Computing Nearby Non-Trivial Smith Forms

Joseph Haraldson

with
Mark Giesbrecht and George Labahn

David R. Cheriton School of Computer Science
University of Waterloo

July 18, 2018

The Smith Normal Form

Smith Normal Form (SNF)

Any $\mathcal{A} \in \mathbb{R}[t]^{n \times n}$ is unimodularily equivalent to

$$
\mathcal{S}=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right) \quad \text { where } s_{j} \mid s_{j+1} \quad \text { and } \quad s_{j} \in \mathbb{R}[t] .
$$

That is, there exists $\mathcal{U}, \mathcal{V} \in \mathbb{R}[t]^{n \times n}$ such that

$$
\mathcal{U} \mathcal{A V}=\mathcal{S} \quad \text { and } \quad \operatorname{det}(\mathcal{U}), \operatorname{det}(\mathcal{V}) \in \mathbb{R} \backslash\{0\} .
$$

- The $\left\{s_{j}\right\}_{j=1}^{n}$ are the invariant factors
- Computing \mathcal{S} is well understood in exact-arithmetic
- Analyze the SNF as a symbolic-numeric optimization problem

Smith Normal Forms

Example (Boring SNF over $\mathbb{R}[t]^{3 \times 3}$)

$$
\begin{aligned}
\mathcal{A}= & \left(\begin{array}{ccc}
t^{3}+3 t+1 & 1 & t+1 \\
0 & t^{2}+2 t+2 & 0 \\
t+1 & t+1 & t^{3}+5 t+1
\end{array}\right) \text { and } \operatorname{SNF}(\mathcal{A})=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & \\
& & \operatorname{det} \\
& \operatorname{det}(\mathcal{A})=t^{8}+2 t^{7}+10 t^{6}+18 t^{5}+34 t^{4}+38 t^{3}+40 t^{2}+12 t .
\end{array} . \begin{array}{lll}
\\
& & \\
\end{array}\right)
\end{aligned}
$$

Example (Interesting SNF over $\mathbb{R}[t]^{3 \times 3}$)

$$
\mathcal{B}=\left(\begin{array}{ccc}
t+1 & t+1 & t-1 \\
0 & t+1 & t^{3} \\
0 & 0 & t^{2}-1
\end{array}\right) \text { and } \operatorname{SNF}(\mathcal{B})=\left(\begin{array}{ccc}
1 & & \\
& t+1 & \\
& & (t+1)\left(t^{2}-1\right)
\end{array}\right)
$$

SNF Computation in a Floating Point Environment

When does \mathcal{A} have a non-trivial Smith Normal Form?

- Small perturbations to \mathcal{A} generically produce a trivial SNF
- How far is \mathcal{A} from a matrix polynomial $\widehat{\mathcal{A}}$ with non-trivial SNF?
- Is there a radius of triviality?
- I.e., if \mathcal{A} is perturbed by a small amount is the SNF still trivial?

When is Computing the SNF Well-Posed?

Is there a nearest matrix polynomial $\widehat{\mathcal{A}}$ with an interesting SNF?

- Is $\widehat{\mathcal{A}}$ locally unique?
- How do we compute $\widehat{\mathcal{A} \text { ? }}$
- How do perturbations to \mathcal{A} affect $\widehat{\mathcal{A}}$?

Nearby SNF via Optimization

The McCoy Rank - Number of 1's in the SNF

Formally: McCoy rank of $\mathcal{A} \in \mathbb{R}[t]^{n \times n}$ is $\min _{\omega \in \mathbb{C}} \operatorname{rank}(\mathcal{A}(\omega))$.
Approximations Require a Norm
$\left\|\mathcal{A}_{i j}\right\|_{2}=\sqrt{\sum_{0 \leq k \leq \operatorname{deg} \mathcal{A}_{i j}} \mathcal{A}_{i j k}^{2}}$ and $\|\mathcal{A}\|=\|\mathcal{A}\|_{F}=\sqrt{\sum_{1 \leq i, j \leq n}\left\|\mathcal{A}_{i j}\right\|_{2}^{2}}$.

