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Abstract

Differential (Ore) type polynomials with “approximate” polynomial
coefficients are introduced. These provide an effective notion of ap-
proximate differential operators, with a strong algebraic structure. We
introduce the approximate Greatest Common Right Divisor Problem
(GCRD) of differential polynomials, as a non-commutative generaliza-
tion of the well-studied approximate GCD problem.

Given two differential polynomials, we present an algorithm to find
nearby differential polynomials with a non-trivial GCRD, where nearby
is defined with respect to a suitable coefficient norm. Intuitively, given
two linear differential polynomials as input, the (approximate) GCRD
problem corresponds to finding the (approximate) differential polyno-
mial whose solution space is the intersection of the solution spaces of
the two inputs.

The approximate GCRD problem is proven to be locally well-posed.
A method based on the singular value decomposition of a differential
Sylvester matrix is developed to produce an initial approximation of
the GCRD. With a sufficiently good initial approximation, Newton
iteration is shown to converge quadratically to an optimal solution.
Finally, sufficient conditions for existence of a solution to the global
problem are presented along with examples demonstrating that no so-
lution exists when these conditions are not satisfied.

†This research was partly supported by the Natural Sciences and Engineering Research
Council (NSERC) Canada (Giesbrecht and Haraldson) and by the National Science Foun-
dation (NFS) under Grant CCF-1421128 (Kaltofen).

1



1 Introduction

The problem of computing the GCRD in a symbolic and exact setting dates
back to Ore (1933), who presents a Euclidean-like algorithm. See (Bron-
stein and Petkovšek, 1994) for an elaboration of this approach. Li and Nemes
(1997) introduces a differential-resultant-based algorithm which makes com-
putation of the GCRD very efficient using modular arithmetic. The tech-
nique of Li and Nemes (1997) is an extension of ideas presented by Grigor’ev
(1990) for computing GCRDs of differential operators.

The analogous approximate GCD problem for usual (commutative) poly-
nomials has been a key topic of research in symbolic-numeric computing
since its inception. A full survey is not possible here, but we note the deep
connection between our current work and that of (Corless et al., 1995); see
also (Karmarkar and Lakshman, 1996), (Sasaki and Sasaki, 1997), and (Zeng
and Dayton, 2004). Also important to this current work is the use of so-
called structured (numerical) matrix methods for approximate GCD, such
as structured total least squares (STLS) and structured total least norm
(STLN); see (Botting et al., 2005) and (Kaltofen et al., 2005). More di-
rectly employed later in this paper is the multiple polynomial approximate
GCD method of Kaltofen et al. (2006). This latter paper also provides a
nice survey of the current state of the art in approximate GCDs. Finally,
we modify the proof of Kaltofen et al. (2007a), an optimization approach to
computing the GCD of multiple, multivariate commutative polynomials, to
prove the existence of a globally nearest GCRD.

The goal of this paper is to devise an efficient, numerically robust algo-
rithm to compute the GCRD when the coefficients in R are given approx-
imately. Given f, g ∈ R(t)[∂;′ ], we wish to find f̃ , g̃ ∈ R(t)[∂;′ ], where f̃
is near f and g̃ is near g, such that deg∂gcrd(f̃ , g̃) ≥ 1, where near is
taken with respect to a distributed Euclidean norm. That is, f̃ and g̃ have
an exact, non-trivial GCRD.

Linear differential polynomials and GCRD’s are key tools in finding
closed form symbolic solution of systems of linear differential equations in
modern computer algebra systems like Maple and Mathematica (see, e.g.,
(Salvy and Zimmermann, 1994) and (Abramov et al., 2005)). Equations
with real (floating point) coefficients or parameters are regularly encoun-
tered and it is important to understand the stability of this fundamental
tool in this case. Moreover, floating arithmetic is potentially much faster
than managing large rational coefficients. We regard this paper as a positive
and important initial exploration of this topic.

We commence with necessary preliminaries and well-known results that
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we expand upon in the remainder of this introductory section. In Section 2
we describe a linear algebra formulation of the approximate GCRD problem
and that can be used in conjunction with truncated SVD (Giesbrecht and
Haraldson, 2014; Haraldson, 2015; Corless et al., 1995) to compute nearby
polynomials with an exact GCRD. Section 3 reformulates the approximate
GCRD problem as a continuous unconstrained optimization problem. Suf-
ficient conditions for existence of a solution are provided with an example
showing that when this sufficient condition is not satisfied there is no so-
lution. These results are complemented by showing that the Jacobian of
the residuals has full rank and under ideal circumstances Newton iteration
will converge quadratically. We generalize some results of Zeng and Dayton
(2004) and Zeng (2011) to a non-commutative Euclidean domain showing
that the problem is locally well-posed. In Section 4 we present our algorithms
explicitly, discuss their complexity and evaluate the numerical robustness of
our implementation on examples of interest.

A part of this work, presenting the SVD-based approach to approximate
GCRD, but without the proof of existence a nearest solution or analysis of
the corresponding optimization, is presented in the workshop paper (Gies-
brecht and Haraldson, 2014). This is described in Section 4.1 of this current
work.

1.1 Preliminaries

We review some well known results (Ore, 1933) and (Bronstein and Petkovšek,
1996) on differential polynomials.

The ring of differential (Ore) polynomials R(t)[∂;′ ] over the real num-
bers R provides a (non-commutative) polynomial ring structure to the linear
ordinary differential operators. Differential polynomials have found great
utility in symbolic computation, as they allow us to apply algebraic tools
to the simplification and solution of linear differential equations; see (Bron-
stein and Petkovšek, 1994) for a nice introduction to the mathematical and
computational aspects.

Let R(t)[∂;′ ] be the ring of differential polynomials over the function
field R(t). R(t)[∂;′ ] is the ring of polynomials in ∂ with coefficients from the
commutative field of rational functions, under the usual polynomial addition
along with the non-commutative multiplication defined by

∂y(t) = y(t)∂ + y′(t) for y(t) ∈ R(t).

Here y′(t) is the usual derivative of y(t) with respect to t.
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There is a natural action of R(t)[∂;′ ] on the space C∞[R] of infinitely
differentiable functions y(t) : R→ R. In particular, for any y(t) ∈ C∞[R],

f(∂) =
∑

0≤i≤M
fi(t)∂

i acts on y(t) as
∑

0≤i≤M
fi(t)

di

dti
y(t).

We maintain a right canonical form for all f ∈ R(t)[∂;′ ] by writing

f =
1

f−1

∑
0≤i≤M

fi∂
i, (1.1)

for polynomials f−1, f0, . . . , fM ∈ R[t]. That is, with coefficients in R(t)
always written to the left of powers of ∂. An analogous left canonical form
exists as well.

A primary benefit of viewing differential operators in this way is that
they have the structure of a left (and right) Euclidean domain. In particular,
for any two polynomials f, g ∈ R(t)[∂;′ ], there is a unique polynomial h ∈
R(t)[∂;′ ] of maximal degree in ∂ such that f = f∗h and g = g∗h for f∗, g∗ ∈
R(t)[∂;′ ] (i.e., h divides f and g exactly on the right). This polynomial
h is called the Greatest Common Right Divisor (GCRD) of f and g and
it is unique up to multiplication by a unit (non-zero element) of R(t) (we
could make this GCRD have leading coefficient 1, but this would introduce
denominators from R[t], as well as potential numerical instability, as we shall
see). An important geometric interpretation of GCRDs is that the GCRD h
of differential polynomials f and g is a differential polynomial whose solution
space is the intersection of the solution spaces of f and g.

Approximations require a norm, so we need a proper definition of the
norm of a differential polynomial.

Definition 1.1. We define the Euclidean norm for polynomials and a dis-
tributed coefficient norm for differential polynomials as follows:

1. For p =
∑

0≤i≤d pit
i ∈ R[t], define

‖p‖ = ‖p‖2 =

 ∑
0≤i≤d

p2
i

1/2

.

2. For f =
∑

0≤i≤M fi∂
i ∈ R[t][∂;′ ], define

‖f‖ = ‖f‖2 =

 ∑
0≤i≤M

‖fi‖22

1/2

.
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We could extend the above definition of norm over R(t) and R(t)[∂;′ ].
However it turns out that this is unnecessary and somewhat complicating.
In practice, we perform most of our computations over R[t]. In the cases
where we are unable to avoid working over R(t), we simply solve an associate
problem. This is done by clearing denominators and performing intermedi-
ate computations over R[t], then converting back to the representation over
R(t). Note that the algebraic problem is always computing GCRDs and
cofactors in R(t)[∂;′ ], and not the more intricate algebraic domain R[t][∂;′ ];
see the discussion below.

Definition 1.2. For any matrix S ∈ R[t](M+N)×(M+N), we define the Frobe-
nius norm ‖S‖F by

‖S‖2F =
∑
ij

‖Sij‖2.

Main Problem: Approximate GCRD. Given f, g ∈ R[t][∂;′ ] such that
gcrd(f, g) = 1 we wish to compute f̃ , g̃ ∈ R[t][∂;′ ] with the same coefficient
degree structure∗ as f and g such that h = gcrd(f̃ , g̃) with D = deg∂h ≥ 1
and

(i) ‖f − f̃‖22 + ‖g − g̃‖22 = ε is minimized, and

(ii) D is the largest possible for the computed distance ε.

The differential polynomial h is said to be an approximate GCRD of f and
g if these conditions are satisfied. In general it is not easy to minimize ε, so
instead we take a local optimization approach and compute an upper bound
on this quantity. These upper-bounds will agree with the global minimum
if ε is sufficiently small. The algorithmic considerations will generally as-
sume D is fixed without loss of generality, since we can vary D from 1 to
min{M,N} to determine the (local) optimal value.

The approximate GCRD problem is a generalization of computing an
ε-GCD (Schönhage, 1985; Corless et al., 1995; Karmarkar and Lakshman,
1996; Emiris et al., 1997) in the commutative case. The requirement that the
GCRD has maximal degree is difficult to certify outside the exact setting,
however this usually is not a problem in our experiments. We prove that
our formulation of the approximate GCRD problem has a solution with a
minimal ε (opposed to an infimum). Furthermore, if D is fixed, then for a

∗The polynomial coefficients of ∂i have the same degree, i.e. deg f̃i ≤ deg fi and
deg g̃i ≤ gi.
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computed pair of nearby differential polynomials, we are able to certify that
ε is reasonably close to the optimal value through a condition number.

In our approach to the approximate GCRD problem we devise methods
of performing division and computing an exact GCRD numerically. These
tools are used in conjunction with our algorithm for computing a nearby pair
of differential polynomials with an exact GCRD via the SVD. The nearby
differential polynomials with an exact GCRD are used as an initial guess in
a post-refinement Newton iteration.

It will also be necessary to define a partial ordering on differential poly-
nomials. In later sections we will need to make use of this partial ordering
to preserve structure.

Definition 1.3. Let
−→
deg : R[t][∂;′ ] → ZM+1 be the degree vector function

defined as

−→
deg(f) = (degt f0,degt f1, . . . ,degt fM ), for f0, . . . , fM ∈ R[t].

