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Our Problem: Find the Nearest Singular Matrix Polynomial

Given a matrix A ∈ R[t]n× n, find Â ∈ R[t]n× n such that Â is singular
and ‖A − Â‖ is minimized.

Equivalently, for some “reasonable” norm ‖ · ‖, solve the
optimization problem

min
Â,b
‖A − Â‖ subject to

Âb = 0
‖b‖ = 1,

where ‖Aij‖2 =
√∑

1≤k deg Aij A2
ijk and ‖A‖ = ‖A‖F =

√∑
1≤i,j≤n ‖Aij‖

2
2.

• A matrix polynomial A ∈ R[t]n× n is singular if det(A) ≡ 0

• Sometimes we say that A is irregular

• Singular =⇒ ∃b ∈ R[t]n× 1\{0} such that Ab ≡ 0
Giesbrecht, Haraldson & Labahn
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Previous Algorithms
We would like an algorithm that is ...
• Numerically robust with rapid local convergence w.r.t. ‖ · ‖

Existing Algorithms:
• Restricted SVD [De Moor ’93, ’94]

• At best linear convergence

• Structured Total Least Norm (STLN) [Rosen, Park & Glick ’96]

• Super linear convergence (not quadratic) [Lemmerling ’99]

• Variable Projection [Golub & Pereyra ’73, ’03]

• Use Gauss-Newton (Pure Newton)

• Converges super-linearly (at least quadratic) if normalized

• Problem size is much larger

• Lift and Project methods [Spaenlehauer & Schost ’16]

Giesbrecht, Haraldson & Labahn
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Our Contributions
Recall we want to solve the optimization problem

min
∆A,b
‖∆A‖F subject to

‖b‖F = 1
(A + ∆A)b = 0.

1. Prove that minimal solutions exist

2. Prove that minimal solutions are isolated

• inf ‖∆Aopt − ∆A?
opt‖F > 0 when rank A = n

for two distinct minimal perturbations Aopt and A?
opt

3. Show that the problem is (locally) well-posed

• Optimal value is isolated around minimizers

• Algorithm is provably locally stable

4. Derive and implement a quadratically convergent algorithm

Giesbrecht, Haraldson & Labahn
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Applications

• Stability of solutions to linear time invariant systems

• [Byers & Nicols ’93] and [ Byers, He & Mehrmann ’98]

• Stability of polynomial eigenvalue problems

• Approximate GC(R)D of Ore polynomials

• [Giesbrecht, H & Kaltofen ’16]

Giesbrecht, Haraldson & Labahn
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Existence of Solutions
Theorem

Let ∆A ∈ R[t]n× n have the same support as A, that is
deg ∆Aij ≤ deg Aij. The optimization problem

min
∆A,b
‖∆A‖ subject to

‖b‖ = 1
(A + ∆A)b = 0

has an attainable global minimum (∆A?, b?).

• Nearest singular matrix polynomial always exists

• i.e. ∃(∆A?, b?) s.t. (A + ∆A?)b? = 0 and ‖∆A?‖ is minimal

• Minimization of ‖∆A‖ under other structures has a solution if
there is a finite solution to (A + ∆A)b = 0

• In general bi-linear feasibility over Q is NP-Hard

Giesbrecht, Haraldson & Labahn
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Embedding R[t]n× n in Rn(µ+d)× nµ

Embed multiplication as a linear algebra problem over R

• Recall that A is n × n with entries at most degree d
• Define µ = nd + 1

Lemma

If A ∈ R[t]n× n is singular then there exists b ∈ ker A such that
deg b ≤ nd = µ − 1.

• Embed A as A ∈ Rn(µ+d)× nµ and b as B ∈ Rnµ× 1

• Ab = 0 ⇐⇒ AB = 0
• SVD provides a cheap lower bound on the distance to a

singular matrix, hence a singular matrix polynomial

Giesbrecht, Haraldson & Labahn



8/20

Introduction Theory Algorithm and Implementation Future Work

Embedding Example
The embedding preserves kernel vectors...

