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ABSTRACT
We consider the problem of computing the nearest matrix polyno-

mial with a non-trivial Smith Normal Form. We show that comput-

ing the Smith form of a matrix polynomial is amenable to numeric

computation as an optimization problem. Furthermore, we describe

an effective optimization technique to find a nearby matrix polyno-

mial with a non-trivial Smith form. The results are later generalized

to include the computation of a matrix polynomial having a max-

imum specified number of ones in the Smith Form (i.e., with a

maximum specified McCoy rank).

We discuss the geometry and existence of solutions and how

our results can used for a backwards error analysis. We develop an

optimization-based approach and demonstrate an iterative numer-

ical method for computing a nearby matrix polynomial with the

desired spectral properties. We also describe the implementation of

our algorithms and demonstrate the robustness with examples in

Maple.
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1 INTRODUCTION
Matrix polynomials appear in many areas of computational alge-

bra, control systems theory, differential equations and mechanics.

The algebra of matrix polynomials is typically described assuming

that the coefficients are from the field of real or complex num-

bers. However, in some applications, coefficients can come from

measured data or contain some amount of uncertainty. As such,

arithmetic may contain numerical errors and algorithms are prone

to numerical instability.

One problem of computational importance is finding the Smith

Normal Form (SNF, or simply Smith form) of a matrix polynomial.
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GivenA ∈ R[t]n×n , the Smith form S ofA is a matrix polynomial

S =

*.....
,

s1
s2

. . .

sn

+/////
-

∈ R[t]n×n ,

where s1, . . . , sn are monic and si | si+1 for 1 ≤ i < n, such that

there exist unimodular U,V ∈ R[t]n×n (i.e., with determinants in

R∗) with S = UAV. The Smith form always exists and is unique

though the matrices U, V are not unique [14, 18]. The diagonal

entries s1, . . . , sn are referred to as the invariant factors ofA.

The Smith form is important as it reveals the structure of the

polynomial lattice of rows and columns, as well as the effects of

localizing at individual eigenvalues. That is, it characterizes how

the rank decreases as the variable t is set to various eigenvalues.

The form is closely related to the more general Smith-McMillan form
for matrices of rational functions, a form that reveals the structure

of eigenvalues at infinity.

In an exact setting, computing the Smith form has been well

studied and very efficient procedures are available (see [19] and

the references therein). However, in the case that coefficients con-

tain uncertainties, the problem is much less understood. Numerical

methods to compute the Smith form of a matrix polynomial typi-

cally rely on linearization and orthogonal transformations [3, 6, 24]

to infer the Smith form of a nearby matrix polynomial via the

Jordan blocks in the Kronecker canonical form (see [18]). These

linearization techniques are backwards stable, and for many prob-

lems this is sufficient to ensure that the computed solutions are

computationally useful when a problem is continuous. However,

the eigenvalues of a matrix polynomial are not necessarily contin-

uous functions of the coefficients of the matrix polynomial, and

backwards stability is not always sufficient to ensure computed so-

lutions are useful in the presence of discontinuities. These methods

are also unstructured in the sense that the computed non-trivial

Smith form may not be the Smith form of a matrix polynomial

with a prescribed coefficient structure. In extreme instances, the

unstructured backwards error can be arbitrarily small, while the

structured distance to an interesting Smith form is relatively large.

This is often seen in problems with prescribed sparsity patterns or

zero-coefficients. Numerical methods can also fail to compute mean-

ingful results on some problems due to uncertainties. Examples of

such problems include nearly rank deficient matrix polynomials,

repeated eigenvalues or eigenvalues that are close together and

other ill-posed instances. The above issues are largely resolved by

our optimization-based approach, though at a somewhat higher

computational cost.

The invariant factors s1, . . . , sn of a matrix A ∈ R[t]n×n can

also be defined via the determinantal divisors δ1, . . . ,δn ∈ R[t],
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where

δi = GCD

{
all i × i minors ofA

}
∈ R[t].

Then s1 = δ1 and si = δi/δi−1 for 2 ≤ i ≤ n (and δn = det(A)).
In the case of 2 × 2 matrix polynomials, computing the nearest

non-trivial Smith form is thus equivalent to finding the nearest ma-

trix polynomial whose polynomial entries have a non-trivial GCD.

This points to a significant difficulty: approximate GCD problems

can have infima that are unattainable. That is, there are co-prime

polynomials with nearby polynomials with a non-trivial GCD at

distances arbitrarily approaching an infimum, while at the infimum

itself the GCD is trivial (see, e.g., [11]). This issue extends to Smith

forms as is seen in the following example.

Example 1.1. Let f = t2 − 2t + 1 and д = t2 + 2t + 2. We first

seek f̃ , д̃ ∈ R[t] of degree at most 2 such that gcd( f̃ , д̃) = γ t + 1 at

minimal distance ∥ f − f̃ ∥
2

2
+ ∥д − д̃∥2

2
for some γ ∈ R. Using the

approach of Karmarkar & Lakshman [20] it is shown [16, Example

3.3.6] that this distance is (5γ 4 − 4γ 3 + 14γ 2 + 2)/(γ 4 +γ 2 + 1). This
distance has an infimum of 2 at γ = 0. However, at γ = 0 we have

gcd( f̃ , д̃) = 1 even though deg gcd( f̃ , д̃) > 0 for all γ , 0.

Now consider the matrix A = diag( f ,д) ∈ R[t]2×2. For A to

have a non-trivial Smith form we must perturb f ,д such that they

have a non-trivial GCD, and thus any such perturbation must be

at a distance of at least 2. However, the perturbation of distance

precisely 2 has a trivial Smith form. There is clearly no merit to

perturbing the off-diagonal entries ofA.

