always issue normal requests.

Invalid/over request: We randomly select an ICD-9 code that
is not in the main category as v. The probability that a code is
selected is proportional to its sensitivity value. For instance,
if a problem code w is 6 times as sensitive as y, then the
probability that w is selected in an over-request is 6 times as
that of y. This models the situations that malicious requestors
are more interesting in over-requesting sensitive information.

Valid/normal request: We sample a random number to deter-
mine the target medical record type.

• With probability 68% (i.e. the probability that a value
falls into one standard deviation from the mean in a nor-
mal distribution), the target medical record type is the
same as the problem code v in the visiting record. In
other words, there is high probability that the requested
information is highly relevant to the patient’s problem.

• With probability 27% (i.e. the probability that a value
falls between one and two standard deviations from
the mean in a normal distribution), the target medical
record type is in the same main ICD-9 category as v (an
ICD-9 main category contains the codes that represent
a number of related health issues). In other words, the
requestors may ask for somewhat relevant information.

• With probability 5%, the target medical record type is
in a different main ICD-9 category as v. In other words,
there is a small probability that the request is not di-
rectly related to the patient’s problem. This simulates
exceptions and errors in practice. We decide to model
exceptional access requests in the simulation, because
exceptions are common in healthcare. Such exceptional
requests introduce noises into the correlation informa-
tion between purposes and requested medical record
types.

5. Assume that the purpose p and the medical record type t have
been chosen for the request X in the previous steps. We
create X as ⟨ri, u, t, p⟩.

Training. In our experiments, the training cases contain those visit-
ing records before the year 2000. The training cases make up about
10% of the entire data set. For each visiting record in the training
set, we generate a number of access requests using the method de-
scribed earlier. For each generated access request, if it is a valid
request, i.e. not generated as an over-request issued by a malicious
requestor, the desired consent decision is “approve”; otherwise, if
it is an over-request (also referred to as an invalid request), the de-
sired consent decision is “deny”. The access requestors together
with their desired consent decisions are then given to the consent
manager to create its knowledge base on correlation information.
Testing. The test cases contain those visiting records in and after
the year 2000. The test cases make up about 90% of the entire
data set. For each visiting record in the test set, we generate a
number of access requests using the method described earlier. We
then ask the consent manager to suggest an access decision for each
of the generated access requests. Note that the consent manager
does not know whether an access request is valid or not. We record
the answer returned by the consent manager as well as the desired
decision (i.e. “approve” for valid requests and “deny” for invalid
requests). We also record the role of the requestor for each request
so as to compare the consent manager’s performance with regards
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Figure 3: Overall precisions over the number of requests per
patient visit

to different roles. The consent manager then adds the test requests
and the decisions to its knowledge base.
Criteria. Given a set S of requests, let Ac and Dc be the sets of
requests in S that are recommended as “approve” and “deny” by
the consent manager, respectively. Similarly, let Ad and Dd be the
sets of requests in S whose desired consent decisions are “approve”
and “deny”, respectively. The recommendation precision (or preci-
sion for short) is computed as |Ac∩Ad|+|Dc∩Dd|

|S| . In other words,
precision is the percentage of requests in S to which the consent
manager suggests a decision correctly.

The overall precision of a simulation is the precision over all the
requests in the test cases. In addition to overall precision, we mea-
sure the precision over all the valid requests and the precision over
all the invalid ones. We also measure the precisions on requests
from the requestors in each role. More specifically, we compute
the precisions over valid and invalid requests from the requestors in
R1, R2, and R3, respectively. Such fine-grained measurements al-
low us to have a comprehensive understanding on the performance
of the consent manager.

5.2 Experimental Results
In this subsection, we present our experimental results with

different test parameters. In the experiments, we generally as-
sume that a majority of the requestors, which represent healthcare
providers in the real world, are honest. We also assume that the
probability for a malicious requestor to over-request patients’ data
is relatively low, because they want to stay in business (a high per-
centage of over-requests is easy to be detected).
Number of Requests. The first set of experiments are designed
to test the effectiveness of our solution over different numbers of
requests issued by requestors. In the experiments, 5% of the re-
questors are malicious; the probability of over-requesting of any
malicious requestor is 0.02; the expected numbers of requests is-
sued by a requestor on a patient’s visit range from 2 to 10. The ex-
perimental results are presented in Table 1 and the results on overall
precision are visualized in Figure 3.

We start with overall performance. As we can see from Table 1,
the consent manager has overall precision higher than 0.9 in all
cases. Also, from Figure 3, we can see that the performance in-
creases with larger numbers of requests. This is because more re-
quests leads to a larger correlation knowledge base, which is bene-
ficial to the statical learning method employed by the consent man-
ager. But it is worth noting that the consent manager has very good
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Table 1: Performance over different numbers of requests per patient visit

Request Num. Overall Valid Invalid
average R1 R2 R3 average R1 R2 R3 average R1 R2 R3

2 0.947 0.969 0.954 0.919 0.947 0.969 0.954 0.919 0.742 0.709 0.745 0.771
4 0.950 0.973 0.954 0.924 0.950 0.973 0.954 0.924 0.700 0.612 0.687 0.794
6 0.955 0.974 0.958 0.934 0.956 0.975 0.958 0.934 0.695 0.592 0.704 0.786
8 0.961 0.978 0.961 0.944 0.961 0.979 0.961 0.944 0.667 0.555 0.669 0.775
10 0.963 0.977 0.960 0.950 0.963 0.978 0.960 0.951 0.652 0.535 0.654 0.763
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Figure 4: Overall precisions over the probabilities of over re-
quests

performance even if the expected number of requests per patient
visit is as low as 2.

