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The Smith Normal Form

Smith Normal Form (SNF)

Any A ∈ R[t]n×n is unimodularily equivalent to

S = diag(s1, s2, . . . , sn) where sj|sj+1 and sj ∈ R[t].

That is, there existsU,V ∈ R[t]n×n such that

UAV = S and det(U), det(V) ∈ R\{0}.

• The {sj}
n
j=1 are the invariant factors

• Computing S is well understood in exact-arithmetic

• Analyze the SNF as a symbolic-numeric optimization problem

Haraldson



3/19

Introduction Theory SNF via Optimization Examples Conclusion

Smith Normal Forms
Example (Boring SNF over R[t]3×3)

A =

t
3 + 3t + 1 1 t + 1

0 t2 + 2t + 2 0
t + 1 t + 1 t3 + 5t + 1

 and SNF(A) =

1 1
det(A)


det(A) = t8 + 2t7 + 10t6 + 18t5 + 34t4 + 38t3 + 40t2 + 12t.

Example (Interesting SNF over R[t]3×3)

B =

t + 1 t + 1 t − 1
0 t + 1 t3

0 0 t2 − 1

 and SNF(B) =

1 t + 1
(t + 1)(t2 − 1)
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SNF Computation in a Floating Point Environment
When does A have a non-trivial Smith Normal Form?

• Small perturbations to A generically produce a trivial SNF

• How far is A from a matrix polynomial Â with non-trivial SNF?

• Is there a radius of triviality?

• I.e., if A is perturbed by a small amount is the SNF still trivial?

When is Computing the SNF Well-Posed?

Is there a nearest matrix polynomial Â with an interesting SNF?

• Is Â locally unique?

• How do we compute Â?

• How do perturbations to A affect Â?

Haraldson
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Nearby SNF via Optimization

The McCoy Rank - Number of 1’s in the SNF

Formally: McCoy rank of A ∈ R[t]n×n is minω∈C rank(A(ω)).

Approximations Require a Norm

‖Aij‖2 =
√∑

0≤k≤degAijA
2
ijk and ‖A‖ = ‖A‖F =

√∑
1≤i,j≤n ‖Aij‖

2
2.

Main Problem: Nearby Interesting SNF

Given A ∈ R[t]n×n of McCoy rank at most n − 1, find Â ∈ R[t]n×n

that (locally) solves the optimization problem

min ‖A − Â‖ such that

SNF(Â) = diag(ŝ1, ŝ2, . . . , ŝn−1, ŝn),
deg(sn) ≥ deg(ŝn−1) ≥ 1.
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Our Contributions

1. Tight lower bounds on the radius of triviality

2. Polynomial-time decision procedure for ill-posedness

3. Stability analysis on SNF via Optimization

4. Iterative algorithms with local quadratic convergence

• Nearest matrix with reduced McCoy rank

• Nearest matrix with McCoy rank at most n − r

• Reasonable initial guess heuristics for both algorithms

• Polynomial per-iteration cost

5. Implementation in Maple

Haraldson
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Previous Work on Floating Point SNF Computations
Reduction to Degree One

Every matrix polynomial A ∈ R[t]n×n can be linearized to

P = P0 + tP1 for some P0,P1 ∈ R
nd×nd.

• Extract the SNF from Kronecker’s Canonical Form

• SNF(P) = diag(1, 1, . . . , 1,SNF(A))

Backward Stable: Finds the SNF of a nearby matrix.

• Full Rank Case: QZ Algorithm
• Wilkinson (1979)

• Singular Case: Fast Staircase/Deflation Algorithms
• Beelen and Van Dooren (1984,1988)

• Current: GUPTRI
• Demmel and Edelman (1995)
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Applications of Approximate Smith Form
• Structured stability of polynomial eigenvalue problems

• Matrix polynomial eigenvalue least squares problems

• Occurs frequently in control systems engineering

• Decide if the SNF can be inferred numerically

Our goal is different: Find a nearby matrix with a non-trivial SNF.

• Structured backward stability analysis of SNF computations

• Detect irrecoverable failures of existing algorithms

• SNF of a nearby matrix may be meaningless

• Problem is not always continuous

• We compute a nearby matrix with an interesting SNF

Haraldson



9/19

Introduction Theory SNF via Optimization Examples Conclusion

Reduction to Approximate GCD

Example (Find Nearest 2 × 2 matrix with a non-trivial SNF)

C = diag
(
t2 − 2t + 1, t2 + 2t + 2

)
find a lower McCoy rank C̃.

