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Introduction

The Smith Normal Form

Smith Normal Form (SNF)

Any A € R[¢]™" is unimodularily equivalent to

S =diag(s1,52,...,5,) Where sjls;;1 and s; € R[z].
That is, there exists U, V € R[¢]™" such that

UAYV =8 and det(U),det(V) € R\{0}.

e The {sj}J’.’=1 are the invariant factors

e Computing S is well understood in exact-arithmetic

¢ Analyze the SNF as a symbolic-numeric optimization problem

Haraldson



Introduction Theory SNF via Optimization Examples Conclusion

Smith Normal Forms
Example (Boring SNF over R[7]**)

A13i+1 | r+1 1
ﬂ:[ 0 2 +2t+2 0 ]and SNF(A) = 1
r+1 t+1 P +5r+1 det(A)

det(A) = 18 + 217 + 106° + 18 + 341* + 387 + 40¢% + 121.

Example (Interesting SNF over R[¢]¥4)

1
t+1

t+1 t+1 -1
0 r+1 £ |and SNE(B) =
0 0 #-1

B =

(t+ (@ - 1)]
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Introduction

SNF Computation in a Floating Point Environment
When does A have a non-trivial Smith Normal Form?

o Small perturbations to ‘A generically produce a trivial SNF
e How far is A from a matrix polynomial A with non-trivial SNF?
e |s there a radius of triviality?

e |le., if Ais perturbed by a small amount is the SNF still trivial?

When is Computing the SNF Well-Posed?

Is there a nearest matrix polynomial A with an interesting SNF?
o ls ﬁlocally unique?

 How do we compute A?

e How do perturbations to ‘A affect A?
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Nearby SNF via Optimization

The McCoy Rank - Number of 1’s in the SNF

Formally: McCoy rank of A € R[#]™" is minec rank(A(w)).

Approximations Require a Norm
A2 = | Zosksdeg a; ﬂfjk and [IA| = |AllF = | Z1<ijen A3

Main Problem: Nearby Interesting SNF

Given A € R[] of McCoy rank at most n — 1, find Ae R[]™"
that (locally) solves the optimization problem

SNF(A) = diag(31,52,- - -+ 511, 81)s

min || A — A| such that
deg(sn) 2 deg(‘en*l) > 1.
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Introduction

Our Contributions

—_

. Tight lower bounds on the radius of triviality
. Polynomial-time decision procedure for ill-posedness

. Stability analysis on SNF via Optimization

A WO DN

. lterative algorithms with local quadratic convergence

Nearest matrix with reduced McCoy rank

Nearest matrix with McCoy rank at most n — r

Reasonable initial guess heuristics for both algorithms

Polynomial per-iteration cost

5. Implementation in Maple
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Previous Work on Floating Point SNF Computations

Reduction to Degree One

Every matrix polynomial A € R[] can be linearized to
P =Py +1P forsome Py, Py e R,

e Extract the SNF from Kronecker’'s Canonical Form
e SNF(P) = diag(l, 1,..., 1, SNF(A))

Backward Stable: Finds the SNF of a nearby matrix.

e Full Rank Case: QZ Algorithm
e Wilkinson (1979)

e Singular Case: Fast Staircase/Deflation Algorithms
e Beelen and Van Dooren (1984,1988)

e Current: GUPTRI
e Demmel and Edelman (1995)
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Introduction
Applications of Approximate Smith Form
e Structured stability of polynomial eigenvalue problems
e Matrix polynomial eigenvalue least squares problems

e Occurs frequently in control systems engineering

¢ Decide if the SNF can be inferred numerically
Our goal is different: Find a nearby matrix with a non-trivial SNF.

e Structured backward stability analysis of SNF computations
¢ Detect irrecoverable failures of existing algorithms

e SNF of a nearby matrix may be meaningless
e Problem is not always continuous

o We compute a nearby matrix with an interesting SNF
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Reduction to Approximate GCD

Example (Find Nearest 2 x 2 matrix with a non-trivial SNF)

C = diag (t2 -2t+1,2+2t+ 2) find a lower McCoy rank C.

Approximate GCD of C;; and C,, (Karmarkar and Lakshman ’96)

inf {lIC11 = Cuill3 +1Ca2 = Caall3} st ged(Ciy, ) # 1.