Next, we consider the performance on requestors in different
roles. For valid requests, the consent manager has high precision
on requests from R1 than those from R3. In contrast, for invalid
requests, the consent manager does a better job in denying over-
requests from R3 than those from R1. The reason is that requests
from R1 are generally more important than those from R3. The
consent manager is conservative when denying requests from R1,
as a mistake could lead to a lot of damage. It tries to ensure that
most valid requests from R1 are approved, even at the cost of ap-
proving some over-requests by mistake. On the contrary, the con-
sent manager is more aggressive in denying potential over-requests
from R3, as tasks perform by R3 are less critical. Such tradeoffs
made by the consent manager should be of best interest for most
patients in the real world.

Finally, it is interesting to observe that the precision on invalid
requests from R1 and R2 decline with a larger number of requests.
An explanation is that the consent manager is increasingly con-
servative on requests from important requestors, after approving
more and more requests from such requestors, even though some
of its past approval decisions may be incorrect. This appears to be
a weakness of our current statistical learning method. While be-
ing conservative on important requests may not be a bad strategy in
practice, we plan to refine the learning method to address the issue
in our future work.
Probability of Over-Requesting. The second set of experiments
are designed to test the effectiveness of our solution over different
probabilities of over-requesting activities performed by malicious
requestors. In the experiments, 5% of the requestors are malicious;
the excepted number of requests a requestor issues on a patient’s
visit is 6; the probabilities of over-request range from 0.02 to 0.10.
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Figure 5: Overall precisions over the percentage of malicious
requestors

The experimental results are presented in Table 2 and the results on
overall precision are visualized in Figure 4.

As we can see from Table 2, the consent manager has overall
precision higher than 0.9 in all cases. From Figure 4, the over-
all precision slightly declines with the increase of the probability
of over-requesting. This is because a larger percentage of invalid
requests on irrelevant records introduces noises to the consent man-
ager’s correlation knowledge base. Such noise makes the consent
manager more likely to make mistakes when processing valid re-
quests.

In contrast to valid requests, the consent manager’s performance
on invalid requests (especially those from R1 and R2) increases
with a larger probability of over-requesting. The reason is that more
identified over-requests in the training cases enhances the consent
manager’s capability in determining which requests are likely to be
invalid.
Percentage of Malicious Requestors. The third set of experiments
are designed to test the effectiveness of our solution over different
numbers of malicious requestors in the system. In the experiments,
the over-requesting probability of any malicious requestor is 0.02;
the excepted number of requests a requestor issues on a patient is 6;
the percentages of malicious requestors among all requestors range
from 5% to 25%. The experimental results are presented in Table 3
and the results on overall precision are visualized in Figure 5.

As we can see from Table 3, the consent manager has overall
precision higher than 0.9 in all cases. From Figure 5, the overall
precision slightly declines with the increase of the number of ma-
licious requestors. The reason behind the decline is similar to that
of the previous set of experiments, as a larger number of malicious
requestors leads to more invalid requests, which add noises to the
correlation knowledge base of the consent manager.

We also observe that the consent manager’s precision on invalid
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Table 2: Performance over different probabilities of over-requests

Snooping Prob. Overall Valid Invalid
average R1 R2 R3 average R1 R2 R3 average R1 R2 R3

0.02 0.950 0.973 0.954 0.924 0.950 0.973 0.954 0.924 0.700 0.612 0.687 0.794
0.04 0.939 0.959 0.940 0.918 0.939 0.960 0.940 0.918 0.733 0.632 0.745 0.820
0.06 0.939 0.959 0.935 0.924 0.940 0.960 0.936 0.924 0.752 0.691 0.754 0.814
0.08 0.942 0.956 0.946 0.923 0.943 0.957 0.947 0.924 0.746 0.706 0.738 0.792
0.10 0.938 0.952 0.947 0.914 0.939 0.954 0.948 0.914 0.763 0.725 0.751 0.813

Table 3: Performance over different percentages of malicious requestors

Snooper Percent Overall Valid Invalid
average R1 R2 R3 average R1 R2 R3 average R1 R2 R3

