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Rita de Cássia Meneses Rodrigues b

a Sarah Network of Rehabilitation Hospitals, SMHS Quadra 501 Conjunto A, Brası́lia, DF 70330-150, Brazil
bBrazilian National Institute for Space Research, Av. dos Astronautas, 1758, Jd. Granja, São José dos
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Summary

Objective: To present a decision model for elective (non-emergency) patient admis-
sions control for distinct specialties on a periodic basis. The purpose of controlling
patient admissions is to promote a more efficient utilization of hospital resources,
thereby preventing idleness or excessive use of these resources, while considering
their relative importance.
Methods: The patient admission control is modeled as a Markov decision process. A
hypothetical prototype is implemented, applying the value iteration algorithm.
Results: The model is able to generate an optimal admission control policy that
maintains resource consumption close to the desired levels of utilization, while
optimizing the established deviation costs.
Conclusion: This is a complex model due to its stochastic dynamic and dimensionality.
The model has great potential for application, and requires the development of
customized solution methods.
# 2009 Elsevier B.V. All rights reserved.
1. Introduction

There are several aspects involved in the need for
controlling patient admissions. Admissions may be
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scheduled to satisfy different and sometimes con-
tradictory goals, such as sustaining a high utilization
of available hospital capacity (possibly resulting in
some bottlenecks); or smooth throughput for a mini-
mum length of patient stay (possibly resulting in
some idleness). As mentioned by Kusters and Groot
[1], controlling patients’ admissions is the key activ-
ity which allows a hospital to balance the demand
for patient facilities against the availability of these
resources. Choosing the ‘‘right’’ patients from the
rved.
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waiting list in order to reach this balance is not a
simple task. It is unlikely that a single model capable
of generating an optimal solution and dealing with
the complexity of this problem exists. Since the final
decision shall take into account a variety of factors,
it can only be made by a human decision maker.
However, it is possible to provide this decisionmaker
with support. In this study we described and tested a
model aimed at providing precisely this type of
support.

Unlike Adan and Vissers [2], we do not consider
the admission process as a daily occurrence.
Rather, we wish to plan the number of admissions
within fixed periods of time (e.g., one week or
fifteen days). While controlling the number of
patients admitted during these fixed periods of
time, we aim at sustaining stabilized, desirable
(target) levels of the average use of key hospital
resources (such as exams, follow-up consultations,
in-patient admissions, and surgical interventions),
preventing idleness or excessive use of these
resources. In other words, we developed a decision
model that helps hospital managers plan at the
strategic and tactical level, rather than at opera-
tional level. At the strategic level (input), top
hospital managers must set the desirable levels
of use, as well as the relative importance of each
hospital resource. At the tactical level (output),
the decision model sets, at the beginning of each
planning period, an admission policy that, depend-
ing on the number of patients being served, their
specialties and the pattern of resource consump-
tion, informs the number of admissions to be
achieved for each specialty during the next period.
At the operational level, if the recommended
number of admissions is always adhered to
throughout each period, over the long-run, the
hospital will be stabilized in relation to the target
level for resource use and the relative importance
of each resource.

According to Adan and Vissers [2], patients’
admissions to a hospital can be divided into two
types: non-scheduled and scheduled. Non-sched-
uled admissions, also called emergency admissions,
concern patients that are immediately admitted as
a consequence of medical conditions. Scheduled
admissions, also called elective admissions, are
selected from a waiting list for an admission date.
In this study we focused on scheduled patient admis-
sions. In particular, we analyzed the procedures for
elective patient admission in a hospital that does
not provide emergency care. Tertiary hospitals, such
as rehabilitation services, fit this type of elective
care. However, the model developed in this paper
can also be applied, with modifications, to hospitals
that provide emergency care.
Four studies represented an essential contribu-
tion to the development of our model, as follows: 1)
a survey on theoretical models of admission plan-
ning in Gemmel and Van Dierdonck [3], which
included, in detail, the studies of Groot [4], and
Roth and Van Dierdonck [5]; 2) the original idea of
treatment patterns combined with Markov models
in order to estimate hospital resource utilization,
from Kapadia et al. [6,7]; 3) Adan and Vissers [2]’s
interesting cost function aimed at stabilizing hospi-
tal resource utilization at desirable levels–—the
authors translated the admission planning problem
into a mathematical model in the form of a linear
integer program; and 4) Markov processes in Puter-
man [8]–—Markov models suit the stochastic char-
acteristics behind patients’ dynamic throughout
hospital services.

