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Introduction

Our Problem: Find the Nearest Singular Matrix Polynomial

Given a matrix A € R[#]"*", find Ac R[z]**" such that A is singular
and ||A — A|| is minimized.

Equivalently, for some “reasonable” norm || - ||, solve the
optimization problem

_ Ab=0
min ||A — A|| subject to
Ab bl = 1,

where |4l = /3i<kdega; A @nd Al = AllF = [ Zi<ijen 14715

e A matrix polynomial A € R[#]"*" is singular if det(A) = 0
e Sometimes we say that A is irregular

e Singular = 3b € R[1]"*"\{0} such that Ab = 0
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Introduction

Previous Algorithms
We would like an algorithm that is ...
e Numerically robust with rapid local convergence w.r.t. || - ||
Existing Algorithms:
e Restricted SVD [De Moor '93, '94]
¢ At best linear convergence
e Structured Total Least Norm (STLN) [Rosen, Park & Glick '96]
e Super linear convergence (not quadratic) [Lemmerling 99]
e Variable Projection [Golub & Pereyra '73, 03]
e Use Gauss-Newton (Pure Newton)
e Converges super-linearly (at least quadratic) if normalized

e Problem size is much larger
¢ Lift and Project methods [Spaenlehauer & Schost ’16]
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Introduction

Our Contributions
Recall we want to solve the optimization problem

IbllF =1

min |[|AA||r subject to
AAb (A+AA)Db =0.

1. Prove that minimal solutions exist
2. Prove that minimal solutions are isolated

e inf||[AA,y — AA},llF > 0 when rankA = n
for two distinct minimal perturbations A,,; and A},

3. Show that the problem is (locally) well-posed

e Optimal value is isolated around minimizers

o Algorithm is provably locally stable

4. Derive and implement a quadratically convergent algorithm
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Applications

o Stability of solutions to linear time invariant systems

¢ [Byers & Nicols ‘93] and [ Byers, He & Mehrmann '98]
o Stability of polynomial eigenvalue problems
o Approximate GC(R)D of Ore polynomials

o [Giesbrecht, H & Kaltofen ’16]
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Theory

Existence of Solutions
Theorem

Let AA € R[#]"*" have the same support as A, that is
deg AA;; < degA;;. The optimization problem

ol =1

min [|AA|| subject to
AAb A+AADbL =0

has an attainable global minimum (AA*, b*).

e Nearest singular matrix polynomial always exists
e i.e. A(AA*,b*) s.t. (A + AA*)b* = 0 and [[AA*|| is minimal

e Minimization of ||[AA|| under other structures has a solution if
there is a finite solutionto (A + AA)b =0

¢ In general bi-linear feasibility over Q is NP-Hard
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Embedding R[¢]**" in R ¢+d)xnu

Embed multiplication as a linear algebra problem over R

e Recall that A is n x n with entries at most degree d
e Defineu=nd+1

Lemma

If A € R[£]"*" is singular then there exists b € ker A such that
degb <nd=p—1.

e Embed A as A € R"urd) Xt gnd p as B € R™H* 1
e Ab=0 & AB=0

e SVD provides a cheap lower bound on the distance to a
singular matrix, hence a singular matrix polynomial
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Embedding Example

The embedding preserves kernel vectors...

2
-1 t+1 -1
A_(t2—2t+l z—l) and kerA_(t—l)

-1 0 0 0 O]1 0 0 O O
0 -1 0 0 0|1 1 0 0 0
1 0 -1 0 0/0 1 1 0 O -1 0 0 0
01 0 -1 0/0O 0 1 1 0 0 -1 0 0
00 1 0 -1/l0 0 0 1 1 0 0 -1 0
00 0 I 0|0 O 0 0 1 0 0 0 -1
00 0 0 1/0 0 0 0 0 0 0 0 0
A=IT—0 0 0 0T 0 0 0 0 kerA=\——FG"0 0
-2 1 0o 0 0 I -1 0 0 O 1 -1 0 0
1 21 0 0]l0 1 -1 0 0 0 1 -1 0
0 1 -2 1 O[O0 O 1 -1 0 0O 0 1 -1
00 1 =2 10 0 0 1 -1 0 0 0 1
00 0 1 =2/0 0 0 0 1
00 0 0 1/0 0 0 0 0

e The embedding does not preserve rank information
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Separation Bounds

Suppose AA and AA* are distinct (local) minimal solutions then

IAA - AA* I S O min(A)
nd + 1 T ond+1°

Corollary

Minimal solutions (AA*, b*) are isolated modulo equivalence
classes of b*.

1AA = AA*|IF 2

e Normalize b over R[t] = locally unique solutions
o Proof uses first-order information
e Similar separation holds under || - ||; and other norms
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Lagrange Multipliers

The Lagrangian is defined as

L= AAIR + 1812 -1+ A7 (vec((ﬂ + Aﬂ)f;))

BB -1

V is the gradient operator

Let x = (vec(AA)T, vec(b)")T

V2 (V2)) is the Hessian operator (w.r.t. to x)

First order necessary (Karush-Kuhn-Tucker (KKT)) conditions

VL(AA*, B*,1%) =0

Idea is to solve VL = 0 by Newton’s method, i.e. compute
k+1 k k
(;k+l) = (;k : iiclk) such that VzL (iﬁ) =-VL
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Lagrange Multipliers

The Jacobian of the constraints is

1 y[vectA +A)B) T (w®B A+AA
- B8 -1 “\ o 287 )
o Y(BvecA+A) =0 & (A+AA)B=0
e J has full rank = minimal solutions (AA*, b*) are isolated
o Multiple kernel vectors — J is rank deficient

Definition

2
The Hessian matrix of L is V2L = (VHL J)

JI o)

V2L has full rank < J has full rank
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Theory

Minimal Kernel Embedding

Definition
A kernel vector 8 corresponding to b € ker(A + AA) is minimally
degree embedded in A + AA if

1. ker(A + AA) = span(B) and b is primitive

2. b comes from a column echelon reduced basis.

