Introduction

Theory

SNF via Optimization

Example

Conclusion

### Computing Nearby Non-Trivial Smith Forms

### **Joseph Haraldson**

with

Mark Giesbrecht and George Labahn

David R. Cheriton School of Computer Science University of Waterloo

July 18, 2018

Introduction

Theory

SNF via Optimization

Examples

Conclusion

### The Smith Normal Form

### Smith Normal Form (SNF)

Any  $\mathcal{A} \in \mathbb{R}[t]^{n \times n}$  is unimodularily equivalent to

 $S = \text{diag}(s_1, s_2, \dots, s_n)$  where  $s_j | s_{j+1}$  and  $s_j \in \mathbb{R}[t]$ .

That is, there exists  $\mathcal{U}, \mathcal{V} \in \mathbb{R}[t]^{n \times n}$  such that

 $\mathcal{U}\mathcal{A}\mathcal{V} = S$  and  $\det(\mathcal{U}), \det(\mathcal{V}) \in \mathbb{R} \setminus \{0\}.$ 

- The  $\{s_j\}_{i=1}^n$  are the invariant factors
- Computing S is well understood in exact-arithmetic
- Analyze the SNF as a symbolic-numeric optimization problem

Theory

SNF via Optimization

Examples

Conclusion

### **Smith Normal Forms**

### Example (Boring SNF over $\mathbb{R}[t]^{3\times 3}$ )

$$\mathcal{A} = \begin{pmatrix} t^3 + 3t + 1 & 1 & t + 1 \\ 0 & t^2 + 2t + 2 & 0 \\ t + 1 & t + 1 & t^3 + 5t + 1 \end{pmatrix} \text{ and } \text{SNF}(\mathcal{A}) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \text{det}(\mathcal{A}) \end{pmatrix}$$

 $\det(\mathcal{A}) = t^8 + 2t^7 + 10t^6 + 18t^5 + 34t^4 + 38t^3 + 40t^2 + 12t.$ 

#### Example (Interesting SNF over $\mathbb{R}[t]^{3\times 3}$ )

$$\mathcal{B} = \begin{pmatrix} t+1 & t+1 & t-1 \\ 0 & t+1 & t^3 \\ 0 & 0 & t^2 - 1 \end{pmatrix} \text{ and } \text{SNF}(\mathcal{B}) = \begin{pmatrix} 1 & t+1 \\ t+1 & (t+1)(t^2 - 1) \end{pmatrix}$$

Haraldson

# SNF Computation in a Floating Point Environment

When does  $\mathcal{A}$  have a non-trivial Smith Normal Form?

- Small perturbations to  $\mathcal R$  generically produce a trivial SNF
- How far is  $\mathcal{A}$  from a matrix polynomial  $\widehat{\mathcal{A}}$  with non-trivial SNF?
- Is there a radius of triviality?
  - I.e., if  $\mathcal{A}$  is perturbed by a small amount is the SNF still trivial?

### When is Computing the SNF Well-Posed?

Is there a nearest matrix polynomial  $\widehat{\mathcal{A}}$  with an interesting SNF?

- Is  $\widehat{\mathcal{A}}$  locally unique?
- How do we compute  $\widehat{\mathcal{A}}$ ?
- How do perturbations to  $\mathcal{A}$  affect  $\widehat{\mathcal{A}}$ ?

## Nearby SNF via Optimization

The McCoy Rank - Number of 1's in the SNF

Formally: McCoy rank of  $\mathcal{R} \in \mathbb{R}[t]^{n \times n}$  is  $\min_{\omega \in \mathbb{C}} \operatorname{rank}(\mathcal{R}(\omega))$ .