Assume: 511 = (c1it+cio)(hit+1) and 522 = (co1t+cp)(hit+1).
The distance to a matrix with a non-trivial SNF is

5h* —4h3 + 14h
inf > C A2 hen hy = 0.
hieR h*+h?+1

Thus gcd(alf‘zz) =1 at the infima.
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Reducing Approximate SNF to Approximate GCD

e We can define the SNF in terms of the minors
6.
s; = —— where §; = GCD{all j x j minors of A }
j+1
e Requiring 6; # 1 = A has McCoy rank at mostn —j — 1

e Use Sylvester matrices and approximate GCD techniques

e ¢;’s are approximate GCD’s of several polynomials

e Coefficient structure is multi-linear in the entries of A

Lemma

A has McCoy rank at most n — 2 iff entries of the adjoint matrix
have a non-trivial GCD.

We compute the adjoint matrix quickly and robustly!
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Theory

Distance lower bounds via unstructured SVDs
e Embed matrix polynomials into scalar matrices over R

Generalized Sylvester matrices
Let a € R[¢] with dega < d.

aO oo ad
¢r(a) — o0 o c RrX(r+d)‘

a - ay
e Letf=(fi,....fu) € R[t]F be ordered by decreasing degree
o Take d = (deg(f1), ..., deg(fr)), r = degfi and d = max{degﬁ};.‘:2
¢r(f1)
Syl(f) = Syly®) = ¢dff2) ¢ RUHE=DDX(r+d)

ba(fi)

Generalized Sylvester Matrix
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Generalized Sylvester Matrices

Theorem
ged(f) =1 < Syl(f) has full rank.

Problem: What if the degrees of f can increase?

e Degrees of f can be at-mostd’ = (d;, .. d,’()

e Spurious solutions can occur due to over-padding of zeros
* Define revy (f) = tif ")

e Define revy (f) in the obvious way

Theorem

If Sylgq (f) is rank deficient then gcd(f) = 1 iff Syl(reva (f)) has full
rank.
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Approximate SNF via Sylvester Matrices

Theorem

A nearest rank at most e Sylvester matrix always exists.

Theorem

Suppose thatd’ = (y,y...,y) and Sylg (Adj(A)) has rank e.

To(Sylg (Adj(A)))
yn3(d + D3| AllGn"

5 < |lA- Allr, where SNF(ﬁ) is non-trivial.

e 0,.(Sylg (Adj(A))) is the distance to a nearest singular matrix

Example (Same A as the First Example)

A lower bound on the distance to non-triviality is 4.3556e — 4.

Haraldson



Introduction Theory SNF via Optimization Examples Conclusion

Nearest Matrix Polynomial with an Interesting SNF

Constrained Optimization Approach

Adj(A) = Fh,
. c R[t n><n,
min|| A - A7 such that 7 e Rl )
v h=h0+h1l+h2l,
W+h-1=0.

Assume the adjoint has a finite approximate GCD

e Otherwise the reversal has a non-trivial GCD

Generically, the approximate GCD has degree 1 or 2

h3+hi—1=0 = hhas degree at least 1

Solve with Lagrange Multipliers and Levenberg-Marquardt
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Levenberg-Marquardt Iteration

Theorem

The Levenberg-Marquardt iteration converges quadratically to the
minimum value with a suitable initial guess.

Corollary

Under small perturbations:
o Well-posed approximate SNF instances remain well-posed.

lll-posed instances cannot be regularized to be well-posed.

Theory applies by induction to arbitrary McCoy rank

Applies to infinite eigenvalues: consider 1 A(t™")

This is why existing algorithms fail and cannot be saved
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Algorithm and Implementation in Maple 2017
e Compute derivatives quickly
o Partial two variable ansatz and evaluation
e Adj(A + AA) has exponentially many coefficients
e Compute derivatives of Adj(-) quickly
¢ Details in an upcoming paper!
e LM iteration cost is polynomial O(n°d?) flops for r = 2

e Grows exponentially in r, the specified McCoy Rank deficiency

Initial Guess
e Compute approximate GCD of the adjoint matrix

e Approximate Lagrange multipliers with linear least squares
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Lower McCoy Rank Approximations
e Assume that A € R[] has degree 1

McCoy Rank At-Most n — r Approximation

(A+ AA) () K =0,
min [[AZA|> suchthat {w e C,K e CHxr,
K'K = I,.

e We use LM; gradient methods are acceptable

e Per-iteration cost is O(n%d®) (does not depend on r)

Initial Guess: Tri-linear alternating projections.
e Take wj,;; as a local extrema of | det(A)?

o Take Kj;,;; from the r smallest singular vectors of A(wiyir)

o Approximate Lagrange multipliers with linear least squares
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Examples

