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Summary

Objective: This manuscript describes the development of a general intelligent
tutoring system for teaching visual classification problem solving.
Materials and methods: The approach is informed by cognitive theory, previous
empirical work on expertise in diagnostic problem-solving, and our own prior work
describing the development of expertise in pathology. The architecture incorpo-
rates aspects of cognitive tutoring system and knowledge-based system design
within the framework of the unified problem-solving method description language
component model. Based on the domain ontology, domain task ontology and case
data, the abstract problem-solving methods of the expert model create a dynamic
solution graph. Student interaction with the solution graph is filtered through an
instructional layer, which is created by a second set of abstract problem-solving
methods and pedagogic ontologies, in response to the current state of the student
model.
Results: In this paper, we outline the empirically derived requirements and design
principles, describe the knowledge representation and dynamic solution graph,
detail the functioning of the instructional layer, and demonstrate two implemented
interfaces to the system.
Conclusion: Using the general visual classification tutor, we have created SlideTu-
tor, a tutoring system for microscopic diagnosis of inflammatory diseases of skin.
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1. Background

Knowledge-based systems (KBS) have a long history
of use in medical decision support [1], but are rarely
designed specifically for educating health profes-
rved.
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1 The relative effect size of an educational intervention can be
described in relationship to the effect of conventional classroom
learning. An intervention which raises performance by two stan-
dard deviations over classroom learning is described as having a
‘‘2-sigma’’ effect size.
sionals [2]. One reason for this may be the absence
of general architectures or frameworks for incor-
porating medical knowledge bases in larger instruc-
tional systems. In this paper, we describe our
adaptation of the intelligent tutoring system
(ITS)–—a well-studied and successful paradigm for
creating intelligent educational systems. The
advantage of the ITS paradigm is that it provides
a basic pedagogic approach with proven efficacy in
domains outside of medicine [3—6]. The disadvan-
tage of the ITS paradigm is that it was not designed
to use large, frequently changing, or existing knowl-
edge bases. In response to this, we have incorpo-
rated aspects of both ITS and KBS design to create a
general architecture for instruction in visual classi-
fication problem solving. This architecture has three
important advantages: (1) it modularizes all domain
and pedagogic knowledge into ontologies making
the system itself domain-neutral and general; (2)
it preserves all of the major pedagogic features
associated with cognitive tutoring systems–—a highly
effective subtype of ITS; and (3) it allows for sig-
nificant flexibility in the pedagogic components–—
more flexibility than is generally achieved in current
ITS.

1.1. Intelligent tutoring systems

Intelligent tutoring systems are adaptive, instruc-
tional systems that strive to emulate the well-
known benefits of one-on-one tutoring when com-
pared to other instructional methods. Model tracing
ITS (MTITS) are a subtype of ITS in which expertise is
represented as a set of production rules that guide
the student through the problem space, correcting
errors in the intermediate steps and offering hints
specific to the current problem state [7]. Model
tracing ITS are thus well suited to complex, multi-
step problems, in which identifiable steps could be
described as ‘‘on the solution path’’ or ‘‘off the
solution path’’ at any given time. Cognitive intelli-
gent tutoring systems (CITS) — a subtype of MTITS —
incorporate domain-specific production rules that
are based on a cognitive theory of skill acquisition,
such as ACT-R [8]. Often, the intermediate cognitive
steps are first identified using empirical methods
such as cognitive task analysis [9]. Most MTITS and
CITS have been developed for domains that are
highly procedural and do not require substantial
declarative knowledge bases. Examples include
mathematics and science instruction [4,6],
flight simulator training [10], and training in
the workplace [5]. These tutors are among the
most rigorously evaluated ITS, and have been
shown to be highly effective in increasing student
performance. The instructional ‘‘gold standard’’ is
considered to be one-on-one human tutoring,
which is associated with a 2-sigma effect over
classroom learning1 [11]. Cognitive Tutors and
other MTITS have been shown to bring students
1-sigma or more above standard instructional
methods [4—7]. In contrast, meta-analyses of many
traditional computer-assisted instruction systems
have exhibited only a 0.3—0.5 sigma effect [12,13].

Only a handful of medical ITS, of any type, have
been developed [14—19], and very few of these have
been evaluated. The GUIDON project [14,20—23]
extensively explored the development of KBS for
teaching classification problem solving. Knowledge-
based tutors were envisioned as a way to provide
instruction in domains that required significant
declarative knowledge requirements, embedded
with procedural skills. Many medical domains and
tasks share these characteristics. GUIDON used
MYCIN’s rule set to teach medical students to reason
about causative organisms in infectious meningitis
and bacteremia given a patient’s history, physical
examination, and laboratory results. Before a case
was presented, consultation with MYCIN was used to
generate an AND/OR tree representing Goals (OR
nodes) and Rules (AND nodes). GUIDON then used
the AND/OR tree to structure the discussion with the
student. GUIDON interactedwith the student using a
mixed-initiative method of dialogue. Students could
assert, specify, and hypothesize and GUIDON would
respond. But GUIDON could also redirect student
attention to other problem aspects. Unlike MTITS
and CITS, GUIDON made no attempt to limit student
options in the problem space or guide them towards
the most efficient solution.

One of the central advances of GUIDON was the
separation of domain knowledge (represented by
MYCIN’s �400 rules) from pedagogic knowledge
(represented by GUIDON’s �200 tutorial rules).
The modularity of the pedagogic system permitted
incorporation with any expert system that utilized
the EMYCIN architecture [24,25]. The other central
advance of GUIDONwas the recognition that KBS like
MYCIN can simultaneously perform very well at
making decisions and very poorly at teaching others
to make decisions [23]. MYCIN’s rules represented
compiled expert knowledge, that students found
‘‘difficult to understand, remember, and incorpo-
rate into a problem-solving approach’’ [14]. The
authors determined that the ordering of premise
clauses contained implicit procedural knowledge
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about diagnostic hierarchies and strategies that
could not be referenced by GUIDON’s tutorial sys-
tem. This led Clancey and Letsinger to reconfigure
the MYCIN rule set — creating NEOMYCIN — an expert
model utilized in GUIDON 2 [23]. NEOMYCIN was
distinguished from MYCIN by its forward-directed
use of data, top-down refinement strategy, use of an
etiological taxonomy, and incorporation of rules
for (1) expressing implicit ‘‘world relations’’ and
(2) reasoning about evidence-hypothesis connec-
tions. Because NEOMYCIN reasoned more like human
experts, GUIDON-2 appeared to provide more under-
standable explanations and advice to students.

Like GUIDON, current MTITS typically use domain-
specific production rules to accomplish the model-
tracing. In domains such as algebra, geometry and
physics there is no pressing need to create general
rules and scalable architectures, because each type
of problem solving can only be modeled by a unique
set of production rules. For example, a tutoring
system that teaches construction of a geometry
proof would require a completely different set of
productions when compared to a tutoring system
that teaches conversion of an algebra word problem
to its equivalent equation form. In contrast, visual
classification problem-solving tasks share a very
similar structure, and can therefore be modeled
with a very general set of production rules, instan-
tiated with domain knowledge to create a plethora
of domain-specific models. Thus, a tutoring system
for dermatopathology and a tutoring system for X-
ray classification of fractures could conceivably
share a single general framework but utilize differ-
ent domain and pedagogic content. In domains that
include expansive declarative knowledge bases, this
more general approach is necessary to construct
systems capable of tutoring across large parts of a
domain.

1.2. Knowledge-based systems,
ontologies and the UPML component
model

Research in KBS over the last 20 years has demon-
strated the value of combining ontologies and gen-
eral reasoning methods [26] (often called abstract
problem-solving methods or abstract PSMs). Ontol-
ogies are formal specifications of concepts and their
relationships [27]. The addition of instances to the
ontologically defined classes and relationships cre-
ates a knowledge base that can be used to abstract
declarative knowledge within a domain. Abstract
PSMs combined with the domain knowledge declara-
tively defined in the knowledge base produce
domain specific solutions, but may use a very small
number of generic rules. As previously described,
very few ITS use these more abstract methods for
knowledge representation and reasoning, due partly
to the specific domains for which these systems have
been developed.

Reusable problem-solving methods and ontolo-
gies permit scalability, and ease acquisition and
maintenance of knowledge [26]. But they also intro-
duce a specific problem when used in ITS. Knowl-
edge-based systems are designed to solve problems,
but the purpose of an ITS is to teach humans to solve
problems. Therefore, ITS require pedagogic compo-
nents that provide feedback on intermediate steps
in the solution. In most ITS, this is accomplished with
additional rule clauses that are intimately asso-
ciated with the expert model of task performance.
Among cognitive tutors, it is unusual to have ped-
agogic models that are entirely separate from the
model-tracing component [28]. Feedback is very
specific to the intermediate steps modeled by a
set of domain specific production rules. A more
generic approach that couples abstract PSMs and
ontologies, must also disentangle the pedagogic and
expert models. Otherwise pedagogic feedback
becomes increasingly limited and inflexible,
because (1) the more abstract productions support
an even more limited set of feedback types and (2)
the system has no way to instruct across sets of
general productions, making all feedback specific to
the single general rule to which it applies.

Increasingly, methods for developing highly mod-
ular and reusable expert systems are resulting from
research on the Semantic Web. The unified problem-
solving method description language (UPML) [29]
provides a specification for creating distributed rea-
soning systems. The UPML component architecture
[30] provides a detailed specification of relationships
between ontologies and abstract problem-solving
methods that maximizes the modularity of the com-
ponents. A task defines the problem to be solved by
the KBS as a set of subgoals. A problem-solving
method describes a reasoning process of the KBS. A
domain model describes the declarative knowledge
usedby theKBSduringproblem-solving. Task, domain
model, and PSM are entirely independent, and are
specified using ontologies. Relationships between
parts of the model are described using bridges and
refiners. Bridges are used to model relationships
between two architectural components (for example
task and PSMs), while refiners model the adaptation
of an architectural component.