Approximations Require a Norm

$$\|\mathcal{A}_{ij}\|_2 = \sqrt{\sum_{0 \le k \le \deg \mathcal{A}_{ij}} \mathcal{A}_{ijk}^2} \text{ and } \|\mathcal{A}\| = \|\mathcal{A}\|_F = \sqrt{\sum_{1 \le i, j \le n} \|\mathcal{A}_{ij}\|_2^2}.$$

#### Main Problem: Nearby Interesting SNF

Given  $\mathcal{A} \in \mathbb{R}[t]^{n \times n}$  of McCoy rank at most n - 1, find  $\widehat{\mathcal{A}} \in \mathbb{R}[t]^{n \times n}$  that (locally) solves the optimization problem

$$\min \|\mathcal{A} - \widehat{\mathcal{A}}\| \text{ such that } \begin{cases} \text{SNF}(\widehat{\mathcal{A}}) = \text{diag}(\widehat{s}_1, \widehat{s}_2, \dots, \widehat{s}_{n-1}, \widehat{s}_n), \\ \text{deg}(\underline{s}_n) \ge \text{deg}(\widehat{s}_{n-1}) \ge 1. \end{cases}$$

Introduction

Theory

SNF via Optimization

Example

Conclusion

### **Our Contributions**

- 1. Tight lower bounds on the radius of triviality
- 2. Polynomial-time decision procedure for ill-posedness
- 3. Stability analysis on SNF via Optimization
- 4. Iterative algorithms with local quadratic convergence
  - Nearest matrix with reduced McCoy rank
  - Nearest matrix with McCoy rank at most n r
  - Reasonable initial guess heuristics for both algorithms
  - Polynomial per-iteration cost
- 5. Implementation in Maple

# Previous Work on Floating Point SNF Computations

### Reduction to Degree One

Every matrix polynomial  $\mathcal{A} \in \mathbb{R}[t]^{n \times n}$  can be *linearized* to

 $\mathcal{P} = \mathcal{P}_0 + t\mathcal{P}_1$  for some  $\mathcal{P}_0, \mathcal{P}_1 \in \mathbb{R}^{nd \times nd}$ .

- Extract the SNF from Kronecker's Canonical Form
- $SNF(\mathcal{P}) = diag(1, 1, \dots, 1, SNF(\mathcal{A}))$

Backward Stable: Finds the SNF of a nearby matrix.

- Full Rank Case: QZ Algorithm
  - Wilkinson (1979)
- Singular Case: Fast Staircase/Deflation Algorithms
  - Beelen and Van Dooren (1984,1988)
- Current: GUPTRI
  - Demmel and Edelman (1995)

# Applications of Approximate Smith Form

- Structured stability of polynomial eigenvalue problems
- Matrix polynomial eigenvalue least squares problems
  - Occurs frequently in control systems engineering
  - Decide if the SNF can be inferred numerically

Our goal is different: Find a nearby matrix with a non-trivial SNF.

- Structured backward stability analysis of SNF computations
- Detect irrecoverable failures of existing algorithms
  - SNF of a nearby matrix may be meaningless
  - Problem is **not always continuous**
  - We compute a nearby matrix with an interesting SNF

Introduction

Theory

SNF via Optimization

Examples

Conclusion

Reduction to Approximate GCD

Example (Find Nearest  $2 \times 2$  matrix with a non-trivial SNF)

 $C = \text{diag}(t^2 - 2t + 1, t^2 + 2t + 2)$  find a lower McCoy rank  $\widetilde{C}$ .

Approximate GCD of  $C_{11}$  and  $C_{22}$  (Karmarkar and Lakshman '96)

$$\inf \left\{ \|C_{11} - \widetilde{C}_{11}\|_2^2 + \|C_{22} - \widetilde{C}_{22}\|_2^2 \right\} \quad \text{s.t.} \quad \gcd(\widetilde{C}_{11}, \widetilde{C}_{22}) \neq 1.$$

Assume:  $\widetilde{C}_{11} = (c_{11}t + c_{10})(h_1t + 1)$  and  $\widetilde{C}_{22} = (c_{21}t + c_{20})(h_1t + 1)$ .

The distance to a matrix with a non-trivial SNF is

$$\inf_{h_1 \in \mathbb{R}} \frac{5h_1^4 - 4h_1^3 + 14h_1 + 2}{h_1^4 + h_1^2 + 1} = 2 \text{ when } h_1 = 0.$$

Thus  $gcd(\widetilde{C}_{11}, \widetilde{C}_{22}) = 1$  at the infima.

