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ABSTRACT
Matrix polynomials appear in many areas of computational
algebra, control systems theory, differential equations, and
mechanics, typically with real or complex coefficients. Be-
cause of numerical error and instability, a matrix polyno-
mial may appear of considerably higher rank (generically
full rank), while being very close to a rank-deficient matrix.
“Close” is defined naturally under the Frobenius norm on the
underlying coefficient matrices of the matrix polynomial. In
this paper we consider the problem of finding the nearest
rank-deficient matrix polynomial to an input matrix poly-
nomial, that is, the nearest square matrix polynomial which
is algebraically singular. We prove that such singular ma-
trices at minimal distance always exist (and we are never
in the awkward situation having an infimum but no actual
matrix polynomial at minimal distance). We also show that
singular matrices at minimal distance are all isolated, and
are surrounded by a basin of attraction of non-minimal so-
lutions. Finally, we present an iterative algorithm which, on
given input sufficiently close to a rank-deficient matrix, pro-
duces that matrix. The algorithm is efficient and is proven
to converge quadratically given a sufficiently good starting
point. An implementation demonstrates the effectiveness
and numerical robustness in practice.

1. INTRODUCTION
We consider the problem of computing the nearest rank-

deficient matrix polynomial to an input matrix polynomial
in R[t]n×n, i.e., finding the nearest matrix polynomial which
is singular, with a determinant that is identically zero. In an
exact setting, determining the rank or determinant of a ma-
trix polynomial is more straightforward, and very efficient
procedures are available (Storjohann and Villard, 2005).
However, in many applications, including control systems
engineering, a transfer function is specified by a matrix poly-
nomial with floating point coefficients. Due to input error
and imprecise representations, most such matrix polynomi-
als will be generically of full rank despite possibly being

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’17 July 25–28, 2014, Kaiserslautern, Germany
Copyright 2017 ACM 978-1-4503-2501-1/????? ...$15.00.

(numerically) very close to a singular one. Instead of com-
puting the rank of the given matrix polynomial exactly, a
more natural first question is to ask how far away it is from
one that is rank-deficient, and then to find one at that dis-
tance. In the case of unstructured matrices with constant
entries this problem is solved via the Singular Value Decom-
position (SVD). However, in the case of matrix polynomials
no equivalent rank revealing factorization has thus far been
available. As a first step we consider the problem of finding a
nearby singular matrix polynomial, which in many instances
is expected to be a more appropriate object for algorithmic
consideration.

To proceed, we need to define a reasonable metric on the
space of matrix polynomials, for which we use the common
Frobenius norm. For A ∈ R[t]n×n, with (i, j) entry Aij ∈
R[t], we define the Frobenius norm

‖A‖2 = ‖A‖2F =
∑

1≤i,j≤n

‖Aij‖2, (1.1)

where, for a ∈ R[t], the coefficient 2-norm is defined by

a =
∑

0≤i≤deg a

ait
i, ‖a‖2 = ‖a‖22 =

∑
0≤i≤deg a

a2
i . (1.2)

In this paper we address the following question:

Main Problem: Nearest singular matrix polynomial.
Given A ∈ R[t]n×n of full rank (non-zero determinant),
compute ∆A ∈ R[t]n×n with deg(∆Aij) ≤ degAij (or simi-
lar degree constraints to be specified later), such that A+∆A

is singular (i.e., det(A+∆A) ≡ 0) with ‖∆A‖ is minimal.
Note that the above statement is still somewhat ill-posed,

and we refine the statement below.
The main results in this paper are:

1. We characterize the geometry of minimal solutions:

(a) We show that minimal solutions exist. That is,
there exists a ∆A ∈ R[t]n×n of minimal norm
such that det(A + ∆A) ≡ 0 and meeting the re-
quired degree constraints on perturbed coefficients.

(b) We show that minimal solutions are isolated and
are surrounded by a non-trivial open neighbor-
hood of non-minimal solutions.

2. We provide efficient algorithms as follows:

(a) On input A ∈ R[t]n×n sufficiently close to a sin-
gular matrix polynomial, we give an iterative scheme
which converges to a rank-deficient matrix poly-
nomial at minimal distance, at a provably quadratic
rate of convergence.

(b) We provide a Maple implementation which demon-
strates the convergence and numerical robustness
of our iterative scheme.
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1.1 Previous research
Much of the work in this area has often been done under

the moniker of matrix pencils, which generally means matrix
polynomials but restricted to the linear case. That is, matrix
polynomials of the form A = A0 + A1t for A0, A1 ∈ Rn×n.
See (Gohberg et al., 2009) for an excellent overview. Non-
singular/full rank square matrix polynomials are sometimes
referred to as regular matrix pencils.

The problem of nearest rank-deficient or singular matrix
pencil was initially posed for linear matrix pencils by By-
ers and Nichols (1993) and followed up in (Byers et al.,
1998). The nearest singular matrix polynomial relates to
the stability of linear time invariant systems and differential-
algebraic equations studied subsequently in (Kressner and
Voigt, 2015; Guglielmi et al., 2016). For non-linear matrix
polynomials/pencils, previous works rely on embedding a
non-linear (degree greater than 1) matrix polynomial into a
linear matrix polynomial of much higher order. Theorem 1.1
and Section 7.2 of Gohberg et al. (2009) shows that any reg-
ular A ∈ R[t]n×n of degree d, is equivalent to a linear matrix
polynomial B = B0 + tB1, for B0, B1 ∈ Rnd×nd. However,
this equivalence is (obviously) not an isomorphism, nor is it
distance preserving. Hence a nearby singular matrix poly-
nomial to B ∈ R[t]nd×nd (even when constrained to a de-
gree one perturbation) almost certainly does not correspond
to a nearby singular matrix polynomial to A ∈ R[t]n×n.
Moreover, even if one was to perturb to a rank-reduced ma-
trix within the image of the linearization, the inverse im-
age would not necessarily have reduced rank. Lawrence and
Corless (2015) explore a considerably more sophisticated lin-
earization with an eye towards ameliorating this.