Our work indirectly involves measuring the sensitivity to the

eigenvalues ofA and the determinant ofA. Thus we differ from

most sensitivity and perturbation analysis [1, 23] since we also

study how perturbations affect the invariant factors, instead of

the roots of the determinant. Additionally our theory is able to

support the instance ofA being rank deficient and having degree

exceeding one. One may also approach the problem geometrically

in the context of manifolds [7, 8]. We do not consider the manifold

approach directly since it does not yield numerical algorithms.

We address two fundamental questions in this paper: (1) what

does it mean for a matrix polynomialA to have a non-trivial Smith

form numerically and (2) how far isA from another matrix poly-

nomial with an interesting or non-trivial Smith form?

We formulate the answers to these questions as solutions to

continuous optimization problems. The main contributions of this

paper are deciding when A has an interesting Smith form, provid-

ing bounds on a “radius of triviality” around A and a structured

stability analysis on iterative methods to compute a structured

matrix polynomial with desired spectral properties.

The remainder of the paper is organized as follows. In Section 2

we give the notation and terminology along with some needed

background used in our work. Section 3 discusses the approximate

Smith form computation as an optimization problem and provide

some new bounds on the distance to non-triviality. We present an

optimization algorithm in Section 4 with local stability properties

and rapid local convergence to compute a nearbymatrix polynomial

with a non-trivial Smith form and discuss implementation details.

A method to compute a matrix polynomial with a prescribed lower

bound on the number of ones is discussed in Section 5. The paper

ends with a discussion of our implementation and examples.

2 PRELIMINARIES
In this section we explore the topology of the approximate Smith

normal form and discuss basic results concerning the notion of

both attainable and unattainable solutions.
We make extensive use of the following terminology and defini-

tions. A matrix polynomial A ∈ R[t]n×n is an n × n matrix whose

entries consist of polynomials of degree at most d . Alternatively,
we may express matrix polynomials as A =

∑
1≤j≤d Aj t

j
where

Aj ∈ R
n×n

. The degree of a matrix polynomial d is defined to be

the degree of the highest-order non-zero entry of A, or the largest

index j such that Aj , 0. We say that A has full rank or is regular
if det(A) . 0 and that A is unimodular if det(A) ∈ R\{0}. The
(finite) eigenvalues are the roots of det(A) ∈ R[t].

We define the norm of a polynomial a ∈ R[t] as ∥a∥ = ∥a∥
2
=

∥ (a0,a1, . . . ,ad , 0, . . . , 0)∥2 and for matrix polynomials we define

∥A∥ = ∥A∥F =
√∑

i, j ∥Ai,j ∥
2

2
. Our choice of norm is a dis-

tributed coefficient norm, sometimes known as the Frobenius norm.

Definition 2.1 (SVD [15]). The Singular Value Decomposition

(SVD) of A ∈ Rn×n is given byUT ΣV , whereU ,V ∈ Rn×n satisfy

UTU = I , VTV = I and Σ = diag(σ1, . . . ,σn ) is a diagonal matrix

with non-negative entries of the singular values of A in descending

order. The distance to the nearest (unstructured) matrix of rank

m < n is σm+1 (A).

For scalar matrices we frequently write ∥ · ∥
2
for the largest

singular value, and σmin (·) for the smallest singular value.

Definition 2.2 (Affine/Linear Structure). Amatrix polynomialA ∈

R[t]n×n\{0} of degree at most d has a linear structure from the set

K ifA ∈ span(K) as a vector space over R, where

K = {C0,0, . . . ,C0,k , tC1,0, . . . , tC1,k , . . . , t
dCd,0, . . . , t

dCd,k },

with Cl, j ∈ R
n×n

and the vectors in K are linearly independent.

IfA = C0 + C1 where C0 ∈ R[t]
n×n\{0} and C1 ∈ span(K), then

the structure is said to be affine.

Examples of matrix polynomials with a linear structure include

symmetric matrices, matrices with prescribed zero coefficients, pre-

scribed zero entries, tri-diagonal matrices and several other classes.

Affinely structured matrix polynomials include monic matrix poly-

nomials, matrix polynomials with prescribed constant coefficients

and banded matrix polynomials are a few of many possible. In this

paper we are mainly concerned with preserving the zero structure

of a matrix polynomial, that is we do not change zero-coefficients

or increase the degree of entries.

The rank of a matrix polynomial is the maximum number of lin-

early independent rows or columns as a vector space overR(t ). This
is the rank of the matrix A (ω) for any ω ∈ C except when ω is an

eigenvalue ofA (t ). The McCoy rank ofA isminω ∈C{rankA (ω)},
which is the lowest rank when A is evaluated at an eigenvalues.

The McCoy rank is also the number of ones in the Smith form,

or equivalently, ifA hasm non-trivial invariant factors, then the

McCoy rank of A is n −m. The matrix polynomial A is said to

have a non-trivial Smith form if the McCoy rank is at most n − 2, or
equivalently, has two or more invariant factors of positive degree.

Problem 2.3 (Approximate SNF and LowMcCoy Rank). Given
a matrix polynomial A ∈ R[t]n×n , find the distance to a non-trivial



SNF and, if possible, a matrix polynomial Â ∈ R[t]n×n of prescribed
coefficient structure that has a prescribed McCoy rank of n −m for
m ≥ 2 such that ∥A − Â∥ is minimized under ∥ · ∥. If such Â exists,
then the Smith form of Â is the approximate Smith form ofA ifm = 2

and a lower McCoy rank approximation ifm > 2.