# Reducing Approximate SNF to Approximate GCD

• We can define the SNF in terms of the minors

$$s_j = \frac{\delta_j}{\delta_{j+1}}$$
 where  $\delta_j = \text{GCD}\{\text{all } j \times j \text{ minors of } \mathcal{A} \}$ 

- Requiring  $\delta_j \neq 1 \implies \mathcal{R}$  has McCoy rank at most n j 1
- Use Sylvester matrices and approximate GCD techniques
  - $\delta_j$ 's are approximate GCD's of several polynomials
  - Coefficient structure is multi-linear in the entries of  $\ensuremath{\mathcal{R}}$

#### Lemma

 $\mathcal{A}$  has McCoy rank at most n - 2 iff entries of the adjoint matrix have a non-trivial GCD.

#### We compute the adjoint matrix quickly and robustly!

Haraldson

# Distance lower bounds via unstructured SVDs

- Embed matrix polynomials into scalar matrices over  $\ensuremath{\mathbb{R}}$ 

### Generalized Sylvester matrices

Let  $a \in \mathbb{R}[t]$  with deg  $a \leq d$ .

$$\phi_r(a) = \begin{pmatrix} a_0 & \cdots & a_d & \\ & \ddots & & \ddots & \\ & & a_0 & \cdots & a_d \end{pmatrix} \in \mathbb{R}^{r \times (r+d)}.$$

- Let  $\mathbf{f} = (f_1, \dots, f_k) \in \mathbb{R}[t]^k$  be ordered by decreasing degree
- Take  $\mathbf{d} = (\deg(f_1), \dots, \deg(f_k)), r = \deg f_1 \text{ and } d = \max\{\deg_{f_i}\}_{i=2}^k$

$$\underbrace{\mathsf{Syl}(\mathbf{f}) = \mathsf{Syl}_{\mathbf{d}}(\mathbf{f})}_{\text{Generalized Sylvester Matrix}} = \begin{pmatrix} \phi_r(f_1) \\ \phi_d(f_2) \\ \vdots \\ \phi_d(f_k) \end{pmatrix} \in \mathbb{R}^{(r+(k-1)d) \times (r+d)}$$

# **Generalized Sylvester Matrices**

Theorem

 $gcd(\mathbf{f}) = 1 \iff Syl(\mathbf{f})$  has full rank.

Problem: What if the degrees of f can increase?

- Degrees of **f** can be at-most  $\mathbf{d}' = (d'_1, \dots, d'_k)$
- Spurious solutions can occur due to over-padding of zeros
- Define  $\operatorname{rev}_{d'_j}(f_j) = t^{d_j} f(t^{-1})$
- Define  $\text{rev}_{d'}(f)$  in the obvious way

#### Theorem

If  $Syl_{d'}(f)$  is rank deficient then gcd(f) = 1 iff  $Syl(rev_{d'}(f))$  has full rank.

### Approximate SNF via Sylvester Matrices

#### Theorem

A nearest rank at most *e* Sylvester matrix always exists.

#### Theorem

Suppose that  $\mathbf{d}' = (\gamma, \gamma \dots, \gamma)$  and  $Syl_{\mathbf{d}'}(Adj(\mathcal{A}))$  has rank e.

 $\frac{\sigma_e(\mathsf{Syl}_{\mathbf{d}'}(\mathrm{Adj}(\mathcal{A})))}{\gamma n^3 (d+1)^{3/2} \|\mathcal{A}\|_{\infty}^n n^{n/2}} \leq \|\mathcal{A} - \widehat{\mathcal{A}}\|_F, \text{ where } \mathrm{SNF}(\widehat{\mathcal{A}}) \text{ is non-trivial.}$ 

•  $\sigma_e(Syl_{\mathbf{d}'}(Adj(\mathcal{A})))$  is the distance to a nearest singular matrix

#### Example (Same $\mathcal{R}$ as the First Example)

A lower bound on the distance to non-triviality is 4.3556e - 4.

InterventionTheorySNF via OptimizationExamplesConclusion**Constrained Optimization Approach**
$$\min \| \underbrace{\mathcal{A}} - \widehat{\mathcal{A}} \|_{F}^{2}$$
such that $\left\{ \begin{aligned} \operatorname{Adj}(\widehat{\mathcal{A}}) &= \mathcal{F}h, \\ \mathcal{F} \in \mathbb{R}[t]^{n \times n}, \\ h &= h_{0} + h_{1}t + h_{2}t^{2}, \\ h_{2}^{2} + h_{1}^{2} - 1 &= 0. \end{aligned} \right.$ 

- Assume the adjoint has a finite approximate GCD
  - · Otherwise the reversal has a non-trivial GCD
- Generically, the approximate GCD has degree 1 or 2
- $h_2^2 + h_1^2 1 = 0 \implies h$  has degree at least 1
- Solve with Lagrange Multipliers and Levenberg-Marquardt
   Haraldson

### Levenberg-Marquardt Iteration

#### Theorem

The Levenberg-Marquardt iteration converges quadratically to the minimum value with a suitable initial guess.