There is rather extensive literature on Markov
models applied to describe the stochastic dynamics
of patients. We included a brief summary of the
referred studies that, despite their distinct focus,
applied the Markov theory. Smallwood et al. [9] and
Kao [10] formed groups of patients admitted to the
same specialty and with similar arrival rates at the
hospital; next, a distinct and independent semi-
Markov model was processed for each one of these
groups. The authors developed the necessary for-
mulation to estimate performance parameters, such
as the average number of patients in a given depart-
ment and the expected resource utilization. Her-
shey et al. [11] and Côté and Stein [12] also modeled
semi-Markovian processes, but they considered the
flow of one group of patients. The study of Hershey
et al. [11] was focused on modeling a hospital as
being formed by capacitated facility units, repre-
senting transitory states in a semi-Markov process.
Côté and Stein [12] went further and introduced the
Erlang distribution for governing the transition prob-
abilities among states. Navarro [13] applied propor-
tion calculations in order to estimate the transition
probabilities among hospital facilities represented
by discrete time Markov chains. Through this Markov
chain, he obtained performance parameters, taking
the hospital as a closed system comprised of recur-
rent states and a unique group of patients. Hincapié
et al. [14] performed a longitudinal follow-up of
groups of patients’ arrivals at the hospital, and
estimated the transition probabilities among hospi-
tal facilities; then, the authors developed a discrete
time Markov chain to obtain performance para-
meters. Weiss et al. [15] presented a model similar
to that of Smallwood et al. [9] and Kao [10], and
proposed an iterative methodology for testing the
validity of Markovian characteristic assumptions.

In the present study, we propose a new approach,
modeling the control of patients’ admissions as a
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Markov decision process (MDP). MDPs have proven to
be useful as models for sequential decision problems
with stochastic characteristics and the Markovian
property, i.e., future states and decisions are inde-
pendent from past states and decisions, given the
knowledge of the present situation of the system. At
each decision instant in an MDP, the system’s state is
observed and one action is adopted. Based on this
information [observed state; adopted action] we
can calculate the probabilities of reaching any pos-
sible system state in the next decision instant, as
well as the expected cost to be incurred until the
next decision instant.

The decision process involved in admission plan-
ning is repeated over and over during hospital
activities. At the tactical level, the decisions con-
cerning the number of patients to be admitted can
be made in equally spaced periods (e.g., one week
or fifteen days). We assume that it is always pos-
sible to count the number of patients during the
latest period and classify them into distinct treat-
ment patterns. Kapadia et al. [6,7] showed us that
it is possible to estimate the probabilities of admis-
sion of patients to a hospital in any treatment
pattern, and that it is also possible, at the begin-
ning of a period, to determine the transition prob-
abilities among the treatment patterns for
patients being served. This data allows us to esti-
mate the consumption of each given resource
throughout the next period. In this way we defined
the elements for the stochastic dynamics related
to the MDP.

The motivation for modeling the elective hos-
pital admission system using an MDP was the iden-
tification of system characteristics geared towards
the concepts of MDPs, namely: (1) a sequential
decision process that operates under uncertainty,
generating stochastic dynamics; (2) a possibility of
observing the system’s state at decision instants
equally spaced over time (discrete time deci-
sions); and finally, (3) Markovian characteristics
can be assumed and modeled (the future is depen-
dent only on the present state and the decision
taken).