Main Problem: Nearby Interesting SNF

Given $\mathcal{A} \in \mathbb{R}[t]^{n \times n}$ of McCoy rank at most $n-1$, find $\widehat{\mathcal{A}} \in \mathbb{R}[t]^{n \times n}$ that (locally) solves the optimization problem

$$
\min \|\mathcal{A}-\widehat{\mathcal{A}}\| \text { such that }\left\{\begin{array}{l}
\operatorname{SNF}(\widehat{\mathcal{A}})=\operatorname{diag}\left(\hat{s}_{1}, \hat{s}_{2}, \ldots, \hat{s}_{n-1}, \hat{s}_{n}\right), \\
\operatorname{deg}\left(s_{n}\right) \geq \operatorname{deg}\left(\hat{s}_{n-1}\right) \geq 1 .
\end{array}\right.
$$

Our Contributions

1. Tight lower bounds on the radius of triviality
2. Polynomial-time decision procedure for ill-posedness
3. Stability analysis on SNF via Optimization
4. Iterative algorithms with local quadratic convergence

- Nearest matrix with reduced McCoy rank
- Nearest matrix with McCoy rank at most $n-r$
- Reasonable initial guess heuristics for both algorithms
- Polynomial per-iteration cost

5. Implementation in Maple

Previous Work on Floating Point SNF Computations

Reduction to Degree One

Every matrix polynomial $\mathcal{A} \in \mathbb{R}[t]^{n \times n}$ can be linearized to

$$
\mathcal{P}=\mathcal{P}_{0}+t \mathcal{P}_{1} \text { for some } \mathcal{P}_{0}, \mathcal{P}_{1} \in \mathbb{R}^{n d \times n d}
$$

- Extract the SNF from Kronecker's Canonical Form
- $\operatorname{SNF}(\mathcal{P})=\operatorname{diag}(1,1, \ldots, 1, \operatorname{SNF}(\mathcal{A}))$

Backward Stable: Finds the SNF of a nearby matrix.

- Full Rank Case: QZ Algorithm
- Wilkinson (1979)
- Singular Case: Fast Staircase/Deflation Algorithms
- Beelen and Van Dooren $(1984,1988)$
- Current: GUPTRI
- Demmel and Edelman (1995)

Applications of Approximate Smith Form

- Structured stability of polynomial eigenvalue problems
- Matrix polynomial eigenvalue least squares problems
- Occurs frequently in control systems engineering
- Decide if the SNF can be inferred numerically

Our goal is different: Find a nearby matrix with a non-trivial SNF.

- Structured backward stability analysis of SNF computations
- Detect irrecoverable failures of existing algorithms
- SNF of a nearby matrix may be meaningless
- Problem is not always continuous
- We compute a nearby matrix with an interesting SNF

Reduction to Approximate GCD

Example (Find Nearest 2×2 matrix with a non-trivial SNF)

$C=\operatorname{diag}\left(t^{2}-2 t+1, t^{2}+2 t+2\right)$ find a lower McCoy rank $\widetilde{\mathcal{C}}$.
Approximate GCD of C_{11} and C_{22} (Karmarkar and Lakshman '96)

$$
\inf \left\{\left\|C_{11}-\widetilde{C}_{11}\right\|_{2}^{2}+\left\|C_{22}-\widetilde{C}_{22}\right\|_{2}^{2}\right\} \quad \text { s.t. } \quad \operatorname{gcd}\left(\widetilde{C}_{11}, \widetilde{C}_{22}\right) \neq 1 .
$$

Assume: $\widetilde{C}_{11}=\left(c_{11} t+c_{10}\right)\left(h_{1} t+1\right)$ and $\widetilde{C}_{22}=\left(c_{21} t+c_{20}\right)\left(h_{1} t+1\right)$.
The distance to a matrix with a non-trivial SNF is

$$
\inf _{h_{1} \in \mathbb{R}} \frac{5 h_{1}^{4}-4 h_{1}^{3}+14 h_{1}+2}{h_{1}^{4}+h_{1}^{2}+1}=2 \text { when } h_{1}=0 .
$$

Thus $\operatorname{gcd}\left(\widetilde{C}_{11}, \widetilde{C}_{22}\right)=1$ at the infima.