### Corollary

Under small perturbations:

- Well-posed approximate SNF instances remain well-posed.
- Ill-posed instances cannot be regularized to be well-posed.
- Theory applies by induction to arbitrary McCoy rank
- Applies to infinite eigenvalues: consider  $t^d \mathcal{A}(t^{-1})$
- This is why existing algorithms fail and cannot be saved

## Algorithm and Implementation in Maple 2017

- Compute derivatives quickly
  - Partial two variable ansatz and evaluation
- $Adj(\mathcal{A} + \Delta \mathcal{A})$  has exponentially many coefficients
- Compute derivatives of  $Adj(\cdot)$  quickly
  - Details in an upcoming paper!
- LM iteration cost is polynomial  $O(n^9d^3)$  flops for r = 2
  - Grows exponentially in r, the specified McCoy Rank deficiency

**Initial Guess** 

- Compute approximate GCD of the adjoint matrix
- Approximate Lagrange multipliers with linear least squares

# Lower McCoy Rank Approximations

• Assume that  $\mathcal{A} \in \mathbb{R}[t]^{nd \times nd}$  has degree 1

### McCoy Rank At-Most n - r Approximation

|                                                |           | $\int ((\mathcal{A} + \Delta \mathcal{A})(\omega)) K = 0,$    |
|------------------------------------------------|-----------|---------------------------------------------------------------|
| $\min \left\  \Delta \mathcal{A} \right\ _F^2$ | such that | $\{\omega \in \mathbb{C}, K \in \mathbb{C}^{nd \times r}, \}$ |
|                                                |           | $\Big(K^*K=I_r.$                                              |

- We use LM; gradient methods are acceptable
- Per-iteration cost is  $O(n^6d^6)$  (does not depend on r)

Initial Guess: Tri-linear alternating projections.

- Take  $\omega_{init}$  as a local extrema of  $|\det(\mathcal{A})|^2$
- Take  $K_{init}$  from the *r* smallest singular vectors of  $\mathcal{A}(\omega_{init})$
- Approximate Lagrange multipliers with linear least squares

### Summary of Examples (Same $\mathcal{A}$ as First Example)

| n-r | Struct  | # Lower | # GCD | $\ \Delta \mathcal{A}_{opt}\ _F$ | $\omega_{opt}$ | $\deg \mathcal{S}_{arepsilon}$ |
|-----|---------|---------|-------|----------------------------------|----------------|--------------------------------|
| 0   | Support | 191     | N/A   | 2.11383                          | 36276          | 5                              |
| 0   | Entry   | 189     | N/A   | 2.11 <mark>135</mark>            | 36580          | 5                              |
| 0   | Degree  | 179     | N/A   | 2. <mark>07278</mark>            | 37822          | 6                              |
| 1   | Support | 91      | 9     | 1.06963                          | 27999          | 6                              |
| 1   | Entry   | 89      | 9     | 1.069 <mark>14</mark>            | 28044          | 6                              |
| 1   | Degree  | 61      | 11    | 0.96031                          | 22957          | 7                              |

Compare with the Sylvester Matrix Lower Bounds...

|           | Support   | Entry       | Degree      |
|-----------|-----------|-------------|-------------|
| SVD Bound | 4.3556e-4 | 4.080713e-4 | 1.999026e-4 |

- Adjoint method is robust; Requires fewer iterations
- Optimization is local; Reasonable initial guesses are needed
- The coefficient displacement structure is very important

### **Related and Future Work**

#### What I have done ...

- Numerically Robust and Fast Matrix Polynomial  $\mathrm{Adj}(\cdot)$
- Backwards/Mixed Stability of  $Adj(\cdot)$  Computations
- Numerically Robust and Fast Derivative Computation of  $\mathrm{Adj}(\cdot)$