The proposed model is presented within this
context in the following sections. Section 2: brief
introduction of the MDPs background; Section 3:
presentation of the hospital characteristics as
they are considered in this study; Section 4:
description of MDP elements–—state space, action
space, probabilistic dynamics, and cost function;
Section 5: presentation of the implementation of a
small-sized hypothetical model as an example;
Section 6: discussion of practical considerations
on the model. Our conclusions are presented in
Section 7.
2. Markov decision process
background

MDPs are deeply and comprehensively explored in
Puterman [8]. In this section we briefly present the
concepts applied in this paper. MDPs can generally
be defined by the n-tuple (X, A, P, R), where: X is the
set of states; A is the set of actions applicable
depending on the states; P represents the transition
probabilities among states, depending on an
observed state and on an adopted action at a deci-
sion instant; and R determines the expected cost
related to the observed state and the adopted
action. At any decision instant t, we observe the
system’s state xt 2 X and adopt an action at 2 A(xt),
which generates the expected cost R(xt, at) and the
probability of the system being at any state xt+1 2 X
in the next decision instant t + 1, represented by
P(xt+1j(xt, at)). According to the characteristics of
the problem at hand, as we modeled it, in this study
we consider an MDP with denumerable finite state
space and action space, discrete time evolution,
and bounded costs.

A decision policy p is a sequence of functions
p = {p0, p1,. . .}, where pt:X! A such that
pt(xt) = at 2 A(xt). If pt is invariant with regards to
t, then p is called a stationary decision policy. Let P

be the set of all possible decision policies. The
problem intended to be solved is: given the initial
state x0 at decision instant t = 0, to find the decision
policy p* 2 P that optimizes the cost function
related to the problem.

The optimization criterion adopted here is the
minimization of the expected average cost over
infinite planning horizon. The expected average cost
of a policy p, represented by Jp

1ðxÞ, can be calcu-
lated through the following expression

Jp
1ðxÞ ¼ lim

H!1

1

H
E
XH�1
t¼0

Rðxt;ptðxtÞÞjx0 ¼ x

( )
;

where H represents the planning horizon, p(xt) is the
action prescribed by the stationary policy for state
pt, and the expectation is taken according to the
probabilities defined in P. Our objective is to find an
optimal policy p� 2

Q
that minimizes the expected

average cost over all possible policies. As shown by
Puterman [8], if X and A are finite, R is bounded, and
the model is unichain (i.e., consists of a single class
of recurrent states and a possibly empty set of
transient states), there exists a stationary optimal
policy.

Whenever a system modeled as a MDP is con-
trolled by a stationary policy there is a Markov chain
embedded in the process. This Markov chain has the
state space of the original MDP, and the transition
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probabilities are given by P(xt+1jxt, p(xt)), 8 xt,
xt+1 2 X. Let Pp represent the transition probability
matrix of the embedded Markov chain, determined
by the stationary decision policy p.

The steady state probability for one state is the
probability of finding the system in this state after a
large number of transitions (long-run). Let ps repre-
sent the vector of steady state probabilities under
the stationary decision policy p for all states.
Assuming that under control of p the embedded
Markov chain is unichain, ps can be obtained by
multiplying Pp by itself until it converges to the
steady state probabilities. Alternatively, the row
vector ps can be obtained by solving the linear
system ps = psPp,

P
ps = 1. Through the application

of the steady state probabilities we can determine
performance parameters, such as the expected
number of patients in each specialty and treatment
pattern, as well as the expected utilization of each
hospital resource.

In order to find an optimal stationary policy, we
apply the well-known value iteration algorithm
(VIA) [8]. Following, we introduce the main con-
cepts for the VIA application. Let Vn

x represent the
minimal expected total cost within the planning
horizon of n periods when the initial state is
x 2 X. The VIA calculates recursively the value of
Vn
x , n = 1, 2,. . ., where

Vn
x ¼ min

a2AðxÞ
Rðx; aÞ þ

X
y 2X

Pðyjðx; aÞÞVn�1
y

( )
; 8 x 2 X;

and V0
x , 8 x 2 X, can be chosen arbitrarily. As n

increases, the difference in one period Vn
x � Vn�1

x

gets closer to the minimum expected average
cost.