Approximate GCD of C11 and C22 (Karmarkar and Lakshman ’96)

inf
{
‖C11 − C̃11‖

2
2 + ‖C22 − C̃22‖

2
2

}
s.t. gcd(C̃11, C̃22) , 1.

Assume: C̃11 = (c11t+c10)(h1t+1) and C̃22 = (c21t+c20)(h1t+1).

The distance to a matrix with a non-trivial SNF is

inf
h1∈R

5h1
4 − 4h1

3 + 14h1 + 2
h14 + h12 + 1

= 2 when h1 = 0.

Thus gcd(C̃11, C̃22) = 1 at the infima.
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Reducing Approximate SNF to Approximate GCD

• We can define the SNF in terms of the minors

sj =
δj

δj+1
where δj = GCD{all j × j minors of A }

• Requiring δj , 1 =⇒ A has McCoy rank at most n − j − 1

• Use Sylvester matrices and approximate GCD techniques

• δj’s are approximate GCD’s of several polynomials

• Coefficient structure is multi-linear in the entries of A

Lemma

A has McCoy rank at most n − 2 iff entries of the adjoint matrix
have a non-trivial GCD.

We compute the adjoint matrix quickly and robustly!
Haraldson
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Distance lower bounds via unstructured SVDs
• Embed matrix polynomials into scalar matrices over R

Generalized Sylvester matrices

Let a ∈ R[t] with deg a ≤ d.

φr(a) =

a0 · · · ad
. . .

. . .
a0 · · · ad

 ∈ Rr×(r+d).

• Let f = (f1, . . . , fk) ∈ R[t]k be ordered by decreasing degree

• Take d = (deg(f1), . . . , deg(fk)), r = deg f1 and d = max{degfj}
k
j=2

Syl(f) = Syld(f)︸              ︷︷              ︸
Generalized Sylvester Matrix

=


φr(f1)
φd(f2)
...

φd(fk)

 ∈ R(r+(k−1)d)×(r+d).

Haraldson
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Generalized Sylvester Matrices

Theorem

gcd(f) = 1 ⇐⇒ Syl(f) has full rank.

Problem: What if the degrees of f can increase?

• Degrees of f can be at-most d′ =
(
d′1, . . . , d

′
k

)
• Spurious solutions can occur due to over-padding of zeros

• Define revd′j (fj) = tdj f (t−1)

• Define revd′(f) in the obvious way

Theorem

If Syld′(f) is rank deficient then gcd(f) = 1 iff Syl(revd′(f)) has full
rank.

Haraldson
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Approximate SNF via Sylvester Matrices

Theorem

A nearest rank at most e Sylvester matrix always exists.

Theorem

Suppose that d′ = (γ, γ . . . , γ) and Syld′(Adj(A)) has rank e.

σe(Syld′(Adj(A)))
γn3(d + 1)3/2‖A‖n∞nn/2 ≤ ‖A − Â‖F, where SNF(Â) is non-trivial.

• σe(Syld′(Adj(A))) is the distance to a nearest singular matrix

Example (Same A as the First Example)

A lower bound on the distance to non-triviality is 4.3556e − 4.

Haraldson
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Nearest Matrix Polynomial with an Interesting SNF
Constrained Optimization Approach

min ‖A − Â︸ ︷︷ ︸
∆A

‖2F such that


Adj(Â) = F h,
F ∈ R[t]n×n,

h = h0 + h1t + h2t2,

h2
2 + h2

1 − 1 = 0.

• Assume the adjoint has a finite approximate GCD

• Otherwise the reversal has a non-trivial GCD

• Generically, the approximate GCD has degree 1 or 2

• h2
2 + h2

1 − 1 = 0 =⇒ h has degree at least 1

• Solve with Lagrange Multipliers and Levenberg-Marquardt

Haraldson
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Levenberg-Marquardt Iteration
Theorem

The Levenberg-Marquardt iteration converges quadratically to the
minimum value with a suitable initial guess.

Corollary

Under small perturbations:

• Well-posed approximate SNF instances remain well-posed.

• Ill-posed instances cannot be regularized to be well-posed.