Given the absence of general frameworks for
developing ITS in medical domains, we elected to
create our own framework–—incorporating aspects
of both KBS and ITS design. In particular, we use the
highly modular UPML component architecture to
create two interlacing KBS–—one that produces
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the expert model as a dynamic and advancing repre-
sentation of the solution, and one that produces an
instructional layer tailored to the specific student.
The instructional layer is therefore independent of
the expert model, and is able to inspect the stu-
dent’s progress across the entire solution, providing
feedback that is specific to intermediate states that
are defined by more than just a single rule.

The visual classification tutor (VCT) reproduces
the interaction style of the cognitive tutors, and
achieves the scalability of modern KBS, but also
provides a novel method for separating the peda-
gogic system so that it can be tailored to the indi-
vidual student while operating within the confines of
a more general framework. In the VCT, abstract
PSMs create a dynamic solution graph (DSG) — a
representation of the current problem state and
valid next steps — that is updated with each student
action. The VCT can be used with different inter-
faces, different domain ontologies and different
pedagogic ontologies to create different visual clas-
sification tutoring systems. Using the VCT, we have
implemented SlideTutor–—a web-deployed system
for teaching microscopic classification of inflamma-
tory diseases of skin. The purpose of this paper is to
describe the general architecture, knowledge
representation, and functionality of the VCT, and
to detail how it was used to create SlideTutor.
2. The VCT–—a domain neutral system
for cognitive tutoring of visual
classification problem solving

Visual classification problem solving is a common
cognitive task in which the problem-solver uses
visual cues to deduce the correct class membership
for an instance of unknown class. In medicine, visual
classification problem solving is an important aspect
of expert performance in radiology, hematology and
pathology. An ITS for visual classification problem-
solving requires a developmental cognitive model of
this task–—because the system must be able to
provide guidance and advice specific to a particular
student’s needs, but must also adapt as the student
gains proficiency.

Our developmental model of visual classification
problem solving derives from two sources: (1) pre-
vious empirical and theoretical work in radiology
[31—33] and also in non-visual domains [34—38] and
(2) an empirical cognitive task analysis [39,40] that
we performed to explore differences in the visual
diagnostic processes of novice, intermediate, and
expert pathologists.

The model on which we have based our tutoring
system is summarized in Table 1, as differences in
five basic areas of classification problem solving–—
search and detection, feature identification, fea-
ture refinement, hypothesis triggering, and hypoth-
esis evaluation. Early in the development of
expertise, students lack basic abilities in searching
for regions of interest, and limiting their diagnostic
search space. They are frequently incorrect when
determining the meaning of particular visual evi-
dence, lack the ability to refine evidence, and do
not know how to process evidence towards a diag-
nostic conclusion. Intermediates, on the other hand,
rarely exhibit errors related to search and detection
of regions of interest. Instead, they have difficulty in
correctly attaching symbolic meaning to visual evi-
dence and knowing when they need to refine evi-
dence. They are often uncertain of the meaning of
particular visual cues even when they are correct,
and consider an overly broad set of hypotheses.
Unlike experts, intermediates do not use backwards
reasoning selectively on a small hypothesis set.

The implications of this developmental model for
the instructional framework of the VCTare shown in
the lower pane of Table 1, as the ITS instructional
design requirements. A fundamental characteristic
of these requirements is that they assume the ability
of the system to change instructional approach as
the student progresses through a set of develop-
mental stages. Taken together, these implications
argue for the following design principles for our
system:
1. T
he system must be able to determine both cor-
rect and incorrect student actions, determine the
general class of error that has been made, and
leave open the specific instructional response to
this error–—which may change based on the stu-
dentmodel for a particular student, theparticular
classification task, or the interface itself.
2. T
he system must reason with the student, in
order to provide correct feedback as intermedi-
ate solutions are developed. For example, the
system should accept hypotheses and even diag-
noses based on an early, incomplete or incom-
pletely refined set of evidence. When additional
evidence is identified, the system should require
that students revise their diagnoses or state-
ments of diagnostic support.
3. T
he system must be able to reason both forwards
(evidence to hypothesis) and backwards (hypoth-
esis to evidence) so that it can support both
strategies among students. More novice students
may need to learn what decisions remain to be
made before a given hypothesis can be con-
firmed, while more expert students may need
to be encouraged to look for particular evidence
that separates one or more hypotheses. Both
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Table 1 Developmental cognitive model of visual diagnostic expertise and resulting ITS instructional design requirements
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scenarios require the ability to reason from
hypothesis to evidence.

In the remainder of this manuscript, we describe
the design and implementation of a general knowl-
edge-based tutoring system for visual classification
that meets these requirements.
3. Composite general architecture of
the VCT

The architecture and implementation we describe is
novel–—to our knowledge no other ITS has taken this
approach. Like other ITS [41], the VCT includes an
expert model against which student actions are
tested and a pedagogic component that responds
to incorrect actions and requests for help. But unlike
other ITS [4,6] the VCT does not rely on a set of
domain specific production rules as the basis for the
expert model. In contrast, the VCTconsists of set of
abstract PSMs that build a DSG from three separate
sets of frames that describe the domain knowledge,
task sequence, and the case to be classified. Inter-
action with the DSG is filtered through an instruc-
tional layer created by a second set of abstract PSMs
from a set of frames that describe the pedagogic
knowledge, pedagogic task sequence, and even-
tually data related to a particular student.

The components of the VCT (Fig. 1) conform to a
proposed standard for KBS–—the UPML component
model [30]. The expert model is composed of
domain model, domain task, and abstract PSMs.
The domain model represents the domain knowl-
edge used to solve problems. The domain task
represents the goals of the problem-solving process.
Figure 1 Visual classification tu
In combination with the case data, the abstract
PSMs create the DSG against which student actions
are tested. The instructional model is composed of a
separate pedagogic model, pedagogic task model,
and PSMs. The pedagogic model represents the
pedagogic knowledge used to teach problem sol-
ving. The pedagogic task represents the goals of the
instructional process. In combination with data
reflecting the current state of the student model,
the instructional model is manifested as a highly
flexible and context-specific instructional layer
between the student interface and the DSG.
4. Interaction scenario

In order to clarify our methods, we first provide a
single interaction scenario that incorporates exam-
ples of a wide range of system functionality. The
scenario is taken from the domain of dermato-
pathology and uses SlideTutor, but similar scenarios
could be generated for any domain in which visual
classification is feature based. In Sections 5—8,
we use these examples to detail the conceptual
implementation and function of each of the VCT
components. Individual actions enumerated in par-
entheses, match the tabular format of the interac-
tion scenario shown in Table 2. A video clip showing
the interaction scenario in the SlideTutor case-
focused interface is available at http://slidetutor.-
upmc.edu/video.html (accessed: 31 December
2004).

A first year pathology resident is using the Slide-
Tutor system to learn microscopic diagnosis of
inflammatory skin diseases. A case is selected by
tor component architecture.

http://slidetutor.upmc.edu/video.html
http://slidetutor.upmc.edu/video.html
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Table 2 Student actions and tutor responses corresponding to interaction scenario in text

Action Student action
(SUBTASK type and value)

Tutor
response

Description and references

2.1 Identify-Feature: blister Accept See corresponding state of DSG in Fig. 5A
2.2 Identify-Attribute (of blister):

location = intraepidermal
Failure Discrete values of attribute modeled

(see Section 5). See Table 5, Error S3
2.3 Help Request Best-next-step Hint after bug targets previous

error (see Section 7)
2.4 Identify-Attribute (of blister):

location = subepidermal
Accept Discrete values of attribute

modeled (see Section 5)
2.5 Identify-Feature: mucin Failure See example of error delivery in

Fig. 7. See Table 5, Error I4
2.6 Identify-Absent-Feature: mucin Accept Pertinent negative (see Section 5)
2.7 Assert-Hypothesis: erythema multiforme Accept Hypothesis consistent with at least

one feature (See Table 7)
(Task description)

2.8 Assert-Hypothesis: suction blister Accept Task description
2.9 Identify-Feature: inflammatory infiltrate Accept
2.10 Assert-Support-Link: inflammatory

infiltrate and Erythema Multiforme
Accept Support-link represented in DSG

as present or absent edge
between nodes (see Section 6)

2.11 Assert-Support-Link: inflammatory
infiltrate and suction blister

Failure See Table 5, Error E1

2.12 Identify-Feature: neutrophilic
inflammatory infiltrate

Failure Alert after correct action (see
Section 7) See Table 5, Error E6

2.13 Identify-Attribute (of neutrophilic
inflammatory infiltrate): location = dermis

Accept

2.14 Identify-Attribute (of neutrophilic
inflammatory infiltrate): quantity = minimal

Failure Continuous values of attribute
modeled (see Section 5). See
Table 5, Error S2

2.15 Assert-Hypothesis: acquired
epidermolysis bullosa

Accept

2.16 Help Request Best-next-step Feature identification precedes
hypothesis triggering in current
pedagogic task (see Table 6 - State 3).
See corresponding state of DSG in Fig. 5B

2.17 Identify-Feature: eosinophilic
inflammatory infiltrate

Failure Ambiguous error states (see Section 7).
See Table 5, Errors I2 and I3

2.18 Identify-Attribute (of eosinophilic
inflammatory infiltrate): location = dermis

Accept

2.19 Identify-Attribute (of eosinophilic
inflammatory infiltrate): quantity = moderate

Accept

2.20 Identify-Feature: epithelial necrosis Failure See Table 5, Error I1
2.21 Identify-Feature: nuclear dust Accept
2.22 Assert-Diagnosis: acquired

epidermolysis bullosa
Failure EC represents integrated evidence-

hypothesis relationship (Fig. 6).
Student action fails because no edge
from EC to asserted diagnosis (see Fig. 5C).
See Table 5, Error E10

2.23 Help Request Best-next-step Hints are given only for required
nodes (see Section 7). See corresponding
state of DSG in Fig. 5C

2.24 Assert-Hypothesis: linear IgA dermatosis Accept
2.25 Help Request Best-next-step
2.26 Assert-Hypothesis: dermatitis herpetiformis Accept
2.27 Help Request Best-next-step
2.28 Assert-Hypothesis: dermatitis

herpetiformis-like drug eruption
Accept

2.29 Assert-Diagnosis: linear IgA dermatosis Accept
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Table 2 (Continued )

Action Student action
(SUBTASK type and value)