When n!1, the limits mn ¼ minx 2XfVn
x �

Vn�1
x g and Mn ¼ maxx 2XfVn

x � Vn�1
x g both approxi-

mate the minimum expected average cost. By
choosing V0

x , such as 0 � V0
x � mina2AðxÞfRðx; aÞg,

then V1
x �V0

x , 8 x 2 X, thus each term into the
non-decreasing sequence {mn, n � 1} is non-nega-
tive. It follows, then, that

ðMn �mnÞ
mn

� e) 0 � ðJ
pn

1ðxÞ � Jp�
1ðxÞÞ

Jp�
1ðxÞ

� e;

which means that, when ðMn �mnÞ=mn � e, the
expected average cost of the policy pn, set for
the horizon n, cannot differ more than e from the
minimum expected average cost of the optimal
policy p*. Setting e as a parameter works as the
desired precision for the VIA approximation to the
optimal solution value.

The VIA can be summarized as follows:

(1) Select 0 � V0
x � mina2AðxÞfRðx; aÞg, 8 x 2 X; spe-

cify e > 0; and set n = 1.
(2) Compute Vn
x , 8 x 2 X, by Vn

x ¼ mina2AðxÞ

Rðx; aÞ þ
P

y 2X Pðyjðx; aÞÞVn�1
y

n o
.

(3) Compute mn ¼ minx 2XfVn
x � Vn�1

x g and Mn ¼
maxx2 XfVn

x � Vn�1
x g.

(4) If ðMn �mnÞ=mn � e, go to step 5; otherwise
increment n by 1 and return to step 2.

(5) Set pn(x) as pnðxÞ ¼ argmaxa2AðxÞ Rðx; aÞf
þ
P

y 2X Pðyjðx; aÞÞVn�1
y g, 8 x 2 X, and stop.

The VIA finds a stationary e–—optimal policy and
an approximation to its average expected cost. With
a sufficiently small e, the policy pn converges to an
optimal policy.

3. Hospital elements

When designing the model for patients’ admissions
control, the hospital elements must be defined in a
systematic framework. Here, we present the defini-
tions for the three basic elements considered in the
model: patients’ demand, treatment patterns, and
hospital resources.

3.1. Patients’ demand characteristics

This is a model of an elective admission system, that
is, no emergency cases are included. After register-
ing for admission, patients are put on a waiting list
to be admitted and begin their treatment program.
The end of treatment date is the discharge date.

For the purposes of this study, the hospital is
considered as having admissions in m medical spe-
cialties. We represent the specialties by index d,
thus d 2 {1,. . .,m}. We also assume that there is a
continuous flow of patients in every specialty wait-
ing for treatment.

3.2. Treatment patterns

In order to attain the model’s objective, that is, to
stabilize resources utilization over the long-term, a
methodology for measuring resources consumption
is necessary. The approach proposed by Kapadia
et al. [7] allows us to estimate hospital resources
utilization. Kapadia et al. [7] described the
patients’ courses of treatment in the hospital
through treatment patterns. Course of treatment
bears some resemblance to the path of patients
through the hospital, but instead of location change
[16,17], state of health [10,18], or recovery state
[19], the course of treatment uses services deliv-
ered to patients as the basic data to classify
patients’ progression during predefined treatment
periods. Course of treatment comprises treatment
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(delivered services) patterns. A treatment pattern is
a quantified configuration of services delivered dur-
ing a predefined fixed period of time. This period of
time must be chosen in accordance with the plan-
ning purposes; for example, fifteen days, one week,
or even one day.

As shown by Kapadia [7,8], it is possible to reach a
discrete number of characteristic treatment pat-
terns for a hospital by selecting a sufficiently large
and unbiased sample of patients, dividing the treat-
ment time into constant period intervals, and apply-
ing cluster analysis to the periodic services
configurations.

For the proposed model, considering one period
interval, we assume there are n possible treat-
ment patterns, Ei, i = 1,. . .,n. Thus, for example,
the course of treatment for one patient who
spent a total of eight periods at the hospital
can be described as a sequence of treatment
patterns such as E2E1E1E4E2E2E3E5En. In this
sequence, the patient’s initial period in hospital
was classified as treatment pattern E2 (period 1),
then he/she has spent periods 2 and 3 in treat-
ment pattern E1, period 4 in treatment pattern
E4, periods 5 and 6 in treatment pattern E2,
period 7 and 8 in treatment patterns E3 and E5,
before discharge. We define the pattern En
as representing discharge from hospital. This pat-
tern must appear at the end of all treatment
courses.