#### What I am working on...

- Implementation of a fast approximate SNF algorithm
- Sparse Approximate Factorizations over

```
\mathbb{R}[t][\partial;'] and \mathbb{C}[x_1, x_2, \ldots, x_k].
```

• Finishing my thesis and looking for new opportunities!

| ntroduction                                                                                                                      | Theory                                                                                                                                   | SNF via Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Examples                                                                                                                                                                                            | Conclusion                                     |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                                                                  | Rank 0 Mc                                                                                                                                | Coy Rank Appi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | roximation                                                                                                                                                                                          |                                                |
| $\mathcal{A} = \begin{pmatrix} t^3 + \\ t \\ t \end{pmatrix}$ • Con 191 itera $\begin{pmatrix} .99427t^3 \\ 1.204 \end{pmatrix}$ | $3t + 1 	 1  0 	 t2 + 2t +  + 1 	 t + 1  nsider perturbation ations \implies 12 \text{ dig} + 2.9565t + 1.12 \\ 0 	 .83 \\ 43t + .43687$ | $t + 1 \\ 2 & 0 \\ t^3 + 5t + 1 \end{pmatrix}$<br>ons that do not changed by the formula of the f | • $\mathcal{A}$ has trivial 3<br>• Take $\mathcal{A}_{init} = 3$<br>• $\omega_{init} \approx 0.4120$<br>nge the support<br>$p_t \approx -0.36276276$<br>1.2043t + .43<br>0<br>$.96373t^3 + 4.7244t$ | SNF<br>A<br>0084<br>57179<br>3687<br>+ 1.7598) |
|                                                                                                                                  |                                                                                                                                          | $\mathcal{A}_{opt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |                                                |
| $\widehat{\mathcal{S}} \approx \begin{pmatrix} t \\ & \end{pmatrix}$                                                             | $-\omega_{opt}$<br>$t-\omega_{opt}$                                                                                                      | $(t-\omega_{opt})S_{arepsilon} ight)$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\ \Delta \mathcal{A}_{opt}\ _F \approx 2.1$                                                                                                                                                        | 1383                                           |
| $S_{\epsilon} \approx 0.8$                                                                                                       | $0388t^5 + 1.46695t^4$                                                                                                                   | $^{4}+5.16105t^{3}+14.582$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $267t^2 + 5.29517t + 2$                                                                                                                                                                             | 28.94238                                       |

Haraldson

| itroduction                                                                                             | Theory                                                                                                                                      | SNF via Optimization                                                                                                                           | Examples                                                                                                                                                                                                                               | Conclusion                                 |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Rank                                                                                                    | 0 McCoy Ra                                                                                                                                  | nk Approxima                                                                                                                                   | tion : Entry Deg                                                                                                                                                                                                                       | gree                                       |
| $\mathcal{A} = \begin{pmatrix} t^3 + \\ t \\ e \end{pmatrix}$ • Co<br><b>189 iter</b><br>(.99379t^3 + ) | $3t + 1 \qquad 1  0 \qquad t^2 + 2t + 1  + 1 \qquad t + 1  nsider perturbat ations \implies 12 c.016971t2 + 2.9536t + 1.101.2046t + .44065$ | $ t + 1  - 2 0  t^3 + 5t + 1 $ ions that do not challing its of accuracy, a $ t^{268} = 0 \\ t^{268} + 2.4454t + .75 \\ t^{-24454t} + .44065 $ | • $\mathcal{A}$ has trivial S<br>• Take $\mathcal{A}_{init} = \mathcal{A}_{init}$<br>• $\omega_{init} \approx 0.41200$<br>ange the entry degr<br>$\omega_{opt} \approx3658061717$<br>1.2046t + .44<br>0<br>$.96276t^3 + .10180t^2 + 4$ | NF<br>84<br>787<br>4065<br>.7217t + 1.7607 |
|                                                                                                         |                                                                                                                                             | $\mathcal{A}_{opt}$                                                                                                                            |                                                                                                                                                                                                                                        |                                            |
| $\widehat{\mathcal{S}} \approx \begin{pmatrix} t & -t \\ t & t \end{pmatrix}$                           | $-\omega_{opt}$<br>$t-\omega_{opt}$                                                                                                         | $(t - \omega_{opt})S_{\varepsilon}$ and                                                                                                        | $\ \Delta \mathcal{A}_{opt}\ _F \approx 2.111$                                                                                                                                                                                         | 3588                                       |
| $S_{\varepsilon} \approx 0.8$                                                                           | $0090t^5 + 1.55911$                                                                                                                         | $t^4$ +5.31324 $t^3$ +14.72                                                                                                                    | $2015t^2 + 5.97834t + 28$                                                                                                                                                                                                              | 8.61277                                    |