A =

(
t2 − 1 t + 1

t2 − 2t + 1 t − 1

)
and ker A =

(
−1

t − 1

)

A =



−1 0 0 0 0 1 0 0 0 0
0 −1 0 0 0 1 1 0 0 0
1 0 −1 0 0 0 1 1 0 0
0 1 0 −1 0 0 0 1 1 0
0 0 1 0 −1 0 0 0 1 1
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0
−2 1 0 0 0 1 −1 0 0 0
1 −2 1 0 0 0 1 −1 0 0
0 1 −2 1 0 0 0 1 −1 0
0 0 1 −2 1 0 0 0 1 −1
0 0 0 1 −2 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0



kerA =



−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 0
−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1



• The embedding does not preserve rank information

Giesbrecht, Haraldson & Labahn
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Separation Bounds

Theorem

Suppose ∆A and ∆A? are distinct (local) minimal solutions then

‖∆A − ∆A?‖F ≥
‖∆A− ∆A?‖2

nd + 1
≥
σmin(A)
nd + 1

.

Corollary

Minimal solutions (∆A?, b?) are isolated modulo equivalence
classes of b?.

• Normalize b over R[t] =⇒ locally unique solutions

• Proof uses first-order information

• Similar separation holds under ‖ · ‖1 and other norms

Giesbrecht, Haraldson & Labahn
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Lagrange Multipliers
Definition

The Lagrangian is defined as

L = ‖∆A‖2F + ‖B‖22 − 1 + λT
(
vec((A + ∆A)B)
BTB − 1

)
.

• ∇ is the gradient operator
• Let x = (vec(∆A)T , vec(b)T )T

• ∇2 (∇2
xx) is the Hessian operator (w.r.t. to x)

• First order necessary (Karush-Kuhn-Tucker (KKT)) conditions

∇L(∆A?,B?, λ?) = 0

• Idea is to solve ∇L = 0 by Newton’s method, i.e. compute(
xk+1

λk+1

)
=

(
xk + ∆xk

λk + ∆λk

)
such that ∇2L

(
∆x
∆λ

)
= −∇L

Giesbrecht, Haraldson & Labahn
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Lagrange Multipliers
Definition

The Jacobian of the constraints is

J = ∇

(
vec((A + ∆A)B)
BTB − 1

)T

=

(
ψ(B) A + ∆A

0 2BT

)
.

• ψ(B)vec(A + ∆A) = 0 ⇐⇒ (A + ∆A)B = 0
• J has full rank =⇒ minimal solutions (∆A?, b?) are isolated
• Multiple kernel vectors =⇒ J is rank deficient

Definition

The Hessian matrix of L is ∇2L =

(
∇2

xxL J
JT 0

)
.

∇2L has full rank ⇐⇒ J has full rank

Giesbrecht, Haraldson & Labahn
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Minimal Kernel Embedding
Definition

A kernel vector B corresponding to b ∈ ker(A + ∆A) is minimally
degree embedded in A + ∆A if

1. ker(A + ∆A) = span(B) and b is primitive

2. b comes from a column echelon reduced basis.

Theorem

J has full rank at (∆A?, b?) if b? is minimally degree embedded.

• Minimally embed by deleting rows/columns of A/B
• Compute via orthogonal eliminations

Corollary

Newton’s method converges quadratically to (∆A?, b?) with a
suitable initial guess.

Giesbrecht, Haraldson & Labahn
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Minimal Kernel Example

A =

(
t2 − 1 t + 1

t2 − 2t + 1 t − 1

)
and ker A =

(
−1

t − 1

)
The minimal embedding gives us

Amin =



−1 1 0
0 1 1
1 0 1
1 −1 0
−2 1 −1
1 0 1


and Bmin =


−1
−1
1



Giesbrecht, Haraldson & Labahn
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Implementation Information

Our Implementation:

• Initialize ∆A and b via SVD (or other method)

• Minimally degree embed system over ∆A and B

• Compute Lagrange multipliers via linear least squares

In general:
• Use any method to approximate ∇L = 0
• Minimally degree embed and switch to Newton’s method later

Cost Per Iteration:

• Maximum cost per iteration is O(size6) = O(n12d6)
• Exploiting structure and sparsity reduces costs considerably

Giesbrecht, Haraldson & Labahn
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Algorithm

Input: Full rank A ∈ R[t]n× n with structure ∆A and
C ∈ R[t]n× n with (approx) kernel vector b

Output: A + ∆A? or an indication of failure

1. Embed input over R

2. Compute λ0 by solving ∇L|x0 = 0 via linear least squares

3. Compute
(
x + ∆x
λ + ∆λ

)
until

∥∥∥∥∥∥
(
∆x
∆λ

)∥∥∥∥∥∥
2

is sufficiently small

4. Return the locally optimal solution or an indication of failure

Giesbrecht, Haraldson & Labahn
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Example