In the context of computer algebra the notion of symbolic-
numeric algorithms for polynomials has been an active area
of research for a number of years, and the general framework
of finding nearby instances with a desired algebraic prop-
erty is being thoroughly explored. Closest to our work here
is work on approximate GCD (Corless et al., 1995; Becker-
mann and Labahn, 1998), and especially optimization-based
approaches employing the Structured Total Least Norm al-
gorithm (Li et al., 2005; Kaltofen et al., 2005, 2006; Zhi,
2007) and Riemannian SVD (Botting et al., 2005). Cor-
less et al. (2007) explore the geometry of pseudospectra of
matrix polynomials, and provide some computational tools.
More recently, we have explored computing the approximate
GCRD of (non-commutative) differential polynomials (Gies-
brecht and Haraldson, 2014; Giesbrecht et al., 2016) and
resolve similar issues.

The computer algebra community has made impressive
progress on fast, exact algorithms for matrix polynomials,
including nearly optimal algorithms for computing ranks,
factorizations and various normal forms; see (Kaltofen and
Storjohann, 2015) and references therein for a recent overview.
Part of our goal in this current paper is establish a basis for
extending the reach of these symbolic techniques to matrices
of polynomials with floating point coefficients.

In a more general setting our problem can be formulated
as a Structured Low Rank Approximation (SLRA) problem.
A popular method to solve SLRA problems is the Structured
Total Least Norm (STLN) approach (Rosen et al., 1996,
1998). These are iterative methods and in general their con-
vergence to stationary points is linear (first order), rather
than quadratic, unless additional assumptions are made. In
the event STLN converges to a solution, there may be other

solutions arbitrarily nearby unless the Hessian is definite.
The SLRA problem is a non-linear least squares problem
and accordingly other techniques such as the Restricted and
Riemannian SVD (De Moor, 1993, 1994, 1995) provide gen-
eral tools for solving such problems. Other heuristic tools
applicable to our problem include variable projection (Golub
and Pereyra, 1973, 2003) and Newton’s method (Abatzoglou
et al., 1991). We would expect these to perform very poorly
in our case, as one can expect problems with large resid-
uals to perform poorly and the rational function arising
from variable projection can be too costly to deal with for
modestly sized problems. The problem may also be con-
sidered as optimization on a manifold (Absil et al., 2009),
however we do not explicitly consider this approach. For a
detailed survey of linear structured low-rank approximation,
see (Markovsky, 2008, 2011).

Other methods for structured low-rank approximation in-
volve the family of lift and project algorithms, with the best
known being Cadzow’s algorithm (Cadzow, 1988). More re-
cently the work of Schost and Spaenlehauer (2016) gives a
sequence of alternating projections that provably converge
quadratically to a fixed point. However, lift and project
algorithms do not generally satisfy necessary first order op-
timality conditions, and while they may converge (quickly)
to a fixed point, there is no guarantee that the fixed point
is an optimal solution, though it is usually quite good. In
any case, for specific problems such as ours, understanding
the geometry of the minimal solutions (and hence the well-
posedness of the problem) is key to effective algorithms for
their computation.

A related but different problem is Wilkinson’s problem.
Given a linear matrix pencil A0 + tA1, it seeks the nearest
matrix pencil which is defective, or such that it does not have
complete basis of (generalized) eigenvectors. More generally,
for a matrix polynomial A ∈ R[t]n×n a defective matrix pen-
cil is one whose Smith form is non-trivial, that is, does not
equal diag(1, . . . , 1, det(A)). A number of techniques have
been developed to find the nearest defective linear matrix
pencil, see (Ahmad and Alam, 2015) for recent results and
a survey. While this problem has a related (and somewhat
more difficult) geometry, we hope that our techniques can be
extended to this problem for non-linear matrix polynomials.

1.2 Outline
In Sections 2 and 3 we describe tools needed for our con-

structions and then explore the geometry of our problem.
We show that the problem is locally well-posed. One cannot
expect the nearest singular matrix polynomial to be unique.
However under weak normalization assumptions, we show
that solutions are locally unique in a closed-ball around
them. To complement the separation of solutions, we also
show that solutions corresponding to a different closed ball
are separated by at least a constant amount independent of
the dimension of the space.

In Section 4 we give an equality constrained variant of
Newtons’ method for computing via post-refinement the near-
est rank-deficient matrix polynomial. The main idea is to
compute an initial guess with a suitable first order or lift-and
project method. We are able to prove that, with a suitable
initial guess and regularity assumptions, our algorithm gen-
erally has local quadratic convergence except for degenerate
cases. This is done by deriving closed-form expressions for
the Jacobian of the constraints and the Hessian of the La-
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grangian. We make explicit use of these closed-forms and
prove that they have full rank in non-trivial open neighbor-
hoods around solutions.