Haraldson

| Rank 0 McCoy Rank Approximation : Matrix Degree                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{A} = \begin{pmatrix} t^3 + 3t + 1 & 1 & t + 1 \\ 0 & t^2 + 2t + 2 & 0 \\ t + 1 & t + 1 & t^3 + 5t + 1 \end{pmatrix} $ • $\mathcal{A}$ has trivial SNF<br>• Take $\mathcal{A}_{init} = \mathcal{A}$<br>• $\omega_{init} \approx 0.4120084$                                                                                                        |
| 179 iterations $\implies$ 12 digits of accuracy, $\omega_{opt} \approx -0.378229408431$                                                                                                                                                                                                                                                                    |
| $\underbrace{\begin{pmatrix} .99124t^3 + .023155t^2 + 2.9388t + 1.1619 & .046387t^312264t^2 + .32426t + .14270 & .028842t^3076256t^2 + 1.2016t + .46696 \\ 0 & .064321t^3 + .82994t^2 + 2.4496t + .81127 & 0 \\ .028842t^3076256t^2 + 1.2016t + .46696 & .028842t^3076256t^2 + 1.2016t + .46696 & .95615t^3 + .11593t^2 + 4.6935t + 1.8104 \end{pmatrix}}$ |
| $\mathcal{A}_{opt}$                                                                                                                                                                                                                                                                                                                                        |
| $\widehat{S} \approx \begin{pmatrix} t - \omega_{opt} \\ t - \omega_{opt} \\ (t - \omega_{opt})S_{\varepsilon} \end{pmatrix} \text{ and } \ \Delta \mathcal{A}_{opt}\ _{F} \approx 2.07278948063$                                                                                                                                                          |
| $S_{\mathcal{E}} \approx 0.06090t^{\circ} + 0.72589t^{\circ} + 2.06256t^{\circ} + 4.81853t^{\circ} + 15.54934t^{\circ} + 5.84844t + 28.26751$ $22/19$ Haraldson                                                                                                                                                                                            |

SNF via Optimization

Examples

Conclusion

Theory

Introduction

# Rank 1 McCoy Rank Approximation

Using the Adjoint/Approximate GCD Formulation

$$\mathcal{A} = \begin{pmatrix} t^{3} + 3t + 1 & 1 & t + 1 \\ 0 & t^{2} + 2t + 2 & 0 \\ t + 1 & t + 1 & t^{3} + 5t + 1 \end{pmatrix}$$
•  $\mathcal{A}$  has trivial SNF  
• Take  $\mathcal{A}_{init} = \mathcal{A}$   
•  $h_{init} = t \ (\omega_{init} = 0)$   
• Consider perturbations that do not change the support  
9 iterations  $\implies 15$  digits of accuracy,  $\omega_{opt} \approx -.27999154088436$   
 $\begin{pmatrix} 1.0028t^{3} + 3.0358t + .87202 & 1 & 1.1869t + .33233 \\ 0 & t^{2} + 2t + 2 & 0 \\ 1.1869t + .33233 & t + 1 & .99142t^{3} + 4.8905t + 1.3911 \end{pmatrix}$   
 $\mathcal{A}_{opt}$   
 $\widehat{S} \approx \begin{pmatrix} 1 & t - \omega_{opt} \\ t - \omega_{opt} \end{pmatrix}$  and  $\|\Delta \mathcal{A}_{opt}\|_{F} \approx 1.06963271820$   
 $S_{\varepsilon} \approx 0.99420t^{6} + 1.43166t^{5} + 9.02277t^{4} + 12.92270t^{3} + 25.84113t^{2} + 23.60992t + 28.128922$   
Haradoon