For f, g ∈ R[t][∂;′ ] with deg∂f = deg∂g = M we write

−→
deg(f) <

−→
deg(g) if degt fi ≤ degt gi for 0 ≤ i ≤M.

We define
−→
deg(f) =

−→
deg(g),

−→
deg(f) <

−→
deg(g),

−→
deg(f) ≥

−→
deg(g) and

−→
deg(f) >

−→
deg(g) analogously.

We note that differential polynomials are written in a canonical ordering
with highest degree coefficients appearing to the left in our examples. The
degree vector function and most linearizations will appear in reverse order
as a result. For convenience, we will assume that deg 0 = −∞.

Definition 1.4. Let f ∈ R[t][∂;′ ] where deg∂f = M is in standard form.
The content of f is given by cont(f) = gcd(f0, f1, . . . , fM ). If cont(f) = 1,
we say that the differential polynomial is primitive.

Proposition 1.5. The ring R(t)[∂;′ ] is a non-commutative principal left
(and right) ideal domain. For f, g ∈ R(t)[∂;′ ], with deg∂f = M and deg∂g =
N , we have the following properties (Ore, 1933).

(i) deg∂(fg) = deg∂f + deg∂g , deg∂(f + g) ≤ max{deg∂f, deg∂g}.

(ii) There exist unique q, r ∈ R(t)[∂;′ ] with deg∂r < deg∂g such that f =
qg + r (right division with remainder).
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(iii) There exists h ∈ R(t)[∂,′ ] of maximal degree in ∂ with f = f∗h and
g = g∗h. h is called the GCRD (Greatest Common Right Divisor) of f
and g, written gcrd(f, g) = h. f∗ and g∗ are called the left co-factors
of f and g. The GCRD is unique up to multiplication from a unit
belonging to R(t).

(iv) There exist σ, τ ∈ R(t)[∂;′ ] such that σf = τg = ` for ` of minimal
degree. ` is called the LCLM (Least Common Left Multiple) of f and
g, written lclm(f, g) = `. The LCLM is unique up to multiplication
from a unit belonging to R(t).

(v) deg∂ lclm(f, g) = deg∂f + deg∂g − deg∂gcrd(f, g).

In an algebraic context we can clear denominators of our inputs and
assume without loss of generality that our GCRD belongs to R[t][∂;′ ]. We
will also assume our inputs and output are primitive. Again, this is not
algebraically necessary but will be important for the convergence of our
subsequent optimization formulation (see Section 3.2). It is important to
note that the co-factors of the GCRD need not belong to R[t][∂;′ ] even if we
have f, g, h ∈ R[t][∂;′ ] such that gcrd(f, g) = h. This is not unexpected, as a
similar situation occurs when computing GCD’s over Z[x], where cofactors
in the GCD of primitive polynomials may well lie in Q[x] \Z[x]. In essence,
this is a computational technique to narrow the input domain, not a change
to the problem being considered.

A related but considerably more difficult problem is computing ideal
bases and factorizations completely within R[t][∂;′ ]. This has been dealt
with algebraically and in terms of exact computation by a number of authors,
though not with respect to approximate coefficients; see for example (Heinle
and Levandovskyy, 2016; Giesbrecht et al., 2016; Bell et al., 2017).

Most of our results involve transforming a representation of f ∈ R(t)[∂;′ ]
into a representation over R(t)1×K for K ≥ deg∂f . We make extensive use
of the following map.

Definition 1.6. For f ∈ R(t)[∂;′ ] of degree M in ∂ as in (1.1), and K > M ,
we define

ΨK(f) =
1

f−1
(f0, f1, . . . , fM , 0, . . . , 0) ∈ R(t)1×K .

That is, ΨK maps polynomials in R(t)[∂;′ ] of degree (in ∂) less than K into
R(t)1×K .
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It will be useful to linearize (differential) polynomials, that is, express
them as an element of Euclidean space. For p ∈ R[t] with degt p = d we
write

p = (p0, p1, . . . , pd) ∈ R1×(d+1)

For f = f0 + f1∂ + · · · fM∂M ∈ R[t][∂;′ ] with deg∂f = M and degt fi = di
we write

f = (f0, . . . , fM) ∈ R1×L,

where L = (d0 + 1) + · · ·+ (dM + 1). If d ≥ max{di} we will sometimes pad
each fi with zeros to have precisely d+ 1 coefficients, and by a slight abuse
of notation regard

f ∈ R1×(M+1)(d+1).

We will not do this unless specifically stated.

2 Computing the GCRD via Linear Algebra

In this section we demonstrate how to reduce the computation of the GCRD
to that of linear algebra over R(t), and then over R itself. This approach has
been used in the exact computation of GCRDs (Li and Nemes, 1997) and
differential Hermite forms (Giesbrecht and Kim, 2013), and has the bene-
fit of reducing differential, and more general Ore problems, to a system of
equations over a commutative field. Here we will show that it makes our ap-
proximate version of the GCRD problem amenable to numerical techniques.
We note that for computing approximate GCRDs of differential polynomi-
als, much as for computing approximate GCDs of standard commutative
polynomials, the Euclidean algorithm is numerically unstable, and thus we
employ resultant-based techniques, as described below.

Since R(t)[∂;′ ] is a right (and left) Euclidean domain (Ore, 1933), a
GCRD may be computed by solving a Diophantine equation corresponding
to the Bézout coefficients. Using the subresultant techniques of Li (1998),
we are able to transform the non-commutative problem over R(t)[∂;′ ] into
a commutative linear algebra problem over R(t). This is done through a
Sylvester-like resultant matrix. By using resultant-like matrices we are able
to express the Bézout coefficients as a linear system over R(t) and compute
a GCRD via nullspace basis computation.

Lemma 2.1. Suppose f, g ∈ R(t)[∂;′ ] with deg∂f = N and deg∂g = M .
Then deg∂gcrd(f, g) ≥ 1 if and only if there exist u, v ∈ R(t)[∂;′ ] such that
deg∂u < M , deg∂v < N , and uf + vg = 0.
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Proof. This follows immediately from Proposition 1.5.

Using Lemma 2.1 we can solve a Bézout-like system to compute a GCRD
of two differential polynomials. This is characterized by the differential
Sylvester matrix, based on the subresultant method of Li and Nemes (1997).

Definition 2.2. Suppose h ∈ R[t][∂;′ ] has deg∂ = D. For any K ∈ N, the
matrix

CRK (h) =


ΨK+D+1(h)

ΨK+D+1(∂h)
...

ΨK+D+1(∂Kh)

 ∈ R[t](K+1)×(K+D+1)

is the Kth right differential convolution matrix of h. We note that the
entries of CRK (h) are written in their right canonical form, where the ∂’s
appear to the right (polynomials in R[t] appear to the left). We note that
degt ∂

ih = degt h, so the degree in t of all entries of CRK (h) is at most degt h.
We analogously define the Kth left differential convolution matrix of h

as CLK(h) as

CLK(h) =


ΨK+D+1(h)

ΨK+D+1(h∂)
...

ΨK+D+1(h∂K)

 ∈ R[t](K+1)×(K+D+1),

where elements are written in their left canonical form, where the ∂’s appear
to the left (polynomials in R[t] always appear to the right).

Both right and left differential convolution matrices can be used to per-
form multiplication. Suppose f∗ ∈ R(t)[∂;′ ], h ∈ R(t)[∂;′ ] and f = f∗h ∈
R[t][∂;′ ], with

f =
∑

0≤i≤M
fi∂

i, f∗ =
∑

0≤i≤M−D
f∗i ∂

i and h =
∑

0≤i≤D
hi∂

i, (2.1)

with fi, hi ∈ R[t] and f∗i ∈ R(t). We can express the product of f∗ and h as

(f0, f1, . . . , fM ) = (f∗0 , . . . , f
∗
M−D)CRM−D(h).

Similarly, we may write

(f0, f1, . . . , fM )T = CLD(f∗)(h0, h1, . . . , hD)T .
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In keeping with our canonical ordering, we express our results in terms of
right differential convolution matrices. We carefully observe that both the
right and left differential convolution matrices described correspond to right
multiplication. Left multiplication can be formulated in a similar manner.

Let f, g ∈ R(t)[∂;′ ] with deg∂f = M and deg∂g = N . Then by Lemma 2.1
we have that deg∂gcrd(f, g) ≥ 1 if and only if there exist u, v ∈ R(t)[∂;′ ]
such that deg∂u < N, deg∂v < M and uf + vg = 0. We can encode the
existence of u, v as an (M +N)× (M +N) matrix over R(t) in what we will
call the differential Sylvester matrix.

Definition 2.3. The matrix

S = S(f, g) =

(
CRN−1(f)
CRM−1(g)

)
∈ R(t)(M+N)×(M+N)

is the differential Sylvester matrix of f and g.

This matrix (Li and Nemes, 1997) is analogous to the Sylvester matrix
of real polynomials; see (von zur Gathen and Gerhard, 2013, Chapter 6).
As expected, many useful properties of the Sylvester matrix over real poly-
nomials still hold with the differential Sylvester matrix. These similarities
become evident when we consider

w = (u0, u1, . . . , uN−1, v0, v1, . . . , vM−1) ∈ R(t)1×(M+N).

Then uf + vg = 0 implies that wS = 0, hence w is a non-trivial vector in
the (left) nullspace of S. In particular, this solution is equivalent to saying
that S is singular. Clearing denominators of f and g, we may assume that
u, v ∈ R[t][∂;′ ], i.e., they have polynomial coefficients, which implies that
S ∈ R[t](M+N)×(M+N). Moreover, for f, g ∈ R[t][∂;′ ] with degt f ≤ d and
degt g ≤ d then degt Sij ≤ d.

We summarize these results in the following lemma.

Lemma 2.4. Suppose f, g ∈ R[t][∂;′ ], where deg∂f = M , deg∂g = N ,
degt f ≤ d and degt g ≤ d.

(i) S = S(f, g) is singular if and only deg∂gcrd(f, g) ≥ 1.

(ii) deg∂gcrd(f, g) = dim null`(S), where null`(S) is the left nullspace of
S.

(iii) For any w = (u0, . . . , uN−1, v0, . . . , vM−1) ∈ R(t)1×(M+N) such that
wS = 0, we have uf + vg = 0, where u =

∑
0≤i<N ui∂

i and v =∑
0≤i<M vi∂

i.
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(iv) Suppose that deg∂gcrd(f, g) ≥ 1. Then there exists w ∈ R[t]1×(M+N)

such that wS = 0 and degtw ≤ µ = 2(M +N)d.

Proof. Part (i) – (iii) follow from Lemma 2.1 and the discussion above. Part
(iv) follows from an application of Cramer’s rule and a bound on the degree
of the determinants of a polynomial matrix.

2.1 Linear Algebra over R

Let S ∈ R[t](M+N)×(M+N) be the differential Sylvester matrix of f, g ∈
R[t][∂;′ ] of degrees M and N respectively in ∂, and degrees at most d in t.
From Lemma 2.4 we know that if a GCRD of f and g exists, then there is
a w ∈ R[t]1×(M+N) such that wS = 0, with degtw ≤ µ = 2(M +N)d.