Summary of Examples (Same ‘A as First Example)

n—r | Struct | #Lower | # GCD | ||AAullF Wopt deg S,
0 Support 191 N/A 2.11383 | -.36276 5
0 Entry 189 N/A 2.11135 | -.36580 5
0 Degree 179 N/A 2. -.37822 6
1 Support 91 9 1.06963 | -.27999 6
1 Entry 89 9 1.06914 | -.28044 6
1 Degree 61 11 -.22957 7
Compare with the Sylvester Matrix Lower Bounds...
Support |  Entry | Degree
SVD Bound | 4.3556e-4 | 4.080713e-4 | e-4

o Adjoint method is robust; Requires fewer iterations
e Optimization is local; Reasonable initial guesses are needed

e The coefficient displacement structure is very important
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Conclusion

Related and Future Work

What | have done...
e Numerically Robust and Fast Matrix Polynomial Adj(-)

o Backwards/Mixed Stability of Adj(-) Computations

e Numerically Robust and Fast Derivative Computation of Adj(-)
What | am working on...
¢ Implementation of a fast approximate SNF algorithm

e Sparse Approximate Factorizations over
R[l‘][a;/ ] and Clx1,x2, ..., Xt].

¢ Finishing my thesis and looking for new opportunities!
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Rank 0 McCoy Rank Approximation

t3 +31+1 1 t+1 e A has trivial SNF
ﬂz[ 0 2 +2t+2 0 ] o Take Ay = A
r+1 t+1 £ +5t+1 o winir ~ 0.4120084
o Consider perturbations that do not change the support
191 iterations = 12 digits of accuracy, ~ —0.362762767179
994271 +2.9565¢ + 1.12 0 1.20431 + 43687
[ 0 8389572 + 2.4440¢ + 77617 0
1.2043¢ + .43687 1.2043¢ + 43687 963738 + 4.72441 + 1.7598
ﬂopt
S~ [ ] and [[AAllF ~ 2.11383
( )Se

S. ~ 0.80388+1.46695¢*+5.16105+14.582671>+5.29517t+28.94238
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Rank 0 McCoy Rank Approximation : Entry Degree

t3 +31+1 1 t+1 e A has trivial SNF
ﬂz[ 0 24242 0 ] o Take Ay = A
t+1 t+1 £ +5t+1 o winir ~ 0.4120084

e Consider perturbations that do not change the entry degree
189 iterations = 12 digits of accuracy, ~ —.365806171787

1993798 +.0169717% + 2.9536¢ + 1.1268 0 1.2046¢ + .44065
0 8370812 + 2.4454¢ + 78252 0
1.2046¢ + .44065 1.2046¢ + .44065 .962761% + .101807% + 4.7217¢ + 1.7607
ﬂupt
S~ and [|AApllF = 2.1113588
( )Se

S. ~ 0.80090£+1.559117*+5.31324+14.72015¢>+5.978341+28.61277
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Rank 0 McCoy Rank Approximation : Matrix Degree

t3 +31+1 1 t+1 e A has trivial SNF
A= 0 £ +2t+2 0 o Take Ajir = A
r+1 t+1  P+5t+1 o Winir ~ 04120084

e Consider perturbations that can change all degrees
179 iterations = 12 digits of accuracy, ~ —(0.378229408431

19912473 + 02315572 +2.93881 + 1.1619 04638713 — 1226472 + 324261 +.14270 0288423 — .0762567% + 1.2016¢ + .46696
0 06432173 + .829947% + 2.4496¢ + .81127 0
102884213 — 07625612 + 1.2016¢ + 46696 02884213 — 07625612 + 1.2016¢ + .46696 956157 +.11593¢% + 4.6935¢ + 1.8104

ﬂupt

S~ and [|AAllF ~ 2.07278948063
( )Se

S. = 0.060907° + 0.72589¢ + 2.062561* + 4.81853F + 15.54934+> + 5.848441 + 28.26751
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Rank 1 McCoy Rank Approximation

Using the Adjoint/Approximate GCD Formulation

P +3r+1 1 t+1 e A has trivial SNF
ﬂ:[ 0 2 +2t+2 0 ] o Take Ajniy = A
1+ 1 t+1 P +5t+1 o Niis = t (Winis = 0)
e Consider perturbations that do not change the support
9 iterations = 15 digits of accuracy, ~ —.27999154088436
1.0028¢* + 3.0358¢ + .87202 1 1.1869¢ + .33233
0 £ +2t+2 0
1.18697 + .33233 r+1 9914213 + 4.8905¢ + 1.3911
ﬂopt
(!
S~ and [|AApllF =~ 1.06963271820
( )Se

S. = 0.99420/° + 1.43166F° + 9.02277¢* + 12.92270¢ + 25.841137 + 23.609927 + 28.12892
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Rank 1 McCoy Rank Approximation