Tutor
response

Description and references

2.30 Problem Done Failure See Table 5, Error C1
2.31 Help Request Best-next-step
2.32 Assert-Diagnosis: dermatitis herpetiformis Accept
2.33 Help Request Best-next-step
2.34 Assert-Diagnosis: dermatitis

herpetiformis-like drug eruption
Accept

2.35 Problem Done Accept
the tutoring system. At the conclusion of the stu-
dent-system interaction, this case will match to FS-
A in Fig. 2, but this is not known by student or
system until the problem is solved. The student is
presented with a brief clinical history, and a virtual
slide that the student uses to pan and zoom–—as
they would use a microscope. The interface also
provides a palette for students to build a diagram-
matic representation of their reasoning. When stu-
dent actions are correct, the diagram is updated to
reflect the new state of the argument. When stu-
dent actions are incorrect, students may modify the
diagram to correct errors.
The student begins by scanning through the slide,
and finds an abnormal discontinuation of the epi-
dermis. She correctly specifies the location of the
abnormality in the image and correctly describes
this abnormal feature as ‘‘blister’’ (2.1). The
system accepts the feature. After looking closely
at the blister, the student erroneously concludes
that the blister is intra-epidermal (2.2). She is
told that although she is wise to evaluate location
of the blister, the blister is not intra-epidermal in
this case. The diagram reflects this error. The
student asks for a hint (2.3), and is told to delete
Figure 2 Relationship of FEATURE_SPECIFICATION to DISEASE
the incorrect location. She properly asserts that
the blister is subepidermal (2.4). She suggests
dermal mucin in another area (2.5), but is told
that dermal mucin is absent in this case, and that
absence of mucin is an important negative finding.
The student corrects this mistake by asserting
absence of dermal mucin (2.6) and notes the loca-
tion of the absent mucin as within the reticular
dermis. The student suggests that this could be
erythema multiform (EM) (2.7) or suction blister
(2.8). The system adds these hypotheses to the
diagram because both are consistent with at least
one piece of evidence–—the subepidermal blister.
In an area that seems hypercellular, she indicates
the presence of inflammatory infiltrate (2.9)–—a
general category with subclasses delineated by
cellular type. The system considers this to be
correct because both neutrophilic and eosinophilic
inflammation (subtypes of inflammatory infil-
trate) are present in this slide at the location
specified by the student.
The student tries to create explicit support for the
diagnosis of EM with inflammatory infiltrate in her
diagram (2.10). The system considers this feature
supportive and modifies the diagram, because EM
instances for five feature specifications and five diseases.
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2 We use the term model to refer to a subset of the complete
ontology, specific to a particular purpose. For example, the
domain model is the subset of the complete ontology that spe-
cifies only the concepts relevant to domain knowledge. In con-
trast, the task model specifies only the concepts relevant to task
knowledge. Separation of domain, task and case concepts are a
foundational principle of the UPML component architecture.
is associated with lymphocytic infiltrate (another
subtype of inflammatory infiltrate). But when the
student tries to support suction blister with
inflammatory infiltrate (2.11), the system marks
this as incorrect in the diagram and the student
removes it. After further consideration, the stu-
dent modifies the more general concept of inflam-
matory infiltrate to the more specific concept of
neutrophil-rich inflammatory infiltrate (2.12).
The system accepts this modification, but also
alerts the student that by further specifying the
type of infiltrate–—the supportive relationship
between the inflammatory infiltrate and EM no
longer applies. Although lymphocytic infiltrate is
seen in EM, neutrophilic infiltrate is not. The
student amends the diagram by deleting this expli-
cit relationship. Since she has excluded EM and
suction blister she deletes these hypotheses from
the palette. She correctly specifies the location of
the neutrophilic infiltrate (2.13) and then suggests
that the infiltrate is minimal in quantity (2.14).
The system responds that although minimal neu-
trophilic infiltrate can be seen in cases of this
entity–—the severity is not best described as mini-
mal in this case. The student corrects the error.
The student thinks of acquired epidermolysis bul-
losa (AEB) (2.15), and adds this to the diagram. But
at this point she is stuck. There don’t seem to be
further features, and these are all the hypotheses
she can come up with. She asks for a hint (2.16). The
system suggests that there are still further features
to find. Uncertain where these features are, she
asks for more hints and is taken to the correct field
and magnification for the next feature. The student
thinks she knows what’s here and indicates that
there is eosinophil-rich inflammatory infiltrate in a
particular area of the image (2.17). The system
suggests that the eosinophil-rich inflammatory
infiltrate is present–—but not in the area that she
has indicated. The student asks for additional hints,
and the system annotates the correct region. A final
hint moves the slide and annotates an area in which
the eosinophilia is particularly easy to recognize.
The student correctly asserts the location (2.18)
and degree (2.19) of the eosinophilic infiltrate. She
finds an area near the blister that seems necrotic.
She identifies epithelial necrosis (2.20), but is told
that this is not a significant feature of this case. The
student removes the feature. Thinking that they
could be fragments of neutrophils instead, she
asserts nuclear dust (2.21), which is accepted into
the diagram.
The student feels certain that this is AEB. She tries
to make the hypothesis a full-fledged diagnosis
(2.22). But the system responds that although blis-
ter, neutrophilic dust, and neutrophilia are fea-
tures of AEB–—the eosinophilia is not consistent. The
student is unsure what to do next. Are there other
important features that she has missed? She asks for
another hint (2.23). The system responds that she
has found all of the features, but has not asserted
all the hypotheses that apply given these features.
After additional requests for hints (2.25, 2.27), she
is told that all of the features are consistent with
linear IgA dermatosis, dermatitis herpetiformis
(DH) and dermatitis herpetiformis-like drug erup-
tion (DHLDE). She asserts these hypotheses (2.24,
2.26, 2.28). Which diagnosis is it? She guesses linear
IgA dermatosis (2.29) and the system promotes the
hypothesis to the status of diagnosis in the diagram,
indicating that this is a perfectly acceptable diag-
nosis. The student tries to conclude the problem
(2.30) but is warned that there are more acceptable
diagnoses. With additional hints (2.31, 2.33), she is
told that DH and DHLDE are also consistent with all
of these features. The student adds them to the
reasoning palette (2.32, 2.34), and correctly indi-
cates that the problem has been solved (2.35).
5. Expert model–—representation
of domain knowledge, task and
case data

The expert model of the VCT provides the evolving
solution that student actions are tested against.
Abstract PSMs are applied to (1) instances in the
domain knowledge base; (2) instances defining the
task sequence and (3) instances derived from case
data, to create a DSG. We first describe the three
models, and then detail how these frames are used
to generate the DSG.

5.1. Domain model

The domain model2 expresses the relationships
between evidence and disease entities. The class
concepts and relationships of the domain model are
general, and apply widely throughout pathology and
other areas of medicine in which classification is
feature-based. The class structure of the domain
model is depicted in Fig. 3 in relationship to the case
model. Our representation slightly extends the
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Figure 3 UML class diagram of domain and case showing relationships to shared feature, attribute and value primitives.
ontology for classification problem solving described
by Motta and Lu [42], by adding additional attributes
to features. A similar representation has also been
used to create ontologies for petrographic analysis
[43]. Diseases3 are hierarchically represented. Any
disease may have more than one parent (multiple
inheritance). Diseases have one or more FEATURE_-
SPECIFICATION instances–—each of which correspond
to a combination of evidence. This structure is quite
analogous to what Evans and Gadd have termed
‘‘facets’’ in describing clinical reasoning [44]. Each
FEATURE_SPECIFICATION consists of one or more
FEATURE_ATTRIBUTE_VALUE_SET (FAVS). Each FAVS
is in turn composed of two primary components: (1)
a single FEATURE and (2) one or more ATTRIBUTE_-
VALUE_SETS. Instances of FEATURE represent dis-
tinct perceptual primitives of visual entities (such as
blister) that form the ‘‘atoms’’ of visual feature
3 We use the term ‘disease’ as the class name throughout this
manuscript, in order to clarify relationships within a medical
context. However, this class is more appropriately named ‘visual
entity’, because the DOMAIN model applies to any visual classi-
fication task.
recognition. Instances of ATTRIBUTE_VALUE_SET
represent the additional cognitive steps required
for refining these features (such as the distinction
of a blister’s location relative to the epidermis as
subepidermal or intraepidermal). ATTRIBUTE_VA-
LUE_SETS are composed of a single ATTRIBUTE
and a set of VALUE.

The domainmodel therefore represents many-to-
many relationships between FEATURE_SPECIFICA-
TION and DISEASE. An example of this relationship
is shown in Fig. 2, for five instances of DISEASE under
consideration in the interaction scenario, and five of
twelve total FEATURE_SPECIFICATIONS associated
with these five diseases.

Continuous and discrete values of attributes are
modeled differently:
� F
or continuous values such as the quantity of
inflammation, multiple possible values are
expressed as a value range of the ATTRIBUTE in
a single FEATURE_SPECIFICATION. For example, in
Fig. 2, FS-A indicates that the value range of
neutrophil-rich inflammatory infiltrate is moder-
ate to marked.
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� F
or discrete values such as the location of inflam-
mation, when an ATTRIBUTE of one FEATURE has
multiple values within a single case (logical AND),
these are represented as multiple ATTRIBUTE_-
VALUE_SETS within a single FEATURE_SPECIFICA-
TION. For example, in Fig. 2, FS-E contains two
separate ATTRIBUTE_VALUE_SETS for location of
the eosinophil-rich inflammatory infiltrate, one
for papillary dermis and one for reticular dermis.
� F
or continuous or discrete values, when an ATTRI-
BUTE of one FEATURE can have only one of many
values (logical OR), these are represented as
separate FEATURE_SPECIFICATIONs (not shown
in Fig. 2).

Identifying the absence of some features is often
a critical aspect of problem-solving. Students must
learn when it is important to identify pertinent
negatives, because they form branch points in deci-
sion making. These ‘explicitly absent features’ must
therefore be represented in the DSG so that the
instructional layer can separate these pertinent
negatives from the sea of absent features the stu-
dent might correctly try to note in any individual
case. For example, when the student in our inter-
action scenario says that mucin is present, the
system responds that actually it is absent, and that
the absence of this feature is salient (Table 2, Action
2.5). Explicitly absent features are represented
Figure 4 Instance of CASE us
using the same method as present features, except
that the quantity attribute is defined as ‘none’. For
example, the absence of mucin in the reticular
dermis is expressed in FS-A and FS-B (Fig. 2) as a
FAVS with feature: mucin, location: reticular der-
mis, and quantity: none.

