
1/20

Introduction Theory Algorithm and Implementation Future Work

Computing the Nearest Singular Matrix
Polynomial

Joseph Haraldson
with Mark Giesbrecht and George Labahn

David R. Cheriton School of Computer Science
University of Waterloo

January 24, 2018

Giesbrecht, Haraldson & Labahn

2/20

Introduction Theory Algorithm and Implementation Future Work

Our Problem: Find the Nearest Singular Matrix Polynomial

Given a matrix A ∈ R[t]n× n, find Â ∈ R[t]n× n such that Â is singular
and ‖A − Â‖ is minimized.

Equivalently, for some “reasonable” norm ‖ · ‖, solve the
optimization problem

min
Â,b
‖A − Â‖ subject to

Âb = 0
‖b‖ = 1,

where ‖Aij‖2 =
√∑

1≤k deg Aij A2
ijk and ‖A‖ = ‖A‖F =

√∑
1≤i,j≤n ‖Aij‖

2
2.

• A matrix polynomial A ∈ R[t]n× n is singular if det(A) ≡ 0

• Sometimes we say that A is irregular

• Singular =⇒ ∃b ∈ R[t]n× 1\{0} such that Ab ≡ 0
Giesbrecht, Haraldson & Labahn

3/20

Introduction Theory Algorithm and Implementation Future Work

Previous Algorithms
We would like an algorithm that is ...
• Numerically robust with rapid local convergence w.r.t. ‖ · ‖

Existing Algorithms:
• Restricted SVD [De Moor ’93, ’94]

• At best linear convergence

• Structured Total Least Norm (STLN) [Rosen, Park & Glick ’96]

• Super linear convergence (not quadratic) [Lemmerling ’99]

• Variable Projection [Golub & Pereyra ’73, ’03]

• Use Gauss-Newton (Pure Newton)

• Converges super-linearly (at least quadratic) if normalized

• Problem size is much larger

• Lift and Project methods [Spaenlehauer & Schost ’16]

Giesbrecht, Haraldson & Labahn

4/20

Introduction Theory Algorithm and Implementation Future Work

Our Contributions
Recall we want to solve the optimization problem

min
∆A,b
‖∆A‖F subject to

‖b‖F = 1
(A + ∆A)b = 0.

1. Prove that minimal solutions exist

2. Prove that minimal solutions are isolated

• inf ‖∆Aopt − ∆A?
opt‖F > 0 when rank A = n

for two distinct minimal perturbations Aopt and A?
opt

3. Show that the problem is (locally) well-posed

• Optimal value is isolated around minimizers

• Algorithm is provably locally stable

4. Derive and implement a quadratically convergent algorithm

Giesbrecht, Haraldson & Labahn

5/20

Introduction Theory Algorithm and Implementation Future Work

Applications

• Stability of solutions to linear time invariant systems

• [Byers & Nicols ’93] and [Byers, He & Mehrmann ’98]

• Stability of polynomial eigenvalue problems

• Approximate GC(R)D of Ore polynomials

• [Giesbrecht, H & Kaltofen ’16]

Giesbrecht, Haraldson & Labahn

6/20

Introduction Theory Algorithm and Implementation Future Work

Existence of Solutions
Theorem

Let ∆A ∈ R[t]n× n have the same support as A, that is
deg ∆Aij ≤ deg Aij. The optimization problem

min
∆A,b
‖∆A‖ subject to

‖b‖ = 1
(A + ∆A)b = 0

has an attainable global minimum (∆A?, b?).

• Nearest singular matrix polynomial always exists

• i.e. ∃(∆A?, b?) s.t. (A + ∆A?)b? = 0 and ‖∆A?‖ is minimal

• Minimization of ‖∆A‖ under other structures has a solution if
there is a finite solution to (A + ∆A)b = 0

• In general bi-linear feasibility over Q is NP-Hard

Giesbrecht, Haraldson & Labahn

7/20

Introduction Theory Algorithm and Implementation Future Work

Embedding R[t]n× n in Rn(µ+d)× nµ

Embed multiplication as a linear algebra problem over R

• Recall that A is n × n with entries at most degree d
• Define µ = nd + 1

Lemma

If A ∈ R[t]n× n is singular then there exists b ∈ ker A such that
deg b ≤ nd = µ − 1.

• Embed A as A ∈ Rn(µ+d)× nµ and b as B ∈ Rnµ× 1

• Ab = 0 ⇐⇒ AB = 0
• SVD provides a cheap lower bound on the distance to a

singular matrix, hence a singular matrix polynomial

Giesbrecht, Haraldson & Labahn

8/20

Introduction Theory Algorithm and Implementation Future Work

Embedding Example
The embedding preserves kernel vectors...