Reducing Approximate SNF to Approximate GCD

- We can define the SNF in terms of the minors

$$
s_{j}=\frac{\delta_{j}}{\delta_{j+1}} \text { where } \delta_{j}=\operatorname{GCD}\{\text { all } j \times j \text { minors of } \mathcal{A}\}
$$

- Requiring $\delta_{j} \neq 1 \Longrightarrow \mathcal{A}$ has McCoy rank at most $n-j-1$
- Use Sylvester matrices and approximate GCD techniques
- δ_{j} 's are approximate GCD's of several polynomials
- Coefficient structure is multi-linear in the entries of \mathcal{A}

Lemma

\mathcal{A} has McCoy rank at most $n-2$ iff entries of the adjoint matrix have a non-trivial GCD.

We compute the adjoint matrix quickly and robustly!

Distance lower bounds via unstructured SVDs

- Embed matrix polynomials into scalar matrices over \mathbb{R}

Generalized Sylvester matrices

Let $a \in \mathbb{R}[t]$ with $\operatorname{deg} a \leq d$.

$$
\phi_{r}(a)=\left(\begin{array}{ccccc}
a_{0} & \cdots & a_{d} & & \\
& \ddots & & \ddots & \\
& & a_{0} & \cdots & a_{d}
\end{array}\right) \in \mathbb{R}^{r \times(r+d)}
$$

- Let $\mathbf{f}=\left(f_{1}, \ldots, f_{k}\right) \in \mathbb{R}[t]^{k}$ be ordered by decreasing degree
- Take $\mathbf{d}=\left(\operatorname{deg}\left(f_{1}\right), \ldots, \operatorname{deg}\left(f_{k}\right)\right), r=\operatorname{deg} f_{1}$ and $d=\max \left\{\operatorname{deg}_{f_{j}}\right\}_{j=2}^{k}$

$$
\underbrace{\operatorname{Syl}(\mathbf{f})=\operatorname{Syl}_{\mathbf{d}}(\mathbf{f})}_{\text {Generalized Sylvester Matrix }}=\left(\begin{array}{c}
\phi_{r}\left(f_{1}\right) \\
\phi_{d}\left(f_{2}\right) \\
\vdots \\
\phi_{d}\left(f_{k}\right)
\end{array}\right) \in \mathbb{R}^{(r+(k-1) d) \times(r+d)}
$$

Generalized Sylvester Matrices

Theorem

$\operatorname{gcd}(\mathbf{f})=1 \Longleftrightarrow \operatorname{Syl}(\mathbf{f})$ has full rank.
Problem: What if the degrees of \mathbf{f} can increase?

- Degrees of \mathbf{f} can be at-most $\mathbf{d}^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{k}^{\prime}\right)$
- Spurious solutions can occur due to over-padding of zeros
- Define $\left.\operatorname{rev}_{d_{j}} f_{j}\right)=t^{d_{j}} f\left(t^{-1}\right)$
- Define $\operatorname{rev}_{\mathbf{d}^{\prime}}(\mathbf{f})$ in the obvious way

Theorem

If $\operatorname{Syl}_{\mathbf{d}^{\prime}}(\mathbf{f})$ is rank deficient then $\operatorname{gcd}(\mathbf{f})=1$ iff $\operatorname{Syl}^{\left(\operatorname{rev}_{\mathbf{d}^{\prime}}(\mathbf{f})\right) \text { has full }}$ rank.

Approximate SNF via Sylvester Matrices

Theorem

A nearest rank at most e Sylvester matrix always exists.