3.3. Hospital resources

We are concerned with the stabilization of the
average resources utilization, while exerting admis-
sions control on strategic/tactical levels over the
long-term. Thus we consider average utilization of
resources in fixed periods of time instead of exact
amounts.

The treatment pattern Ei determines expected
average amounts of hospital resources use in one
period; for example, the average number of medical
consultations, in-patient days, and magnetic reso-
nance exams.

We consider k hospital resources denoted by Lj,
j 2 {1,. . .,k}. We define Lij, i 2 {1,. . .,n} and
j 2 {1,. . .,k}, as the expected average amount of
resources of type Lj required in one period by one
patient under a treatment pattern Ei. We also define
maxLj as the available capacity of resource Lj in one
period.

We assume that if a resource Lj is requested
beyond its available capacity maxLj the hospital
provides it, though at a higher cost. This elevated
cost is imputed in the cost function (see Subsection
4.5).
4. Markov decision process elements

Considering the definition in the last section, the
corresponding MDP elements are presented in this
section.

4.1. State space

At every decision instant t, we assume that the
hospital can be observed in a state xt,

xt ¼ fE1
1;t; :::; E

1
n;t; :::; E

m
1;t; :::; E

m
n;tg;

where Ed
i;t represents the number of patients from

specialty d, d 2 {1,. . .,m}, under treatment pattern
Ei, i 2 {1,. . .,n}, during the last period, between
decision instants t � 1 and t. Thus, the state space
X comprises all possible states of type xt.

4.2. Action space

At decision instants equally spaced over time, the
number of patients in each specialty that will be
admitted in the next period must be determined.
Therefore, at each decision instant a type a action
must be selected and adopted, such as

a ¼ fS1; :::; Smg;
where Sd represents the number of patients from
specialty d, d 2 {1,. . .,m}, to be admitted in the next
period. We consider that Sd is limited, ranging from
0 to maxSd, where maxSd is the maximum admission
capacity for patients from specialty d in one period.
Thus, the action space A is defined as a finite set
consisting of all possible type a actions.

4.3. Stochastic dynamics

We assume that each specialty during the course of
treatment has distinct and independent stochastic
dynamics, in relation to the transitions among treat-
ment patterns.

The analysis of a sufficient number of treatment
courses, counting the transitions from one treat-
ment pattern to another, for each specialty, as done
by Kapadia et al. [7,8], allows us to find the max-
imum likelihood estimation for the one patient’s
transition probabilities among the treatment pat-
terns. The one patient’s transition probabilities
matrix for patients from specialty d, d 2 {1,. . .,m},
can be presented as

pd11 pd12 pd13 ::: pd1n
pd21 pd22 pd23 ::: pd2n
::: ::: ::: ::: :::

pdðn�1Þ1 pdðn�1Þ2 pdðn�1Þ3 ::: pdðn�1Þn
0 0 0 ::: 1

2
66664

3
77775;
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where pdi j represents the probability that one
patient of the specialty d passes from treatment
pattern Ei to treatment pattern Ej in one period. The
one patient’s transition probability matrix is a Mar-
kov chain where the states represent the treatment
patterns, and there is one single absorbing state En
representing the ‘‘hospital discharge’’.

Besides the transition probability matrixes, it is
possible to determine, for every specialty, the
probability of one patient being admitted to hos-
pital in each one of the treatment patterns. The
probability that one patient from specialty d
spends his/her first period at hospital in treatment
pattern Ei is represented by pdi . In order to take
into account at least one medical appointment, we
assume that the patients could not be directly
classified into the discharge pattern (En) in the
XminðEd
1;tþ1;SdÞ

y1¼max 0;Ed
1;tþ1�

Pn�1
i¼1 Ed

i;t

� �
XminðEd

1;tþ1�y1;Ed
1;t
Þ

x11¼max 0;Ed
1;tþ1�

Pn�1
i¼2 Ed

i;t
þy1

� �� �
XminðEd
2;tþ1;Sd�y1Þ

y2¼max 0;Ed
2;tþ1�

Pn�1
i¼1 ðE

d
i;t
�xi1Þ

� �� �
XminðEd

2;tþ1�y2;Ed
1;t
�x11

x12¼max 0;Ed
2;tþ1�

Pn�1
i¼2 ðE

d
i;t
�

��

Xmin Ed
2;tþ1�

Pn�3
i¼1 xi2þy2

� �
;Ed

n�2;t�xðn�2Þ1
� �

xðn�2Þ2¼max 0;Ed
2;tþ1� Ed

n�1;t�xðn�1Þ1þ
Pn�3

i¼1 xi2þy2

� �� � :::