. . . . –

# Rank 1 McCoy Rank Approximation

Using the Adjoint/Approximate GCD Formulation

$$\mathcal{A} = \begin{pmatrix} t^{3} + 3t + 1 & 1 & t + 1 \\ 0 & t^{2} + 2t + 2 & 0 \\ t + 1 & t + 1 & t^{3} + 5t + 1 \end{pmatrix}$$
•  $\mathcal{A}$  has trivial SNF  
• Take  $\mathcal{A}_{init} = \mathcal{A}$   
•  $h_{init} = t \ (\omega_{init} = 0)$   
• Consider perturbations that do not change the entry degree  
9 iterations  $\implies 15$  digits of accuracy,  $\omega_{opt} \approx -0.280440198593668$   

$$\underbrace{\begin{pmatrix} 1.0028t^{3} - .00990t^{2} + 3.0353t + .87412 & 1 & 1.1871t + .33291 \\ 0 & t^{2} + 2t + 2 & 0 \\ 1.1871t + .33291 & t + 1 & .99138t^{3} + .030743t^{2} + 4.8904t + 1.3909 \end{pmatrix}}_{\mathcal{A}_{opt}}$$

$$\widehat{S} \approx \begin{pmatrix} 1 & t - \omega_{opt} \\ (t - \omega_{opt})S_{\varepsilon} \end{pmatrix} \text{ and } \|\Delta \mathcal{A}_{opt}\|_{F} \approx 1.06914559551$$

$$S_{\varepsilon} \approx 0.99413t^{6} + 1.45168t^{5} + 9.050662t^{4} + 12.98332t^{3} + 25.8918t^{2} + 23.67078t + 28.10003$$

# Rank 1 McCoy Rank Approximation

Using the Adjoint/Approximate GCD Formulation

$$\mathcal{A} = \begin{pmatrix} t^{3} + 3t + 1 & 1 & t + 1 \\ 0 & t^{2} + 2t + 2 & 0 \\ t + 1 & t + 1 & t^{3} + 5t + 1 \end{pmatrix}$$
•  $\mathcal{A}$  has trivial SNF  
• Take  $\mathcal{A}_{init} = \mathcal{A}$   
•  $h_{init} = t \ (\omega_{init} = 0)$ 

- · Consider perturbations that can change all degrees
- 11 iterations  $\implies$  15 digits of accuracy,  $\omega_{opt} \approx -0.22957727217562$

$$\underbrace{\begin{bmatrix} 1.0004t^{3} - .00158t^{2} + 3.0069t + .96993 & -.00124t^{3} + .00542t^{2} - .023616t + 1.1029 & .0066t^{3} - .028771t^{2} + 1.1253t + .45412 \\ -.00404t^{3} + .017626t^{2} - .076777t + .33443 & .00149t^{3} + .99351t^{2} + 2.0283t + 1.8768 & -.00293t^{3} + .012798t^{2} - .055748t + .24283 \\ .00647t^{3} - .02819t^{2} + 1.1228t + .46498 & -.00094t^{3} + .00409t^{2} + .98215t + 1.0777 & .99645t^{3} + .015443t^{2} + .9327t + 1.2230} \\ 
\widehat{\mathcal{R}}_{opt} \\ 
\widehat{\mathcal{S}} \approx \begin{pmatrix} 1 \\ t - \omega_{opt} \\ (t - \omega_{opt}).S_{\varepsilon} \end{pmatrix} \text{ and } \|\Delta \mathcal{R}_{opt}\|_{F} \approx 0.960310462257$$

 $S_{\varepsilon} \approx 0.0014t^7 + 0.9897t^6 + 1.59563t^5 + 8.9792t^4 + 14.2552t^3 + 26.07418t^2 + 26.2280t + 28.7424t^2 + 26.2880t + 28.7424t^2 + 26.2880t + 28.7424t^2 + 26.2880t + 28.7428t^2 + 28.748t^2 + 28.7$ 

Conclusion

### **Generalized Sylvester Matrices**

### Example (GCD at Infinity)

 $\mathbf{f} = (2t + 1, 3t, 4), \mathbf{d}' = (2, 2, 2) \text{ and } \operatorname{rev}_{\mathbf{d}'}(\mathbf{f}) = (1t^2 + 2t, 3t, 4t^2).$ 

Is gcd(f) non-trivial with degree sequence d'?