Definition 2.5. The kth convolution matrix of b ∈ R[t] with deg b = m is
defined as

Ck(b) =



b0

b1
. . .

...
. . . b0

bm b1
. . .

...
bm


∈ R(m+k+1)×(k+1).

Let a ∈ R[t] with deg a = µ and define the mapping Γ : R[t]→ R(µ+1)×(µ+d+1)

by Γ(a) = Cd(a)T . Γ(a) is the left multiplier matrix of a with respect to the
basis 〈1, t, . . . , tµ+d〉.

A differential convolution matrix generalizes the convolution matrix in
the role of linearizing multiplication between differential polynomials.

Definition 2.6. Given the (M+N)×(M+N) differential Sylvester matrix
S, we apply Γ entry-wise to S to obtain Ŝ ∈ R(M+N)(µ+1)×(M+N)(µ+d+1);
each entry of S in R[t] is mapped to a block entry in R(µ+1)×(µ+d+1) of Ŝ.
We refer to Ŝ as the inflated differential Sylvester matrix of f and g.

Lemma 2.7. Let f, g ∈ R[t][∂;′ ] have differential Sylvester matrix S ∈
R[t](M+N)×(M+N) and inflated differential Sylvester matrix

Ŝ ∈ R(M+N)(µ+1)×(M+N)(µ+d+1).

There exists a w ∈ R[t]1×(M+N) such that wS = 0, if and only if there exists
a ŵ ∈ R(µ+d+1)×(M+N)(µ+1) such that ŵŜ = 0. More generally,

deg∂gcrd(f, g) =
dim null`(Ŝ)

µ+ d+ 1
.
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Proof. This follows directly from the definition of Γ and Lemma 2.4.

We note that Ŝ is no longer a square matrix. This will not pose too
many problems as we will see in the following sections.

2.2 Division Without Remainder

While multiplication of differential polynomials with approximate numerical
coefficients is straightforward, division is somewhat more difficult. We will
generally require a division without remainder, for the computation of which
we use a least squares approach. Given f, h ∈ R[t][∂;′ ] as in (2.1), we wish
to find an f∗ ∈ R(t)[∂;′ ] such that ‖f − f∗h‖ is minimized. We will assume
as usual that deg∂f = M , deg∂h = D and degt f, degt h ≤ d.

Much as in the (approximate polynomial) commutative case, we do this
by setting the problem up as a linear system and then finding a least squares
solution. Let us assume for now that f = f∗h is exact, so this can be
expressed as a linear system over R(t) by writing

(f0, f1, . . . , fM ) = (f∗0 , . . . , f
∗
M−D)CRM−D(h). (2.2)

This system of equations is over-constrained (over R(t)), but we note
that the sub-matrix formed from the last M −D+ 1 columns of CRM−D(h) is
lower triangular, with diagonal entry hD ∈ R[t]. Thus, any exact quotient
h ∈ R[t][∂;′ ] such that f = f∗h, in lowest terms, must have denominators
dividing hM−D+1

D , and in particular have denominators of degree at most
(M−D+1) degt hD ≤ (M−D+1)d. Equivalently, hM−D+1

D f∗ ∈ R[t]M−D+1.
By applying Cramer’s rule on the last M −D+ 1 columns of CRM−D(h), the
degrees of the numerators in f∗ must be at most (M −D + 1)d. Using this
information we can formulate an associated problem with coefficients from
R[t] and avoid performing linear algebra over R(t).

Now let v−1, v0, . . . , vM−D be generic polynomials in t, with indetermi-
nate coefficients of degree at most (M −D + 1)d. I.e.,

vi =

(M−D+1)d∑
j=0

vijt
j , i = −1 . . .M −D,

for indeterminates vij with v−1 6= 0. Then we are seeking to solve the linear
system of equations

v−1 · (f0, . . . , fM ) = (v0, . . . , vM−D) CRM−D(h)

12



for the vij . For each entry fi we have (M −D + 1)d+ d+ 1 equations; this
is the degree (v0, . . . , vM−D)CRM−D(h) plus one, and we get one equation
per coefficient. Hence there are (M + 1)((M −D + 1)d + d + 1) equations
in (M − D + 2)(M − D + 1)d unknowns. We then use a standard linear
least squares solution to find the vi which minimizes the residual, and thus
minimizes ‖f − f∗h‖.

It may be desirable to find the lowest degree v−1 which meets this cri-
teria, for which we can use a simple binary search for a lower degree with
reasonable residual (or alternatively use an SVD-based identification proce-
dure).

Finally, a more straightforward approach to solving (2.2) is to simply
use the solution from the last M − D + 1 columns of CRM−D(h). The last
M −D + 1 columns of CRM−D(h) are lower triangular, with diagonal entries
consisting of hD ∈ R[t]. While this does not yield a solution to the least
squares normal equations, it is usually sufficiently good in practice, and
considerably easier to formulate.

3 Optimization-based Formulation of Approximate
GCRD

First we standardize some notation and assumptions. We assume that
f, g, f̃ , g̃, h ∈ R[t][∂;′ ] and f∗, g∗ ∈ R(t)[∂;′ ]. Moreover, we assume that
f̃ = f∗h and g̃ = g∗h and h = gcrd(f̃ , g̃). Intuitively, f, g are our “input
polynomials” and we will be identifying “nearby” f̃ , g̃ with a non-trivial
GCRD h. Note that f∗, g∗ have rational function coefficients. Later we will
find it useful to clear fractions and work with a primitive associate.

We also assume degree bounds as follows: deg∂f = deg∂ f̃ = M ,
degt f,degt f̃ ≤ d, deg∂g,deg∂ g̃ = N , degt g,degt g̃ ≤ d, deg∂h = D,
deg∂f

∗ = M −D and deg∂g
∗ = N −D.

Using the method of Giesbrecht and Haraldson (2014), essentially the
generalization of the SVD-based method of Corless et al. (1995) to differen-
tial polynomials, we will make an initial guess for f̃ , g̃; details are described
in Section 4.1 of this paper. We then use optimization techniques to hone in
on polynomials with minimal distance. While the techniques in that paper
are not particularly effective at providing a nearest solution, they do provide
a suitable initial guess, which we employ here.

We next describe how to formulate an objective function Φ that, when
minimized, corresponds to a solution to the approximate GCRD problem.

13



Define the objective function Φ : R[t][∂;′ ]× R(t)[∂;′ ]2 → R as

Φ(h, f∗, g∗) = ‖f − f∗h‖22 + ‖g − g∗h‖22.

In keeping up with our notation from earlier, we observe that f̃ = f∗h and
g̃ = g∗h in the context of the objective function Φ, as f and g will typically
be relatively prime. To compute guesses for the co-factors given h, we will
perform an approximate division without remainder using the method of
Section 2.2. We only require an initial guess for f∗ and g∗ to minimize Φ, so
this factorization doesn’t need to be exact, in the event that gcrd(f, g) = h.

We show that Φ has an attainable global minimum under appropriate
assumptions. More precisely, there exist non trivial f̃ and g̃ such that

‖f − f̃‖22 + ‖g − g̃‖22

is minimized. Furthermore, we will show that the approximate GCRD prob-
lem is locally well-posed.

3.1 Existence of Solutions

Lemma 3.1. Let f, h ∈ R[t][∂;′ ], with monic leading coefficients, be not
necessarily primitive, such that f = f∗h for f∗ ∈ R[t][∂;′ ] with deg∂f = M
and deg∂h = D. Then ‖f∗‖ is bounded above.

Proof. It follows that f∗ is bounded by the computing the Cramer solution
to (2.2) using the last M −D + 1 columns of CRM−D(h).

As an observation, we relax the assumption that f is primitive (we work
with an associate instead) in order to guarantee that f∗ ∈ R[t][∂;′ ]. This can
be taken without loss of generality as the quantity ‖ cont(f)‖22 is bounded
above and away from zero (as its leading coefficient is monic). Thus we may
divide by it without affecting the quality of the results, as ‖f − f∗h‖ is still
well defined.

We will make use of the following well known fact from (Rudin, 1976,
Theorem 4.16).

Fact 3.2. Suppose that Φ is a continuous real function on a compact metric
space X. Then there exist points p and q in X such that

Φ(p) ≤ Φ(x) ≤ Φ(q),

for all x ∈ X. Precisely, Φ attains its minimum and maximum values at p
and q respectively.

14



We first state a general version of the theorem where a logical predicate
Ξ : Rk → {true, false} (for some k) can be chosen to impose additional
constraints on the problem. For the rest of this section let

φ : R[t][∂;′ ]2 → R(M+N+2)(d+1)

be the combined coefficient vector function, i.e. for arbitrary f, g ∈ R[t][∂;′ ]
we write φ(f, g) = (f ,g), where f and g are padded with zeros to have the
desired dimensions.

The following lemma and its proof are analogous to (Kaltofen et al.,
2007a, Theorem 2), which in turn generalizes the univariate argument of
(Kaltofen et al., 2007b, Theorem 1).

Theorem 3.3 (Existence of Global Minima). Let f, g ∈ R[t][∂;′ ]\{0}, let
d = max{degt f, degt g}, deg∂f = M , deg∂g = N and D ≤ min{M,N}.
Furthermore, let Ξ : R(M+N+2)(d+1) → {true, false} be a predicate on φ(f, g).
We assume that the preimage Ξ−1(true) is a topologically closed set in
R(M+N+2)(d+1) with respect to the Euclidean norm. For a given Ω ∈ R>0 we
define the set of possible solutions by

FΩ =



(f̃ , g̃) ∈ R[t][∂;′ ]2 such that deg∂ f̃ = M,
deg∂ g̃ = N,

deg∂ h̃ ≥ D,
h̃ = gcrd(f̃ , g̃),

‖h̃‖ ≤ Ω,

lcoefft(lcoeff∂ h̃) = 1,

and Ξ(φ(f̃ , g̃)) = true


.

Suppose that FΩ 6= ∅. Then the minimization problem

min
(f̃ ,g̃)∈FΩ

‖f − f̃‖22 + ‖g − g̃‖22 (3.1)

has an attainable global minimum.

Proof. Without loss of generality, we assume that M ≤ N . Then we iterate
the minimization over all ` ∈ Z≥0 such that D ≤ ` ≤ M and coefficients
ρ ⊂ R[t]`. LetH`,ρ denote the set of all differential polynomials over R[t][∂;′ ]
of degree ` with coefficients from ρ. We optimize over the continuous real
objective function

Φ(h, f∗, g∗) = ‖f − f∗h‖22 + ‖g − g∗h‖22,
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for h ∈ H`,ρ, deg∂f
∗ ≤ M − D and deg∂g

∗ ≤ N − D. We fix the leading
coefficient of h with respect to ∂ to be monic, that is lcoefft lcoeff∂ h = 1.