• Theory applies by induction to arbitrary McCoy rank

• Applies to infinite eigenvalues: consider tdA(t−1)

• This is why existing algorithms fail and cannot be saved

Haraldson
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Algorithm and Implementation in Maple 2017
• Compute derivatives quickly

• Partial two variable ansatz and evaluation

• Adj(A + ∆A) has exponentially many coefficients

• Compute derivatives of Adj(·) quickly

• Details in an upcoming paper!

• LM iteration cost is polynomial O(n9d3) flops for r = 2

• Grows exponentially in r, the specified McCoy Rank deficiency

Initial Guess
• Compute approximate GCD of the adjoint matrix

• Approximate Lagrange multipliers with linear least squares

Haraldson
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Lower McCoy Rank Approximations
• Assume that A ∈ R[t]nd×nd has degree 1

McCoy Rank At-Most n − r Approximation

min ‖∆A‖2F such that


((A + ∆A)(ω)) K = 0,
ω ∈ C,K ∈ Cnd×r,

K∗K = Ir.

• We use LM; gradient methods are acceptable

• Per-iteration cost is O(n6d6) (does not depend on r)

Initial Guess: Tri-linear alternating projections.
• Take ωinit as a local extrema of | det(A)|2

• Take Kinit from the r smallest singular vectors of A(ωinit)

• Approximate Lagrange multipliers with linear least squares
Haraldson
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Summary of Examples (Same A as First Example)

n − r Struct # Lower # GCD ‖∆Aopt‖F ωopt degSε
0 Support 191 N/A 2.11383 -.36276 5
0 Entry 189 N/A 2.11135 -.36580 5
0 Degree 179 N/A 2.07278 -.37822 6
1 Support 91 9 1.06963 -.27999 6
1 Entry 89 9 1.06914 -.28044 6
1 Degree 61 11 0.96031 -.22957 7

Compare with the Sylvester Matrix Lower Bounds...

Support Entry Degree
SVD Bound 4.3556e-4 4.080713e-4 1.999026e-4

• Adjoint method is robust; Requires fewer iterations

• Optimization is local; Reasonable initial guesses are needed

• The coefficient displacement structure is very important
Haraldson
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Related and Future Work

What I have done...

• Numerically Robust and Fast Matrix Polynomial Adj(·)

• Backwards/Mixed Stability of Adj(·) Computations

• Numerically Robust and Fast Derivative Computation of Adj(·)

What I am working on...

• Implementation of a fast approximate SNF algorithm

• Sparse Approximate Factorizations over

R[t][∂;′ ] and C[x1, x2, . . . , xk].

• Finishing my thesis and looking for new opportunities!

Haraldson



20/19

Introduction Theory SNF via Optimization Examples Conclusion

Rank 0 McCoy Rank Approximation

A =

t
3 + 3t + 1 1 t + 1

0 t2 + 2t + 2 0
t + 1 t + 1 t3 + 5t + 1


• A has trivial SNF

• Take Ainit = A

• ωinit ≈ 0.4120084
• Consider perturbations that do not change the support

191 iterations =⇒ 12 digits of accuracy, ωopt ≈ −0.362762767179.99427t3 + 2.9565t + 1.12 0 1.2043t + .43687
0 .83895t2 + 2.4440t + .77617 0

1.2043t + .43687 1.2043t + .43687 .96373t3 + 4.7244t + 1.7598

︸                                                                                           ︷︷                                                                                           ︸
Aopt

Ŝ ≈

t − ωopt

t − ωopt

(t − ωopt)Sε

 and ‖∆Aopt‖F ≈ 2.11383

Sε ≈ 0.80388t5+1.46695t4+5.16105t3+14.58267t2+5.29517t+28.94238

Haraldson
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Rank 0 McCoy Rank Approximation : Entry Degree

A =

t
3 + 3t + 1 1 t + 1

0 t2 + 2t + 2 0
t + 1 t + 1 t3 + 5t + 1


• A has trivial SNF

• Take Ainit = A

• ωinit ≈ 0.4120084
• Consider perturbations that do not change the entry degree

189 iterations =⇒ 12 digits of accuracy, ωopt ≈ −.365806171787
.99379t3 + .016971t2 + 2.9536t + 1.1268 0 1.2046t + .44065

0 .83708t2 + 2.4454t + .78252 0
1.2046t + .44065 1.2046t + .44065 .96276t3 + .10180t2 + 4.7217t + 1.7607

︸                                                                                                ︷︷                                                                                                ︸
Aopt