• We generate a singular matrix polynomial of rank 2

• Create A by adding noise; relative error is
‖∆A‖
‖A‖

≈ .0512

• Compare algorithm with different approximate kernel vectors

A
‖A‖

=
∆A
‖A‖

+


.11t3 − .18t2 − .075t + .11 .062t3 + .12t2 + .15t − .12 0 0
−.034t3 − .057t2 + .18t − .019 .075t3 − .0021t2 − .16t + .053 0 0
.092t3 + .11t2 − .42t + .062 −.29t3 − .21t2 + .48t − .10 0 0
.13t3 − .079t2 − .13t − .088 .075t3 − .0042t2 − .042t + .066 0 0


+


0 0 .062t3 − .0084t2 + .16t − .066 −.084t3 − .057t2 − .048t − .029
0 0 −.0042t3 − .017t2 − .062t − .053 −.057t3 + .057t2 − .0084t + .013
0 0 −.0042t3 − .038t2 + .18t + .034 .26t3 + .048t − .026
0 0 .070t3 + .029t2 + .14t + .10 −.097t3 + .026t2 + .042t + .017



Giesbrecht, Haraldson & Labahn
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Example Cont.

b1 =


0.06105t4 + 0.06919t3 − 0.30118t2 + 0.01628t

0.232t4 − 0.0936t3 − 0.334t2 − 0.0855t − 0.0244
0.0

0.265t4 + 0.0326t3 − 0.789t2 + 0.122t + 0.0977



b2 =


−0.118t4 − 0.102t3 − 0.172t2 − 0.314t + 0.251
−0.0392t4 − 0.0784t3 + 0.219t2 − 0.165t + 0.188
0.255t4 + 0.0314t3 − 0.760t2 + 0.118t + 0.0941

0.0



Giesbrecht, Haraldson & Labahn
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Example Cont.

•
‖∆Ab1 ‖

‖A‖ ≈ .002756

•
‖∆Ab2 ‖

‖A‖ ≈ .002735

• Actual separation:
‖Ab1 − Ab2‖

‖A‖
≈ .002761

• Lower bound on
separation: ≈ .000051

Iteration ‖xi−1
b1
− xi

b1
‖2 ‖xi−1

b2
− xi

b2
‖2

1 108.291 18.797
2 30.335 12.297
3 0.9396 1.008
4 2.6939e-3 6.261e-4
5 5.5337e-9 2.2271e-11
6 8.06113e-20 1.8074e-25
7 0 0

Giesbrecht, Haraldson & Labahn
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Some Experiments
• Generate a singular matrix polynomial and add noise
• Initialize with nearby singular matrix polynomial w/ kernel

n d iterations ‖A−Ainit‖F
‖A‖F

‖∆A‖F
‖A‖F

Status
6 2 7 1.64e-02 3.29e-03
6 6 6 1.58e-04 3.40e-05
6 6 1 1.51e-02 6.85e-03 S-FAIL
6 10 6 1.85e-04 4.16e-05
6 10 2 1.70e-02 2.98e-02 FAIL
9 2 5 1.69e-04 3.75e-05
9 2 1 1.66e-02 6.11e-03 S-FAIL
9 4 9 1.68e-02 2.29e-03
12 2 5 1.75e-04 2.21e-05
12 2 9 1.67e-02 2.28e-03

• S-FAIL: In region of convergence; kernel vector not primitive
• FAIL: Outside region of convergence

Giesbrecht, Haraldson & Labahn
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Completed/In Progress
What we’ve done since...
• Quadratically convergent algorithm for “rank-at-most”

approximation [Giesbrecht, H & Labahn ’17]

• Technique can be adapted to other affine structures:
• Approximate (multivariate) polynomial GCD

• Approximate multivariate polynomial factorization i.e. use
[Kaltofen, May, Yang & Zhi’ 08]

• Implementation online in Maple

...and we are currently looking into
• Hardness results for nearest singular matrix polynomial

• Matrix polynomial Approximate GCD

• Nearest “interesting” Smith form
• Wilkinson’s Problem for Matrix Polynomials

Giesbrecht, Haraldson & Labahn
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