A =

(
t2 − 1 t + 1

t2 − 2t + 1 t − 1

)
and ker A =

(
−1

t − 1

)

A =

−1 0 0 0 0 1 0 0 0 0
0 −1 0 0 0 1 1 0 0 0
1 0 −1 0 0 0 1 1 0 0
0 1 0 −1 0 0 0 1 1 0
0 0 1 0 −1 0 0 0 1 1
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0
−2 1 0 0 0 1 −1 0 0 0
1 −2 1 0 0 0 1 −1 0 0
0 1 −2 1 0 0 0 1 −1 0
0 0 1 −2 1 0 0 0 1 −1
0 0 0 1 −2 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0

kerA =

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 0
−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

• The embedding does not preserve rank information

Giesbrecht, Haraldson & Labahn

9/20

Introduction Theory Algorithm and Implementation Future Work

Separation Bounds

Theorem

Suppose ∆A and ∆A? are distinct (local) minimal solutions then

‖∆A − ∆A?‖F ≥
‖∆A− ∆A?‖2

nd + 1
≥
σmin(A)
nd + 1

.

Corollary

Minimal solutions (∆A?, b?) are isolated modulo equivalence
classes of b?.

• Normalize b over R[t] =⇒ locally unique solutions

• Proof uses first-order information

• Similar separation holds under ‖ · ‖1 and other norms

Giesbrecht, Haraldson & Labahn

10/20

Introduction Theory Algorithm and Implementation Future Work

Lagrange Multipliers
Definition

The Lagrangian is defined as

L = ‖∆A‖2F + ‖B‖22 − 1 + λT
(
vec((A + ∆A)B)
BTB − 1

)
.

• ∇ is the gradient operator
• Let x = (vec(∆A)T , vec(b)T)T

• ∇2 (∇2
xx) is the Hessian operator (w.r.t. to x)

• First order necessary (Karush-Kuhn-Tucker (KKT)) conditions

∇L(∆A?,B?, λ?) = 0

• Idea is to solve ∇L = 0 by Newton’s method, i.e. compute(
xk+1

λk+1

)
=

(
xk + ∆xk

λk + ∆λk

)
such that ∇2L

(
∆x
∆λ

)
= −∇L

Giesbrecht, Haraldson & Labahn

11/20

Introduction Theory Algorithm and Implementation Future Work

Lagrange Multipliers
Definition

The Jacobian of the constraints is

J = ∇

(
vec((A + ∆A)B)
BTB − 1

)T

=

(
ψ(B) A + ∆A

0 2BT

)
.

• ψ(B)vec(A + ∆A) = 0 ⇐⇒ (A + ∆A)B = 0
• J has full rank =⇒ minimal solutions (∆A?, b?) are isolated
• Multiple kernel vectors =⇒ J is rank deficient

Definition

The Hessian matrix of L is ∇2L =

(
∇2

xxL J
JT 0

)
.

∇2L has full rank ⇐⇒ J has full rank

Giesbrecht, Haraldson & Labahn

12/20

Introduction Theory Algorithm and Implementation Future Work

Minimal Kernel Embedding
Definition

A kernel vector B corresponding to b ∈ ker(A + ∆A) is minimally
degree embedded in A + ∆A if

1. ker(A + ∆A) = span(B) and b is primitive

2. b comes from a column echelon reduced basis.

Theorem

J has full rank at (∆A?, b?) if b? is minimally degree embedded.

• Minimally embed by deleting rows/columns of A/B
• Compute via orthogonal eliminations

Corollary

Newton’s method converges quadratically to (∆A?, b?) with a
suitable initial guess.

Giesbrecht, Haraldson & Labahn

13/20

Introduction Theory Algorithm and Implementation Future Work

Minimal Kernel Example

A =

(
t2 − 1 t + 1

t2 − 2t + 1 t − 1

)
and ker A =

(
−1

t − 1

)
The minimal embedding gives us

Amin =

−1 1 0
0 1 1
1 0 1
1 −1 0
−2 1 −1
1 0 1

and Bmin =

−1
−1
1

Giesbrecht, Haraldson & Labahn

14/20

Introduction Theory Algorithm and Implementation Future Work

Implementation Information

Our Implementation:

• Initialize ∆A and b via SVD (or other method)

• Minimally degree embed system over ∆A and B

• Compute Lagrange multipliers via linear least squares

In general:
• Use any method to approximate ∇L = 0
• Minimally degree embed and switch to Newton’s method later

Cost Per Iteration:

• Maximum cost per iteration is O(size6) = O(n12d6)
• Exploiting structure and sparsity reduces costs considerably

Giesbrecht, Haraldson & Labahn

15/20

Introduction Theory Algorithm and Implementation Future Work

Algorithm

Input: Full rank A ∈ R[t]n× n with structure ∆A and
C ∈ R[t]n× n with (approx) kernel vector b