Since the leading coefficient of h is monic, we can writeG = gcrd(f∗h, g∗h)
with deg∂G ≥ D. Since G is a multiple of h, we normalize G so that
lcoefft lcoeff∂ G = 1, i.e. the leading coefficient of G is also monic. The
restriction on h that the leading coefficient of h is monic enforces that
deg∂G ≥ D. Furthermore, we restrict the domain of our function Φ to
those h, f∗ and g∗ for which (f∗h, g∗h) ∈ FΩ. If there is no such common
factor h and co-factors f∗ and g∗, then this pair of ` and ρ does not occur in
the minimization (3.1). By assumption we have that FΩ 6= ∅, so there must
be at least one possible case. We note that if (0, 0) ∈ FΩ, then f∗ = g∗ = 0.

Now suppose that for the given ` and ρ, there are h̃ ∈ H`,ρ and f̃∗, g̃∗

satisfying deg∂ f̃
∗ ≤ M − ` and deg∂ g̃

∗ ≤ N − ` such that (f̃∗h̃, g̃∗h̃) ∈ FΩ.
We shall prove that the function Φ has a value on a closed and bounded
set (i.e., compact with respect to the Euclidean metric) that is smaller than
elsewhere. Hence Φ attains a global minimum by Fact 3.2.

Clearly any solution h̃ ∈ H`,ρ and f̃∗, g̃∗ with (f̃∗h, g̃∗h) ∈ FΩ but

with Φ(h̃, f̃∗, g̃∗) > Φ(h, f∗, g∗) can be discarded. So the norm of the
products ‖f̃∗h̃‖2 and ‖g̃∗h̃‖2 can be bounded from above. We have that
‖h̃‖ is bounded above by Lemma 3.1 because it is a right factor of G̃ =
gcrd(f̃∗h̃, g̃∗h̃) with ‖G̃‖ ≤ Ω. We note that h̃ has a monic leading coeffi-
cient, so ‖h̃‖ ≥ 1. We have that ‖f̃∗‖ and ‖g̃∗‖ (or the appropriate associate)
are both bounded above by Lemma 3.1.

Thus we can restrict the domain of Φ to values that lie within a suf-
ficiently large closed ball B. The function ζ that maps (h, f∗, g∗) to the
combined coefficient vector φ(f∗h, g∗h) of f∗h and g∗h is continuous. We
minimize over ζ−1(Ξ−1(true) ∩ ζ(B)), which is a compact set.

For the less general version of the theorem, given arbitrary f, g ∈ R[t][∂;′ ],
we define

S = S(f, g) =

{
φ(f̃ , g̃) | f̃ , g̃ ∈ R[t][∂;′ ] such that

−→
deg(f̃) ≤

−→
deg(f)

−→
deg(g̃) ≤

−→
deg(g)

}
.

We observe that S is a closed subset of R(M+N+2)(d+1), where deg∂f = M ,
deg∂g = N and d = max{degt f,degt g}. The set S corresponds to the
combined coefficient vectors of f̃ and g̃ that have the same degree structure
as f and g.

Corollary 3.4. Let f, g ∈ R[t][∂;′ ]\{0}, let d = max{degt f, degt g}, deg∂f =
M , deg∂g = N and D ≤ min{M,N}. For a given Ω ∈ R>0 we define the
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set of possible solutions by

FΩ =



(f̃ , g̃) ∈ R[t][∂;′ ]× R[t][∂;′ ] such that deg∂ f̃ = M,
deg∂ g̃ = N,

φ(f̃ , g̃) ∈ S,
deg∂ h̃ ≥ D,

h̃ = gcrd(f̃ , g̃),

‖h̃‖ ≤ Ω,

and lcoefft(lcoeff∂(h̃)) = 1


.

Suppose that FΩ 6= ∅. Then the minimization problem

min
(f̃ ,g̃)∈FΩ

‖f − f̃‖22 + ‖g − g̃‖22

has an attainable global minimum.

We note that Theorem 3.3 does not guarantee a unique minimum of Φ,
merely that Φ has an attainable minimum (as opposed to an infimum). The
choice of h, f∗ and g∗ that we optimize over is important. If lcoefft lcoeff∂ h
vanishes or ‖h0‖, . . . , ‖hD−1‖ are quite large, then f∗ and g∗ can be ill-
conditioned in the approximate GCRD problem. Furthermore, choosing
overly large, small or poor degree structure in t for h can result in a Φ that
cannot be minimized for the specified structure, but would otherwise have
a minimum for a different choice of h.

Example 3.5. Consider f = ∂2−2∂+1 and g = ∂2 +2∂+2 (see (Kaltofen
et al., 2007a) for an example with complex perturbations). Then f and g do
not have a degree 1 approximate GCRD. That is, we show that there does
not exist f̃ , g̃ ∈ R[t][∂;′ ] where deg∂gcrd(f̃ , g̃) = 1 and ‖f − f̃‖22 + ‖g − g̃‖22
is minimized.

The real monic Karmakar-Lakshman distance (Karmarkar and Laksh-
man, 1996, 1998) of

‖f − f̃‖22 + ‖g − g̃‖22
occurs when the rational function

2h4
0 + 14h2

0 + 4h0 + 5

h4
0 + h2

0 + 1

is minimized for h0 ∈ R. The minimum value (if it exists) of this function
corresponds to the approximate GCRD h = ∂−h0. The infimum is 2, which
is unattainable. There is no attainable global minimum.
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The non-monic real Karmakar-Lakshman distance is 2, which is achieved
if and only if the leading coefficient vanishes. The minimum occurs when
the rational function

5h4
1 − 4h3

1 + 14h2
1 + 2

h4
1 + h2

1 + 1

is minimized. The minimum value of this function corresponds to the ap-
proximate GCRD h = h1∂ + 1.

In particular, if we consider f̃ = (−2∂+1)(ε∂+1) and g̃ = (2∂+2)(ε∂+
1), then ‖f − f̃‖22 + ‖g − g̃‖22 becomes arbitrarily near 2 as ε→ 0.

There is no real degree 1 approximate GCRD, as

min
{(f̃ ,g̃)∈R[t][∂;′]2 | deg∂gcrd(f̃ ,g̃)=1}

‖f − f̃‖22 + ‖g − g̃‖22

is not defined in the monic case. In the non-monic case, if a minimum exists
then it occurs when lcoeff∂ h vanishes, so the minimum value is not defined
either.

This example illustrates that not all f, g ∈ R[t][∂;′ ] have an approximate
GCRD. Furthermore, we see that the requirement that lcoefft lcoeff∂ h = 1
and ‖h‖ is bounded, from Theorem 3.3 are required, even if there are no
additional constraints imposed.

Now it remains to show that it is possible to obtain a (locally) unique
solution to Φ. One of many equivalent conditions for uniqueness of an exact
GCRD, is to require it to be primitive and have a monic leading coefficient.
Numerically, to obtain a unique solution of the approximate GCRD problem,
we impose the same constraints, making solutions locally unique.

3.2 Convergence of Newton Iteration and Conditioning

From Theorem 3.3 and Corollary 3.4 we know a solution to the approximate
GCRD problem exists. We now show that a standard Newton iteration will
converge quadratically when starting with an estimate sufficiently close to an
approximate GCRD. We first describe the Jacobian of the residuals and show
that the Jacobian has full rank. This leads to a first-order approximation
of the Hessian matrix showing that it is locally positive definite around a
global minimum when the residual is sufficiently small. The implication is
that Newton’s method will converge quadratically (Boyd and Vandenberghe,
2004). If we consider structured perturbations, then we are able to obtain
results similar to that of Zeng and Dayton (2004) to the overall conditioning
of the system.
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In this section we assume without loss of generality that f∗, g∗ ∈ R[t][∂;′ ]
are primitive, and that f and g may no longer be primitive to simplify
computations. We need to clear fractions of rational functions to apply our
coefficient norms, and to linearize h, f∗ and g∗ as vectors of real numbers.

The residual of the approximate GCRD is

r = r(h, f∗, g∗)

= (f∗h− f ,g∗h− g)T ∈ Rη×1,

where

η =
∑

0≤i≤M
max{degt fi,−1}+

∑
0≤i≤N

max{degt gi,−1}+ (M + 1) + (N + 1)

≤ (M +N + 2)(d+ 1).

Intuitively, η represents the number of components of (f ,g) ∈ R1×η. Let ν
be the number of variables needed to represent the coefficients of h, f∗ and
g∗, i.e. (h, f∗,g∗) ∈ R1×ν .

Recall that when f = f∗h, we can linearize this relationship with differ-
ential convolution matrices, by writing

f = (f∗0 , . . . , f
∗
M−D)CRM−D(h).

If fi is a coefficient of f with degt fi = d, then we may write

fi =
∑

0≤j≤M−D
f∗j (CRM−D(h)[j, i]).

This relationship may be linearized over R through the use of convolution
matrices. Writing

fi =
∑

0≤j≤M−D
f∗j · Cd

(
CRM−D(h)[j, i]

)T
,

we now have a direct method of computing fi in terms of the coefficients of
f∗ and h.

If we differentiate f∗h with respect to an entry from f∗, then we will
obtain the corresponding (linearized) row of CRM−D(h). Similarly, differenti-
ating f∗h with respect to an entry of h will give us a (linearized) column of
CLD(f∗). This relationship becomes clear when we observe that

(f∗0 , . . . , f
∗
M−D)CRM−D(h) =

CLD(f∗)

h0
...
hD



T

.

19



Differentiating g∗h with respect to variables from g∗ and h will produce
similar results.

The Jacobian of r(h, f∗, g∗) for arbitrary h, f∗ and g∗ may be expressed
(up to column permutation) in block matrix form as

J =

(
CRM−D(h)T 0 CLD(f∗)

0 CRN−D(h)T CLD(g∗)

)
∈ Rη×ν ,

where the block matrices are linearized accordingly. In our formulation of
the approximate GCRD problem we normalize lcoefft lcoeff∂ h so that it is
a predetermined constant, which results in essentially the same Jacobian as
described above.

The only difference in the Jacobians, is that the νth column would be-
come the zero column if differentiated with respect to lcoefft lcoeff∂ h, since
lcoefft lcoeff∂ h is constant. When normalized for computational purposes,
the Jacobian belongs to Rη×ν−1 instead (the last column is deleted). In the
general case when gcrd(f∗, g∗) = 1, J is rank deficient by 1 and the νth

column is a linear combination of the other columns. The following lemma,
similar to (Zeng, 2011, Lemma 4.1), formalizes this statement.

Lemma 3.6. Let r be the residual described earlier with Jacobian J . Sup-
pose that lcoefft lcoeff∂ h is a fixed non-zero constant. If gcrd(f∗, g∗) = 1,
then all non-zero columns of J are linearly independent.

Proof. Let ~eν ∈ R1×ν be a unit vector whose last component is 1. We write

~eν(0, . . . , 0,h)T = lcoefft lcoeff∂ h 6= 0.