In Section 5 we describe our prototype implementation,
including heuristics for starting points and other improve-
ments. We discuss the numerical performance of the algo-
rithm and give examples demonstrating convergence. The
paper ends with a conclusion and topics for future research.

2. PRELIMINARIES AND GEOMETRY
In this section we will introduce some basic definitions and

explore the numerical geometry of our problem. Canonically
we will let

A =

d∑
j=0

Ajt
j ∈ R[t]n×n

be a matrix polynomial, with coefficientsA0, . . . , Ad ∈ Rn×n.
Throughout this paper we will present our results for square
matrix polynomials, though much of the theory can be gen-
eralized in a straightforward manner for non-square matrix
polynomials and complex valued ones. The degree degA of
A is defined as d, assuming that Ad 6≡ 0.

We say that A is singular if det(A) ≡ 0 as a polynomial
in R[t], or equivalently, that there is a non-trivial vector
b ∈ R[t]n×1 such that Ab ≡ 0. The kernel of A is kerA =
{b ∈ R[t]n×1 : Ab ≡ 0} and the rank of A is n− dim kerA
(as a vector space over R(t)). For a ∈ R[t], define

φ(a) = φ(n,d)(a) =



a0

a1 a0

...
. . .

ad a0

ad a1

. . .
...
ad


∈ R(µ+d)×µ, (2.1)

where µ = nd + 1. φ(a) is a Toeplitz matrix corresponding
to polynomial multiplication of a · b where a has degree d
and b ∈ R[t] has degree at most µ− 1.

Definition 2.1. The R-embedding of A ∈ R[t]n×n is

Â =

φ(A1,1) · · · φ(A1,n)
...

...
φ(An,1) · · · φ(An,n)

 ∈ Rn(µ+d)×nµ.

For b ∈ R[t]n×1 of degree µ− 1 the R-embedding of b is

b̂ = (b1,0, b1,1, . . . , b1,µ−1, . . . , bn,0, . . . , bn,µ−1)T ∈ Rnµ×1.

Note that Ab = 0, for b ∈ R[t] of degree at most µ−1 if and

only if Âb̂ = 0 ∈ Rnµ×1.

For ease of notation we will take N = n(µ+ d), M = nµ
and R ≥ 1 when dealing with R-embeddings in subsequent

sections. We note that Â is a block-Toeplitz matrix, and
as such one method of understanding the problem is to find
the nearest structured rank deficient block-Toeplitz matrix,
a typical structured low rank approximation problem.

Unlike the standard linearizations of Gohberg et al. (2009)
(Section 7.2) used to turn arbitrary degree matrix pencils
into linear pencils, this R-embedding is rank preserving for
matrix polynomials of arbitrary degree. In particular, b ∈
kerA with deg b ≤ µ implies b̂ ∈ ker Â. The R-embedding

is also quasi-distance preserving, since ‖A‖2F =
‖Â‖2F
µ

.

Problem 2.2. Refined Main Problem:
Given A ∈ R[t]n×n non-singular of degree d as above, de-
termine ∆A ∈ R[t]n×n, with deg(∆A)ij ≤ degAij for all
1 ≤ i, j ≤ n, and b ∈ R[t]n×1, such that ‖∆A‖ is (locally)
minimized, subject to the constraints that (A + ∆A)b = 0
and ‖b‖ = 1.

Note that this is minimizing a convex objective function
subject to non-convex constraints. However, the equality
constraints are linear in each argument. It is still not clear
that Problem 2.2 is well-posed in the current form. We will
prove that solutions exist, that is, there is an attainable
global minimum value and not an infimum.

Lemma 2.3. A ∈ R[t]n×n is singular if and only if there
exists a b ∈ R[t]n×1 with deg b ≤ nd = µ − 1 such that
Ab = 0.

Proof. Suppose that A has rank r < n. By permuting
rows and columns we may assume without loss of generality
that the leading r×r submatrix of A is non-singular. There
is a unique vector of the form c = (b1/γ, . . . , br/γ,−1, 0, . . . , 0)
from Cramer’s rule such that Ac = 0, where γ ∈ R[t] is
the determinant of the leading r × r minor of A, and all of
b1, . . . , br, γ ∈ R[t] have degree at most rd ≤ nd. Multiplying
through by γ, we find that b = γc satisfies the requirements
of the lemma.

Lemma 2.4. A is singular if and only if Â does not have
full column rank.

Proof. If A is rank deficient then there exists b ∈ R[t]n×1

with deg b ≤ µ − 1 such that Ab = 0. Â has a non-trivial

kernel and, b̂ ∈ ker Â by construction. Conversely, suppose
that A has full rank. Then for all b ∈ R[t]n×1 we have

Ab 6= 0 which implies that Âb̂ 6= 0 or ker Â is trivial.

We recall the Singular Value Decomposition as the pri-
mary tool for finding the distance to the nearest unstructured
rank deficient matrix over R or C.

Definition 2.5. A Singular Value Decomposition (SVD)
of C ∈ RN×M is given by C = Q · Σ · PT , where Q ∈
RM×M , PT ∈ RN×N are orthogonal matrices and Σ =
diag(σ1, . . . , σM ) ∈ RM×N is a diagonal matrix consisting
of the singular values of C in descending order of magni-
tude. See (Golub and Van Loan, 2012).

The following fact is a standard motivation for the SVD.