5.2. Case

In the VCT, the CASE provides the location and
semantic content of each feature encoded in a
single tutor case. The class relationships for CASE
are shown in Fig. 3. Each CASE consists of a set of
LOCATED_OBSERVABLE, each of which combines a
single OBSERVABLE and a set of SHAPE that defines
the geographic distribution of the OBSERVABLE in
the image. OBSERVABLES are composed of one FEA-
TURE and one or more ATTRIBUTE_VALUE_PAIR.
ATTRIBUTE_VALUE_PAIR are composed of one ATTRI-
BUTE and a single VALUE. For continuous values, the
single values in ATTRIBUTE_VALUE_PAIR in the case
model contrast with the value ranges expressed in
ATTRIBUTE_VALUE_SET in the domain model.

Fig. 4 shows the CASE instance used in the inter-
action scenario. In combination with Fig. 2, it can be
surmised that the CASE which is loaded at the start
of the interaction scenario will be determined to
represent FS-A by both student and system by the
conclusion of problem solving. Note that the mod-
ed in interaction scenario.
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erate quantity of inflammatory infiltrate in the
ATTRIBUTE_VALUE-PAIR for CASE is within the range
of the ATTRIBUTE_VALUE_SET (moderate, marked)
for FS-A. One requirement for instances of CASE to
match to instances of DISEASE is that all features
and attributes match, and that single values within
ATTRIBUTE_VALUE_PAIR are within the value ranges
of the corresponding ATTRIBUTE_VALUE_SET.

The relationship of the domain model and case
model is also shown in Fig. 3. ATTRIBUTE, VALUE and
FEATURE are primitives shared by both domain and
case models. Instances of CASE are created using a
case authoring tool, which constrains authoring to
use only the FEATURE_SPECIFICATIONS enumerated
in the domain knowledge base. This is more fully
described in Section 12.

5.3. Domain task

The task model represents an abstraction of the goal
structure for classification problem solving. The task
model is composed of a small set of SUBTASK
instances, with one SUBTASK for each general cog-
nitive goal in a particular classification problem-
solving exercise. The task model used in the inter-
action scenario (Table 3) contained one SUBTASK for
each of the following types of cognitive goals: (1)
identify a feature in the image; (2) determine that a
critical feature is absent; (3) refine the feature to
include attributes and values; (4) assert a hypoth-
esis; (5) accept a hypothesis as a diagnosis; (6) assert
a supporting relationship between a feature and a
hypothesis; (7) assert a refuting relationship
Table 3 Subtasks types used in TASK model

Has_Type Has_Parent Has_Role

Identify-Feature None Direct
Identify-Absent-Feature None Direct
Identify-Attribute Identify-Feature Property

Assert-Hypothesis Identify-Feature Direct

Assert-Diagnosis Assert-Hypothesis Direct
Support-Link Identify-Feature Indirect

Assert-hypothesis
Refute-Link Identify-Feature Indirect

Assert-Hypothesis
Identify-Distinguishing-

Feature
Assert-Hypothesis Indirect

Assert-Hypothesis
between a feature and a hypothesis and (8) find a
feature that distinguishes between one or more
competing hypotheses. Each of these generic SUB-
TASKs may be instantiated to form one or more case-
specific goals.

Relationships between instantiated goals are
derived from the spatial structure of TASK, and
ultimately specify the entire problem space of valid
actions for a given case. The Has_Parent slot of
SUBTASK is used to create this spatial structure.
For example, a SUBTASK of type Assert-Diagnosis
contains a Has_Parent slot that may be filled by
Assert-Hypothesis or Identify-Feature. When filled
by Assert-Hypothesis (as is true in the task shown in
Table 3), the diagnosis must be preceded by the
formation of a hypothesis. When filled by Identify-
Feature, the diagnosis may be asserted directly
from the evidence without the need to first trigger
and test a hypothesis.

The behavior of each type of goal during problem
solving is defined in the Has_Role slot of SUBTASK.
This slot specifies whether the goal has an inherent
ordering in the subtask (direct role), is an attribute
of an already achieved goal (property role), or
reflects relationships between the goals (indirect
role). Examples of goals with direct role include
feature identification and hypothesis triggering
because (1) features must be found before they
are refined, and (2) hypotheses must be based on
features. An example of a goal with a property role
is feature refinement, because refinement of a
feature must be preceded by identification of the
feature. Examples of goals with indirect roles
Explanation of subtask

Present feature in case to be identified and localized
Pertinent negative feature in case to be noted
Qualities of feature to be identified only after
feature is identified
Goals for making hypotheses only instantiated
after a feature node already exists which is
supportive of this hypothesis
Assertion of diagnosis follows assertion of hypothesis
Reasoning step to indicate that identified
feature (constrained or unconstrained by
attributes) supportive of particular hypotheses

Reasoning step to indicate that identified
feature (constrained or unconstrained by
attributes) refutive of particular hypotheses

Features to be identified when competing
hypotheses exist where features distinguish
between competing hypotheses
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include (1) supporting and refuting hypotheses, and
(2) distinguishing features. Any step, whether
direct, indirect or property, may be either required
or not required, but it is up to the instructional layer
to determine which of these two states is in effect.

By modifying TASK, the goal instances created in
the DSG will alter the behavior of the expert model
that is used to evaluate student actions. Conse-
quently the same system can be used to model
different strategies for solving a single problem,
dependent on the state of the student model.
6. Dynamic solution graph

The DSG is a directed acyclic graph that models the
current problem state and all valid-next-steps. The
DSG generates the initial problem state at the begin-
ning of each problem, using knowledge derived from
thedomain, task andcasemodels. After each student
action, the graph structure is updated by a set of
abstract PSMs that may add or delete nodes and arcs,
or change the node state. These changes are deter-
mined by the behavior encapsulated in the Has_Role
and Has_Parent slots of the instantiated goals.

The system does not know the solution of the
problem a priori, and only reaches the solution with
the student. Although any individual state of the DSG
representsonlythecurrentproblemstateandallvalid
next-steps, sequential DSG states define one path
through the problem space–—the path taken by the
student. The graph representation supports the abil-
ity to reason in both directions (design principle 3)
and the dynamic nature of the graph enables the
systemtoreasonwiththestudent(designprinciple2).

Fig. 5A—C depicts the DSG in three different
states, corresponding to the states following actions
2.1 (Fig. 5A), 2.15 (Fig. 5B), and 2.17 (Fig. 5C) in the
interaction scenario (Table 2). Completed nodes are
shown as filled. The current problem state is defined
by the set of all completed nodes. All other nodes
represent valid-next-steps. Bolded nodes depict
calculated best-next-steps.

6.1. Basic structure

The DSG is composed of a set of nodes and a set of
arcs. Each node represents one instantiated SUB-
TASK. Once instantiated, we refer to the nodes as
subgoals because they are specific to the context of
the problem state. During instantiation, both case
and domain knowledge are incorporated. As a
result, an individual node in the DSG encapsulates
the properties that are essential elements in the
achievement of this subgoal (Table 4). For example,
in Fig. 5, the node entitled ‘‘nuclear dust’’ is an
Identify-Feature node and therefore has properties
FeatureName, Area, and Magnification (Table 4).
Each property contains a value or set of values.
As determined by the instructional layer, a correct
action by the student must match all of these node
properties. For example, when the student identi-
fied nuclear dust in the interaction scenario (Action
2.21 in Table 2), the student’s feature name
matched the node FeatureName, the student’s fea-
ture location was within the set of regions defined
by the Area, and the student’s degree of magnifica-
tion was greater or equal to the Magnification. Arcs
in the DSG represent temporal relationships
between the current problem state and valid-
next-steps. As the DSG advances, new nodes are
added which represent additional valid-next-steps.
For example, after the assertion of ‘‘blister’’ the
solution graph contains new goals for attributes
associated with blister and for hypotheses that
are supported by blister (Fig. 5A).

The evidence cluster node is an additional node
used to express an integrated relation between
features and hypotheses. Cluster nodes are used
for disambiguating Feature-Hypothesis relation-
ships as the student traverses the problem space.
The method for disambiguation is shown with other
graph definitions in Fig. 6. The domain knowledge
base contains a one-to-one mapping between FEA-
TURE_SPECIFICATION and DISEASE SET. However, any
feature may be present in multiple FEATURE_SPE-
CIFICATION and any DISEASE may be present in
multiple DISEASE SETs. Because the DSG reasons
only one step ahead of the student, the systemmust
deal with an incomplete set of features in bounding
the student’s problem solving. Until all features
have been identified, the evidence cluster provides
the only way to determine the DISEASE SETs that are
valid at any given time. For example, in Fig. 5A—C,
as additional features are identified and refined, the
evidence cluster points to fewer and fewer hypoth-
eses. At the end of problem-solving only the one-to-
one mapping between FEATURE_SPECIFICATION and
DISEASE SETwill remain. This can be seen in Fig. 5C,
where the evidence cluster points to three hypoth-
eses–—linear IgA dermatosis, DHLDE Eruption and
DH. These three hypotheses share the FS-A feature
specification (Fig. 2). In this state, the problem has
been solved. Note that in the interaction scenario,
the student identifies blister early on, and therefore
the set of valid hypotheses is initially quite large. If
the student had identified nuclear dust first, the set
of valid hypotheses would be small initially, and
would grow as additional features were identified.