Theorem
J has full rank at (AA*, b*) if b* is minimally degree embedded.

e Minimally embed by deleting rows/columns of A/B
e Compute via orthogonal eliminations

Corollary

Newton’s method converges quadratically to (AA*, b*) with a
suitable initial guess.
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Minimal Kernel Example

£-1  t+1 -1
A_(t2—2t+1 /—I) and kerA_(t—l)

The minimal embedding gives us

-1 1 0

0 1 1

110 1 _1]
Amin =|—F+—— and B =] -1

1 -1 0O |

2|1 -1

1 0 1
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Implementation Information

Our Implementation:

e Initialize AA and b via SVD (or other method)

e Minimally degree embed system over AA and 8

e Compute Lagrange multipliers via linear least squares
In general:

e Use any method to approximate VL = 0

¢ Minimally degree embed and switch to Newton’s method later
Cost Per Iteration:

o Maximum cost per iteration is O(size®) = O(n'2d®)

o Exploiting structure and sparsity reduces costs considerably
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Algorithm

Input: Full rank A € R[#]"*" with structure AA and
C € R[]"*" with (approx) kernel vector b

Output: A + AA* or an indication of failure

1. Embed input over R

2. Compute 1° by solving VL|,0 = 0 via linear least squares

N

4. Return the locally optimal solution or an indication of failure

X+ Ax

14 AL is sufficiently small

2

3. Compute ( ) until
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Example

e We generate a singular matrix polynomial of rank 2

AA
e Create A by adding noise; relative error is % ~.0512

e Compare algorithm with different approximate kernel vectors

118 - 1872 — 075t + .11 0628 +.12¢2+.15t—.12 0 0
A AA 10348 - 0572 +.18/- 019 0757 - 002172 - 16+ .053 0 0
Al ~ |IA] | 0927 +.117 — 421 +.062 -298 — 212+ 48t-.10 0 O
138 - 0792 — 13t —.088  .075¢% —.0042¢% — .042t +.066 0 0

0 0 .0627 —.0084: + .16t — .066  —.0847 — .057¢> — 0481 — .029
+ 0 0 —.0042F —.017¢2 — 062t — .053 —.057F + .057¢% — .0084¢ + .013

0 0 —.00427 —.0382 +.18¢ +.034 268 +.048¢ — .026

0 0  .0707 +.0294 + .141 + .10 —.0978 + .026¢% + .0421 + .017
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Example Cont.

0.06105¢* + 0.069197 — 0.301187* + 0.01628¢
_10.232¢* - 0.09367° — 0.3341% — 0.0855¢ — 0.0244

bi 0.0
0.265¢* + 0.03267° — 0.789¢2 + 0.122¢ + 0.0977
—0.118#* = 0.1027° — 0.172#2 — 0.314¢ + 0.251
b —0.0392¢* — 0.07847 + 0.21972 — 0.165¢ + 0.188
2 =

0.255¢* + 0.03147 — 0.7607% + 0.118¢ + 0.0941
0.0
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1AA,, 1|
1AA, ||
o el 002735

e Actual separation:

”Ahl _Ab2||
— ~.002761
llAIl

e Lower bound on
separation: ~ .000051
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Example Cont.

lteration | "' =) ll2 | Iw,.' = lla
1 108.291 18.797
2 30.335 12.297
3 0.9396 1.008
4 2.6939%e-3 6.261e-4
5 5.5337e-9 | 2.2271e-11
6 8.06113e-20 | 1.8074e-25
7 0 0




Algorithm and Implementation

Some Experiments

e Generate a singular matrix polynomial and add noise
e Initialize with nearby singular matrix polynomial w/ kernel

n | d | iterations W HI%II”F Status
F F

6 | 2 7 1.64e-02 | 3.29e-03

6 | 6 6 1.58e-04 | 3.40e-05

6 | 6 1 1.51e-02 | 6.85e-03 | S-FAIL
6 |10 6 1.85e-04 | 4.16e-05

6 | 10 2 1.70e-02 | 2.98e-02 FAIL
9| 2 5 1.69e-04 | 3.75e-05

9 2 1 1.66e-02 | 6.11e-03 | S-FAIL
9 | 4 9 1.68e-02 | 2.29e-03

12| 2 5 1.75e-04 | 2.21e-05

12| 2 9 1.67e-02 | 2.28e-03

e S-FAIL: In region of convergence; kernel vector not primitive
e FAIL: Outside region of convergence
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Completed/In Progress
What we’ve done since...

¢ Quadratically convergent algorithm for “rank-at-most”
approximation [Giesbrecht, H & Labahn ’'17]

e Technigue can be adapted to other affine structures:
e Approximate (multivariate) polynomial GCD

e Approximate multivariate polynomial factorization i.e. use
[Kaltofen, May, Yang & Zhi’ 08]

¢ Implementation online in Maple

...and we are currently looking into
e Hardness results for nearest singular matrix polynomial
e Matrix polynomial Approximate GCD

e Nearest “interesting” Smith form
¢ Wilkinson’s Problem for Matrix Polynomials
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