Fact 2.6 (Eckart and Young 1936). Suppose C =
QΣPT ∈ RN×M as above has full column rank, with N ≥M .
Then ∆C = Qdiag(0, . . . , 0,−σM )PT is such that C + ∆C
has column rank at most M − 1, ‖∆C‖F = σM , and ∆C is
a perturbation of minimal Frobenius norm which reduces the
column rank of C.

Lemma 2.7. Given a non-singular A ∈ R[t]n×n, and
∆A ∈ R[t]n×n such that B = A + ∆A is singular, it is

the case that ‖∆̂A‖ ≥ σnµ(Â)

Proof. By Lemma 2.4 above, B̂ is not of full column

rank. Thus, by Fact 2.6 ‖∆̂A‖F ≥ σnµ(A).

Corollary 2.8. The set of non-singular matrices over
R[t]n×n of degree at most d is open, or equivalently, the set
of all rank deficient matrices over R[t]n×n of degree at most
d is closed.
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Theorem 2.9 (Existence of Solutions). The min-
imization posed in Problem 2.2 has an attainable global min-
imum if deg ∆Ai,j ≤ degAi,j for all 1 ≤ i, j ≤ n.

Proof. Let

S =
{
B ∈ R[t]n×n | rankB ≤ n− 1 ∧ degB ≤ d

}
∩
{
B ∈ R[t]n×n|‖B‖2F ≤ ‖A‖

2
F

}
.

S is the intersection of a closed and bounded set and a closed
set, hence S is closed and bounded. S is isomorphic to
some closed and bounded subset of Euclidean space, hence
by the Heine-Borel theorem, S is compact. To show the set
is non-empty, we note that, by the degree assumption on
∆A, ∆A = −A is a feasible point independent of rank.

Let B ∈ S then ‖A − B‖2F = ‖∆A‖2F is a continuous
function over a compact set. By Weierstrass’ theorem it has
an attainable global minimum.

It is important not to over-constrain the problem with
a choice of ∆A, since otherwise the feasible set might be
empty. Another reasonable choice of ∆A which we can han-
dle, is that the perturbation has the same coefficient struc-
ture/support as A, that is, zero terms in polynomial entries
are preserved.

We note that this result says nothing about uniqueness or
separation of solutions or any local properties. All that has
been shown is that if the perturbations are in the same space
as the input, and one seeks a rank at-most approximation,
then there is an attainable global minimum value, i.e. not
an infimum. If one wants a minimal solution with the rank
being exactly r, then there is no guarantee that there is an
attainable global minimum to Problem 2.2.

3. RANK FACTORIZATION
A natural formulation of the problem that encompasses

the rank implicitly is to perform a rank factorization and
write A + ∆A = UV for U ∈ R[t]n×r and V ∈ R[t]r×m.
Here UV is subject to some constraints that preserve the
structure of ∆A (i.e., that we do not perturb any coefficients
we are not allowed to, typically that deg ∆Aij ≤ degAij ,
but possibly also preserving the zero coefficients and not
introducing a larger support). This is a non-linear least
squares problem. However solutions are not unique. In-
deed, if Z ∈ R[t]r×r is unimodular (i.e., det(Z) ∈ R∗), then
UZ, Z−1V is another rank r factorization, and we obtain an
infinite family. While normalizing over matrix polynomial
rank-factorizations is difficult, it is much easier to exploit
the quasi-distance preserving property of ‖ · ‖F and look at

rank-factorizations of Â, that do not necessarily correspond
to U and V.

3.1 Embedded Rank Factorization
Definition 3.1. Let N = (µ+ d)n, M = nµ and R > 0.

A rank factorization of Â + ∆̂A is given by writing Â +

∆̂A = UV where U ∈ RN×R and V ∈ RR×M are arbitrary
(unstructured) matrices over R.

Our goal is to find U, V with shape as above which minimize

‖∆Â‖ = ‖Â − UV ‖
and such that ∆Â has the correct Toeplitz-block structure
(i.e., it is an R-embedding of a matrix polynomial). This is
a problem with a non-convex objective function (that is con-
vex in each argument) and non-convex constraints. We note
that U , V have no direct connection with U,V ∈ R[t]n×n.

One may always write Â + ∆̂A this way via the SVD

for fixed Â and ∆̂A, so in particular the optimal solu-
tion can be written as a rank factorization. The problem

min ‖Â − UV ‖
2

such that UV has the same structure as

∆̂A is generally ill-posed and needs to be constrained to do
any meaningful analysis, as there are numerous degrees of
freedom. At first glance, optimizing over rank factorizations
appears to be a harder problem than the original. However
it is helpful to perform analysis on this formulation. In par-

ticular, we are able to prove that optimal values of ∆̂A that
satisfy first order conditions (which we will show contains all
useful perturbations) are separated by a constant amount,
and that equivalence classes of solutions are isolated.

We next need to demonstrate that the condition that the
matrix ∆Â = Â − UV is the R-embedding of some matrix
polynomial ∆A ∈ R[t]n×n can be phrased as a single poly-

nomial being zero. Clearly each entry in ∆Â is a bilinear
function of the Uij and Vij . Also, each entry ∆Aij in ∆A

is mapped to a Toeplitz block φ(∆Âij) in ∆Â; see (2.1).

• Let T1 be the sum of the squares of all the entries

required to be zero in ∆Â − UV .
• Let T2 be the sum the squares of the differences of all

pairs of entries required to be equal in ∆Â − UV .