Output: A + ∆A? or an indication of failure

1. Embed input over R

2. Compute λ0 by solving ∇L|x0 = 0 via linear least squares

3. Compute
(
x + ∆x
λ + ∆λ

)
until

∥∥∥∥∥∥
(
∆x
∆λ

)∥∥∥∥∥∥
2

is sufficiently small

4. Return the locally optimal solution or an indication of failure

Giesbrecht, Haraldson & Labahn

16/20

Introduction Theory Algorithm and Implementation Future Work

Example

• We generate a singular matrix polynomial of rank 2

• Create A by adding noise; relative error is
‖∆A‖
‖A‖

≈ .0512

• Compare algorithm with different approximate kernel vectors

A
‖A‖

=
∆A
‖A‖

+

.11t3 − .18t2 − .075t + .11 .062t3 + .12t2 + .15t − .12 0 0
−.034t3 − .057t2 + .18t − .019 .075t3 − .0021t2 − .16t + .053 0 0
.092t3 + .11t2 − .42t + .062 −.29t3 − .21t2 + .48t − .10 0 0
.13t3 − .079t2 − .13t − .088 .075t3 − .0042t2 − .042t + .066 0 0

+

0 0 .062t3 − .0084t2 + .16t − .066 −.084t3 − .057t2 − .048t − .029
0 0 −.0042t3 − .017t2 − .062t − .053 −.057t3 + .057t2 − .0084t + .013
0 0 −.0042t3 − .038t2 + .18t + .034 .26t3 + .048t − .026
0 0 .070t3 + .029t2 + .14t + .10 −.097t3 + .026t2 + .042t + .017

Giesbrecht, Haraldson & Labahn

17/20

Introduction Theory Algorithm and Implementation Future Work

Example Cont.

b1 =

0.06105t4 + 0.06919t3 − 0.30118t2 + 0.01628t

0.232t4 − 0.0936t3 − 0.334t2 − 0.0855t − 0.0244
0.0

0.265t4 + 0.0326t3 − 0.789t2 + 0.122t + 0.0977

b2 =

−0.118t4 − 0.102t3 − 0.172t2 − 0.314t + 0.251
−0.0392t4 − 0.0784t3 + 0.219t2 − 0.165t + 0.188
0.255t4 + 0.0314t3 − 0.760t2 + 0.118t + 0.0941

0.0

Giesbrecht, Haraldson & Labahn

18/20

Introduction Theory Algorithm and Implementation Future Work

Example Cont.

•
‖∆Ab1 ‖

‖A‖ ≈ .002756

•
‖∆Ab2 ‖

‖A‖ ≈ .002735

• Actual separation:
‖Ab1 − Ab2‖

‖A‖
≈ .002761

• Lower bound on
separation: ≈ .000051

Iteration ‖xi−1
b1
− xi

b1
‖2 ‖xi−1

b2
− xi

b2
‖2

1 108.291 18.797
2 30.335 12.297
3 0.9396 1.008
4 2.6939e-3 6.261e-4
5 5.5337e-9 2.2271e-11
6 8.06113e-20 1.8074e-25
7 0 0

Giesbrecht, Haraldson & Labahn

19/20

Introduction Theory Algorithm and Implementation Future Work

Some Experiments
• Generate a singular matrix polynomial and add noise
• Initialize with nearby singular matrix polynomial w/ kernel

n d iterations ‖A−Ainit‖F
‖A‖F

‖∆A‖F
‖A‖F

Status
6 2 7 1.64e-02 3.29e-03
6 6 6 1.58e-04 3.40e-05
6 6 1 1.51e-02 6.85e-03 S-FAIL
6 10 6 1.85e-04 4.16e-05
6 10 2 1.70e-02 2.98e-02 FAIL
9 2 5 1.69e-04 3.75e-05
9 2 1 1.66e-02 6.11e-03 S-FAIL
9 4 9 1.68e-02 2.29e-03
12 2 5 1.75e-04 2.21e-05
12 2 9 1.67e-02 2.28e-03

• S-FAIL: In region of convergence; kernel vector not primitive
• FAIL: Outside region of convergence

Giesbrecht, Haraldson & Labahn

20/20

Introduction Theory Algorithm and Implementation Future Work

Completed/In Progress
What we’ve done since...
• Quadratically convergent algorithm for “rank-at-most”

approximation [Giesbrecht, H & Labahn ’17]

• Technique can be adapted to other affine structures:
• Approximate (multivariate) polynomial GCD

• Approximate multivariate polynomial factorization i.e. use
[Kaltofen, May, Yang & Zhi’ 08]

• Implementation online in Maple

...and we are currently looking into
• Hardness results for nearest singular matrix polynomial

• Matrix polynomial Approximate GCD

• Nearest “interesting” Smith form
• Wilkinson’s Problem for Matrix Polynomials

Giesbrecht, Haraldson & Labahn

	Introduction
	Theory
	Algorithm and Implementation
	Future Work