Theorem

Suppose that $\mathbf{d}^{\prime}=(\gamma, \gamma \ldots, \gamma)$ and $\mathrm{Syl}_{\mathbf{d}^{\prime}}(\operatorname{Adj}(\mathcal{F}))$ has rank e.

- $\sigma_{e}\left(\operatorname{Syl}_{\mathbf{d}^{\prime}}(\operatorname{Adj}(\mathcal{F}))\right)$ is the distance to a nearest singular matrix

Example (Same \mathcal{A} as the First Example)

A lower bound on the distance to non-triviality is $4.3556 e-4$.

Nearest Matrix Polynomial with an Interesting SNF

Constrained Optimization Approach

$$
\min \|\underbrace{\mathcal{A}-\widehat{\mathcal{A}}}_{\Delta \mathcal{A}}\|_{F}^{2} \text { such that }\left\{\begin{array}{l}
\operatorname{Adj}(\widehat{\mathcal{A}})=\mathcal{F} h, \\
\mathcal{F} \in \mathbb{R}[t]^{n \times n}, \\
h=h_{0}+h_{1} t+h_{2} t^{2}, \\
h_{2}^{2}+h_{1}^{2}-1=0 .
\end{array}\right.
$$

- Assume the adjoint has a finite approximate GCD
- Otherwise the reversal has a non-trivial GCD
- Generically, the approximate GCD has degree 1 or 2
- $h_{2}^{2}+h_{1}^{2}-1=0 \Longrightarrow h$ has degree at least 1
- Solve with Lagrange Multipliers and Levenberg-Marquardt

Levenberg-Marquardt Iteration

Theorem

The Levenberg-Marquardt iteration converges quadratically to the minimum value with a suitable initial guess.

Corollary

Under small perturbations:

- Well-posed approximate SNF instances remain well-posed.
- III-posed instances cannot be regularized to be well-posed.
- Theory applies by induction to arbitrary McCoy rank
- Applies to infinite eigenvalues: consider $t^{d} \mathcal{A}\left(t^{-1}\right)$
- This is why existing algorithms fail and cannot be saved

Algorithm and Implementation in Maple 2017

- Compute derivatives quickly
- Partial two variable ansatz and evaluation
- $\operatorname{Adj}(\mathcal{A}+\Delta \mathcal{A})$ has exponentially many coefficients
- Compute derivatives of $\operatorname{Adj}(\cdot)$ quickly
- Details in an upcoming paper!
- LM iteration cost is polynomial $O\left(n^{9} d^{3}\right)$ flops for $r=2$
- Grows exponentially in r, the specified McCoy Rank deficiency Initial Guess
- Compute approximate GCD of the adjoint matrix
- Approximate Lagrange multipliers with linear least squares

Lower McCoy Rank Approximations

- Assume that $\mathcal{A} \in \mathbb{R}[t]^{n d \times n d}$ has degree 1

McCoy Rank At-Most $n-r$ Approximation

$$
\min \|\Delta \mathcal{A}\|_{F}^{2} \text { such that }\left\{\begin{array}{l}
((\mathcal{A}+\Delta \mathcal{A})(\omega)) K=0 \\
\omega \in \mathbb{C}, K \in \mathbb{C}^{n d \times r} \\
K^{*} K=I_{r}
\end{array}\right.
$$

- We use LM; gradient methods are acceptable
- Per-iteration cost is $O\left(n^{6} d^{6}\right)$ (does not depend on r)

Initial Guess: Tri-linear alternating projections.