We then define the structural enforcement function
Γ : RN×R × RR×M → R as Γ(∆Â) = T1 + T2. It is eas-
ily observed that Γ is a polynomial of degree 4 in the Uij
and Vij , that it is always non-negative, and that Γ(∆Â) = 0

if an only if ∆Â is the R-embedding of a matrix polynomial.

Problem 3.2. With Â, U, V as above, the constrained R-
embedded rank factorization problem consists of computing

min ‖Â − UV ‖
2

F

subject to the constraints that UTU−I = 0 and Γ(U, V ) = 0.
If R = M − 1, then this encodes all rank deficient matrix
polynomials.

It is still not clear that Problem 3.2 is well-posed, as there
are many degrees of freedom in V , and this matrix can have
arbitrary rank. The enforcement of U as an orthogonal ma-
trix (UTU − I = 0) is allowed for without loss of general-
ity. Informally then we are looking at all rank factorizations
where where U is orthogonal and Γ(U, V ) = 0, that is, the

product satisfies the block-Toeplitz structure on ∆̂A.
We now employ the machinery of non-linear optimization

to describe the geometry of the minimal solutions, and hence
the nearest appropriately structured matrices. See (Bert-
sekas, 1999) for an excellent overview.

Fact 3.3 (Bertsekas 1999, Section 3.1.1). For a
sufficiently large penalty term ρ > 0, one has that the un-
constrained optimization problem of computing

Φ(U, V ) = min
U,V
‖Â − UV ‖

2

F + ρ‖Γ(U, V )‖2F + ρ‖UTU − I‖2F
is equivalent to Problem 3.2.

All the solutions to the minimization of Φ(U, V ) occur at
stationary points. The first-order necessary condition (on
V ) of gradients vanishing gives us

∇V
(
‖Â − UV ‖

2

F + ρ‖Γ(U, V )‖2F ) + ρ‖UTU − I‖2F
)

= 0

⇐⇒ UT (Â − UV ) +

(
∂

∂V
Γ(U, V )T

)
ρΓ(U, V ) = 0.
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If we assume that the constraints are active, that is U is

orthogonal and that Γ(U, V ) = 0, then we have that UT Â−
V = 0. Of course, there is the other first order necessary
condition requiring that

∇U
(
‖Â − UV ‖

2
+ ρ‖Γ(U, V )‖2 + ρ‖UTU − I‖2

)
= 0.

However, we do not need to employ this explicitly in the
following theorem.

Theorem 3.4 (Strong Separation of Objective).

Suppose ∆̂A and ∆̂A
?

are distinct (local) optimal solutions
to Problem 3.2 that satisfy first order necessary conditions.

Then ‖∆̂A − ∆̂A
?
‖2 ≥ σmin(Â).

Proof. From the previously discussed necessary first or-
der condition we have that

‖∆̂A − ∆̂A
?
‖2 = ‖UV − U?V ?‖2 = ‖UUT Â − U?U?T Â‖2.

From this we can obtain the sequence of lower bounds

‖UUT Â − U?U?T Â‖2 ≥ ‖UU
T − U?U?T ‖2σmin(Â)

= ‖I − UTU?U?TU‖2σmin(Â)

≥ σmin(Â).

The symmetric matrix W = UTU?U?TU is a product
of matrices whose non-zero eigenvalues have magnitude 1.
Symmetric matrices have real eigenvalues, and their non-
zero eigenvalues must all be ±1, since

‖W‖2 ≥ σmin(U)σmin(UT )σmin(U?T )σmin(U?),

‖W‖2 ≤ σmax(U)σmax(UT )σmax(U?T )σmax(U?),

which gives us 1 ≤ ‖W‖2 ≤ 1.
W must have at least one negative eigenvalue or non-

trivial 0 eigenvalue by the orthogonality assumption, since
W 6= I. It follows that ‖I −W‖2 ≥ 1 and the theorem
follows.

We note that when U and U? have the same dimension, then
rankU = rankU? and so W has full rank. Since W has full
rank, it follows that ‖I −W‖2 ≥ 2 and the lower-bound
can be improved. While the separation bound exploited
properties of the rank factorization, these bounds hold for
all formulations of the problem.

Corollary 3.5. All locally optimal solutions satisfying
first order necessary conditions are isolated modulo equiva-
lence classes.

Proof. Suppose the contrary, that is that (U, V ) is a so-

lution corresponding to ∆̂A and (U?, V ?) is a solution cor-

responding to ∆̂A
?
. The objective function and constraints

are locally Lipschitz continuous, so let s > 0 be a Lipschitz
constant with respect to ‖ · ‖F in some open neighborhood.

If we take 0 < ε <
σmin(Â)

s
then we have

σmin(Â) ≤ ‖∆̂A −∆Â
?‖2

≤ s
∥∥∥∥(UV

)
−
(
U?

V ?

)∥∥∥∥
F

< σmin(Â),

which is a contradiction to Theorem 3.4.

While there are too many degrees of freedom to easily ob-
tain a (locally) quadratically convergent minimization over

the rank factorization, the rank factorization does yield non-
trivial insights into the geometry of the solution space. In
particular, the isolation of solutions indicates first order (gra-
dient) methods will perform well on the problem. In the next
section we will introduce a locally quadratically convergent
algorithm for an equivalent form of Problem 2.2 that reduces
each equivalence class of solutions to a single solution.