As described in Section 1, it is possible that the distance to a

non-trivial SNF is not attainable. That is, there is a solution that

is approached asymptotically, but where the Smith form is trivial

at the infimum. Fortunately, in most instances of interest, solu-

tions will generally be attainable, and we will later discuss how to

identify and compute unattainable solutions. This problem admits

the nearest rank deficient matrix polynomial as a special case (see

[12, 13]). However the computational challenges are fundamentally

different for non-trivial instances.

2.1 Basic Results
In this subsection we review some basic results needed to analyze

the topology of the approximate Smith form problem. We introduce

the notion of a generalized Sylvester matrix, drawing on the theory

of resultants.

Definition 2.4. The adjoint of a matrix polynomial is the n × n
matrix Adj(A) that satisfies Adj(A)A = A Adj(A) = det(A)I .
The entries of Adj(A) are the (n − 1) × (n − 1) minors of A up to

a multiple of ±1.

As sn = δn/δn−1 it follows that A has a non-trivial Smith form

if and only if the GCD of all entries of the adjoint is non-trivial,

that is, deg gcd(Adj(A)) ≥ 1. In order to obtain bounds on the

distance to a matrix having a non-trivial Smith form, we consider

an approximate GCD problem of the form

min

{
∥∆A∥ such that deg gcd

{
Adj (A + ∆A)i j

}
≥ 1

}
.

If this was a classical approximate GCD problem, then the use

of Sylvester-like matrices would be sufficient. However, in our

problem the degrees of the entries of the adjoint may change under

perturbations. In order to perform an analysis, we need to study a

family of generalized Sylvester matrices that allow higher-degree

zero coefficients to be perturbed.

For a =
∑d
i=0 ai t

i ∈ R[t] of degree at-most d , we define the r th

convolution matrix of a as

ϕr (a) =
*..
,

a0 · · · ad
. . .

. . .
a0 · · · ad

+//
-
∈ Rr×(r+d ) .

Let f = ( f1, . . . , fk ) ∈ R[t] be a vector of polynomials with degrees

d = (d1, . . . ,dk ) ordered as dj ≤ dj+1 for 1 ≤ j ≤ k − 1 ( with

deg 0 = −∞). Set d = d1 and r = max(d2, . . . ,dk ) and suppose that

for each 2 ≤ i ≤ k fi is viewed as a polynomial of degree at most r .
Then we define the generalized Sylvester matrix of f as

Syl(f ) = Syld (f ) =
*.....
,

ϕr ( f1)
ϕd ( f2)
...

ϕd ( fk )

+/////
-

∈ R(r+(k−1)d )×(r+d ) .

Some authors [10, 25] refer to such a matrix as an expanded

Sylvester matrix or generalized resultant matrix. The generalized

Sylvester matrix has many useful properties pertaining to the Bé-

zout coefficients. However we are only concerned with the well

known result that gcd(f ) = 1 if and only if Syld (f ) has full rank.
It will be useful to treat a polynomial of degree d as one of larger

degree. This can be accomplished by constructing a similar matrix

and padding rows and columns with zero entries. The generalized

Sylvester matrix of degree at most d′ ≥ d of f is defined analo-

gously as Syld′ (f ), taking d to be the largest degree entry and r
to be the largest degree of the remaining entries of d′. Note that
r = d is possible and typical. If f has a non-trivial GCD (possibly

unattainable) under a perturbation structure ∆f , then it is necessary
that Syld′ (f ) is rank deficient, and often this will be sufficient.

If we view the entries of f of polynomials of degree d′ and d′i > di
for all i , then the entries of f has an unattainable GCD of distance

zero, typically of the form 1 + εt ∼ t + ε−1. In other words, the

underlying approximate GCD problem is ill-posed.

Lemma 2.5. If max(d) = max(d′) then the kernels of Syld (f ) and
Syld′ (f ) have the same dimension.

Proof. Let d and r be the largest and second largest entries of

d and r ′ be the second largest entry of d′. The result follows from
[25] by considering the case of r ′ = d . □

This lemma characterizes the (generic) case when elements of

maximal degree of f do not change under perturbations, then the

generalized Sylvester matrix still meaningfully encodes GCD in-

formation. However, it is possible that Syld (f ) has full rank and

Syld′ (f ) is rank deficient but the distance to a non-trivial gcd is not

zero. This can occur when dj = d′j for some j and d′ ≥ d.

Definition 2.6. The degree d reversal of an f ∈ R[t] of degree at

most d is defined as revd ( f ) = td f (t−1). For a vector of polyno-

mials f ∈ R[t]ℓ of degrees at most d = (d1, . . . ,dℓ ) the degree d
reversal of f is the vector revd (f ) = (revd1 ( f1), . . . , revdℓ ( fℓ )).

The following lemma enables us to determine if unattainable

solutions are occurring in an approximate GCD problem with an

arbitrary (possibly non-linear) structure on the coefficients.

Lemma 2.7. Let f be a vector of non-zero polynomials of degree
at most d . Suppose that Syld (f ) has full rank and Syld′ (f ) is rank
deficient, where the perturbations ∆f have degrees at most d′ and the
entries of f have degrees d. Then f has an unattainable non-trivial
GCD of distance zero under the perturbation structure ∆f if and only
if Syl(revd′ (f )) is rank deficient.

Proof. First suppose that Syl(revd′ (f )) has full rank. Then
gcd(revd′ (f )) = 1. Hence f does not have an unattainable non-

trivial GCD. Conversely, suppose that Syl(revd′ (f )) is rank defi-

cient. Then, t is a factor of gcd(revd′ (f )) but t is not a factor of

gcd(revd (f )). Accordingly, all non-zero entries of f + ∆f may in-

crease in degree and so the distance of f having a non-trivial GCD

is zero, and so is unattainable. □

If the generalized Sylvester matrix of f has full rank, but the
generalized Sylvester matrix that encodes the perturbations f + ∆f
is rank deficient, then either there is an unattainable solution, or the

generalized Sylvester matrix is rank deficient due to over-padding

with zeros. Lemma 2.7 provides a reliable way to detect this over

padding.