- Take $\omega_{\text {init }}$ as a local extrema of $|\operatorname{det}(\mathcal{A})|^{2}$
- Take $K_{\text {init }}$ from the r smallest singular vectors of $\mathcal{A}\left(\omega_{\text {init }}\right)$
- Approximate Lagrange multipliers with linear least squares

Summary of Examples (Same \mathcal{A} as First Example)

$n-r$	Struct	\# Lower	\# GCD	$\left\\|\Delta \mathcal{A}_{\text {opt }}\right\\|_{F}$	$\omega_{\text {opt }}$	$\operatorname{deg} \mathcal{S}_{\varepsilon}$
0	Support	191	N/A	2.11383	-.36276	5
0	Entry	189	N/A	2.11135	-.36580	5
0	Degree	179	N/A	2.07278	-.37822	6
1	Support	91	9	1.06963	-.27999	6
1	Entry	89	9	1.06914	-.28044	6
1	Degree	61	11	0.96031	-.22957	7

Compare with the Sylvester Matrix Lower Bounds...

	Support	Entry	Degree
SVD Bound	$4.3556 \mathrm{e}-4$	$4.080713 \mathrm{e}-4$	$1.999026 \mathrm{e}-4$

- Adjoint method is robust; Requires fewer iterations
- Optimization is local; Reasonable initial guesses are needed
- The coefficient displacement structure is very important

Related and Future Work

What I have done...

- Numerically Robust and Fast Matrix Polynomial Adj(•)
- Backwards/Mixed Stability of $\operatorname{Adj}(\cdot)$ Computations
- Numerically Robust and Fast Derivative Computation of $\operatorname{Adj}(\cdot)$

What I am working on...

- Implementation of a fast approximate SNF algorithm
- Sparse Approximate Factorizations over

$$
\mathbb{R}[t][\partial ; '] \text { and } \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}\right]
$$

- Finishing my thesis and looking for new opportunities!

Rank 0 McCoy Rank Approximation

$$
\mathcal{A}=\left(\begin{array}{ccc}
t^{3}+3 t+1 & 1 & t+1 \\
0 & t^{2}+2 t+2 & 0 \\
t+1 & t+1 & t^{3}+5 t+1
\end{array}\right) \quad \begin{aligned}
& \text { - } \mathcal{A} \text { has trivial SNF } \\
& \text { - Take } \mathcal{A}_{\text {init }}=\mathcal{A} \\
& \text { - } \omega_{\text {init }} \approx 0.4120084
\end{aligned}
$$

- Consider perturbations that do not change the support

191 iterations $\Longrightarrow 12$ digits of accuracy, $\omega_{\text {opt }} \approx-0.362762767179$

$\widehat{\mathcal{S}} \approx\left(\begin{array}{ccc}t-\omega_{\text {opt }} & & \\ & t-\omega_{\text {opt }} & \\ & & \left(t-\omega_{\text {opt }}\right) S_{\varepsilon}\end{array}\right)$ and $\left\|\Delta \mathcal{A}_{\text {opt }}\right\|_{F} \approx 2.11383$
$S_{\varepsilon} \approx 0.80388 t^{5}+1.46695 t^{4}+5.16105 t^{3}+14.58267 t^{2}+5.29517 t+28.94238$

Rank 0 McCoy Rank Approximation : Entry Degree

$$
\mathcal{A}=\left(\begin{array}{ccc}
t^{3}+3 t+1 & 1 & t+1 \\
0 & t^{2}+2 t+2 & 0 \\
t+1 & t+1 & t^{3}+5 t+1
\end{array}\right)
$$

- \mathcal{A} has trivial SNF
- Take $\mathcal{A}_{\text {init }}=\mathcal{A}$
- $\omega_{\text {init }} \approx 0.4120084$
- Consider perturbations that do not change the entry degree 189 iterations $\Longrightarrow 12$ digits of accuracy, $\omega_{\text {opt }} \approx-.365806171787$
$\underbrace{\left(\begin{array}{ccc}.99379 t^{3}+.016971 t^{2}+2.9536 t+1.1268 & 0 & 1.2046 t+.44065 \\ 0 & .83708 t^{2}+2.4454 t+.78252 & 0 \\ 1.2046 t+.44065 & 1.2046 t+.44065 & .96276 t^{3}+.10180 t^{2}+4.7217 t+1.7607\end{array}\right)}_{\mathcal{\mathcal { A } _ { \text { opt } }}}$