We shall prove the equivalent statement that the matrix

(
J
~eν

)
=

CRM−D(h)T 0 CLD(f∗)
0 CRN−D(h)T CLD(g∗)

~eν

 ∈ R(η+1)×ν

has full rank.
Suppose the converse holds, then there exists q1, q2, p ∈ R[t][∂;′ ] with

deg∂q1 ≤M −D,deg∂q2 ≤ N −D and deg∂p ≤ D such that their combined
coefficient vector satisfies (

J
~eν

)q1
T

q2
T

−pT

 =

0
0
0

 .
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Expressing this as multiplication over R[t][∂;′ ], we have that

f∗p = q1h,

g∗p = q2h.

We conclude that gcrd(f∗p, g∗p) = p, as gcrd(f∗, g∗) = 1. If p = 0 or
q1 = 0 or q2 = 0, then we are done (as R[t][∂;′ ] is a domain). Suppose
that p 6= 0 and q1 6= 0 and q2 6= 0. Accordingly we must also have that
gcrd(q1h, q2h) = gcrd(q1, q2)αh = p for some α 6= 0. Since deg∂p ≤ deg∂h it
follows that gcrd(q1, q2) = 1 so p = αh.

Since p = αh we must have that αf∗ = q1 and αg∗ = q2. Now,

~eν(0, . . . , 0,h)T = lcoefft lcoeff∂ h 6= 0.

On the other hand,
~eν(0, . . . , 0, αh)T = 0.

This occurs if and only if α = 0. But in this case p = 0 as well, soq1
T

q2
T

−pT

 =

0
0
0

 .

It follows that the only vector in the null space is the zero vector, hence(
J
~eν

)
has full rank. Since any subset of linearly independent vectors is also

linearly independent, we have that when lcoefft lcoeff∂ h is a fixed non-zero
constant that J has rank ν − 1.

Note that from the proof we see that if lcoefft lcoeff∂ h were not fixed,
then the vector (f∗,g∗,h)T forms a basis for the nullspace of J . Intuitively, if
we did not fix lcoefft lcoeff∂ in advance, then there would be infinitely many
tuples of (h, f∗, g∗) with the same degree structure over R[t] that minimized
Φ, since for any α 6= 0 we have

‖f − f∗h‖22 + ‖g − g∗h‖22 = ‖f − (αf∗)(α−1h)‖22 + ‖g − (αg∗)(α−1h)‖22.

In other words, we need to normalize h in advance to obtain a unique solu-
tion.

Corollary 3.7. Let r be the residual defined earlier in this section with
lcoefft lcoeff∂ h a non-zero constant. If r = 0, then the Hessian matrix
∇2Φ(h, f∗, g∗) is positive definite.
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Proof. Let J be the Jacobian of r. J has full rank, so JTJ has full rank
and is positive semidefinite. If r = 0, at the global minimum we have that
2JTJ = ∇2Φ, and ∇2Φ(h, f∗, g∗) is positive definite.

When there is no residual, the Hessian ∇2Φ(h, f∗, g∗) is positive definite.
It follows that if f and g are perturbed by a sufficiently small amount, then
∇2Φ remains locally positive definite, and Newton iteration will converge to
the (local) global minimum with an initial guess that is sufficiently close.

We are able to obtain a condition number for a structured perturbation
through the Jacobian of the residuals. Since J has full rank, the smallest
singular value σν−1 of J(r(h, f∗, g∗)) is strictly positive. If we consider
structured perturbations, then we are able to show that the approximate
GCRD problem is (locally) well-posed.

In the next lemma, we make use of the fact that for any f ∈ R[t][∂;′ ],
we have that ‖f‖2 = ‖f‖2.

Lemma 3.8. Let f, g, h, f∗, g∗ ∈ R[t][∂;′ ] be such that Φ(h, f∗, g∗) < ε
for some ε > 0, with lcoefft lcoeff∂ h a fixed non-zero constant. Suppose
f̂ , ĝ, ĥ, f̂∗, ĝ∗ ∈ R[t][∂;′ ] possess the same degree structures as f, g, h, f∗ and
g∗ and that

Φ̂(ĥ, f̂∗, ĝ∗) = ‖f̂ − f̂∗ĥ‖22 + ‖ĝ − ĝ∗ĥ‖22 < ε.

Then,∥∥∥(h− ĥ, f∗ − f̂∗, g∗ − ĝ∗)
∥∥∥2

2
≤ 1

σ2
ν−1

(
2ε+

∥∥∥(f − f̂ , g − ĝ)
∥∥∥2

2

)
+

higher order
terms.

Proof. Let J = J(r(h, f∗, g∗)) be the Jacobian of the residuals from earlier
in this section. We have that

(f∗h− f̂∗ĥ,g∗h− ĝ∗ĥ)T ≈ J(h− ĥ, f∗ − f̂∗,g − ĝ∗)T .

Ignoring high order terms and using the well known fact that for a (left)
pseudo inverse J+ of J , that ‖J+‖2 = 1

σν−1
gives us∥∥∥(f∗h− f̂∗ĥ,g∗h− ĝ∗ĥ)T

∥∥∥2

2
≈
∥∥∥J(h− ĥ, f∗ − f̂∗,g∗ − ĝ∗)T

∥∥∥2

2

≥ σ2
ν−1

∥∥∥(h− ĥ, f∗ − f̂∗,g∗ − ĝ∗)
∥∥∥2

2
.
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A straightforward application of the triangle inequality gives∥∥∥(h− ĥ,f∗ − f̂∗, g∗ − ĝ∗)
∥∥∥2

2

≤ 1

σ2
ν−1

∥∥∥(f∗h− f̂∗ĥ, g∗h− ĝ∗ĥ)
∥∥∥2

2

≤ 1

σ2
ν−1

(
Φ(h, f∗, g∗) + Φ̂(ĥ, f̂∗, ĝ∗) +

∥∥∥(f − f̂ , g − ĝ)
∥∥∥2

2

)
≤ 1

σ2
ν−1

(
2ε+

∥∥∥(f − f̂ , g − ĝ)
∥∥∥2

2

)
+ higher order terms.

Corollary 3.9. Suppose that hopt, f
∗
opt, g

∗
opt ∈ R[t][∂;′ ] are a locally unique

global minimum of Φ in some neighborhood around h, f∗ and g∗. If

Φ(h, f∗, g∗) < ε and Φ(hopt, f
∗
opt, g

∗
opt) < ε

for ε > 0, then∥∥(h− hopt, f∗ − f∗opt, g∗ − g∗opt)
∥∥2

2
≤ 2ε

σ2
ν−1

+ higher order terms.

If we compute different approximate GCRD pairs of f and g (using
different optimization techniques or initial guesses), then we are able to
bound the size of the perturbations of f∗, g∗ and h based on how near they
are. Furthermore, this corollary allows us to certify an upper bound on the
distance between our computed approximate GCRD tuple and the actual
global minimum.

4 Implementation of Approximate GCRD

This section discusses the particulars and implementation of the algorithms.
The algorithms are described in a Maple-like pseudo code, with Matlab style
matrix indexing. All of the algorithms have been implemented in the Maple
programming language. For convenience, the notation and assumptions in-
troduced at the start of Section 3 will hold, unless otherwise stated. Addi-
tionally, we will assume that content from differential polynomials can be
removed numerically, as computed quantities are typically not primitive due
to round-off errors.

The matrices S = S(f, g) ∈ R[t](M+N)×(M+N) will be the differential
Sylvester matrix of f and g, and Ŝ = Ŝ(f, g) ∈ R(M+N)(µ+1)×(M+N)(µ+d+1)
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will be the inflated differential Sylvester matrix of f and g, where µ =
2(M +N)d.

The presentation and theoretical analysis of the algorithms is presented
in a bottom-up manner, reflecting their dependencies. Asymptotic upper
bounds on the number of floating point operations required are provided.
Furthermore, we discuss whether the output of the algorithm can be certified
in some manner, when applicable.

We demonstrate the robustness of our algorithms in practice. Specific ex-
amples are provided to thoroughly demonstrate the steps of the algorithms.
We investigate interesting families of input. In particular, we investigate
exact inputs with an exact GCRD, and perturbed differential polynomi-
als with varying errors and noise introduced. The test cases of differential
polynomials of interest to us have

• low degree in t and high degree in ∂ (unbalanced in ∂),

• high degree in t and low degree in ∂ (unbalanced in t), and

• proportional degrees in t and ∂ (balanced degrees).

4.1 Algorithms for Approximate GCRD

We adapt techniques from the exact setting to a numerical setting to com-
pute an exact GCRD numerically. These algorithms compute the rank of
the differential Sylvester matrix and a least squares solution to a polyno-
mial linear system, corresponding to the Bézout coefficients. We describe
an algorithm for finding nearby differential polynomials introduced in (Gies-
brecht and Haraldson, 2014), whose (inflated) differential Sylvester matrix
is nearly singular. Using the least squares numeric GCRD algorithm, we
can compute an approximate GCRD candidate from the nearly singular dif-
ferential Sylvester matrix. From this candidate, we extract a guess for the
co-factors numerically and proceed with post-refinement Newton iteration.

4.1.1 Numerical Computation of a GCRD

Before we can compute a GCRD numerically, the rank of the differential
Sylvester matrix needs to be determined. Our numeric rank algorithm is an
adaptation of the rank algorithm used by Corless et al. (1995). There are

(M +N)(µ+ d+ 1)− (M +N)(µ+ 1) = (M +N)d = µ/2
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trivial singular values†, and µ/2 < µ+ d+ 1, the column block size. These
trivial singular values need to be accounted for when annihilating small
singular values. In the full rank case, we should not underestimate the rank
of S by inferring from Ŝ, as there are strictly fewer trivial singular values
than the column block size.

Algorithm 1 : DeflatedRank

Input:
• An inflated differential Sylvester matrix

Ŝ ∈ R(M+N)(µ+1)×(M+N)(µ+d+1);

• A user defined search radius εrank > 0 for comparing singular values.

Output:
• The numeric rank % of the (non-inflated) differential Sylvester matrix S.

1: Compute the singular values σ1, σ2, . . . , σ(M+N)(µ+d+1) of Ŝ in descend-
ing order.

2: Find the maximum k such that σk > εrank

√
(M+N)(2µ+d+2)

µ+d+1 and σk+1 <
εrank.

3: if σk > εrank for all k then Ŝ has full rank.
4: If there is no significant change (there is no maximum k) between σk

and σk+1 for all k, as determined by step 2 then return failure.

5: Set % =
⌈

k
µ+d+1

⌉
, the scaled rank of S.

Algorithm 1 computes a reasonable guess for the degree in ∂ of an ap-
proximate GCRD, although it is not generally certifiable. When gcrd(f, g) is
non-trivial (no errors present in the input coefficients), we compute (gener-
ically) the degree of the GCRD of f and g. In the exact setting, we can
now formulate a linear algebra problem over R[t] to compute a GCRD. We
present two solutions to this problem. Algorithm 2 solves this problem us-
ing linear algebra over R(t). Algorithm 3 linearizes the problem over R and
computes a least squares solution.