In addition to bounding the student’s solution,
the evidence cluster can be used by the pedagogic
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system to permit only hypotheses that are consis-
tent with ALL identified features (hypothesis is a
member of the DISEASE_SET in evidence cluster) as
opposed to ANY identified features (hypothesis is a
child node of Identify-Feature). The current default
instructional model implements the latter criterion.
Figure 5 (A) State of DSG following identification of blis
identification of blister (Action 2.15 in Table 2). (C) State of DSG
6.2. Creating the graph

To create the initial problem state, information
from CASE and TASK are used to instantiate initial
DSG nodes. Identify-Feature nodes are instan-
tiated with feature names, areas and magnifica-
ter (Action 2.1 in Table 2). (B) State of DSG following
following identification of blister (Action 2.17 in Table 2).
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Figure 5. (Continued ).
tion from CASE. Identify-Attribute nodes are
instantiated with attribute name and value. Both
nodes contain structural information derived
from TASK. At the start of the problem only Iden-
tify-Feature and Identify-Attribute nodes are pre-
sent.
6.3. Determination of best-next-step

As shown in Fig. 5, the DSG includes all valid-next-
steps in problem solving (unfilled nodes). In order to
help students traverse the problem-space, the DSG
must select a single best-next-step for each cycle
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Figure 5. (Continued ).
(shown as bolded nodes in Fig. 5). These best-next-
steps are context-specific to the state of the pro-
blem and what is known about the student, and are
used by the pedagogic system to deliver context-
specific help. For example, in the interaction sce-
nario, the hint given to the student when there is
still evidence to identify (response to Action 2.16) is
different than the hint given when all evidence has
been identified (response to Action 2.23). Identifi-
cation of best-next-step in the DSG is analogous to
conflict-resolution among separate production rules
in more traditional ITS architectures.

The best-next-step is determined each cycle
based on information derived from the instructional
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Table 4 DSG node structure and behavior

DSG node slots Direct nodes Indirect nodes

Identify-Feature Identify-Attribute- Assert-Hypothesis Assert-
Diagnosis

Support-
Link

Refute-
Link

Identify-
Distinguishing-
Feature

Is_Goal Indicates whether the node is a goal node, based on current problem stat
Is_From_Case Indicates whether the goal is derived from the case
State Reflects whether the node has been completed by the student or not

Properties Feature name: e.g. ‘blister’ Attribute name:
e.g. ‘location’

Name: e.g.
‘linear IgA
dermatosis’

Name: e.g
‘linear IgA
dermatosis

Name: e.g.
‘blister -
linear IgA
dermatosis’

Name: e.g.
‘nuclear dust-
arthropod bite’

Name: e.g.
‘nuclear dust’

Area: set of polygons
associated with feature

Attribute value: value of
attribute derived from
case, e.g. ‘subepidermal’

Magnification: lowest
observable magnification

General behavior
of DSG node
(applies to
all nodes)

Value of state slot changes when completed by student

Completed nodes generate all direct parents and children based on conte ts of has-parent slot of Task model
Node cannot be deleted if derived from case
Nodes connected to other completed nodes cannot be deleted on update

Specific behavior
of DSG node
by subgoal type

Completion of Identify-Feature
nodes results in update of
evidence cluster based on
integration of additional
information

AV nodes cannot be
completed before parent
evidence nodes because
Identify-Attribute nodes
have property role derived
from Task; Completion
of Identify-Attribute nodes
results in update of
evidence cluster based on
integration of additional
information

On update, diagnosis
node of same name
as hypothesis node
will be created only if
hypothesis node Is-goal

All INDIRECT nodes are dynamic and reflect
the existing relationship between the DIRECT
nodes and can become incorrect when these
relationships are no longer valid
e

.

’

n
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Figure 6 Expert model definitions.
model. Each node contains a value for hint priority
and an indicator for whether or not it is a required
node. The best-next-step in any state is the required
node of highest priority. For example, in Fig. 5A, the
best-next-step is to refine the feature blister by
adding that it has a subepidermal location, because
feature-refinement has a higher priority than fea-
ture identification or hypothesis formation for the
current pedagogic model. Priorities and require-
ment indicators may be altered by the pedagogic
model, based on the state of the student model.

6.4. Updating the graph

From the initial state, each subsequent student
action is translated into an event that propagates
through the DSG and alters its structure. When the
event propagates, alterations to individual nodes
are specific to the type of node (Table 4). For
example, after a correct identification of a feature
(student action matches a particular Identify-Fea-
ture node exactly) the graph updates by (1) chan-
ging the state of the Identify-Feature node to
identified, (2) adding Assert-Hypothesis nodes which
are supported by this feature, (3) creating arcs
between the Identify-Feature and each Assert-
Hypothesis node supported that feature, (4) updat-
ing the evidence cluster, and (5) calculating the new
best-next-step.

6.5. Reasoning forward and backward

The DSG models both the forward and backward
intermediate reasoning steps that are seen in
empirical studies of developing expertise. As
demonstrated in the GUIDON project [14,23], for-
ward directed reasoning provides a much more
natural method for students to progress through
the problem space. However, backward or goal
directed reasoning can be a powerful operator
and is often used by experts to perform more com-
plex kinds of reasoning. These include checking of
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solutions, and distinguishing between alternative
hypotheses by seeking evidence that is differentially
expressed among the alternatives.

The DSG supports forward directed reasoning, by
maintaining the set of all valid-next-steps and cal-
culating the best-next-step with each cycle. Conse-
quently, by iteratively cycling the DSG, it can be
used to traverse the entire problem space to arrive
at the goal, just as a forward chaining system would
be used to arrive at the solution state. Forward-
directed reasoning is used by the instructional
model to guide the student through step-by-step.
In fact, the structure defined by the TASK ensures
that as the DSG is successively augmented, the
direction of the graph models the forward-directed
process from evidence to diagnosis.

If we define the TASK differently, the DSG can be
iteratively cycled from a solution state to add goal
nodes until an initial problem state is reached. For
example, if we define the TASK to reason from
diagnosis to evidence, then the graph will recreate
the entire problem space from the solution state
backward toward all initial states.

However, typically we are only interested in
selected aspects of backward reasoning in order to
perform particular instructional actions. Therefore
we do not recreate the entire backward solution.
Instead, the current TASK produces the entire
sequence of forward directed reasoning and simulta-
neously models single backward or goal-directed
reasoning steps. In particular, we model backward
reasoning from hypothesis to evidence in order to (1)
offer more specific kinds of remediation and (2) help
students learn how to distinguish among hypotheses.

Remediation can be made more specific by iden-
tifying whether a student could be using backward
reasoning to set goals for searching for particular
features. For example, when a hypothesis is added,
goals for finding features and attributes relevant to
the added hypothesis appear in the next state of the
DSG. Fig. 5B corresponds to the state following
Action 2.15 in Table 2, and shows nodes for isolated
neutrophils, isolated eosinophils and predominantly
lymphocytic inflammatory infiltrate have been
added to the DSG, after AEB was asserted. Arcs
connect these goals to the AEB hypothesis. In this
case, none of these features are actually present in
the slide. In other situations, backward reasoning
goals may overlap with features present in the case.
If in State 5B, the student were to assert the pre-
sence of a predominantly lymphocytic inflammatory
infiltrate, the system would provide explicit feed-
back that this feature is not present, but would
simultaneously reinforce the student for searching
for a feature that should be present, given that EM is
under consideration.
Identify-Distinguishing-Feature is an additional
subgoal that can be supported by adding nodes
for features and attributes, using the backward
directed reasoning. Specifically, the structure of
the DSG can be used to determine the intersection
and complement of features for a given set of
hypotheses. For example, linear IgA dermatosis
and arthropod bite can be distinguished by the
presence of nuclear dust which is present in linear
IgA dermatosis but absent in arthropod bite (Fig. 2).

The DSG therefore supports the essential char-
acteristics of a cognitive tutor–—it provides the
ability to distinguish between correct and incorrect
actions, models the set of valid actions for the next
step, and selects a single step as the next-best step
which can be used by the instructional layer to guide
the student through the problem [8]. Furthermore,
the DSG supports the foundational principles we
established from our developmental model
(Table 1): (1) it determines general classes of errors
but provides flexibility in tutor response, (2) it
reasons with the student supporting intermediate
solutions and revision, and (3) it models both for-
ward and backward reasoning. Finally, the DSG
enables a more scaleable architecture because all
domain and pedagogic knowledge is maintained in
separate knowledge bases.
7. Instructional model

Pedagogic and domain knowledge are entirely sepa-
rate in our system. The DSG is used to determine
accepted actions versus failures, and to determine
the best-next-step in problem-solving. But all
instructional content is provided by a separate sys-
tem that responds to states in which (1) student
actions do not match an existing DSG node or (2) the
student requests help.

In symmetry to the expert model, the instruc-
tional model is composed of a pedagogic model,
pedagogic task and PSMs (Fig. 1). The pedagogic task
is rudimentary in the current system consisting only
of the goals to deliver hints and alerts, and the
priorities attached to these goals. In the default
state of the pedagogic task described in this manu-
script only a single response (error) or set of
responses (hints) is delivered, regardless of the
student. In future versions of the system, more
complex reasoning will be utilized to produce dif-
ferent hints and alerts based on student model
state.

The pedagogic model contains the declarative
knowledge required for two types of case-specific
interventions: (1) explanations delivered by the
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system as alerts when the student makes a parti-
cular kind of error, and (2) explanations delivered by
the system as hints when the student requests help.