Definition 2.8. We say that A has an unattainable non-trivial
Smith form if gcd(Adj(A)) = 1 and gcd(Adj(A + ∆A)) , 1 for an

infinitesimal perturbation ∆A of prescribed affine structure.

Example 2.9. Let A =

(
t t − 1

t + 1 t

)
. Then the 4 × 4 matrix

polynomial C =

(
A

A

)
has an unattainable non-trivial Smith

form if all perturbations to A are support or degree preserving

(preserve zero entries or do not increase the degree of each entry),

both linear structures. Note that C and A are both unimodular.

However small perturbations to the non-zero coefficients of A

make A + ∆A non-unimodular.

These examples are non-generic. Generically the degree of the

adjoint will be (n − 1)d and will remain unchanged locally under

perturbations to the coefficients. We can formulate computing the

distance to the nearest matrix polynomial with a non-trivial Smith

form under a prescribed perturbation structure as finding the near-

est rank deficient generalized Sylvester matrix of the adjoint or the

d′ reversal of the adjoint.

3 WHEN DOES A NUMERICAL MATRIX
POLYNOMIAL HAVE A TRIVIAL SNF?

In this section we consider the question of determining if a matrix

polynomial has a non-trivial SNF, or rather how much do the coeffi-

cients need to be perturbed to have a non-trivial SNF. We provide a

lower bound on the quantity by analyzing the distance to a reduced

rank generalized Sylvester matrix.

3.1 Nearest Rank Deficient Structured
Generalized Sylvester Matrix

Suppose thatA ∈ R[t]n×n of degree at most d has a trivial Smith

form and does not have an unattainable non-trivial Smith form.

Then one method to compute a lower bound on the distance the en-

tries ofA need to be perturbed to have an attainable or unattainable

non-trivial Smith form is to solve

inf ∥∆A∥ such that




rank(Syld′ (Adj(A + ∆A))) < e,

e = rank(Syld′ (Adj(A))).
(3.1)

Here d′ is the vector of the largest possible degrees each entry of

Adj(A + ∆A) and ∆A has in a prescribed linear or affine pertur-

bation structure.

It is sufficient to compute max(d′), and this quantity will generi-

cally be (n−1)d . For non-generic instances we require the computa-

tion of d′. This optimization problem is non-convex, butmulti-linear

in each coefficient of ∆A.

We do not attempt to solve this problem directly via numerical

techniques, since it enforces a necessary condition that is often

sufficient. Instead we use it to develop a theory of solutions which

can be exploited by faster and more robust numerical methods.

Lemma 3.1. Let f be a vector of polynomials with degrees d and
admissible perturbations ∆f of degrees d′ where max(d) ≤ max(d′).
Then the family of generalized Sylvester matrices Syld′ (f ) of rank at
least e form an open set under the perturbations ∆f .

Proof. By the degree assumption on ∆f we have that for an

infinitesimal ∆f that Syld′ (f ) and Syld′ (∆f ) have the same dimen-

sion. Accordingly, let us suppose that Syld′ (f ) has rank at least

e . Then it must have rank at least e in an open-neighborhood

around it. In particular, when ∥Syld′ (∆f )∥2 < σe (Syld′ (f )) then
rank Syld′ (f + ∆f ) ≥ rank Syld′ (f ) and the result follows. □

Theorem 3.2. The optimization problem (3.1) has an attainable
global minimum under linear perturbation structures.

Proof. Let S be the set of all rank at most e − 1 generalized

Sylvestermatrices of prescribed shape by d′ andAdj(A). Lemma 3.1

implies that S is topologically closed.

Let R = {Syld′ (Adj(C )) such that ∥C∥ ≤ ∥A∥}, where the gen-
eralized Sylvester matrices are padded with zeros to have the appro-

priate dimension if required. Since ∆A has a linear perturbation

structure, a feasible point is always C = −A. By inspection R is

seen to be a non-empty set that is bounded and closed.

The functional ∥ · ∥ is continuous over the non-empty closed

and bounded set S ∩R. Let B ∈ S ∩R. By Weierstrass’s theorem

∥A − B∥ has an attainable global minimum over S ∩R. □

Note that if a feasible point exists under an affine perturbation

structure, then a solution to the optimization problem exists as well.

What this result says is that computing the distance to non-triviality

is generally a well-posed problem, even though computing a matrix

polynomial of minimum distance may be ill-posed. The same results

also hold when working over the d′ reversed coefficients.

3.2 Bounds on the Distance to non-triviality
Suppose that A ∈ R[t]n×n , of degree at most d , has a trivial Smith

form and does not have an unattainable non-trivial Smith form.

This section provides some basic bounds on the distance coefficients

ofA need to be perturbed to have a non-trivial Smith form.

If we consider the mapping Adj(·) as a vector-valued function

from Rn
2 (d+1) → Rn

2 ((n−1)d+1)
(with some coordinates possibly

fixed to zero), then we note that the mapping is locally Lipschitz.

More precisely, there exists c > 0 such that

∥ Adj(A) − Adj(A + ∆A)∥ ≤ c∥∆A∥.

The quantity c can be bounded above by the (scalar) Jacobian matrix

∇Adj(·) evaluated atA. A local upper bound for c is approximately

∥∇Adj(A)∥
2
.