4. ITERATIVE ALGORITHM
In this section we propose an iterative algorithm to solve

Problem 2.2 based on Newton’s method for constrained op-
timization. Sufficient conditions for quadratic convergence
are that the Jacobian of the residuals has full rank and the
Hessian matrix of the objective function is positive definite
in a neighborhood around a solution (Bertsekas, 1999). We
ensure this by augmenting the objective function without
changing the solution and working on a restricted space of
minimal R-embeddings that removes degrees of freedom.

4.1 Augmented System
In order to find the nearest rank deficient matrix, we con-

sider the modified objective function

Ψ = ‖∆̂A‖
2

F + ‖b̂‖
2

F − 1,

subject to the constraints (Â + ∆̂A)b̂ = 0 and b̂T b̂ − 1 = 0

for b̂ ∈ R[t]M×1. One notes that this is essentially a trick,

because we already have the equality condition that ‖b̂‖ =
1. Thus the new formulation is completely equivalent to
Problem 2.2 as their solutions are the same. However, the
change to the objective function ensures that the Hessian
matrix of the objective function is not singular, that is, it
is positive definite. In this case the Hessian matrix of Ψ is
given by ∇2Ψ = diag(2, . . . , 2).

Definition 4.1 (Minimal R-Embedding). Suppose

A ∈ R[t]n×n with R-embedding Â. The vector b ∈ R[t]n×1,

with R-embedding b̂, is said to be minimally R-embedded

in Â if ker Â = 〈b̂〉 (i.e., a dimension 1 subspace). We say

that b̂ is minimally degree R-embedded in Â if (1) b̂ is min-

imally R-embedded in Â and (2) b ∈ B for a given column
echelon reduced basis B of kerA, where each column of the
basis is primitive, that is, gcd(B1,j , . . . ,Bn,j) = 1.

We note that this definition ensures minimally R-embedded

vectors are unique, or that (Â + ∆̂A)b̂ = 0 has a (locally)

unique solution for fixed ∆Â. If b̂ is not minimally degree

R-embedded in Â, then the kernel of Â will typically con-
sist of the desired vector, cyclic shifts of this vector and
multiples of other vectors.

There are two degrees of freedom for elements of the ker-
nel of A + ∆A. The first is the degree of entries, that
is, polynomial multiples of b are in the kernel of A. The
second degree of freedom is that a linear combination of el-
ements of the kernel is also contained in the kernel. The
minimal degree R-embedding removes both degrees of free-
doms. The column reduced echelon constraint ensures that
the constraint is represented with the minimum number of
equations.

Throughout the rest of this section we will assume that

Â and b̂ are minimal degree R-embeddings of A and b. It
can be taken without any loss of generality that a minimal

degree R-embedding also removes rows from Â and b̂ that
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correspond to trivial equations, i.e. 0 = 0, Ai,j = 0 or

b̂i = 0.

4.1.1 The Jacobian
Definition 4.2. The vectorization of A ∈ R[t]n×n of de-

gree at most d is defined as

vec(A) = (A1,1,0, . . . ,A1,1,d, . . . ,An,n,0, . . .An,n,d)
T .

Definition 4.3. The matrix ψ(b̂) is an alternative form

of (Â + ∆̂A)b̂ = 0 that satisfies ψ(b̂)vec(A + ∆A) = 0.

That is, ψ(b̂) satisfies

ψ(b̂) · vec(A + ∆A) = 0 ⇐⇒ (Â + ∆̂A)b̂ = 0.

Here we use the bilinearity of the system (Â + ∆̂A)b̂ = 0
to write the same system using a matrix with entries from

b̂ instead of vec(A + ∆A).
The closed-form expression for the Jacobian is given by

J =


∇∆̂A

(
(Â + ∆̂A)b̂

)
∇

b̂

(
(Â + ∆̂A)b̂ + b̂T b̂

)
 =

ψ(b̂) Â + ∆̂A

0 2b̂T

 .

If the Jacobian has full rank at a solution, then it necessarily
has full rank in an open neighborhood around that solution.

Theorem 4.4. Suppose b̂ is minimally degree R-embedded

in Â, then J has full (row) rank when ∇L = 0, that is, the
gradient of the Lagrangian vanishes (see 4.2).

Proof. We show that J full row rank by contradiction. If
this matrix was rank deficient, then one row is a linear com-
bination of the others. This means that one of the equations
in the constraints is trivial or the solution is not regular. As
we are only concerned about regular solutions, this contra-
dicts the minimal degree R-embedding.

4.2 Lagrange Multipliers
Let ` = (vec((Â + ∆̂A)b̂), b̂T b̂ − 1)T · λ, where λ =

(λ1, . . . , λν) with ν the number of non-trivial constraints.
Their Lagrangian is L = Ψ + `, and the Hessian of the La-
grangian is ∇2L. Since J and ∇2Ψ have full rank, ∇2L has
full rank as well.

4.3 Iterative Post-Refinement
Newton’s method for equality constrained minimization

problems can be interpreted as solving the non-linear system

of equations ∇L = 0. Let x = (vec(∆A)T , b̂T )T . Then
Newton’s method is based on the iterative update scheme(

xk+1

λk+1

)
=

(
xk + ∆xk

λk + ∆λk

)
such that ∇2L

(
∆x
∆λ

)
= −∇L.