Ŝ ≈

t − ωopt

t − ωopt

(t − ωopt)Sε

 and ‖∆Aopt‖F ≈ 2.1113588

Sε ≈ 0.80090t5+1.55911t4+5.31324t3+14.72015t2+5.97834t+28.61277

Haraldson



22/19

Introduction Theory SNF via Optimization Examples Conclusion

Rank 0 McCoy Rank Approximation : Matrix Degree

A =

t
3 + 3t + 1 1 t + 1

0 t2 + 2t + 2 0
t + 1 t + 1 t3 + 5t + 1


• A has trivial SNF

• Take Ainit = A

• ωinit ≈ 0.4120084
• Consider perturbations that can change all degrees

179 iterations =⇒ 12 digits of accuracy, ωopt ≈ −0.378229408431
 .99124t3 + .023155t2 + 2.9388t + 1.1619 .046387t3 − .12264t2 + .32426t + .14270 .028842t3 − .076256t2 + 1.2016t + .46696

0 .064321t3 + .82994t2 + 2.4496t + .81127 0
.028842t3 − .076256t2 + 1.2016t + .46696 .028842t3 − .076256t2 + 1.2016t + .46696 .95615t3 + .11593t2 + 4.6935t + 1.8104

︸                                                                                             ︷︷                                                                                             ︸
Aopt

Ŝ ≈

t − ωopt

t − ωopt

(t − ωopt)Sε

 and ‖∆Aopt‖F ≈ 2.07278948063

Sε ≈ 0.06090t6 + 0.72589t5 + 2.06256t4 + 4.81853t3 + 15.54934t2 + 5.84844t + 28.26751

Haraldson
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Rank 1 McCoy Rank Approximation
Using the Adjoint/Approximate GCD Formulation

A =

t
3 + 3t + 1 1 t + 1

0 t2 + 2t + 2 0
t + 1 t + 1 t3 + 5t + 1


• A has trivial SNF

• Take Ainit = A

• hinit = t (ωinit = 0)
• Consider perturbations that do not change the support

9 iterations =⇒ 15 digits of accuracy, ωopt ≈ −.279991540884361.0028t3 + 3.0358t + .87202 1 1.1869t + .33233
0 t2 + 2t + 2 0

1.1869t + .33233 t + 1 .99142t3 + 4.8905t + 1.3911

︸                                                                                              ︷︷                                                                                              ︸
Aopt

Ŝ ≈

1 t − ωopt

(t − ωopt)Sε

 and ‖∆Aopt‖F ≈ 1.06963271820

Sε ≈ 0.99420t6 + 1.43166t5 + 9.02277t4 + 12.92270t3 + 25.84113t2 + 23.60992t + 28.12892

Haraldson
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Rank 1 McCoy Rank Approximation
Using the Adjoint/Approximate GCD Formulation

A =

t
3 + 3t + 1 1 t + 1

0 t2 + 2t + 2 0
t + 1 t + 1 t3 + 5t + 1


• A has trivial SNF

• Take Ainit = A

• hinit = t (ωinit = 0)
• Consider perturbations that do not change the entry degree

9 iterations =⇒ 15 digits of accuracy, ωopt ≈ −0.280440198593668
1.0028t3 − .00990t2 + 3.0353t + .87412 1 1.1871t + .33291

0 t2 + 2t + 2 0
1.1871t + .33291 t + 1 .99138t3 + .030743t2 + 4.8904t + 1.3909

︸                                                                                       ︷︷                                                                                       ︸
Aopt

Ŝ ≈

1 t − ωopt

(t − ωopt)Sε

 and ‖∆Aopt‖F ≈ 1.06914559551

Sε ≈ 0.99413t6 + 1.45168t5 + 9.050662t4 + 12.98332t3 + 25.8918t2 + 23.67078t + 28.10003

Haraldson
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Rank 1 McCoy Rank Approximation
Using the Adjoint/Approximate GCD Formulation

A =

t
3 + 3t + 1 1 t + 1

0 t2 + 2t + 2 0
t + 1 t + 1 t3 + 5t + 1


• A has trivial SNF

• Take Ainit = A

• hinit = t (ωinit = 0)