The entries of∇Adj(A) consist of the coefficients of the (n−2)×
(n − 2) minors ofA. This follows because Adj(·) is a multi-linear

vector mapping and the derivative of each entry is a coefficient of

the leading coefficient with respect to the variable of differentia-

tion. The size of each minor can be bounded above by Hadamard’s

inequality. As such, we have the sequence of bounds

∥∇Adj(A)∥
2
≤ n
√
d + 1∥∇Adj(A)∥∞ ≤ n3 (d + 1)3/2∥A∥n∞n

n/2,

where ∥A∥∞ is understood to be a vector norm and ∥∇Adj(A)∥∞
is understood to be a matrix norm. The bound in question can be

used in conjunction with the SVD to obtain a lower bound on the

distance to a matrix polynomial with a non-trivial Smith form.



Theorem 3.3. Suppose that d′ = (γ ,γ . . . ,γ ) and Syld′ (Adj(A))
has rank e . Then a lower bound on the distance to non-triviality is

1

γ ∥∇Adj(A)∥ F
σe (Syld′ (Adj(A))).

Proof. We note that for polynomials f with degrees d′ that
∥Syld′ (f )∥ = γ ∥f ∥. Accordingly, if ∆A is a minimal perturbation

to non-triviality, then

1

γ
σe (Syld′ (Adj(A))) ≤ ∥ Adj(A) − Adj(A + ∆A)∥F

≤ ∥∇Adj(A)∥F ∥∆A∥F ,

and the theorem follows by a simple rearrangement. □

If d′ has different entries, then r ∥f ∥ ≤ ∥Syld′ (f )∥ ≤ γ ∥f ∥,
where γ and r are the largest and second-largest entries of d′. The
lower bound provided can also be improved using the Karmarkar-

Lakshman distance [20] in lieu of the smallest singular value of the

generalized Sylvester matrix, the d′ reversal of the adjoint or other
approximate GCD lower bounds [2].

4 APPROXIMATE SNF VIA OPTIMIZATION
In this section we formulate the approximate Smith form problem

as the solution to a continuous constrained optimization problem.

We assume that the solutions in question are attainable and develop

a method with rapid local convergence. As the problem is non-

convex, our convergence analysis will be local.

4.1 Constrained Optimization Formulation
An equivalent statement toA having a non-trivial attainable Smith

form is that Adj(A) = f∗h where f∗ is a vector (matrix) of scalar

polynomials and h is a divisor of gcd(Adj(A)). This directly leads

to the following optimization problem.

min ∥∆A∥2F where




Adj(A + ∆A) = f∗h f∗∈R[t]n×n ,h ∈ R[t]

Nhvec(h) = 1 Nh ∈ R
1×(degh+1) .

(4.1)

This is amulti-linearly structured approximate GCDproblem,which

is a non-convex optimization problem. Instead of finding a rank

deficient Sylvester matrix, we directly enforce that the entries of

Adj(A) have a non-trivial GCD. The normalization requirement

that Nhvec(h) = 1 is chosen to force h to have a non-zero degree,

so that h is not a scalar. One useful normalization is to define Nh
such that lcoeff (h) = 1, that is, assume the degree of the approx-

imate GCD is known and make it monic. Of course, other valid

normalizations also exist.

Since we are working over R[t], there will always be a quadratic,
linear or zero factor of attainable solutions. If we ignore the zero

solution for now, then we can assume generically that degh = 1 or

degh = 2. We note that if h = 0 then the approximate SNF of A

is rank deficient and computing approximate SNF reduces to the

nearest rank at-most n − 1 or n − 2 matrix polynomial problems,

both of which are well-understood [12, 13]. Accordingly, for the

remainder of the paper we will suppose that h , 0 is monic and

that the degree is prescribed. The case of h = 0 is mentioned here

for completeness but is not considered further.

4.2 Lagrange Multipliers and Optimality
Conditions

In order to solve our problem we will employ the method of La-

grange multipliers. The Lagrangian is defined as

L = ∥∆A∥2F + λ
T

(
vec(Adj(A + ∆A) − f∗h)

Nhvec(h) − 1

)
,

where vec(·) stacks a matrix polynomial by columns into a column

vector, and λ is a vector of Lagrange multipliers.

A necessary first-order condition (KKT condition, see [4]) for a

tuple z∗ = z∗ (∆A, f∗,h, λ) to be a regular (attainable) minimizer is

that the gradient of L vanishes, that is,

∇L(z∗) = 0. (4.2)

Let J be the Jacobian matrix of the constraints defined as

J = ∇∆A,f∗,h
(
vec(Adj(A + ∆A) − f∗h)

)
.

The second-order sufficiency condition for optimality at a local

minimizer z∗ is that

ker(J (z∗))T∇2xxL(z
∗) ker(J (z∗)) ≻ 0, (4.3)

or that the Hessian with respect to x = x (∆A, f∗,h) is positive
definite over the kernel of the Jacobian of the constraints. The

vector x corresponds to the variables in the affine structure of

∆A,f∗, and h. If (4.2) and (4.3) both hold, then z∗ is necessar-

ily a local minimizer of (4.1). Of course, it is also necessary that

ker(J (z∗))T∇2xxL(z
∗) ker(J (z∗)) ⪰ 0 at a minimizer, which is the

second-order necessary condition. Our strategy for computing a

local solution is to solve ∇L = 0 by a Newton-like method.

4.3 An Implementation with Local Quadratic
Convergence

A problem with Newton type methods is that when the Hessian

is rank deficient or ill-conditioned, the Newton step becomes ill-

defined or the rate of convergence degrades. The proposed for-

mulation of our problem can encounter a rank deficient Hessian.

Despite this we are still able to obtain a method with rapid local

convergence under a very weak normalization assumption.