In the implementation of Algorithm 2, we take special care to ensure
that lcoefft lcoeff∂ h does not vanish when h is normalized. If lcoefft lcoeff∂ h

†The inflated differential Sylvester matrix has more columns than rows, however the
nullspace of the columns contains the information pertaining to the GCRD. The trivial
singular values are the zero singular values occuring from there being more columns than
rows.
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Algorithm 2 : NumericGCRD

Input:
• f, g ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = 1;
• A search radius εrank > 0.

Output:
• h = gcrd(f, g) ∈ R[t][∂;′ ] with deg∂h ≥ 1,
• or an indication that f and g are co-prime within search radius εrank.

1: M ← deg∂f , N ← deg∂g, d← max{degt f,degt g}, µ← 2(M +N)d.
2: S ← S(f, g) ∈ R[t](M+N)×(M+N).
3: Form the inflated differential Sylvester matrix
Ŝ = Ŝ(f, g) ∈ R(M+N)(µ+1)×(M+N)(µ+d+1) of S.

4: Compute the numerical rank % of S using Algorithm 1 on Ŝ with search
radius εrank.

5: If % > 0, then set deg∂h = D = M +N − %. Otherwise indicate that f
and g are co-prime with respect to εrank and return.

6: Solve for w ∈ R[t][∂;′ ]1×(M+N) from

wS = (∗1, ∗2, . . . , ∗D+1, 0, . . . , 0),

ensuring that ‖ lcoefft(∗D+1)‖ � 0.
7: Set (h0, h1, . . . , hD, 0, . . . , 0) = wS.
8: return cont(h)−1h.

vanishes, then this could be an indication that the input is ill-conditioned or
content removal of h failed. In either case, it is possible that this instance of
the approximate GCRD problem will not have an attainable global minimum
in accordance with Theorem 3.3.

4.1.2 Nearby Differential Polynomials with GCRD Algorithm

The matrix Ŝ is highly structured, as it is composed of block Toeplitz ma-
trices. When we consider the matrix Ŝ + ∆Ŝ, the nearest (unstructured)
matrix of prescribed rank deficiency, we have considerable flexibility in how
we recover the coefficients of f̃ and g̃. The matrix Ŝ+∆Ŝ is probably not an
inflated differential Sylvester matrix, however it is reasonably close to one
(see Giesbrecht and Haraldson (2014); Haraldson (2015)). We recall that
the mapping Γ : R[t]→ R(µ+1)×(µ+d+1) generates the (rectangular) Toeplitz
blocks of Ŝ. To recover the coefficients of f̃ and g̃ one must make a suitable
definition for the mapping Γ−1 : R(µ+1)×(µ+d+1) → R[t]. We use Γ−1 to find
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Algorithm 3 : NumericGCRDviaLS

Input:
• f, g ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = 1;
• εrank > 0 used to compute the degree of the GCRD.

Output:
• h ∈ R[t][∂;′ ] that is numerically primitive with a fixed leading coefficient

such that ‖wS(f, g)− h‖22 is minimized.
1: M ← deg∂f , N ← deg∂g, d← max{degt f,degt g}, µ← 2(M +N)d.
2: Compute D using Algorithm 1 with εrank.

3:
−→
deg← (µ+ d, . . . , µ+ d︸ ︷︷ ︸

D+1

, 0, . . . 0) (or another valid initial guess).

4: Compute a least squares solution of h from ‖wS(f, g)−h‖2 with
−→
deg(h) =

−→
deg and lcoefft lcoeff∂ h = 1.

5:
−→
deg←

−→
deg(cont(h)−1h).

6: Compute a new least squares solution of h from ‖wS(f, g) − h‖2 with
−→
deg(h) =

−→
deg and lcoefft lcoeff∂ h = 1.

7: return h.

f̃ , g̃ ∈ R[t][∂;′ ] such that Ŝ(f̃ , g̃) ≈ Ŝ(f, g) + ∆Ŝ(f, g).
Regardless of our choice of Γ−1, this method of recovering f̃ and g̃ can

lead to a differential Sylvester matrix that does not have the desired numeric
rank, as determined by Algorithm 1. The perturbation ∆Ŝ is unstructured
while Γ(f̃i) and Γ(g̃j) are (highly structured) Toeplitz matrices. Conse-

quently, some non-zero terms of ∆Ŝ are ignored.

4.1.3 Numeric Right Division

Numeric right division without remainder between two differential polyno-
mials is a rational function linear algebra problem. The (approximate) quo-
tient is a solution to a linear system, in a least squares sense. We present a
naive algorithm that works well in practice and a more rigorous linear least
squares variant.

The solution to this system may not be in (approximate) lowest terms.
In our implementation we use approximate GCD and real linear least squares
to resolve this. We note that total least squares can also be employed to
prevent the need of an approximate GCD computation to put the rational
function coefficients in lowest terms.
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Algorithm 4 : DeflatedPerturbation

Input:
• f, g ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = 1;
• Perturbed inflated differential Sylvester matrix

Ŝ + ∆Ŝ ∈ R(M+N)(µ+1)×(M+N)(µ+d+1);

• Γ−1 : R(µ+1)×(µ+d+1) → R[t].

Output:

• f̃ , g̃ ∈ R[t][∂;′ ] where
−→
deg(f̃) ≤

−→
deg(f) and

−→
deg(g̃) ≤

−→
deg(g).

1: M ← deg∂f , N ← deg∂g, d ← max{degt f,degt g}, µ ← 2(M + N)d
and N ← µ+ d+ 1.

2: for 0 ≤ i ≤ deg∂f do
3: [I, J ]← [1 : µ+ 1][(i+ 1) + (i− 1)N(µ+ d+ 1) : (i+ 1)N(µ+ d+ 1)]

4: f̃i ← Γ−1
(

(Ŝ + ∆Ŝ)[I, J ]
)

5: end for
6: for 0 ≤ i ≤ deg∂g do
7: [I, J ]← [N(µ+ 1) + 1 : (N + 1)(µ+ 1)][(i+ 1) + (i−1)M(µ+d+ 1) :

(i+ 1)M(µ+ d+ 1)]

8: g̃i ← Γ−1
(

(Ŝ + ∆Ŝ)[I, J ])
)

9: end for
10: return f̃ and g̃.

4.1.4 Improved GCRD via Optimization: Newton’s Method

Using Algorithm 5, we can compute an initial guess for an approximate
GCRD, hinit. We can perform right division without remainder numerically
to compute initial guesses for the co-factors, f∗init and g∗init. We now have
enough information to set up a post-refinement Newton iteration, to hope-
fully compute an approximate GCRD. When the co-factors have polynomial
coefficients, the products f∗h and g∗h are always polynomial. This makes
Newton iteration a very straightforward procedure, as the objective function

Φ(h, f∗, g∗) = ‖f − f∗h‖22 + ‖g − g∗h‖22

is easily computed. However, when the co-factors have rational function
coefficients, the quantities f∗h and g∗h usually have rational function coef-
ficients due to round-off error. We can clear fractions and compute the least
squares solution of an equivalent associate problem.
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Algorithm 5 : NearbyWithGCRD

Input:
• f, g ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = 1;
• A search radius εrank > 0, used to validate the degree of h.

Output:

• f̃ , g̃ ∈ R[t][∂;′ ] where
−→
deg(f̃) ≤

−→
deg(f), (

−→
deg(g̃) ≤

−→
deg(g) and h ≈

gcrd(f̃ , f̃) ∈ R[t][∂;′ ] with deg∂h ≥ 1, or ;
• An indication that f and g are co-prime within search radius εrank.

1: M ← deg∂f , N ← deg∂g, d← max{degt f, degt g} and µ← 2(M+N)d.
2: S ← S(f, g) ∈ R[t](M+N)×(M+N).
3: Ŝ ← Ŝ(f, g) ∈ R(M+N)(µ+1)×(M+N)(µ+d+1).
4: Compute the SVD of Ŝ, where Ŝ = PΣQ.
5: Compute the numerical rank % of S using Algorithm 1 on Ŝ with search

radius εrank.
6: If % > 0 set the last %(µ + d + 1) singular values to 0 and compute Σ.

Otherwise indicate that f and g are co-prime with respect to εrank.
7: Compute Ŝ + ∆Ŝ = PΣQ.
8: Compute f̃ and g̃ from Ŝ + ∆Ŝ using Algorithm 4.
9: Compute h = NumericGCRD(f̃ , g̃) using Algorithm 3, with εrank used to

validate the degree of h using Algorithm 1.
10: return f̃ , g̃ and h.

Algorithm 6 : NaiveNumericRightDivision

Input:
• f, h ∈ R[t][∂;′ ] with ‖f‖ = ‖h‖ = 1.

Output:
• f∗ ∈ R(t)[∂;′ ] satisfying f = f∗h.
1: M ← deg∂f , D ← deg∂h.
2: Form the matrix M(h) from the last M −D + 1 columns of CRM−D(h).
3: Solve

(fD, fD+1, . . . , fM ) = (f∗0 , f
∗
1 , . . . , f

∗
M−D)M(h)

by backwards substitution for the coefficients of f∗.
4: for 0 ≤ i ≤M −D do
5: f∗i ← Approximate f∗i in rational function least terms
6: end for
7: return f∗.
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Algorithm 7 : NumericRightDivisionViaLS

Input:
• f, h ∈ R[t][∂;′ ] with ‖f‖ = ‖h‖ = 1.

Output:
• f∗ ∈ R(t)[∂;′ ] in lowest terms satisfying f = f∗h.
1: M ← deg∂f , D ← deg∂h.
2: Solve

v−1(f0, f1, . . . , fM ) = (v0, v1, . . . , vM−D)CRM−D(h)

by linear least squares for the coefficients of v−1, v0, . . . , vM−D.
3: for 0 ≤ i ≤M −D do

4: f∗i ← Approximate
vi
v−1

in rational function least terms

5: end for
6: return f∗.

Algorithm 8 : NewtonIteration

Input:
• f, g, hinit ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = ‖hinit‖ = 1;
• k ∈ N, the number of iterations.

Output:
• f∗, g∗ ∈ R[t][∂;′ ] and h ∈ R[t][∂;′ ] such that Φ(f∗h, g∗h) is locally mini-

mized and
•
−→
deg(f∗h) ≤

−→
deg(f) and

−→
deg(g∗h) ≤

−→
deg(g).

1: M ← deg∂f , N ← deg∂g and D ← deg∂hinit.
2: Compute initial guesses of f∗ and g∗ using Algorithm 7.
3: lcoefft lcoeff∂ h← lcoefft lcoeff∂ hinit.
4: x0 ← (f∗init,g

∗
init,hinit)

T .
5: for 1 ≤ i ≤ k do
6: Solve ∇2Φ(xi) · xi+1 = ∇2Φ(xi) · xi −∇Φ(xi) for xi+1.
7: end for
8: return f∗, g∗, and h computed from xk.

The normalization we impose, that lcoefft lcoeff∂ h is fixed, ensures the
solution is (locally) unique, by Corollary 3.7. We note that this normaliza-
tion can be changed. However one must ensure that the normalization vector
is not orthogonal to (f∗,g∗,h). We now generalize the Newton iteration for
the instance when the co-factors have rational function coefficients.
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Algorithm 9 : ModifiedNewtonIteration

Input:
• f, g, hinit ∈ R[t][∂;′ ] with ‖f‖ = ‖g‖ = ‖hinit‖ = 1;
• k ∈ N, the number of iterations.