(4.1)
Since ∇2L has full rank, the iteration is well defined by ma-
trix inversion. This system can be solved in several different
ways, although the most straightforward is matrix inversion.
This method clearly has quadratic convergence as follows.

Fact 4.5 (Bertsekas (1999, Prop. 4.4.3)). Let x?

be a strict local minimum where the Jacobian of the con-
straints has full rank, with corresponding Lagrange multiplier
λ? such that

∇L(x?, λ?) = 0 and yT∇2
xxLy > 0

for y 6= 0 such that JT y = 0.

Then (x?, λ?) is a point of attraction to the Newton itera-
tion, and if (x, λ) → (x?, λ?) then the convergence rate is
quadratic if the objective and constraints have a locally Lip-
schitz Hessian around x?.

Since our objective function and constraints are quadratic
functions we trivially have the required Lipschitz continuity.
It is noted that one can always make ∇2

xxL positive definite
by re-scaling the objective function without changing the
optimal values of x.

Theorem 4.6. The previously described Newton method
converges quadratically with a suitable initial guess.

Corollary 4.7. Solutions to Problem 2.2 are isolated
solutions in the minimal R-embedding. That is, if x is an op-
timal solution, then there is a non-trivial open neighborhood
around x where x is the only (locally) optimal solution.

Although we only optimize over a single vector in the ker-

nel, if Â + ∆̂A is rank deficient and our initial guess is
sufficiently close to the optimal solution, then it does not
matter which element of the kernel we choose to use in the
optimization. Note that this gives us the nearest rank de-
ficient matrix, not the nearest matrix of prescribed rank.
Performing an iteration on the basis of the entire kernel is
left as future work.

4.4 Computing an initial guess
There are a variety of interesting first-order or other meth-

ods that can be used to obtain an initial guess. The most
intuitive method to obtain an initial guess is to do a a lift and
project using the SVD (Cadzow, 1988). Another approach
is to use a first-order method such as STLS or RSVD and
then improve upon the answer with post-refinement when
the convergence becomes too slow. Once a suitable initial
guess is obtained, the next question is how to determine the
Lagrange multipliers. Since J has full rank this reduces to
solving a linear system of equations by substituting the ini-
tial guess into the gradient of L and solving for λ. There will
always be a solution when first order conditions are satisfied
since J has full row rank. Since initial guesses will generally
not satisfy first order conditions, one can solve a linear least
squares problem to approximate λ instead.

In general, there is a large selection of different methods
available to compute an initial guess. A single iteration of
lift and project is reasonably fast, and when the minimum
residual is sufficiently small the iteration will converge to the
optimal solution, as the problem is well-posed. In instances
of a large residual any method can be used and a locally-
optimal solution can be computed by post-refinement.

5. DESCRIPTION OF IMPLEMENTATION
In this section we discuss implementation details and demon-

strate our implementation for computing the nearest rank
deficient matrix polynomial. All algorithms are implemented
in Maple 2016. Examples are constructed by taking a singu-
lar matrix polynomial, then perturbing entries by a scaled
amount of noise. Noise is constructed by generating a poly-
nomial of prescribed degree structure with coefficients cho-
sen uniformly at random from (0, 1), then scaled appropri-
ately. We do not perturb high-order or low-order coefficients
that are set to zero and restrict ourselves to relatively large
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amounts of noise where it generally takes at least three steps
to converge. The matrix polynomials are generated by rank-
factorization with coefficients generated by randpoly. The
left rank factor has coefficients of degree bd/2c and the right
rank factor has coefficients of degree dd/2e. All experiments
are done using quad precision floating point arithmetic, that
is, with about 35 decimal digits of accuracy.

To compute the approximate kernel vector, first we use the
SVD to compute an approximate kernel of an R-embedded
rank deficient matrix polynomial. Next we use structured
orthogonal elimination RQ (LQ) decomposition to produce
a minimally (degree) R-embedded vector from the kernel.

5.1 Description of Algorithm

Algorithm 1 : Iterative Post-Refinement

reis

Input:
• Full rank matrix polynomial A ∈ R[t]n×n

• Rank deficient matrix polynomial C ∈ R[t]n]×n

• Approximate kernel vector c ∈ R[t]n×1 of the desired
degree structure
• Structure matrix ∆A to optimize over

Output:
• Singular matrix A + ∆A with b ∈ ker(A + ∆A) or an

indication of failure.

1: R-Embed A,C, c and ∆A.
2: Compute Lagrangian L from Section 4.
3: Initialize λ via linear least squares from ∇L|x = 0.

4: Compute

(
x+ ∆x
λ+ ∆λ

)
by solving (4.1) until

∥∥∥∥(∆x
∆λ

)∥∥∥∥
2

is

sufficiently small or divergence is detected.
5: Return the locally optimal ∆A and b or an indication

of failure.

In our implementation we compute ∆x and ∆λ using an
iterative linear least squares method instead of inverting the
Hessian of the Lagrangian directly. Improvements can be
made in the conditioning of the values of x by exploiting
the block structure of the Hessian since the Jacobian of the
constraints can have a large condition number. The size of
∇2L is O(n4d2) and accordingly each iteration has a cost of
O(n12d6) flops using standard matrix multiplication.