In order to obtain rapid convergencewemake use of the Levenberg-

Marquart (LM) algorithm. If H = ∇2L, then the LM iteration is

defined as repeatedly solving for z (k+1) = z (k ) + ∆z (k ) by

(HTH + µk I )∆z
(k ) = −HT∇L(z (k ) ) where z =

(
x
λ

)
∈ Rℓ ,

for some ℓ > 0 and using ∥∇L∥
2
as a merit function. The speed of

convergence depends on the choice of µk > 0.

Fukushima and Yamashita [26] show that, under a local-error

bound condition, a system of non-linear equations д(z) = 0 ap-

proximated by LM will converge quadratically to a solution with a

suitable initial guess.

Essentially, what this says is that to obtain rapid convergence it is

sufficient for regularity (J having full rank) to hold or second-order
sufficiency, but it is not necessary to satisfy both. The advantage

of LM over other quasi-Newton methods is that this method is

globalized
∗
in exchange for an extramatrixmultiplication, asHTH+

∗
Here “globalized” means that the method will converge to a stationary point of the

merit function, not a local extrema of the problem.



µk I is always positive definite, and hence always a descent direction
for the merit function. We make the choice of µk ≈ ∥д(z)∥2 based
on the results of Fan and Yuan [9].

Definition 4.1 (Local Error Bound). Let Z ∗ be the set of all solu-
tions to д(z) = 0 and X be a subset of Rℓ such that X ∩Z ∗ , ∅. We

say that ∥д(z)∥ provides a local error bound on д(z) = 0 if there

exists a positive constant c such that c · dist(z,Z ∗) ≤ ∥д(z)∥ for all
z ∈ X , where dist(·) is the distance between a point and a set.

Theorem 4.2. If the second-order sufficiency condition (4.3) holds at
an attainable solution to (4.1), then the local error-bound property holds.

Note that this result applies to all equality constrained optimiza-

tion problems, and not just our specific problem.

Proof. Let z = z (x , λ) and define д(z) = ∇L(z). First suppose
that both the second-order sufficiency condition (4.3) and first-order

necessary condition (4.2) hold at the point z∗. We can write the

first-order expansion

д(z∗ + ∆z) = H (z∗) (∆z) +O (∥∆z∥2
2
) ≈ H (z∗) (∆z),

noting that д(z∗) = 0. Next, we note that д(x + ∆x , λ + ∆λ) =
д(x + ∆x , λ) + д(x , λ + ∆λ), since д is linear in λ. It is useful to
observe that

H (z∗) =

(
Hxx (z

∗) JT (z∗)
J (z∗)

)
.

If ∆x = 0 then the error-bound from Hoffman [17] applies

and we have that there exists chof > 0 such that chof ∥∆λ∥ ≤

∥д(x , λ + ∆λ)∥. If ∆x , 0 then



(
Hxx (z

∗)
J (z∗)

)
∆x


≈ ∥д(x + ∆x , λ)∥

and (4.3) implies that H (z∗) (∆z) = 0 =⇒ ∆x = 0, so

σmin

(
Hxx (z

∗)
J (z∗)

)
∥∆x ∥ ≤ ∥д(x + ∆x , λ)∥.

Thus,

min

{
σmin

(
Hxx (z

∗) JT (z∗)
)
, chof

}
∥∆z∥ ≤ ∥д(z∗ + ∆z)∥. □

Theorem 4.3. The second-order sufficiency condition holds at min-
imal solutions with Lagrange multipliers of minimal norm if h is of
maximal degree, monic and the minimal structured perturbation
∥∆A∗∥ is sufficiently small.

Proof. The Hessian of L with respect to x = x (∆A, f∗,h) is

∇2xxL = Hxx =
*..
,

F + 2I
E

ET

+//
-
,

where F is a square matrix with zero diagonal whose entries are

a multi-linear polynomial in λ and ∆A and ET is a matrix whose

entries are homogeneous linear functions in λ.
If ∆A∗ = 0 then λ∗ = 0 and hence both E = 0 and F = 0.

Accordingly, if y ∈ ker(Hxx ) ∩ ker(J ) then y =
(
0 y2 y3

)T
.

Note that (up to permutation)

J =

(
∗ Ch Cf∗

Nh

)
,

where ∗ are blocks corresponding to differentiating with respect

to variables in ∆A and the blocks Cf∗ and Ch are block convo-

lution and convolution matrices that respectively correspond to

multiplication by f∗ and h. The block Nh contains a normalization

vector.

Jy = 0 implies that there exists a vector of polynomials v and a

polynomialu with the same degrees as f∗ andh such that f∗u+vh =
0 and Nhvec(u) = 0.

We have thath is a factor of both f∗u andvh. Since gcd(f∗,h) = 1

it must be that h is a factor of u. It follows that degu = degh, so
there exists some α , 0 such that αu = h. Since h is monic, we have

that Nhvec(h) = 1 but Nhu = 0, which implies that α = 0, and so

u = 0. We have thatvh = 0 and sov = 0. Hence ker(J )∩ker(Hxx ) =
0 and second-order sufficiency holds when ∥∆A∗∥ = 0.

If ∥∆A∗∥ is sufficiently small, then ∥F ∥ will be sufficiently small

so that F + 2I has full rank. Accordingly, we have that

ker

*..
,

F + 2I
0 E

ET 0

+//
-
⊆ ker

*.
,

2I
0

0

+/
-
. □

We remark that the techniques in the proof are very similar to

those of [27] and [11] to show that a Jacobian matrix appearing in

approximate GCD computations of two polynomials has full rank.