7.1. Errors

Errors constitute student actions that generate a
‘failure’ response from the expert model because
Table 5 Errors remediated by type

Process # Error remediated by tuto

Feature identification I1 Feature identified by stu
I2 Feature identified by stu
I3 Feature identified by stu

in this location has been
I4 Feature identified by stu
I5 Feature identified by stu

for one or more hypothe
I6 Feature identified as abs
I7 Feature identified as abs

currently seen in viewer
I8 Absent feature identified
I9 Magnification used by stu
I10 Magnification used by stu

Feature refinement S1 Feature doesn’t require f
S2 Wrong attribute for featu
S3 Correct attribute for fea
S4 Attribute can have that v

in this case (used for bac
S5 Attribute can have that v

currently under considera
in this case (used for forw

Hypothesis triggering T1 No feature identified to s

Hypothesis evaluation E1 Feature indicated as supp
hypothesis because featu

E2 Feature indicated as refu
because feature does not

E3 Feature indicated as supp
because one or more att

E4 Feature indicated as refu
because one or more att

E5 Feature previously indica
hypothesis because attrib

E6 Feature previously indica
hypothesis because featu

E7 Feature previously indica
refute hypothesis becaus

E8 Hypothesis previously sup
supported by any feature

E9 Diagnosis does not fit wit
E10 Diagnosis fits with some f

features that have been
E11 Diagnosis now inconsisten

because new feature add
E12 Diagnosis now inconsisten

attribute value pairs of f

Problem completion C1 Student indicates problem
they do not fulfill the criteria for a complete match
at any node. When this is the case, student actions
will match to one or more error states (Table 5).
Error states can be categorized as errors of feature
identification, feature refinement, hypothesis trig-
gering and hypothesis evaluation, as outlined in our
developmental model of expertise (Table 1). Error
states for slide search have not yet been implemen-
r

dent is not present
dent exists at another location
dent exists elsewhere, but second feature present
missed
dent is explicitly absent
dent is not present in this case, but can be present
ses under consideration (including correct)
ent is present in location currently under consideration
ent is present in another location not

by student is absent but not important to note
dent is too low to identify absent feature
dent is too low to identify feature

urther specification of attributes and values
re
ture, but incorrect value for attribute
alue for hypotheses under consideration but not
kwards reasoning)
alue for hypotheses not
tion but not
ards reasoning)

upport this hypothesis

orting hypothesis does not support that
re does not match
ting hypothesis does not support that hypothesis
match
orting hypothesis does not support that hypothesis

ribute value pairs do not match
ting hypothesis does not support that hypothesis
ribute value pairs do not match
tive of supporting hypothesis now does not support
ute value pairs have been added
tive of supporting hypothesis now does not support
re has been further specified within feature hierarchy
tive of refuting hypothesis now does not
e attribute value pairs have been added
ported by one feature is no longer
because attribute value pairs have been added
h feature(s) found so far
eatures that have been identified but not other
identified
t with identified feature
ed
t with identified feature because new
eature added

-done before all required subtasks are completed
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ted, primarily because our developmental model
suggests that the target users (intermediates) have
largely mastered these skills.

Within each category, individual errors describe
specific reasons for failure. For example, errors of
identification occur when there is no match to an
Identify-Feature node in the DSG. Ten specific errors
are recognized in this category relating to incorrect
present and absent feature assertions, incorrect
locations for these assertions, and incorrect viewer
magnification when identifying features (Table 5).

When the student action does not match any
valid-next-step, a ‘failure’ response returns from
the DSG. A separate set of pedagogic PSMs are used
to match the student actions to the error states
described in the pedagogic model. For example, in
the interaction scenario, when the student asserts
mucin (Action 2.5 in Table 2) the DSG returns a
‘failure’ but the student actions match to Error I4
(Table 5), because an Identify-Feature node exists
for absence of mucin, but the student has identified
mucin as present. In contrast, when the student
identifies epithelial necrosis (Action 2.20 in
Table 2), the system matches the student actions
to Error I1 (Table 5).
Figure 7 Example alert (respon
For each error state the pedagogic model main-
tains a response (alert) that can be delivered to the
student. Alerts are composed of context-specific
text with accompanying tutor actions. Context-
specific text is generated with text templates. A
simple markup language is used for insertion of
context specific information derived from the cur-
rent structure of the DSG and/or the incorrect
student action. Tutor actions are general kinds of
non-text interventions delivered along with the
text. They specify the general form of interven-
tion, but do not indicate the specific target object
on the interface side. For example, the systemmay
flag an incorrect step in the diagrammatic reason-
ing interface. Like the text templates, tutor
actions are made specific to context and interface
object by insertion of values derived from current
structure of the DSG. For example, when the stu-
dent incorrectly identifies mucin as present, the
system delivers the text template for Error I4, using
the value ‘mucin’ derived from the DSG node for
this feature (Fig. 7). Additionally, the system flags
the incorrect node by changing the behavior of the
object to blinking, and the color of the object to
red.
se to Action 2.5 in Table 2).
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There are three extensions to the basic error
logic:
� A
mbiguous error states. In some cases, student
actions match to multiple error states because
there is ambiguity about which error the student
hasmade. In this case, the systemmust determine
which alert should be delivered. In the interaction
scenario, the student incorrectly identifies eosi-
nophil-rich inflammatory infiltrate (EII) at a par-
ticular location (Action 2.17 in Table 2).
Eosinophil-rich inflammatory infiltrate is present
elsewhere on the slide (Table 5, Error I2). But
there is also another feature present in this loca-
tion (nuclear dust) that has not yet been identi-
fied (Table 5, Error I3). Was the student correctly
identifying EII as they traversed the slide, but
incorrectly bounding the area in which it is seen,
or was the student looking specifically at nuclear
dust and incorrectly labeling this EII? The system
cannot differentiate between these two condi-
tions, but must assign blame to one of them in
order to (1) explain the error, and (2) maintain the
assessment of student skills needed for the stu-
dent model. When multiple error states apply, the
error state with the highest priority in the peda-
gogic task is selected by the system. In the case of
Action 2.17 (Table 2), Error I2 has higher priority
than Error I3, and therefore the I2 alert is deliv-
ered. Currently error state priorities are static
and reflect the default pedagogic model. In the
future, priorities will be dynamic and altered
dependent on the state of the student model.
� R
ecommendations. Some kinds of feedback do not
fit well into the standard division of feedback as
hints and errors. In the interaction scenario, when
the student correctly identifies the quantity of EII
as moderate, the system accepts the correct
response (Action 2.19 in Table 2). Although this
is the correct quantity in this case, the student
should know that quantity may take a range
(including the correct value) and still be consis-
tent with the diagnosis that applies in this case.
Additional recommendations are delivered sepa-
rately to the interface to distinguish them from
true errors, but may be concatenated whenmulti-
ple recommendations apply.
� A
lerts after correct actions. Because the expert
model reasons with the student, some previous
assertions may become inconsistent with addi-
tional evidence. In particular, this is true of sup-
porting and refuting relationships. In the
interaction scenario, when the student further
refines neutrophil-rich inflammatory infiltrate,
the system accepts the modification (Action
2.12 in Table 2). However, the existing supportive
relationship to EM is no longer valid. The instruc-
tional layer alerts the student to this new incon-
sistency. Interactions of this kind are very difficult
to construct with traditional cognitive tutor archi-
tectures because they typically provide feedback
only for a single rule.

7.2. Requests for help

When the student does not know what to do next,
they may request help from the tutoring system.
Requests for help return a single best-next-step
from the expert model. The type of best-next-step
returned determines the hint delivered by the
instructional layer, and therefore the hint is specific
to the current problem state. As described in Sec-
tion 6, the best-next-step is determined by the
expert model. The best-next-step is dependent on
(1) the state of the problem, and (2) the pedagogic
task.

The state of the problem (Table 6) defines the
valid-next-steps from which a best-next-step is
selected. The pedagogic task determines whether
any valid-next-step is required or not required (see
Section 5), and only required valid-next-steps may
be returned as best-next-steps. For example, the
default state of pedagogic task requires hypotheses.
Thus, when all features have been identified and
refined (State 5 in Table 6), the system suggests that
the student assert hypotheses, because hypothesis
is a required node. In the interaction scenario, this
interchange is shown in Action 2.23 (Table 2). In
future versions of the system, we will use this
mechanism to change required nodes as expertise
develops, allowing more advanced students to skip
steps that were required early on. For example, we
can then allow students to ‘‘jump’’ to the diagnosis
after the region of interest has been seen (see
Table 1, Design Requirement 1.7).

For each DSG node type, the pedagogic model
maintains a set of responses (hints) that can be
delivered to the student. Like alerts, hints are
composed of context-specific text and accompany-
ing tutor actions. But unlike alerts, hints are ordered
lists, providing increasingly specific advice. Early
hints provide general guidance, and later hints
are more directive. In the interaction scenario,
the student requests help before she has completely
identified the evidence (Action 2.16 in Table 2), and
progresses through the hints available for this pro-
blem state (Fig. 8). At first the system provides only
the feature name, shows the student the area of the
case in which the feature can be found, and
encourages the student to try to find the feature
on her own. In subsequent hints, the system draws
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Table 6 Problem states and corresponding hint sequences for early intermediate student

State Problem state description Hints delivered to early intermediate student

1 Student not in area of interest Direct student to area of interest

2 Student in area of interest but has
not yet started to identify features

Advise student that they have found area
of interest and should look for features

3 More features can be identified Advise student that more features
are present
Move viewer to area closest to current
field that contains feature
Draw around area containing feature
Provide name of feature
Show annotated example of feature
(if available)
Describe correct interface actions
to identify feature

4 Feature has been identified but not fully
refined with attribute value pairs

Advise student that feature just identified
has important qualities (attribute value
pairs) that should be indicated
Provide attribute name
Provide value name
Describe correct interface actions to assert
qualities and assist by opening correct menu

5 All features have been identified and fully
refined but no hypotheses have been asserted

Advise student that all features have
been found and hypotheses should
now be considered

6 Hypothesis consistent with all evidence
has not been asserted

Provide hypothesis name and
supporting evidence
Describe correct interface actions
to assert hypothesis

7 No remaining hypotheses consistent
with all evidence

Advise students that they are ready
to make a diagnosis

8 All hypotheses consistent with all evidence
have been asserted, but differential diagnosis
does not yet contain all members

Provide name of hypothesis to add
to differential diagnosis

Describe correct interface actions
to assert diagnosis

9 All hypotheses consistent with all evidence
have been asserted, and differential
diagnosis contains all members

Indicate that problem has been solved
around the feature, and then tells the student the
exact set of actions to take. These ‘hint hierarchies’
closely resemble the general structure of hints used
in other cognitive tutors [8]. Students can continue
to ask for hints until all hints in the hint hierarchy
have been displayed.

The pedagogic model defines the hint text and
tutor actions that are delivered in specific problem
states (Table 6). Hint text is generated with text
templates and a simple markup language, for inser-
tion of context specific information, derived from
the current structure of the DSG. Tutor actions
correspond to general kinds of non-text interven-
tions that are useful in particular problem states.
They specify the set of actions to be taken on the
interface side. For example, the system may draw
around an interface object or open a menu. Tutor
actions are made context-specific by insertion of
values derived from current structure of the DSG.