$$
\begin{aligned}
& \widehat{\mathcal{S}} \approx\left(\begin{array}{lll}
t-\omega_{\text {opt }} & & \\
& t-\omega_{\text {opt }} & \\
& & \left(t-\omega_{\text {opt }}\right) S_{\varepsilon}
\end{array}\right) \text { and }\left\|\Delta \mathcal{A}_{\text {opt }}\right\|_{F} \approx 2.1113588 \\
& S_{\varepsilon} \approx 0.80090 t^{5}+1.55911 t^{4}+5.31324 t^{3}+14.72015 t^{2}+5.97834 t+28.61277
\end{aligned}
$$

Rank 0 McCoy Rank Approximation : Matrix Degree

$$
\mathcal{A}=\left(\begin{array}{ccc}
t^{3}+3 t+1 & 1 & t+1 \\
0 & t^{2}+2 t+2 & 0 \\
t+1 & t+1 & t^{3}+5 t+1
\end{array}\right) \quad \begin{aligned}
& \text { - } \mathcal{A} \text { has trivial SNF } \\
& \text { - Take } \mathcal{A}_{\text {init }}=\mathcal{A} \\
& \text { - } \omega_{\text {init }} \approx 0.4120084
\end{aligned}
$$

- Consider perturbations that can change all degrees

179 iterations $\Longrightarrow 12$ digits of accuracy, $\omega_{\text {opt }} \approx-0.378229408431$

$$
\widehat{\mathcal{S}} \approx\left(\begin{array}{ccc}
t-\omega_{\text {opt }} & & \\
& t-\omega_{\text {opt }} & \\
& & \left(t-\omega_{\text {opt }}\right) S_{\varepsilon}
\end{array}\right) \text { and }\left\|\Delta \mathcal{A}_{\text {opt }}\right\|_{F} \approx 2.07278948063
$$

$$
S_{\varepsilon} \approx 0.06090 t^{6}+0.72589 t^{5}+2.06256 t^{4}+4.81853 t^{3}+15.54934 t^{2}+5.84844 t+28.26751
$$

Rank 1 McCoy Rank Approximation

Using the Adjoint/Approximate GCD Formulation

$$
\mathcal{A}=\left(\begin{array}{ccc}
t^{3}+3 t+1 & 1 & t+1 \\
0 & t^{2}+2 t+2 & 0 \\
t+1 & t+1 & t^{3}+5 t+1
\end{array}\right)
$$

- \mathcal{A} has trivial SNF
- Take $\mathcal{A}_{\text {init }}=\mathcal{A}$
- $h_{\text {init }}=t\left(\omega_{\text {init }}=0\right)$
- Consider perturbations that do not change the support

9 iterations $\Longrightarrow 15$ digits of accuracy, $\omega_{\text {opt }} \approx-.27999154088436$

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccc}
1.0028 t^{3}+3.0358 t+.87202 & 1 & 1.1869 t+.33233 \\
0 & t^{2}+2 t+2 & 0 \\
1.1869 t+.33233 & t+1 & .99142 t^{3}+4.8905 t+1.3911
\end{array}\right)}_{\mathcal{A}_{\text {opt }}} \\
& \widehat{\mathcal{S}} \approx\left(\begin{array}{lll}
1 & & \\
& t-\omega_{\text {opt }} & \\
& & \left(t-\omega_{\text {opt }}\right) S_{\varepsilon}
\end{array}\right) \text { and }\left\|\Delta \mathcal{A}_{\text {opt }}\right\|_{F} \approx 1.06963271820 \\
& S_{\varepsilon} \approx 0.99420 t^{6}+1.43166 t^{5}+9.02277 t^{4}+12.92270 t^{3}+25.84113 t^{2}+23.60992 t+28.12892
\end{aligned}
$$