The implication of the local-error bound property holding is

that one can reasonably approximate when quadratic convergence

occurs by estimating σmin

((
Hxx JT

))
and chof . In particular,

these quantities act as a structured condition number on the system.

A structured backwards-error analysis of existing techniques can

be performed using these quantities. Additionally, it is somewhat

generic that F + 2I has full rank, hence the local error-bound will

hold for most instances of the approximate SNF problem with an

attainable solution.

It is also important to note that we did not explicitly use the

adjoint matrix. Indeed the result remains valid if we replace the

adjoint with minors of prescribed dimension. Likewise, if A is

an ill-posed instance of lower McCoy rank or approximate SNF

without an attainable global minimum, then optimizing over a

reversal of each entry of (Adj(A + ∆A)) would yield a non-trivial

answer and the same stability properties would hold. Thus, poorly

posed-problems also remain poorly posed if slightly perturbed.

Corollary 4.4. The LM algorithm for solving ∇L = 0 has qua-
dratic convergence under the assumptions of Theorem 4.2 and using
µk = ∥∇(L(z

k ))∥
2
.

Proof. The quantity ∇L is a multivariate polynomial, hence it

is locally Lipschitz. Second-order sufficiency holds, thus we have

the local error bound property is satisfied. The method converges

rapidly with a suitable initial guess. □

These results can also be generalized to form a low McCoy rank

approximation. In the next section we discuss a technique that

possibly forgoes rapid local convergence, but has a polynomial per

iteration cost to compute a low McCoy rank approximation.

4.4 Computational Challenges & Initial Guesses
The most glaring problem in deriving a fast iterative algorithm is

that thematrixAdj(A+∆A) has exponentiallymany coefficients as

amultivariate polynomial in∆A. Thismeans computing the adjoint

matrix symbolically as an ansatz is not feasible. In order to solve

(4.2) we instead approximate the derivatives of the coefficients of the



adjoint numerically, which our implementation does asymptotically

faster than inverting the Hessian. A detailed discussion of this is

left as a future paper.

To compute an initial guess, we can use ∆Ainit = 0 and take f∗

and h to be a reasonable approximation to an approximate GCD of

Adj(A), which will often be valid as per Theorem 4.2. In the next

section we will discuss more sophisticated techniques.

5 LOWER MCCOY RANK APPROXIMATION
In this section we describe how to perform a lower McCoy rank

approximation of a matrix polynomial via linearization theory.

Another way to formulateA having a non-trivial SNF is to solve

min ∥∆A∥ such that (A (ω) + ∆A (ω))B = 0 and B∗B = I2,

for B ∈ Cn×n and ω ∈ C. The method is unstable if ω is reasonably

large, since the largest terms appearing are of the size ∥A∥∞ |ω |
d
.

To remedy this, if we assume that the solution is a full-rank matrix

polynomial, we can use linearization theory. If there is no full-rank

solution one can simply take a lower-rank approximation [13] and

extracts a square pencil of full rank. Alternatively, one may forgo

the linearization and work directly with a problem that is more

poorly conditioned. We assume for the rest of this section that the

solutions to the low McCoy rank problem have full rank.

We can encode the eigenstructure and SNF of A as a linear

pencil of the form P ∈ R[t]nd×nd , defined as

P =
*...
,

I
. . .

Ad

+///
-

t −
*...
,

I
. . .

−A0 −A1 · · · −Ad−1

+///
-

.

This particular linearization encodes the SNF of A, as SNF(P) =
diag(I , I , . . . , I , SNF(A)). It follows that A has a non-trivial SNF

if and only if P has a non-trivial SNF. If we preserve the affine

structure of P and only perturb blocks corresponding toA, then

the reduction to a linear pencil will be sufficient. Other lineariza-

tions are possible as well. The pencil is generally better behaved

numerically since the largest entry is proportional to ∥A∥∞ |ω | (it
is no longer exponential in ω).

5.1 Low McCoy Rank via Optimization
The theory of low McCoy rank approximations is an immediate

generalization of the previous sections if exponentially many more

minors were used in the underlying computation.

We formulate the following real optimization problem for ω ∈ C.

min ∥∆A∥2F such that




ℜ((P + ∆P) (ω)B) = 0

ℑ((P + ∆P) (ω)B) = 0

ℜ(B∗B) = Im

ℑ(B∗B) = 0,

(5.1)

wheren−m is the desiredMcCoy rank. The instance ofℑ(ωopt ) = 0

corresponds to t − ωopt as an invariant factor of orderm, while

ℑ(ωopt ) , 0 corresponds to the real irreducible quadratic (t −
ωopt ) (t − ωopt ).

In order to approach the problem using the method of Lagrange

multipliers we define the Lagrangian as

L = ∥∆A∥2F + λ
T
*....
,

ℜ((P + ∆P) (ω)B)
ℑ((P + ∆P) (ω)B)
ℜ(B∗B) − I
ℑ(B∗B)

+////
-

,

and proceed to solve ∇L = 0. In our implementation we again make

use of the LM method, although given the relatively cheap gradient

cost, a first-order method will often be sufficient and faster. The

problem is tri-linear, and structurally similar to affinely structured

low rank approximation.

5.2 Computing an Initial Guess
In order to compute an initial guess we exploit the tri-linearity of the

problem. First we approximate the determinant of A and consider

initial guesses where σn−m (A (ωinit )) is reasonably small. The

zeros and local extrema of det(A) are suitable candidates. Binit can
be approximated from the smallestm singular vectors ofA (ωinit ).
One can take ∆Ainit = 0 or solve a linear least squares problem

using Binit and ωinit as initial guesses.