Output:
• f∗, g∗ ∈ R(t)[∂;′ ] and h ∈ R[t][∂;′ ] such that Φ(f∗h, g∗h) is locally

minimized and
•
−→
deg(f∗h) ≤

−→
deg(f) and

−→
deg(g∗h) ≤

−→
deg(g).

1: M ← deg∂f , N ← deg∂g and D ← deg∂hinit.
2: Compute initial guesses of f∗ and g∗ using Algorithm 7.
3: lcoefft lcoeff∂ h← lcoefft lcoeff∂ hinit.
4: f ← f∗−1f, g ← g∗−1g, f

∗ ← f∗−1f
∗ and g∗ ← g∗−1g

∗.
5: x0 ← (f∗init,g

∗
init,hinit)

T .
6: for 1 ≤ i ≤ k do
7: Solve ∇2Φ(xi+1) · xi = ∇2Φ(xi) · xi −∇Φ(xi) for xi+1.
8: end for
9: f∗ ← 1

f∗−1
f∗ and g∗ ← 1

g∗−1
g∗.

10: return f∗, g∗ and h computed from xk.

4.2 Analysis of Algorithms

In this section we assess the computational cost in terms of the number
of floating point operations or flops. Where applicable, we discuss the nu-
merical stability of the algorithms and whether or not their output can be
certified. The algorithms are analyzed in the order they were presented.
The assumption that content can be removed numerically is not without
loss of generality; content removal can be unstable if implemented poorly.

In our implementation we remove content by (re)formulating our solu-
tions as a solution to a (total) least squares problem. This can be done by
performing the SVD on a generalized Sylvester matrix of several univariate
polynomials (Kaltofen et al., 2006) to infer the degree of the content. Com-
puting the degree of the content this way generalizes the method of Corless
et al. (1995) to several polynomials. In our implementation the only impor-
tant information is the degree of an approximate GCD, so we assume that
the run-time of approximate GCD is cubic in the number of variables. One
could compute an approximate GCD of several polynomials and perform a
least squares division, however post-refinement would likely be needed. We
generally assume that unstructured linear algebra techniques are used on the
problems, however structured methods could lead to a modest asymptotic
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improvement.

4.2.1 Analysis of Algorithm 1 – DeflatedRank

The number of flops Algorithm 1 requires is dominated by the cost of per-
forming the SVD on Ŝ. The SVD requires O((M + N)3(µ + d + 1)3) =
O((M +N)6d3) flops, using standard arithmetic. As mentioned earlier, this
algorithm is generally not certified to produce the degree of an approximate
GCRD.

4.2.2 Analysis of Algorithm 2 – NumericGCRD

The number of flops Algorithm 2 requires is ultimately bounded by the cost
of computing the rank of S using Algorithm 1. The cost of Algorithm 1
is O((M + N)6d3) flops. The cost of computing a GCRD given the degree
in ∂ is O((M + N)3) operations over R(t) which corresponds to O((M +
N)3d2) flops. The cost of the approximate GCD and division to remove
content depends on the specific method used, but is usually negligible when
compared to the rank computation.

This algorithm is not numerically stable for large degree inputs in t and
∂. Performing linear algebra over R(t) leads to considerable degree growth
in t, and removing (approximate) content with a division further perturbs
the coefficients of the GCRD. The output of this algorithm is not certified
to be correct in most instances.

4.2.3 Analysis of Algorithm 3 – NumericGCRDviaLS

There are (M + N)(µ + d + 1) equations and (M + N)(µ + 1) + (D +
1)(µ+ d+ 1) = O((M +N)2d) unknowns. The cost of computing the least
squares solution is O((M+N)6d3) flops. The cost of inferring the content by
looking at singular values of the (generalized) Sylvester matrix is bounded
by O((D)3(µ+ d+ 1)3) = O((M +N)6d3) flops. The total number of flops
required for this algorithm is O((M +N)6d3).

This algorithm relies on solving a real linear least squares problem. As
such, this algorithm is numerically stable, provided that the underlying least
squares problem is reasonably conditioned, and solved in a reasonable way.
One such method of solving the least squares problem is the SVD and arising
pseudo-inverse. We are able to certify the correctness of the answer obtained
via least squares, provided that the underlying approximate GCD algorithm
computes the degree of the content correctly.
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4.2.4 Analysis of Algorithm 4 – DeflatedPerturbation

The number of flops Algorithm 4 requires is O((M +N)2d2), assuming that
Γ−1 uses the weighted block average. We use this in our implementation.
This algorithm is not certified to provide meaningful output.

4.2.5 Analysis of Algorithm 5 – NearbyWithGCRD

The number of flops Algorithm 5 requires is dominated by the cost of com-
puting the singular values of Ŝ, which is O((M +N)6d3) flops.

This algorithm is exactly the same as Algorithm 2 when Ŝ has the desired
rank deficiency. In the event that the input is approximate, the quality of
our answer depends on the largest singular value of Ŝ that we annihilate.
This algorithm is not certified to provide meaningful output, but if used in
conjunction with Algorithm 3, the output can be certified as a least squares
approximation to the solution of the Bézout coefficients.

4.2.6 Analysis of Algorithm 6 – NaiveNumericRightDivision

The number of flops Algorithm 6 requires depends on the method used to
solve the linear system. The particular system is highly structured so we
can solve it by backwards substitution directly, which costs O((M − D)2)
operations over R(t). This corresponds to O((M −D)2d2) flops. An upper
bound on the degree required for approximate GCD computations is (M −
D + 1)d. The total cost of each approximate GCD computation is at most
O(((M − D)d)3) flops. There are at most M − D + 1 approximate GCD
computations performed, so the total cost of the algorithm is O((M−D)4d3)
flops.

The output of this answer is generally only certifiable if the residual of
a least squares division is zero, i.e. the coefficients are exact. If we assume
that lcoefft lcoeff∂ h = 1 and ‖h‖ is not arbitrarily large, then the backwards
substitution is well conditioned. The approximate GCD computations and
following divisions can perturb the coefficients, so the algorithm can be
unstable for poorly conditioned inputs. This is especially problematic when
lcoeff∂ h is poorly conditioned.

4.2.7 Analysis of Algorithm 7 – NumericRightDivisionViaLS

If f∗ has polynomial coefficients, then degt f
∗ ≤ degt f ≤ d as f and h have

polynomial coefficients as well. If f∗ has rational function coefficients, we
recall from Section 2.2 that there are O(M(M−D)d) equations and O((M−
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D)2d) unknowns. The cost of solving this linear least squares problem is
O((M(M −D)d)3) ⊆ O(M6d3) flops.

The output of this algorithm is certified as a linear least squares solution.
Like Algorithm 6, the conditioning of this algorithm is strongly related to
the conditioning of hD.

4.2.8 Analysis of Algorithms 8–9 – NewtonIteration

and ModifiedNewtonIteration

We transform the problem of computing a GCRD to that of optimizing
Φ : R[t][∂;′ ] × R(t)[∂;′ ]2 → R. We can assume without loss of generality
that f∗ and g∗ have polynomial coefficients, as we can solve an equivalent
associate problem instead. The dominating cost of the Newton iteration is
solving a linear system to get the next value which requires O(ν3) operations,
where ν is the number of variables needed to represent the coefficients of
h, f∗ and g∗.

Newton iteration can fail for many reasons, (it is, afterall, a locally
convergent method) however our Newton iteration usually fails because:

1. ∇2Φ is positive semidefinite at a point in the iteration, the stationary
point is a saddle point;

2. The initial guess is poorly chosen and ∇2Φ is indefinite at a point.

In the event that Newton iteration fails we can perform a Gauss-Newton
iteration instead. Despite Gauss-Newton iteration having at least linear
convergence, JTJ is positive definite, so saddle points are no longer a prob-
lem if the optimal residual is sufficiently small. According to Corollary 3.7,
if the residual is sufficiently small then Newton iteration will converge to a
global minimum.

4.3 Examples and Experimental Results

This section contains some examples of our implementation.‡ The (inflated)
differential Sylvester matrix is ill-conditioned for large degree inputs in t
and ∂. This ill-conditioning occurs because the columns (rows) become
unbalanced due to the falling factorials, where some columns have a Frobe-
nius norm factorially larger than others. We restrict ourselves to modest
examples with minimal coefficient growth. Computations are done using

‡A proof-of-concept implementation of the algorithms is available at https://cs.

uwaterloo.ca/~jharalds/code/ApproxOre/.
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the default precision in Maple, which is approximately 10 decimal points of
accuracy.

Example 4.1 (No Noise, many factors).

f =.00769∂5 + (.00035t2 + .05386t− .05386)∂4

+(.00140t3 + .06820t2 − .16928t+ .17313)∂3

+(−.09513t3 + .22559t2 + .16928t− .33472)∂2

+(.18607t3 − .65720t2 − .04617t+ .32702)∂

+(−.09234t3 + .36305t2 − .00769t− .11927).

g =(.01001t− .01001)∂5 + (.04019t2 − .07007t+ .03003)∂4

+(.00063t3 − .01048t2 + .15014t− .11010)∂3

+(.27901t3 − .32921t2 − .09008t+ .17016)∂2

+(−.55990t3 + .52909t2 − .04004t− .08007)∂

+(.28026t3 − .22959t2 + .04004t).

We compute initial guesses (removing content numerically where appropri-
ate):

hguess =.09285∂3 + (.37139t− .27854)∂2 + (−.74278t+ .27854)∂ + (.37139t− .09285),

f∗guess =.08287∂2 + (.00377t2 + .24862t− .33150)∂+

(−2.05844× 10−10t3 − .24862t2 + .91162t− .04144),

g∗guess =(.10780t− .10780)∂2 + (.00168t2 + 8.67540× 10−9t− 2.71283× 10−9)∂

+(2.35115× 10−8t3 + .75463t2 − .43122t+ 6.78976× 10−8).

The quality of this initial guess is

‖f − f∗guesshguess‖22 + ‖g − g∗guesshguess‖22 = 4.04506× 10−14.

The condition number for the Hessian matrix evaluated at our initial guess
is 18354.38336 and our smallest eigenvalue is .00314. Since ∇2Φ is locally
positive definite, we know that we will converge to a unique (local) minimum.
The minimum we converge to is 2.33030× 10−20.

The exact GCRD in this example is h = (∂ + 4t− 1)(∂ − 1)(∂ − 1).