There are two extensions to the basic hint logic:
� S
ubgoal level and node hints. The instructional
layer distinguishes between states in which the
student has or has not previously attempted a
particular kind of subgoal. When the student has
not previously attempted a particular kind of



108 R.S. Crowley, O. Medvedeva

Figure 8 Example hint sequence (response to Action 2.16 in Table 2).
subgoal–—there is no existing DSG node of the
same node type as the best-next-step. In this
condition, the instructional layer delivers a sub-
goal level hint, aimed at providing guidance about
what kind of subgoal to attend to. For example, if
the student begins the problem by asking for a
hint, the expert model will suggest that the stu-
dent look for areas that are abnormal, and try to
identify features. In contrast, if the problem state
contains a completed subgoal of the same node
type as the best-next-step, the instructional layer
delivers a subgoal node hint, aimed at providing
guidance toward completing a given node. The
hints shown in Fig. 8 represent a set of subgoal-
node hints.
� H
ints after errors. The pedagogic model main-
tains a separate set of responses to requests for
help that is used when the previous student action
generates an error. Action 2.3 in Table 2 shows an
example of this type of hint. Unlike other hints,
hints after bug contain only a single message and
set of tutor actions.

The errors detected and remediated (Table 5),
flexibilities permitted (Table 7), and responses
to help requests (Table 6), implement the instruc-
tional design requirements derived in response to
our developmental model of expertise (Table 1).
8. Diagrammatic reasoning palettes
for visual classification problem
solving

Tutor interfaces combine an image viewer with a
VCT diagrammatic reasoning palette used by stu-
dents to construct a graphical representation of
their reasoning. This palette acts as the shared
medium between student and system, reifying the
process of classification problem solving. Unlike
many domains in which ITS have been used
[4,6,41], classification problem solving in medicine
has no formal notation. Therefore, an important
aspect of our work is to create and evaluate possible
notations for their effect on learning. One benefit of
our architecture is that the separation of the TASK
from DOMAIN and CASE, permits significant latitude
in the kinds of problem representations that the
palettes can support.

For example, the VCT can currently be used with
two different palettes to create significantly differ-
ent interactions with students. The case-focused
palette presents a local view of the problem, which
is fundamentally constructivist. Fig. 9 shows the
case-focused palette following Action 2.21 in the
interaction scenario. Features and absent features
appear as square boxes containing their attribute:-
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Table 7 Flexibilities and constraints of ITS–—requirements and implementation

ITS flexibility/constraint Pedagogic design
requirement (from Table 1)

Implementation of instructional
layer interaction with DSG

Location of features must
be indicated

Help students connect visual
features to symbolic feature
names (1.4)

Student indicated location
must match location derived
from case and stored in DSG
evidence node for feature

Features can be added in any order,
but hints provide optimum order
specified in diagnostic algorithm

Allows more novice students
to fully explore feature space
(1.6) but encourages more
advanced students to search
for features most efficiently (1.8)

Any valid-next-step is allowed
but best-next-step follows
most efficient sequence

Attributes can be added in any order,
but hints suggest refining features
immediately after it is asserted

Encourage feature refinement
at the time it is asserted to help
more novice students learn
the salient refinements (1.9)

Any valid-next-step is allowed
but best-next-step after
feature identification is
feature refinement

Hints take students through all
features before suggesting
hypotheses. But only one supporting
feature must be identified before a
hypothesis can be asserted and
even accepted as diagnosis. If
diagnosis is made incorrect by
addition of features or refinement
of features, then student will later
be required to revise

Encourage complete feature
articulation among novices (1.5).
Permit hypotheses consistent with
any one feature (1.12) in order to
allow students to explore relationships
to other hypotheses (1.17). Allow
students to jump to diagnosis as
long as region of interest has
been seen (1.7). Help more
advanced students learn when to
exclude hypotheses as features
are further refined (1.19)

Best-next-steps complete
feature identification before
suggesting hypotheses.
Hypotheses can only be
added to DSG when preceded
by one or more supporting
features. Evidence cluster
must support relationship
between all previously
asserted features and
diagnosis

Features do not need to be refined
before hypothesis can be asserted
or accepted as the diagnosis

Allow more advanced students
to reason without fully refined
features (1.10). Permit sequences
in which new hypotheses require
re-examination of feature
refinement (1.11)

Attribute value nodes are
not required in default
pedagogogic model

All diseases with feature
specifications matching the
case data must be asserted as
hypothesis and diagnoses

Encourage hypotheses that are
consistent with all of features
(1.14), and help students learn
sets of hypotheses that share
similar features (1.15)

Problem is not complete
until all Diseases matching
the FEATURE SPECIFICATION
are asserted
value pairs. Hypotheses appear as separate rounded
boxes, and may be connected to features using
support and refute links. Hypotheses may be moved
into the Diagnoses area of the palette when a
diagnosis can be made (dependent on the state of
the DSG and the student model). Only the features
present in the actual case are represented, but any
valid hypothesis can be added and tested. At the end
of each case, the diagram shows the relationships
present in a single case. These diagrams will be
different for each case.

In contrast, the knowledge-focused palette
(Fig. 10) presents a global view of the problem.
The interface is algorithmic. Students see the diag-
nostic tree unfold as they work through the pro-
blem. Fig. 10 shows the knowledge-focused palette
following Action 2.21 in the interactions scenario
(same problem state as Fig. 9). Features and absent
features appear as square boxes containing their
attribute:value pairs. After attributes and values
have been correctly added by the student, they
are iconized as diamonds, but may be moused over
to display their meaning. As features are added,
they are connected to form a path toward the
diagnoses. When students complete any level of
the algorithm by correctly identifying and refining
the feature, the tutor reifies all of the other possible
choices at that level. The current path (all identified
features) is shown in yellow to differentiate it from
other paths. Hypotheses appear as separate
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Figure 9 Case-focused diagrammatic reasoning palette (state following Action 2.21 in Table 2).
rounded boxes. When students make a hypothesis,
the tutor places the hypothesis in the appropriate
position on the diagnostic tree. When the hypoth-
esis fits with the current evidence it is shown con-
nected to the current path. When the hypothesis
does not fit with the current evidence, it is shown
connected to other paths with the content of
the associated features and attributes hidden as
boxes containing ‘?’ until students specifically
request the identity of the feature or attribute. A
pointer is always present to provide a cue to the
best-next-step. In the problem state shown in
Fig. 10, the pointer on the right-hand side of
the diagram shows a rounded box containing ‘?H’,
because all of the features have been identified
and the best-next-step at this state is to make a
hypothesis. The student can see that AEB can have
five different FEATURE_SPECIFICATIONS (creating
five different paths), including some that share
features with the current case (blister, eosino-
phil-rich inflammatory infiltrate, neutrophil-rich
inflammatory infiltrate). The student can also
determine from the diagram that Acquired Epider-
molysis Bullosa is not the diagnosis in the current
case. By the conclusion of problem solving the
entire diagnostic tree is available for exploration.
The knowledge-focused palette therefore exp-
resses relationships between features and hypoth-
eses both within and across cases. Students can use
the tree to compare between cases. At the end of
each case, the diagram shows the same algorithm,
but highlights the FEATURE_SPECIFICATION of the
current case.
9. Advantages of the approach

The approach we describe is novel, and has signifi-
cant advantages for designing medical tutoring sys-
tems. The advantages include:
� U
se of a paradigm with proven effectiveness. An
important aspect of this project is to test the
feasibility of an established instructional method
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Figure 10 Knowledge-focused diagrammatic reasoning palette (state following Action 2.21 in Table 2).
in a declarative-knowledge rich domain. One
advantage of the architecture that we propose
is that it closely reproduces the intermediate
feedback and goal-structuring of MTITS, a class
of systems that have proven efficacy in other
domains [3—6].
� S
calability, ease of maintenance, and reusability.
The use of separate domain model and pedagogic
model enhances scalability of the system because
new domains or pedagogic content can be added
by extending the knowledge bases in an ontology
editing environment, without altering the code.
The VCT domain model extends an existing ontol-
ogy for classification problem solving [42], and
therefore any other ontology that also uses this
representation can be easily incorporated. The
separate domain model is also reused to constrain
case authoring.
� S
upport for forward and backward reasoning. The
separation of domain task from domain model
enhances the flexibility of the system to support
more than one kind of student reasoning. The DSG
can be constructed to use forward reasoning,
backward reasoning, or a combination of both
by minor alterations to the task model.
� F
lexibility of the instructional layer. The separa-
tion of the instructional system from the expert
model enhances instructional flexibility and
individualization. Unlike most cognitive tutors,
the instructional responses (hints and errors) are
not additional clauses to an expert model rule.
Rather, they are separate sets of declarative
elements that are mapped to general problem
states or error types. Instructional responses are
easily changed both by the author when the
instructional content is created, and by the
system in choosing a particular response based
on the state of the student model. Because the
DSG maintains the problem-state as the solution
advances, the instructional layer can use even
more complex methods for individualization of
instruction. For example, the typical immediate
feedback cycle in which each student action is
answered by a tutor response, can be changed in
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our system. The model could be permitted to
advance over many student actions and poten-
tially off the correct solution path for multiple
steps. In this case the instructional layer could
provide feedback at longer intervals, gradually
fading the instructional scaffolding as students
gain expertise.
10. Implementation of the VCT

The VCT is implemented as a client—server system,
with a multi-agent architecture, written in the Java
programming language. Agents communicate using
Java Agent Services–—a library that supports the
Foundation for Intelligent Physical Agents (FIPA)
standard [45]. The multi-component nature of the
system permits replacement of individual compo-
nents to create different domain specific tutoring
systems.

10.1. Server

The server includes the Tutor Engine, Xippix Image
Delivery System [46], and Protocol Collection Sys-
tem for obtaining and storing detailed information
regarding user—system interaction.

10.1.1. Tutor engine
All abstract PSMs are implemented in Jess–—a Java
production rule system [47,48]. Ontology classes for
the VCT are created in Protégé-2000 [49,50]. Case
information acquired through an authoring system
(Section 12) is stored in Protégé. Domain and case
Protégé projects share a third project containing
the FEATURE, ATTRIBUTE, and VALUE primitives
(Fig. 3). All Protégé classes and instances are con-
verted to Jess templates and facts using a modifica-
tion of JessTab [51]. The DSG exists as a set of Jess
facts, which are utilized by the abstract PSMs of the
instructional layer. For development purposes, we
utilize an extension of JGraph [52] to visualize the
DSG in Jess Working Memory. Hint and error message
templates are stored in Protégé, and can be re-used
or modified for different tutoring systems. Instances
are created using a markup language that makes
general templates context specific. Instances may
include pointers to interface objects, and actions to
be performed alone or in combination with text
feedback.