Xmin Ed
n�2;tþ1;Sd�

Pn�3
j¼1 y j

� �

yn�2¼max 0;Ed
n�2;tþ1�

Pn�1
i¼1 Ed

i;t
�
Pn�2

j¼1 xi j

� �� �� �
min Ed

n

�

x1ðn�2Þ¼max 0;Ed
n�2

�

Xmin Ed
n�2;tþ1�

Pn�3
i¼1 xiðn�2Þþyn�2

� �
;Ed

n�2;t�
Pn�3

j¼1 xðn�2Þ j

� �

xðn�2Þðn�2Þ¼max 0;Ed
n�2;tþ1� Ed

n�1;t�
Pn�3

j¼1 xðn�1Þ jþ
Pn�3

i¼1 xiðn�2Þþyn�2

� �� �

Xmin Ed
n�1;tþ1� Sd�

Pn�2
i¼1 yi

� �
;Ed

1;t
�
Pn�2

j¼1 x1 j

� �

x1ðn�1Þ¼max 0;Ed
n�1;tþ1�

Pn�1
i¼2 Ed

i;t
�
Pn�2

j¼1 xi j

� �
þ Sd�

Pn�2
i¼1 yi

� �� �� � .

Xmin Ed
n�1;tþ1�

Pn�3
i¼1 xiðn�1ÞþðSd�

Pn�2
i¼1 yiÞ

� �
;Ed

n�2;t�
Pn�2

j¼1 xðn�2Þ j

� �

xðn�2Þðn�1Þ¼max 0;Ed
n�1;tþ1� Ed

n�1;t�
Pn�2

j¼1 xðn�1Þ jþ
Pn�3

i¼1 xiðn�1Þþ Sd�
Pn

i¼

���
same period of admission, which means that pdn ¼
0 for d = 1,. . .,m.

Prior to setting the transition probabilities among
states in X we must define PðfEd

1;tþ1; :::;
Ed
n;tþ1gjðxt; aÞÞ, the probability of reaching the spe-

cified amount of patients from specialty d in each
treatment pattern at the decision instant t + 1,
given that at decision instant t the hospital is in
the state xt and the action a is adopted. This prob-
ability can be calculated by adding up the probabil-
ities of all possible combinations to reach
fEd

1;tþ1; :::; E
d
n;tþ1g, starting from (xt, a); and each

combination probability can be obtained as a con-
volution of Multinomial distributions. The probabil-
ity formulation is represented as follows:

PðfEd
1;tþ1; :::; E

d
n;tþ1gjðxt; aÞÞ ¼
. . .
Xmin Ed

1;tþ1�
Pn�3

i¼1 xi1þy1
� �

;Ed
n�2;t

� �

xðn�2Þ1¼max 0;Ed
1;tþ1� Ed

n�1;tþ
Pn�3

i¼1 xi1þy1

� �� �
Þ

xi1Þþy2

�� . . .

X�2;tþ1�yn�2;Ed
1;t
�
Pn�3

j¼1 x1 j

�

;tþ1�
Pn�1

i¼2 Ed
i;t
�
Pn�3

j¼1 xi j

� �
þyn�2

� �� . . .

. .