Rank 1 McCoy Rank Approximation

Using the Adjoint/Approximate GCD Formulation

$$
\mathcal{A}=\left(\begin{array}{ccc}
t^{3}+3 t+1 & 1 & t+1 \\
0 & t^{2}+2 t+2 & 0 \\
t+1 & t+1 & t^{3}+5 t+1
\end{array}\right)
$$

- \mathcal{A} has trivial SNF
- Take $\mathcal{A}_{\text {init }}=\mathcal{A}$
- $h_{\text {init }}=t\left(\omega_{\text {init }}=0\right)$
- Consider perturbations that do not change the entry degree

9 iterations $\Longrightarrow 15$ digits of accuracy, $\omega_{\text {opt }} \approx-0.280440198593668$

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccc}
1.0028 t^{3}-.00990 t^{2}+3.0353 t+.87412 & 1 & 1.1871 t+.33291 \\
0 & t^{2}+2 t+2 & 0 \\
1.1871 t+.33291 & t+1 & .99138 t^{3}+.030743 t^{2}+4.8904 t+1.3909
\end{array}\right)}_{\mathcal{A}{ }_{\text {opt }}} \\
& \widehat{\mathcal{S}} \approx\left(\begin{array}{lll}
1 & & \\
& t-\omega_{o p t} & \\
& & \left(t-\omega_{o p t}\right) S_{\varepsilon}
\end{array}\right) \text { and }\left\|\Delta \mathcal{A}_{o p t}\right\|_{F} \approx 1.06914559551 \\
& S_{\varepsilon} \approx 0.99413 t^{6}+1.45168 t^{5}+9.050662 t^{4}+12.98332 t^{3}+25.8918 t^{2}+23.67078 t+28.10003
\end{aligned}
$$

Rank 1 McCoy Rank Approximation

Using the Adjoint/Approximate GCD Formulation

$$
\mathcal{A}=\left(\begin{array}{ccc}
t^{3}+3 t+1 & 1 & t+1 \\
0 & t^{2}+2 t+2 & 0 \\
t+1 & t+1 & t^{3}+5 t+1
\end{array}\right)
$$

- \mathcal{A} has trivial SNF
- Take $\mathcal{A}_{\text {init }}=\mathcal{A}$
- $h_{\text {init }}=t\left(\omega_{\text {init }}=0\right)$
- Consider perturbations that can change all degrees

11 iterations $\Longrightarrow 15$ digits of accuracy, $\omega_{\text {opt }} \approx-0.22957727217562$

$$
\begin{aligned}
& \widehat{\mathcal{S}} \approx\left(\begin{array}{ccc}
1 & & \\
& t-\omega_{\text {opt }} & \\
& & \left(t-\omega_{o p t}\right) S_{\varepsilon}
\end{array}\right) \text { and }\left\|\Delta \mathcal{A}_{\text {opt }}\right\|_{F} \approx 0.960310462257 \\
& S_{\varepsilon} \approx 0.0014 t^{7}+0.9897 t^{6}+1.59563 t^{5}+8.9792 t^{4}+14.2552 t^{3}+26.07418 t^{2}+26.2280 t+28.7424
\end{aligned}
$$

Generalized Sylvester Matrices

Example (GCD at Infinity)

$\mathbf{f}=(2 t+1,3 t, 4), \mathbf{d}^{\prime}=(2,2,2)$ and $\operatorname{rev}_{\mathbf{d}^{\prime}}(\mathbf{f})=\left(1 t^{2}+2 t, 3 t, 4 t^{2}\right)$.
Is $\operatorname{gcd}(\mathbf{f})$ non-trivial with degree sequence \mathbf{d}^{\prime} ?