5.3 Convergence & Prescribed Spectral Structure
The linearization may converge to a solution where the invari-

ant factors are reducible quadratics or degree larger than two. Ac-

cordingly, the rate of convergence will be linear with a first-order

method and super-linear (but not always quadratic) with reasonable

quasi-Newton methods. To obtain a prescribed spectral structure

one simply adds constraints of the form (5.1) in conjunction with

a “staircase form” constraint [24] to force invariant factors to be

repeated or have higher degree.

5.4 About Global Optimization Methods
The discussed problems are NP hard to solve exactly and to ap-

proximate with coefficients from Q. This follows because affinely

structured low rank approximation [5, 22] is a special case. If we

consider a matrix polynomial of degree zero, then this is a scalar

matrix with an affine structure. The approximate SNF will be a ma-

trix of rank at most n−2, and finding the nearest affinely structured

singular matrix is NP hard.

Despite the problem being intractable in the worst case, not all

instances are necessarily hard. The formulation (5.1) is multi-linear

and polynomial, hence amenable to the sum of squares hierarchy.

Lasserre’s sum of squares hierarchy [21] is a global framework for

polynomial optimization that asymptotically approximates a lower

bound. Accordingly, if ∥ωopt ∥ is bounded, then sum of squares

techniques should yield insight into the problem.

6 IMPLEMENTATION AND EXAMPLES
We implemented our methods in Maple 2016We use the variant

of Levenberg-Marquardt discussed in Section 4 in all instances to

solve the first-order necessary condition. All computations are done

using hardware precision andmeasured in floating point operations,

or flops. The input size of our problem is measured in the dimension

and degree of A, which are n and d respectively. The cost of most

quasi-Newton methods is roughly proportional to inverting the

Hessian matrix, which is O (ℓ3), where ℓ is the number of variables

in the problem.



The method of Section 4 requires approximately O ((n3d )3) =
O (n9d3) flops per iteration in an asymptotically optimal implemen-

tation with cubic matrix inversion, which is the cost of inverting the

Hessian. Computing the Hessian costs roughly O (n3d2 × (n2)2) =
O (n7d2) flops using a blocking procedure, assuming the adjoint

computation runs in time O (n3d2). There are O (n3d ) Lagrange
multipliers since the adjoint has degree at most (n − 1)d .

The method of Section 5 has a Hessian matrix of size O (n2d2) ×
O (n2d2) in the case of a rank zero McCoy rank approximation.

Accordingly, the per iteration cost is roughly O (n6d6) flops. Given
the lack of expensive adjoint computation, a first-order method will

typically require O (n2d2) flops per iteration (ignoring the initial

setup cost), with local linear convergence.

Example 6.1 (Nearest Interesting SNF). Consider the matrix poly-

nomial A with a trivial SNF

*....
,

t2 + .1t + 1 0 .3t − .1 0

0 .9t2 + .2t + 1.3 0 .1

.2t 0 t2 + 1.32 + .03t3 0

0 .1t2 + 1.2 0 .89t2 + .89

+////
-

of the form diag(1, . . . , 1, det(A)).
If we prescribe the perturbations to leave zero coefficients un-

changed, then using the methods of Section 4 and Section 5 we

compute a local minimizerA + ∆Aopt of

*....
,

1.0619t2 + .018349t + .94098 0 .27477t − .077901 0

0 .90268t2 + .22581t + 1.2955 0 .058333

.13670t 0 .027758t3 + .97840t2 + 1.3422 0

0 .10285t2 + 1.1977 0 .84057t2 + .93694

+////
-

,

with ∥∆Aopt ∥ ≈ .164813183138322. The SNF of A + ∆Aopt is

approximately

diag(1, 1, s1, s1(t5+35.388t4+6.4540t3+99.542t2+5.6777t+70.015)),

where s1 ≈ t2 + 0.0632934647739423t + 0.960572576466186. s1
corresponds to ωopt ≈ −0.0316467323869714− 0.979576980535687i .

The method discussed in Section 4 converges to approximately

14 decimal points of accuracy
†
after 69 iterations and the method

of Section 5 converges to the same precision after approximately 34

iterations. The initial guess in both instances was ∆Ainit = 0. The

initial guesses of f∗ and h were computed by an approximate GCD

routine. For the initial guess of ω we chose a root or local extrema

of det(A) that minimized the second-smallest singular value of

A (ω), one of which is ωinit ≈ −.12793 − 1.0223i .

Example 6.2 (Lowest McCoy Rank Approximation). With A as in

the previous example, consider the 0-McCoy rank approximation

problem with the same prescribed perturbation structure.

We compute a local minimizer A + ∆Aopt to be approximately

*....
,

.80863t2 + 1.1362 0 0 0

0 .91673t2 + 1.2881 0 0

0 0 .95980t2 + 1.3486 0

0 .60052t2 + .84378 0 .71968t2 + 1.0112

+////
-

,

with ∥∆Aopt ∥ ≈ .824645447014665 after 34 iterations to 14 decimal

points of accuracy. We compute ωopt ≈ −1.18536618732372i which

corresponds to the single invariant factor s1 ≈ t2 + 1.4051. The SNF
ofA + ∆Aopt is of the form (s1, s1, s1, s1).

†∇L = 0 is solved to 14 digits of accuracy; the extracted quantities are accurate to

approximately the same amount.

7 FUTURE DIRECTIONS
We will continue our research towards a more complete theoretical

understanding of computing the nearest matrix polynomial with

prescribed finite and infinite spectral structure (or determining

non-existence thereof). We also plan to investigate formulating the

Smith-McMillan form as an optimization problem and determine

if similar existence and stability results can be derived. A detailed

exploration of computing the adjoint matrix in a numerically robust

manner and corresponding error analysis will also be made.
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