10.1.2. Image delivery system
The image delivery system [46] is a commercial
application that permits large image files to be
delivered in smaller pieces for zooming and panning
to a Java image viewer.
10.1.3. Protocol collection system
Inter-agent messages containing time-stamped,
low-level interface actions (such as image naviga-
tion and button presses), complete student actions
(such as feature identification or hypothesis crea-
tion), and tutor responses are collected and stored
in an Oracle 9i database for further analysis.

10.2. Client

The VCT student client is a Java WebStart [53]
application that communicates with the server via
HTTP. The student client is implemented as a frame-
work that can support a range of domain specific
interface elements. The client includes a Java
image viewer that communicates directly with the
Xippix server [46] to update the image, based on
user requests. The client image viewer acts as a
virtual microscope. Diagrammatic reasoning inter-
faces use SpaceTree [54,55] for tree-based selection
(both interfaces) and algorithm representation
(knowledge-focused interface).
11. SlideTutor–—an instantiation of the
VCT

Using the VCT–—we have created several tutoring
systems that employ different domain knowledge
bases and different interfaces. SlideTutor is one
tutoring system created for the domain of derma-
topathology. The system is our test bed for evaluat-
ing the effects of the VCT on learning. SlideTutor is
designed for use by pathology and dermatology
residents and fellows. More than fifty users have
participated in formative evaluations of the system
to date. SlideTutor was created by the addition of
domain knowledge, and annotated, digitized micro-
scopic slides to the VCT framework. Student inter-
faces are tutor-specific after addition of these
components.

Replacing the domain knowledge base alters the
domain of the tutoring system, and creates different
diagrams and menus in the resulting palette. Dino-
Tutor is a visual classification tutoring system that
uses a knowledge base for visual classification of
dinosaurs. It is used for interface training of parti-
cipants in our formative evaluations. Like SlideTutor
it can be used with both case-focused and knowl-
edge-focused palettes. Similarly, replacing the ped-
agogic knowledge base alters the feedback and
action sequences that the tutor provides in response
to student errors and requests for help.

It is also certainly possible to create tutoring
systems that differ on the basis of pedagogic knowl-
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edge bases although we have not yet done this. The
modular architecture we have chosen will ease the
addition of adaptive changes to the instructional
layer in response to the student modeling system,
when this component is added.

11.1. Domain knowledge base

The previously described class structure for classi-
fication problem solving was instantiated in the
domain of inflammatory diseases of skin. The cur-
rent knowledge base consists of a subclass of lesions
called subepidermal vesicular dermatitides, which
includes 33 different diseases containing 50 differ-
ent FEATURE_SPECIFICATIONs, and represents an
estimated 10% of the entire set of inflammatory
diseases of skin. Complete instantiation of the
knowledge base will be the subject of future work.
Knowledge acquisition starts with published diag-
nostic algorithms for classification of inflammatory
diseases [56] that are further disambiguated by a
knowledge engineer and domain expert in derma-
topathology, using an iterative, interview-based
method. The information is encoded in Protégé by
the knowledge engineer and then validated by the
domain expert.

11.2. Cases

Sixty glass slides representing diseases in the knowl-
edge base were obtained from the archives of five
academic pathology departments, digitized using
the Aperio slide scanner [57], converted to pyrami-
dal tiff format, and annotated using the VCTauthor-
ing system for inclusion in SlideTutor.
12. Authoring cases for VCT

Tutor cases are developed using a general authoring
system that allows us to create the case as a Protégé
project describing features, attributes, and values,
as well as the locations in which they are found on
the virtual slide. The authoring system is a Protégé
plugin that uses the same commercial virtual slide
system as the ITS. The classes used are described in
Section 5. The authoring system partially constrains
choices by authors. To author a newly acquired case,
the user starts by indicating the diagnosis from the
set of diagnoses currently in the domain knowledge
base (Fig. 11A). The system displays all possible
FEATURE_SPECIFICATIONs and the author selects
the FEATURE_SPECIFICATION from the knowledge
base that represents the current case (Fig. 11B).
The authoring system then automatically creates
instances of ATTRIBUTE_VALUE_PAIR and OBSERVA-
BLE. When authors draw around particular visual
features, they choose the correct OBSERVABLE from
the list of those associated with the FEATURE_SPE-
CIFICATION (Fig. 11C). The OBSERVABLE is saved in
combination with the annotated shape as a LOCA-
TED_OBSERVABLE. Additionally, authors may anno-
tate particularly salient areas demonstrating a
feature, which will be used in hints for feature
identification (see Fig. 8).

Constraints imposed by the authoring plugin limit
errors in authoring that produce unintended beha-
vior in the tutor, but also ensure consistency among
the cases. Only cases with FEATURE_SPECIFICATIONs
deemed pedagogically relevant — either classic
examples, or common exceptions — are easily
added. The authoring plugin checks consistency
by displaying the implied feature specification,
which represents the solution that the student
and tutoring system will reach by the conclusion
of problem-solving in the ITS. If no FEATURE_SPECI-
FICATION is indicated, the tutoring system will not
be able to classify the case fully. Authors are in fact
free to produce cases with sets of LOCATED_OBSER-
VABLEs that do not match any FEATURE_SPECIFICA-
TION in the knowledge base, but must manually
create the needed instances. In these cases, the
tutoring system will lead students to a set of diag-
noses that fit this evidence. In some cases, this may
be a null set.
13. Discussion and conclusions

Intelligent tutoring systems have significant advan-
tages over existing training methods for medical
training. They provide a simulated environment,
in which students can practice without consequence
to real patients. Within this simulated environment,
the pedagogic system offers constant feedback and
help aimed at efficiently bringing students to mas-
tery. By constantly monitoring and maintaining a
representation of how the student is progressing,
the system can adapt to provide individualized
training. Despite the significant potential for ITS
in medical training, very few systems have been
developed.

We have advanced a general method for intelli-
gent tutoring of visual classification problem sol-
ving, and used this system to create SlideTutor–—an
ITS for diagnostic classification in dermatopathol-
ogy. The VCT recreates the essential characteristics
of cognitive tutoring systems, fulfills the unique
requirements for tutoring of classification problem
solving, and utilizes an architecture that scales by
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Figure 11 (A)—(C) Authoring system interface.
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Figure 11. (Continued ).
expanding the domain knowledge base. The system
is built on an underlying developmental cognitive
model of expertise, which has guided design choices
throughout the project.

Our architecture shares many characteristics of
GUIDON, including the complete separation of
domain and pedagogic knowledge–—although this
is accomplished by a different method. GUIDON
generated a static AND/OR tree at the beginning of
problem solving from the production rules that
modeled expertise in a particular domain. In our
case, we generate a graph using a set of abstract
PSMs where the structure of the graph updates
with student actions. Domain knowledge is repre-
sented in separate knowledge bases. A second
difference from GUIDON is that the DSG can sup-
port both forwards and backwards reasoning simul-
taneously.

The VCT also shares some similarities with exist-
ing cognitive tutors. Like these systems, the VCT
discriminates correct from incorrect intermediate
actions, identifies particular kinds of student errors,
and provides hints by stepping forward in the expert
model. Unlike most existing cognitive tutors, the
pedagogic model is entirely separated from the
expert model — enabling us to easily tailor pedago-
gic interventions (for example by providing differ-
ent hints to different kinds of students) but also to
substitute an entirely different method of interact-
ing with the student — for example an instructional
layer that annotates and critiques a complete trace
of student actions rather than providing immediate
feedback with each action.

The modular architecture we have chosen has
significant advantages for our project because it
enables parametric evaluation of particular compo-
nents against possible alternatives. Currently we
are performing a study of students randomized to
one of the two interface conditions described
above, in which we measure performance before
and after tutoring. In future work, we will be com-
paring student modeling systems for their predictive
power and evaluating the immediate feedback of
model-tracing versus a delayed feedback instruc-
tional layer. In each case, we are able to replace one
component in the architecture (interface, student
modeling system, or instructional layer) without
significant alteration to other components. The
ability to evaluate our system under a number of
different conditions supports iterative improve-
ment, but also enables us to test more general
theories about teaching and learning in these sys-
tems.

There are, however, important limitations to our
approach. The most significant limitation is that our
system does not model or provide feedback on
probabilistic relationships between evidence and
hypotheses. Our approach requires a limited set
of combinations of features and attributes (the
evidence). This set includes the most frequent com-
binations, and those that represent common excep-
tions. There is no attempt to model all combinations
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of evidence, or to deal with incomplete evidence.
The DSG provides a highly deterministic response,
which permits no shades of gray in the pedagogic
feedback. This approach is intended to help stu-
dents quickly build relevant schemas for canonical
examples and common exceptions [58]. We
hypothesize that this approach will more rapidly
move students towards a level of expertise in which
likelihood information could be incorporated, as
students encounter more complex cases beyond
the confines of the tutoring system. But clearly an
important aspect of medical reasoning — the ability
to reason under uncertainty — is not addressed in
our current system.

The VCT is based on an information processing
theory of cognition. How far can the information
processing approach be taken towards incorporating
aspects of reasoning under uncertainty? Normative
approaches to the study of decision making under
uncertainty have shown that subjective assessments
of probabilities, even among experts, often do not
conform to expectations based on probabilistic
models [59,60]. Availability, representativeness
and anchor adjustment are well-known heuristics,
which generate systematic errors [61]. Interest-
ingly, some investigators have shown that exposure
to case sets in which base rates and conditional
probabilities are manifest results in decisions that
closely correspond to Bayes’ rule [62]. A more for-
mal understanding of how experts manage to cap-
ture the probabilistic information inherent in a set
of cases, and particularly how these skills develop,
would be of significant value in developing training
systems. An ITS that incorporates into its develop-
mental cognitive model a more complete under-
standing of these processes might provide a richer
and more effective instructional experience for
students.
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