- Approximate gcd of \mathbf{f} with degrees \mathbf{d}^{\prime} is $(\varepsilon t+1)$
- This is a GCD at infinity, of distance zero
- Obviously $\operatorname{gcd}(\mathbf{f})=1$

Generalized Sylvester Matrices

Example (No GCD at Infinity)

$$
\mathbf{f}=(2 t+1,3 t, 4), \mathbf{d}^{\prime}=\underbrace{(2,1,2)}_{\text {No change }} \text { and } \operatorname{rev}_{\mathbf{d}^{\prime}}(\mathbf{f})=\left(1 t^{2}+2 t, 3,4 t^{2}\right)
$$

Is $\operatorname{gcd}(\mathbf{f})$ non-trivial with degree sequence \mathbf{d}^{\prime} ?

- Sy $_{\mathrm{d}^{\prime}}(\mathbf{f})$ is over-padded with a column of zeros
- No GCD at infinity since $\operatorname{Syl}^{\prime}\left(\right.$ rev $_{\mathrm{d}^{\prime}}(\mathbf{f})$) has full rank
- Both Sylvester matrices used to decide non-triviality

Lagrange Multipliers

Define the Lagrangian

$$
L=\|\Delta \mathcal{A}\|_{F}^{2}+\lambda^{T}\binom{\operatorname{Adj}(\mathcal{A}+\Delta \mathcal{A})-f^{*} h}{h_{2}^{2}+h_{1}^{2}-1} \text { and } x=\left(\begin{array}{c}
\operatorname{vec}(\Delta \mathcal{A}) \\
\operatorname{vec}\left(f^{*}\right) \\
\operatorname{vec}(h)
\end{array}\right)
$$

- The Gradient of L is ∇L
- The Jacobian of the constraints is J
- The Hessian of L (w.r.t. to x) is $H=\nabla^{2} L\left(H_{x x}=\nabla_{x x}^{2} L\right)$

$$
J=\nabla\binom{\operatorname{Adj}(\mathcal{A}+\Delta \mathcal{A})-f^{*} h}{h_{2}^{2}+h_{1}^{2}-1} \quad \text { and } \quad H=\left(\begin{array}{cc}
H_{x x} & J^{T} \\
J &
\end{array}\right)
$$

Fact (First Order Necessary Condition)

It is necessary that $\nabla L=0$ at a local minimizer.

Newton's Method and Variants

Let $L=L\left(x^{k}, \lambda^{k}\right)$ and $H=H\left(x^{k}, \lambda^{k}\right)$.
Newton's Method to Solve $\nabla L=0$

$$
\text { Compute }\binom{x^{k}+\Delta x}{\lambda^{k}+\Delta \lambda} \text { where } H\binom{\Delta x}{\Delta \lambda}=-\nabla L
$$

- If H is rank deficient then the iteration is ill-defined

A Quasi Newton Method: Levenberg-Marquardt

$$
\left(H^{T} H+\mu_{k} I\right)\binom{\Delta x^{k}}{\Delta \lambda^{k}}=-H^{T} \nabla L, \text { for } \mu_{k}>0
$$

- LM step is always well defined since $H^{T} H+\mu_{k} I$ has full rank
- $H^{T} H+\mu_{k} I$ is positive definite \Longrightarrow converges globally

Second-Order Optimality Conditions

Let $\nabla L=\nabla L\left(x^{\star}, \lambda^{\star}\right), H=H\left(x^{\star}, \lambda^{\star}\right)$ and $J=J\left(x^{\star}, \lambda^{\star}\right)$.

Fact (Second Order Sufficiency Condition (SOSC))

$$
\text { If } \nabla L=0 \quad \text { and } \quad \operatorname{ker}(J)^{T} H_{x x} \operatorname{ker}(J)>0
$$

then $\left(x^{\star}, \lambda^{\star}\right)$ is a local minimizer.

Theorem (Second Order Sufficiency Holds)

If || $\mathcal{A}-\widetilde{\mathcal{A} \| \mid}$ is sufficiently small, then under mild normalization assumptions we have that second-order sufficiency holds.

- Solutions will be isolated
- $\kappa_{2}\left(\binom{H_{x x}}{J}\right)$ acts as a condition number of the problem
- SOSC \Longrightarrow quasi-Newton methods are reliable