0.05 0.950 0.973 0.954 0.924 0.950 0.973 0.954 0.924 0.700 0.612 0.687 0.794
0.10 0.943 0.962 0.952 0.914 0.943 0.963 0.952 0.914 0.737 0.654 0.765 0.795
0.15 0.943 0.961 0.944 0.924 0.944 0.962 0.945 0.924 0.741 0.674 0.763 0.786
0.20 0.943 0.962 0.939 0.929 0.944 0.962 0.940 0.930 0.755 0.712 0.751 0.799
0.25 0.936 0.961 0.936 0.909 0.937 0.962 0.937 0.910 0.748 0.706 0.729 0.810

requests increases when the percentage of malicious requestors in-
creases from 005 to 0.20. This is because more identified over-
requests in the training cases enrich the consent manager’s knowl-
edge on invalid requests. However, further increasing the percent-
age from 0.20 to 0.25 reduces the average performance on invalid
requests, probably due to the excessive noise introduced by the test
cases.
Summary. In general, our experimental results show that the con-
sent manager maintains very good performance in various settings.
It performs well even when as many as 25% of the requestors are
malicious or when up to 10% of the requests from malicious re-
questors are invalid. We have also observed how different test pa-
rameters may affect the performance of the consent manager, and
how tradeoffs are effectively made among requestors of different
importance levels.

6. RELATED WORK
Security and privacy in healthcare has long been a popular re-

search area. One of the most active research topics is to an-
nonymize a set of medical records from a large number of patients,
before publishing them. A number of annonymization metrics and
solutions have been proposed, such as k-annonymization [16], l-
diversity [12], M -invariance [21], and t-closeness [11]. Our work
differs from the above work in that we focus on assisting an indi-
vidual patient to manage the access to her own medical data rather
than hiding patients’ identity in a large amount of mixed medical
records.

Access control on health data has been widely studied. Agrawal
et al. [1] proposed the concept of Hippocratic Databases, which
allows users to store privacy policies in the tables of relational
databases and enforce them at database level. In [10], LeFevre
et al. further designed a query modification approach to enforce
privacy policies in a Hippocratic Database. The limitations and ex-
tensions on Hippocratic Database have been studied by Wang et
al. [20]. In addition to such data management solutions as Hippo-
cratic Databases, researchers [3, 2] have also studied how to regu-
late access control exceptions in healthcare using advanced policy
technologies. However, none of the above work studies how to
employ analytical techniques to assist individual patients on access
control decisions.

There also exists work on verifying HIPAA compliance using

formal methods [9, 4]. In [9], Lam et al. encoded a subset of
HIPAA rules in Prolog. Given a configuration setting, one may is-
sue queries to their logic program to check whether a certain action
is HIPAA compliant or not. In their work, the truth values of logic
predicates, such as whether a patient has agreed with the action, are
explicitly given. They did not study how to decide whether a patient
should agree to release certain medical information to a requestor.

Researchers have recently studied the consent management in
electronic healthcare [14, 5, 15, 19]. In [14], Russello et al. de-
scribed a framework for healthcare systems where patients are able
to control the disclosure of their medical data. In their framework,
context is expressed in terms of workflows. Depending on the con-
text in which the access is being executed, different consent poli-
cies can be applied. In [15], Sheppard et al. proposed to use tech-
niques from digital right management to control the dissemination
of medical data. Unlike our solution, none of the above work ap-
plies analytical methods to perform personalized benefit and risk
assessment in their consent management solutions. Furthermore,
they did not conduct experiments on real-world medical data to
evaluate the performance of their approaches.

In [19], Wang and Jin proposed a decision support system for
consent management. They applied a simple approach to com-
bine the three features (importance, sensitivity, and normalcy) to
make suggestions on access control decisions to patients. This pa-
per extends and improves the work in [19] by introducing more
systematic approaches in quantifying various features and making
decisions based on benefit and risk. For example, this work esti-
mates the relevance among requestors, purposes, and record types,
which is more comprehensive than the estimation of normalcy in
[19], which performs simple counting on record types for a cer-
tain purpose. Furthermore, we employ a statistical machine learn-
ing method to systematically combine the related features, which is
more sophisticated than the ad hoc combination approach in [19].
Finally, the evaluation approach in this paper is different from that
in [19]. Unlike our approach in Section 5 which directly measures
the accuracy of the consent manager over individual requests, the
one in [19] indirectly evaluates its solution by attempting to iden-
tify malicious requestors over a large number of requests.

Our work is also related to existing work on quantified risk-based
access control models [8, 6, 13, 18]. The JASON report [8] de-
scribed the concepts of risk quantification and access quotas. Later,
Cheng et al. [6] proposed a risk-adaptive access control solution
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based on the multi-level security model. In [18], Wang and Jin de-
signed a quantified access control framework for healthcare infor-
mation system. Their solution measures the risk of a batch of access
requests rather than individual ones. However, none of such work
studied the consent management problem in electronic healthcare
systems, nor did they propose to combine multiple factors, such as
importance, sensitivity, and correlation, to measure the personal-
ized benefit and risk associated with an access request.

7. CONCLUSION
We have proposed an analytical approach to assist patients in

the consent management of their medical information. Our sys-
tem evaluates access requests based on three factors: importance,
sensitivity, and relevance. Information on importance and sensitiv-
ity is specified by users, while the relevance information is auto-
matically gathered from past access activities. We have designed
a statistical learning method for our system to make personalized
suggestion on access requestors for every patient by assessing ben-
efits and risks. Furthermore, we have implemented our solution and
performed simulations on real-world medical history records. Our
experimental results have demonstrated the effectiveness of our so-
lution.
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