Example 4.2 (Noise). In this example we introduced normalized noise of
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size 10−5 to f and g.

f =.00583∂5

+(−9.45614× 10−7t3 + .00027t2 + .03498t− .03498)∂4

+(−8.26797× 10−7t5 + .04743t3 + .01113t2 − .05247t+ .07287)∂3

+(−9.08565× 10−8t5 + .13885t4 − .21623t3 + .30950t2 − .17781t− .05247)∂2

+(−.18655t5 − .02226t4 − .20166t3 − .41974t2 + .33812t− .10202)∂

+(.18655t5 − .30315t4 + .43935t3 − .22868t2 − .13117t+ .15740).

g =(.00780t− .00779)∂5

+(9.10928× 10−7t5 + 6.83196× 10−7t3 + .02351t2 − .07018t+ .02729)∂4

+(5.94796× 10−8t4 + .02376t3 − .07822t2 + .12086t− .06238)∂3

+.16326t4 + .04654t3 − .27267t2 + .12476t+ .03898)∂2

+(−.21833t5 − .10868t4 − .05617t3 + .63939t2 − .38597t+ .14036)∂

+(.21833t5 − .27291t4 − .01462t3 − .09418t2 + .24952t− .12086).

We compute initial guesses (removing content numerically where appropri-
ate):

hguess =.11192∂3 + (.33514t− .22357)∂2

+(−.44667t2 − .22358t− .11327)∂ + .44754t2 − .55869t+ .22453,

f∗guess =(5.97992× 10−8t5 − .00001t4 + .05212− 8.67362× 10−18t2 + 5.20417× 10−18t)∂2

+(−.0001t5 − .00002t4 − .00001t3 + .00238t2 + .15646t− .20842)∂

+(.00003t5 −+.41663t3 − .15629t2 + .57193t− .02463),

g∗guess =(−2.10091× 10−8t5 +−6.93889× 10−18t3 − 1.73472× 10−17t2 + .06967t− .06963)∂2

+(.00002t4 + .00001t3 + .00146t2 − .27937t+ .10474)∂

+(−.00004t5 + .00002t4 + .48596t3 + .00189t2 − .27763t− .00158).

The quality of this initial guess is

‖f − f∗guesshguess‖22 + ‖g − g∗guesshguess‖22 = .00003.

The condition number for the Hessian matrix evaluated at our initial guess
is 21971.20356 and our smallest eigenvalue is .00818. Since ∇2Φ is locally
positive definite, we know that we will converge to a unique (local) minimum.
The minimum we converge to is 1.06759×10−10, which is roughly the amount
of noise we added.
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Example 4.3 (GCRD via LS). In this example we added a noise factor of
10−4 to f and g. Performing Linear Algebra over R(t) produced completely
unacceptable answers, so we used a Least Squares algorithm to compute an
approximate GCRD.

f =(.11329t6 + .23414t5 + .12840t4 + .00755t3 + .00005)∂3

+(.00001t6 + .23414t5 + .59667t4 + .02269t3 − .04528t2 − .02266t+ 3.67436× 10−7)∂2

+(−.11329t6 + .33231t5 − .43054t4 − .00754t3 − .00003t2 − .06798t+ .00003)∂

(−.00001t6 − .23414t5 + .34741t4 + .01510t3 − .06799t2 + .09064t+ .00004).

g =(.01938t4 − .03876t3 − .07752t2 + .03876t+ .05819)∂3

+(.13567t4 + .23252t3 − .07750t2 − .34879t+ .29066)∂2

+(−.01938t4 + .13563t3 + .03873t2 + .25195t− .23257)∂

+(−.13562t4 + .44570t3 − .56198t2 − .03874t+ .17439).

Using a Least Squares variant of our Numeric GCRD algorithm, we are able
to compute (without removing content):

hguess =(t2 + 1.94162t+ .93768)∂2 + 2.87182∂

+(−.94502t2 + 2.84696t− 3.82712),

f∗guess =(.00712t6 − .01655t5 + .71917t4 + .05630t3 − .00048t2 − .00199t+ .00155)∂

+(−.00061t6 − .01248t5 + .02319t4 + .04309t3 − .02430t2 − .12387t− .00820),

g∗guess =(.00041t4 − .00715t3 + .13885t2 − .50330t+ .36942)∂

+(.00381t4 − .01139t3 + .86465t2 − .48856t+ .00231).

The quality of this initial guess is

‖f − f∗guesshguess‖22 + ‖g − g∗guesshguess‖22 = .00328.

The condition number for the Hessian matrix evaluated at our initial guess
is 148.62547 and our smallest eigenvalue is .04615. Since ∇2Φ is locally
positive definite, we know that we will converge to a unique (local) minimum.
The minimum we converge to is 9.53931× 10−9.

4.4 General Examples

We provide results that demonstrate the robustness of our algorithms. We
consider differential polynomials whose degrees in t and ∂ are balanced and
unbalanced. The coefficients of the inputs were generated using the Maple
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routine randpoly(). The inputs f and g were normalized so that ‖f‖ =
‖g‖ = 1. We introduced normalized noise to the coefficients of f and g, so
that the relative error is size of the perturbation. Precisely, if f + ∆f and
g + ∆g are perturbed from f and g by the quantities ∆f and ∆g, then the
relative error in the coefficients of f and g is given by ‖∆f‖2 = ‖∆g‖2.

We recall that the Newton iteration optimizes ‖f−f̃‖22+‖g−g̃‖22, which is
the sum of the squares of the errors. The initial error and error from post-
refinement are expressed as the sum of square errors accordingly. In our
experiments, the Initial Error is the quantity ‖f − finit‖22 + ‖g− ginit‖22 and
the error after post-refinement, Newton Error is the quantity ‖f − fopt‖22 +
‖g − gopt‖22. In all of the examples when there were no perturbations in the
coefficients of f and g, our numeric GCRD algorithm and post-refinement
procedures were able to compute an exact GCRD to machine precision.
When perturbations imposing a relative error of 10−8 in the coefficients
of f and g were introduced, we were able to compute a solution to the
approximate GCRD problem in every example.

Introducing perturbations imposing a relative error of order 10−4 and
10−2 into the coefficients of f and g prevented computation of an approxi-
mate GCRD in some examples. Instead, we provide examples of the largest
perturbation in the coefficients of f and g that we were able to compute an
approximate GCRD. Instances that are denoted as “FAIL” occur when the
post-refinement did not converge. The implementation of Newton’s method
is not globalized to converge to a stationary point, hence the iterates may
diverge. In our examples iterates diverge because the Hessian matrix is
indefinite at an initial guess.

4.4.1 Balanced Degrees in t and ∂

The following results of experiments were conducted on differential polyno-
mials whose degrees in t and ∂ were proportional, or balanced.

Example Input (∂, t) GCRD (∂, t) Noise Initial Error Newton Error

1 (2,2) (1,1) 1e-2 2.63579e-3 9.37365e-5
2 (2,2) (1,1) 1e-2 6.98136e-4 8.96068e-5
3 (3,2) (2,1) 1e-2 1.69968e-2 1.26257e-4
4 (3,4) (2,2) 1e-2 3.8269e-3 1.04271e-4
5 (4,4) (3,2) 1e-2 3.15314e-1 FAIL

5 (4,4) (3,2) 1e-4 9.29336e-7 8.97294e-9
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4.4.2 Unbalanced Degrees in ∂

The following results of experiments were conducted on differential polyno-
mials whose degrees in ∂ were relatively larger than their degree in t.

Example Input (∂, t) GCRD (∂, t) Noise Initial Error Newton Error

1 (2,2) (1,1) 1e-2 1.13109e-3 2.90713e-5
2 (3,2) (2,1) 1e-2 6.72179e-4 1.13998e-4
3 (4,2) (3,1) 1e-2 3.00365e-4 1.04038e-4
4 (5,2) (4,1) 1e-2 9.01982e-4 1.23557e-4
5 (6,2) (5,1) 1e-2 6.61552e-3 FAIL

5 (6,2) (5,1) 1e-4 2.74084e-4 1.12566e-8

4.4.3 Unbalanced Degrees in t

The following results of experiments were conducted on differential polyno-
mials whose degrees in t were relatively larger than their degree in ∂.

Example Input (∂, t) GCRD (∂, t) Noise Initial Error Newton Error

1 (2,3) (1,2) 1e-2 1.27092e-2 1.43153e-4
2 (2,6) (1,4) 1e-2 5.04286e-1 FAIL

2 (2,6) (1,4) 1e-4 7.78993e-4 1.31180e-8
3 (2,8) (1,6) 1e-4 6.9361e-2 FAIL

3 (2,8) (1,6) 1e-8 3.92268e-10 1.15653e-16
4 (2,11) (1,8) 1e-8 6.20749e-10 1.26549e-16
5 (2,13) (1,10) 1e-8 2.23588e-10 1.03136e-16

5 Conclusion

In this paper we have formally defined an approximate GCRD problem for
differential polynomials, and given an approach to a robust numerical so-
lution. We have seen that, under reasonable assumptions the approximate
GCRD problem is well posed. In particular, we show that Newton itera-
tion will converge to an optimal solution if the residual is sufficiently small.
We employ the earlier results in (Giesbrecht and Haraldson, 2014), analo-
gous to SVD-based approximate GCD methods like Corless et al. (1995), to
compute a reasonable initial estimate for the Newton iteration. The results
were presented for real differential polynomials, however the results gener-
alize in a very straight forward way to the instance of complex differential
polynomials.

We believe that some aspects of our problems could also be approached
from a structured low-rank approximation viewpoint Kaltofen et al. (2005);
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Schost and Spaenlehauer (2016). In particular, the work of Schost and
Spaenlehauer (2016) can be used to obtain an initial low-rank differential
Sylvester matrix in which co-factors and a GCRD can be extracted for post-
refinement. This holds more generally than differential polynomials, and a
particular example to consider is the shift operator, commonly associated
with linear difference equations.

Another area of future work is in the certification of the degree of an
approximate GCRD. We can obtain a reasonable guess by enumerating over
the degrees of all possible approximate GCRDs, similar to the Structured
Total Least Norm approach adopted for multivariate polynomial approxi-
mate GCD Kaltofen et al. (2006). A possible direction would be to look at
the differential subresultant sequence and the singular values of their inflated
block matrices Emiris et al. (1997).

The differential polynomials defined in this paper are special case of more
general Ore polynomials, which have broader application in the solution of
differential and difference equations. In particular, we could potentially ap-
ply our methods in the context of q-differentiation (Jackson differentiation)
or derivations on exponential polynomials. Ultimately, any Ore structure
will have a well-defined Sylvester-like matrix (see, e.g., Giesbrecht and Kim
(2013)). However, the numerical properties of different derivations may well
be quite difficult or even problematic, and may well introduce poles or other
significant sources of numerical instability.

We also hope, the results of this paper are a foundation for extending the
approximate polynomial toolbox to other problems with differential polyno-
mials and more general linear differential operators. Much like approximate
GCD, the approximate GCRD is both a stepping stone and a key tool to-
wards operations like approximate factorization and (functional) solution
of differential polynomials. More immediately, computation of an approxi-
mate GCRD enables computation of a corresponding approximate LCLM,
and multiple GCRD’s, and to multiple differential variables (i.e., iterated
Ore polynomials), which provide an effective method for dealing with linear
PDEs.
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Bronstein, M., Petkovšek, M., 1994. On Ore rings, linear operators and
factorisation. Programmirovanie 20, 27–45.
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