• Consider perturbations that can change all degrees

11 iterations =⇒ 15 digits of accuracy, ωopt ≈ −0.22957727217562
 1.0004t3 − .00158t2 + 3.0069t + .96993 −.00124t3 + .00542t2 − .023616t + 1.1029 .0066t3 − .028771t2 + 1.1253t + .45412
−.00404t3 + .017626t2 − .076777t + .33443 .00149t3 + .99351t2 + 2.0283t + 1.8768 −.00293t3 + .012798t2 − .055748t + .24283
.00647t3 − .02819t2 + 1.1228t + .46498 −.00094t3 + .00409t2 + .98215t + 1.0777 .99645t3 + .015443t2 + 4.9327t + 1.2930

︸                                                                                        ︷︷                                                                                        ︸
Aopt

Ŝ ≈

1 t − ωopt

(t − ωopt)Sε

 and ‖∆Aopt‖F ≈ 0.960310462257

Sε ≈ 0.0014t7 + 0.9897t6 + 1.59563t5 + 8.9792t4 + 14.2552t3 + 26.07418t2 + 26.2280t + 28.7424

Haraldson
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Generalized Sylvester Matrices
Example (GCD at Infinity)

f = (2t + 1, 3t, 4), d′ = (2, 2, 2) and revd′(f) = (1t2 + 2t, 3t, 4t2).

Is gcd(f) non-trivial with degree sequence d′?

Syld′(f) =



1 2 0 0
0 1 2 0
0 3 0 0
0 0 3 0
4 0 0 0
0 4 0 0


and Syl(revd′(f)) =



0 2 1 0
0 0 2 1
0 3 0 0
0 0 3 0
0 0 4 0
0 0 0 4


.

• Approximate gcd of f with degrees d′ is (εt + 1)
• This is a GCD at infinity, of distance zero

• Obviously gcd(f) = 1

Haraldson
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Generalized Sylvester Matrices
Example (No GCD at Infinity)

f = (2t + 1, 3t, 4), d′ = (2, 1, 2)︸  ︷︷  ︸
No change

and revd′(f) = (1t2 + 2t, 3, 4t2).

Is gcd(f) non-trivial with degree sequence d′?

Syld′(f) =



1 2 0 0
0 1 2 0
0 3 0 0
0 0 3 0
4 0 0 0
0 4 0 0


and Syl(revd′(f)) =



0 2 1 0
0 0 2 1
3 0 0 0
0 3 0 0
0 0 4 0
0 0 0 4


.

• Syld′(f) is over-padded with a column of zeros

• No GCD at infinity since Syl(revd′(f)) has full rank

• Both Sylvester matrices used to decide non-triviality

Haraldson
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Lagrange Multipliers
Define the Lagrangian

L = ‖∆A‖2F + λT
(
Adj(A + ∆A) − f ∗h

h2
2 + h2

1 − 1

)
and x =

vec(∆A)
vec(f ∗)
vec(h)

 .
• The Gradient of L is ∇L
• The Jacobian of the constraints is J
• The Hessian of L (w.r.t. to x) is H = ∇2L (Hxx = ∇2

xxL)

J = ∇

(
Adj(A + ∆A) − f ∗h

h2
2 + h2

1 − 1

)
and H =

(
Hxx JT

J

)

Fact (First Order Necessary Condition)

It is necessary that ∇L = 0 at a local minimizer.

Haraldson
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Newton’s Method and Variants
Let L = L(xk, λk) and H = H(xk, λk).

Newton’s Method to Solve ∇L = 0

Compute
(
xk + ∆x
λk + ∆λ

)
where H

(
∆x
∆λ

)
= −∇L.

• If H is rank deficient then the iteration is ill-defined

A Quasi Newton Method: Levenberg-Marquardt

(
HTH + µkI

) (∆xk

∆λk

)
= −HT∇L, for µk > 0.

• LM step is always well defined since HTH + µkI has full rank

• HTH + µkI is positive definite =⇒ converges globally

Haraldson
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Second-Order Optimality Conditions
Let ∇L = ∇L(x?, λ?), H = H(x?, λ?) and J = J(x?, λ?).

Fact (Second Order Sufficiency Condition (SOSC))

If ∇L = 0 and ker(J)THxx ker(J) � 0

then (x?, λ?) is a local minimizer.

Theorem (Second Order Sufficiency Holds)

If ‖A − Ã‖ is sufficiently small, then under mild normalization
assumptions we have that second-order sufficiency holds.

• Solutions will be isolated

• κ2

((
Hxx

J

))
acts as a condition number of the problem

• SOSC =⇒ quasi-Newton methods are reliable

Haraldson
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