Using the Adjoint/Approximate GCD Formulation

t3 +3r+1 1 t+1 e A has trivial SNF
A = 0 ?+2t+2 0 o Take Appir = A
1+ 1 t+1 P +5t+1 o Niis = t (Winis = 0)

e Consider perturbations that do not change the entry degree
9 iterations = 15 digits of accuracy, ~ —0.280440198593668

1.00287% — .00990¢% + 3.0353¢ + .87412 1 1.1871t + 33291
0 2+20+2 0
1.1871z + 33291 t+1 1991387 + .0307437> + 4.8904¢ + 1.3909
ﬂ(}pt
1
S~ and [|AA,pllF = 1.06914559551
( )Se

S. & 0.994137° + 1.45168F + 9.050662¢* + 12.983327 + 25.89187 + 23.67078¢ + 28.10003
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Rank 1 McCoy Rank Approximation

Using the Adjoint/Approximate GCD Formulation
e A has trivial SNF

P +3t+1 1 r+1
A= 0 2 +2t+2 0 o Take Ajpiy = A
t+1 t+1 P +5t+1 o Niis = t (Winis = 0)

e Consider perturbations that can change all degrees
11 iterations = 15 digits of accuracy, ~ —0.22957727217562

1.00047> — 001587 + 3.0069¢ +.96993 001247 + .005427> — 0236161 + 1.1029  .00661> — 0287717 + 112531 + .45412
—.004041> +.017626% — 0767771 +.33443 0014973 +.993517% +2.02837 + 1.8768  —.002937> +.012798¢> — 0557481 + .24283

006471 — 0281977 + 1.12281 + 46498 —.000947> +.00409¢% + .98215¢ + 1.0777  .99645¢> +.015443% + 4.93271 + 1.2930
\ﬂopt
1
S~ and [|AA,pllF = 0.960310462257
( )Se

Se & 0.00141 +0.9897(° + 15956317 + 8.9792* + 14.2552¢° + 26.07418¢% + 262280t + 28.7424
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Generalized Sylvester Matrices
Example (GCD at Infinity)

f=Qr+1,3t,4),d =(2,2,2) and revg (f) = (11> + 2¢, 3¢, 41%).

Is gcd(f) non-trivial with degree sequence d’?

Syl () =

o Approximate gcd of f with degrees d’ is (et + 1)

0
2

0
3

0
0

O OO oo O

and Syl(revg (f)) =

e This is a GCD at infinity, of distance zero

e Obviously ged(f) = 1
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Example (No GCD at Infinity)
f=Qt+1,3t,4),d = (2,1,2) and revg/(f) = (1£* + 21,3, 4).
N———

No change
Is gcd(f) non-trivial with degree sequence d’?

Syl (f) =

0
2

IO =

0
3

0

0
0

S OO oOlo O

and Syl(revy (f)) =

Generalized Sylvester Matrices

Conclusion

0

O~

0l

o Syly (f) is over-padded with a column of zeros

e No GCD at infinity since Syl(revg (f)) has full rank

e Both Sylvester matrices used to decide non-triviality
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Lagrange Multipliers

Define the Lagrangian

L:||Aﬂ||2+/lT( S vec(f™)
F n+ -1

. « vec(AA)
Adj(A + AA) fh) andx:[ ]
vec(h)
e The Gradient of L is VL
e The of the constraints is J

e The Hessian of L (W.r.t. to x) is H = V2L (H,, = V2 L)

. % T
Ad](ﬂ+Aﬂ)—fh) and H:(Hxx J)

J:V( W+ h2 -1 J

Fact (First Order Necessary Condition)

It is necessary that VL = 0 at a local minimizer.
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Newton’s Method and Variants
Let L = L(x*, A% and H = H(xk, A5).

Newton’s Method to Solve VL = 0

Compute (xk - Ax) where H(

Ax
A+ AL ) =~VL.

Ad

e If H is rank deficient then the iteration is ill-defined

A Quasi Newton Method: Levenberg-Marquardt

(H"H + el ) (Axk

A/lk) = -H'VL, for y > 0.

o LM step is always well defined since H” H + y1 has full rank

e H'H + il is = converges globally
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Second-Order Optimality Conditions
Let VL = VL(x*,2*), H = H(x*, 1*) and J = J(x*, *).

Fact (Second Order Sufficiency Condition (SOSC))

If VL=0 and ker(J)!Hy ker(J) > 0

then (x*, 1*) is a local minimizer.

Theorem (Second Order Sufficiency Holds)

If || A - flll is sufficiently small, then under mild normalization
assumptions we have that second-order sufficiency holds.

e Solutions will be isolated

J
e SOSC — quasi-Newton methods are reliable

° K ((H’“)) acts as a condition number of the problem

Haraldson



	Introduction
	Theory
	SNF via Optimization
	Examples
	Conclusion