5.2 Experiments

Small Example
Consider the singular (up to 2 decimal points of precision)
matrix polynomial A:−.038t2 − .21t+ .026 .12t2 + .38t+ .048 .28t2 − .14t+ .11

−.013t2 + .18t− .17 −.15t2 − .16t+ .31 −.28t2 + .48t− .19
.051t2 − .11t− .045 .15t2 + .20t+ .038 .22t2 − .15t− .090

 ,

and approximate kernel vector b,(
.15t2 − .40t+ .77 −.19t2 + .10t+ .23 .10t2 + .34t− .28

)T .
Given the matrix polynomial B−.03760t2 − .2122t+ .0278 .107t2 + .363t+ .0563 .293t2 − .1385t+ .1141

.003t2 + .18027t− .1758 −.14914t2 − .1510t+ .327 −.2859t2 + .469t− .173
.0577t2 − .1060t− .056 .1455t2 + .212t+ .0321 .231t2 − .1514t− .075

,
the goal is to find a singular matrix polynomial B + ∆B

where ‖∆B‖2F is minimized. Using A and b as an initial
guess for our algorithm, the relative (non-squared) error is

‖B−A‖F
‖B‖F

≈ .0499. A table showing the convergence table is

given in Figure 1.

Figure 1: Example of Convergence

iteration ‖xi−1 − xi‖2
1 1.3074e-1
2 2.0941e-2
3 3.8330e-4
4 1.4141e-7
5 2.4169e-14
6 4.7003e-28
7 0

We indeed see that each iteration is converging (quadrat-
ically) and the size of the perturbation that the algorithm
converges to is ‖∆B‖F ≈ 0.026604. The solution is a unique
local minimizer.

Performance on Randomly Generated Examples
In the experiments presented in Figure 2 all matrices are n×
n of degree at most d in all entries. We restrict ourselves to
modest values of n and d, given the expensive per-iteration
cost. The computed matrices are rank deficient by at least
1 in all experiments.

Algorithm 1 typically fails because the initial guess is not
sufficiently close, that is the input matrix is too far away
or the approximate kernel vector produces a large residual.
Failures to converge can also occur due to encountering a sin-
gular Jacobian (computed kernel vector is not minimally R-
embedded), as is the case in the examples with n = 6, d = 6

and n = 9, d = 2 with ‖A−Ainit‖
‖A‖ ≈ 1e − 2. Singular Jaco-

bians can be solved in practice by re-initializing the iteration
with a new approximate kernel vector that is minimially R-
embedded. Our approximate kernel code relies on user spec-
ified parameters to determine numerical error terms and to
compute the rank numerically of the R-embedded matrix. If
the rank computation fails then the kernel vector returned
may not be minimally R-embedded or ‖Ainitbinit‖ may be
large.

6. CONCLUSIONS AND FUTURE WORK
We have shown that finding the nearest singular matrix

polynomial can be set as a numerically well-posed problem,
and is amenable to first-order optimization methods. It is
demonstrated that minimal solutions exist and are well sep-
arated by non-trivial open neighborhoods. We also provide
a theory for a second order method that obtains quadratic
convergence and discuss corresponding implementation de-
tails.

In the immediate future we will consider finding more spe-
cific rank approximations. While we currently only optimize
over a single kernel vector, we would like to optimize over
a basis of the kernel in order to achieve a “rank at most
r” approximation as opposed to a rank deficient approxi-
mation. Optimizing over a minimally R-embedded kernel
should be a relatively straight forward generalization of the
results presented here.

These results can also be generalized to obtain a quadrat-
ically convergent algorithm for a broader class of linearly
structured STLS problems that exploit first order necessary
conditions and second order sufficient conditions.

We also regard this current paper as a first step towards
a formally robust approach to non-linear matrix polynomi-
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als, in the spirit of recent work with symbolic-numeric algo-
rithms for polynomials. Problems such as approximate ma-
trix polynomial division, GCRD and factorization all have
applications which can benefit from these modern tools.

Figure 2: Convergence of Random Examples

n d iterations
‖A−Ainit‖F
‖A‖F

‖∆A‖F
‖A‖F

Status

3 2 4 2.273085e-06 6.448939e-07
3 2 4 1.711447e-04 6.329353e-05
3 2 6 1.536637e-02 4.607345e-03
3 6 4 1.815279e-06 5.667709e-07
3 6 2 1.736938e-04 1.910097e-04 FAIL
3 6 7 1.549175e-02 4.201870e-03
3 10 3 1.805139e-06 5.115107e-07
3 10 4 1.516551e-04 5.043466e-05
3 10 6 1.528087e-02 5.461671e-03
6 2 4 1.795881e-06 3.144274e-07
6 2 5 1.678479e-04 3.179304e-05
6 2 7 1.649747e-02 3.290890e-03
6 6 4 1.627576e-06 4.013569e-07
6 6 6 1.582963e-04 3.401362e-05
6 6 1 1.514245e-02 6.858211e-03 FAIL
6 10 4 1.718920e-06 3.557049e-07
6 10 6 1.851868e-04 4.166933e-05
6 10 2 1.703748e-02 2.988045e-02 FAIL
9 2 4 1.739717e-06 3.594439e-07
9 2 5 1.696604e-04 3.759553e-05
9 2 1 1.668151e-02 6.114100e-03 FAIL
9 4 4 1.727764e-06 4.331134e-07
9 4 6 1.664166e-04 2.987824e-05
9 4 9 1.685704e-02 2.292579e-03
12 2 4 1.748623e-06 3.280337e-07
12 2 5 1.754237e-04 2.210751e-05
12 2 9 1.673896e-02 2.282716e-03
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