- Approximate gcd of **f** with degrees  $\mathbf{d}'$  is  $(\varepsilon t + 1)$
- This is a GCD at infinity, of distance zero
- Obviously  $gcd(\mathbf{f}) = 1$

Conclusion

**Generalized Sylvester Matrices** 

### Example (No GCD at Infinity)

$$\mathbf{f} = (2t + 1, 3t, 4), \mathbf{d}' = (2, 1, 2)$$
 and  $\operatorname{rev}_{\mathbf{d}'}(\mathbf{f}) = (1t^2 + 2t, 3, 4t^2).$ 

No change

Is gcd(f) non-trivial with degree sequence d'?

$$\operatorname{Syl}_{\mathbf{d}'}(\mathbf{f}) = \underbrace{\begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}}_{\operatorname{and}} \operatorname{and} \operatorname{Syl}(\operatorname{rev}_{\mathbf{d}'}(\mathbf{f})) = \underbrace{\begin{pmatrix} 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}}_{\operatorname{and}}.$$

- $\mbox{Syl}_{d'}(f)$  is over-padded with a column of zeros
- No GCD at infinity since  $\mbox{Syl}(\mbox{rev}_{d'}(f))$  has full rank
- Both Sylvester matrices used to decide non-triviality

### Lagrange Multipliers

Define the Lagrangian

$$L = \|\Delta \mathcal{A}\|_F^2 + \lambda^T \begin{pmatrix} \operatorname{Adj}(\mathcal{A} + \Delta \mathcal{A}) - f^*h \\ h_2^2 + h_1^2 - 1 \end{pmatrix} \text{ and } x = \begin{pmatrix} \operatorname{vec}(\Delta \mathcal{A}) \\ \operatorname{vec}(f^*) \\ \operatorname{vec}(h) \end{pmatrix}$$

- The Gradient of L is  $\nabla L$
- The Jacobian of the constraints is J
- The Hessian of *L* (w.r.t. to *x*) is  $H = \nabla^2 L (H_{xx} = \nabla^2_{xx}L)$

$$J = \nabla \begin{pmatrix} \operatorname{Adj}(\mathcal{A} + \Delta \mathcal{A}) - f^*h \\ h_2^2 + h_1^2 - 1 \end{pmatrix} \text{ and } H = \begin{pmatrix} H_{xx} & J^T \\ J & \end{pmatrix}$$

#### Fact (First Order Necessary Condition)

It is **necessary** that  $\nabla L = 0$  at a local minimizer.

# Newton's Method and Variants

Let  $L = L(x^k, \lambda^k)$  and  $H = H(x^k, \lambda^k)$ .

Newton's Method to Solve  $\nabla L = 0$ 

Compute 
$$\begin{pmatrix} x^k + \Delta x \\ \lambda^k + \Delta \lambda \end{pmatrix}$$
 where  $H\begin{pmatrix} \Delta x \\ \Delta \lambda \end{pmatrix} = -\nabla L$ .

• If *H* is rank deficient then the iteration is ill-defined

A Quasi Newton Method: Levenberg-Marquardt

$$(H^T H + \mu_k I) \begin{pmatrix} \Delta x^k \\ \Delta \lambda^k \end{pmatrix} = -H^T \nabla L, \text{ for } \mu_k > 0.$$

- LM step is always well defined since  $H^TH + \mu_k I$  has full rank
- $H^T H + \mu_k I$  is positive definite  $\implies$  converges globally

Haraldson

Second-Order Optimality Conditions Let  $\nabla L = \nabla L(x^*, \lambda^*)$ ,  $H = H(x^*, \lambda^*)$  and  $J = J(x^*, \lambda^*)$ .

Fact (Second Order Sufficiency Condition (SOSC))

If  $\nabla L = 0$  and  $\ker(J)^T H_{xx} \ker(J) > 0$ 

then  $(x^{\star}, \lambda^{\star})$  is a local minimizer.

#### Theorem (Second Order Sufficiency Holds)

If  $||\mathcal{A} - \overline{\mathcal{A}}||$  is sufficiently small, then under mild normalization assumptions we have that second-order sufficiency holds.

- Solutions will be isolated
- $\kappa_2 \begin{pmatrix} H_{xx} \\ J \end{pmatrix}$  acts as a condition number of the problem
- **SOSC**  $\implies$  quasi-Newton methods are reliable