�2
1
yi

���
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Xmin Ed
n;tþ1;Ed

1;t
�
Pn�1

j¼1 x1 j

� �

x1n¼max 0;Ed
n;tþ1�

Pn�1
i¼2 Ed

i;t
�
Pn�1

j¼1 xi j

� �� �� � . . .
Xmin Ed

n;tþ1�
Pn�3

i¼1 xin

� �
;Ed

n�2;t�
Pn�1

j¼1 xðn�2Þ j

� �

xðn�2Þn¼max 0;Ed
n;tþ1� Ed

n�1;tþ
Pn�3

i¼1 xin

� �� �
Sd!

y1!y2!:::yn�2! Sd �
Pn�2

i¼1 yi

� �
!
ð pd1Þ

y1ð pd2Þ
y2 :::ð pdðn�2ÞÞ

yn�2ð pdðn�1ÞÞ
Sd�
Pn�2

i¼1 yi

Ed
1;t!

x11!x12!:::x1n!
ð pd11Þ

x11ð pd12Þ
x12
:::ð pd1nÞ

x1n

Ed
2;t!

x21!x22!:::x2n!
ð pd21Þ

x21ð pd22Þ
x22
:::ð pd2nÞ

x2n
:::

Ed
n�1;t!

Ed
1;tþ1 �

Pn�2
i¼1 xi1 � y1

� �
!::: Ed

n;tþ1 �
Pn�2

i¼1 xin
� �

!
ð pdðn�1Þ1Þ

Ed
1;tþ1�

Pn�2
i¼1 xi1�y1 :::ð pdðn�1ÞnÞ

Ed
n;tþ1�

Pn�2
i¼1 xin

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;
where yi represents the number of patients from
specialty d admitted during the period between t
and t + 1, classified into treatment pattern Ei at
decision instant t + 1, and xij represents the number
of patients from specialty d that pass from treat-
ment pattern Ei at decision instant t to treatment
pattern Ej at decision instant t + 1. Two character-
istics of the above complex formulationwere drawn
from the model: (1) once we had defined that it is
not possible for one patient to be discharged in the
same period of his/her admission, we excluded this
possibility in the formulation (ynwas excluded); (2)
as the treatment pattern En represents hospital
discharge, and we had defined that there are no
transitions from the discharge pattern, we
excluded these possibilities (xni was excluded for
i = 1. . .n). The formulation encompasses four
restrictions:

(1) adding up yi, i 2 {1,. . .,n � 1}, we have the
amount of patients from specialty d to be
admitted during the period between t and
t + 1, as determined by action a, which means
that Sd ¼

Pn�1
i¼1 yi;

(2) transitions of patients from specialty d, during
the period between t and t + 1, departing from
treatment pattern Ei, must be equal to the
amount of patients from specialty d in treat-
ment pattern Ei at decision instant t, which
means that

Pn
j¼1 xi j ¼ Ed

i;t, for i = 1,. . .,n � 1;
(3) the number of patients from specialty d at

decision instant t + 1 must be equal to the num-
ber of patients from specialty d at decision
instant t added to the number of patients from
specialty d admitted during the period between
t and t + 1, excluding the number of patients in
the discharge pattern at decision instant t,
which means that

Pn
i¼1 E

d
i;tþ1 ¼

Pn�1
i¼1 Ed

i;t þ Sd;
(4) any combination that does not meet the above
three restrictions has probability zero.

Considering that the stochastic dynamics is inde-
pendent for each specialty, then P(xt+1j(xt, a)), the
probability that the system moves from state xt 2 X
to state xt+1 2 X given that action a is adopted in the
decision instant t, can be obtained by the following
product:

Pðxtþ1jðxt; aÞÞ ¼
Ym
d¼1

PðfEd
1;tþ1; :::; E

d
n;tþ1gjðxt; aÞÞ:

4.4. State space and action space limits

We assume that not all actions can be chosen for
every state. In states where the expected average
utilization in the next period for at least one of the k
resources is over its available capacity we do not
admit patients. This means that in these states the
only action allowed is the one where Sd = 0 for all
d 2 {1,. . .,m}. Therefore, the possible actions are
state-dependant. Formally, given the state xt 2 X,
at any decision instant t, the set of possible actions
A(xt) is composed by actions of type a = {S1,. . .,Sm}
so that, for all d 2 {1,. . .,m},

Sd 2f0; :::;max Sdg if
Xn
i¼1

Li j
Xm
d¼1

Xn
l¼1

Ed
l;t p

d
li

� max L j for all j2 ð1; :::; kÞ;

and Sd ¼ 0 if
Xn
i¼1

Li j
Xm
d¼1

Xn
l¼1

Ed
l;t p

d
li>

max L j for at least one j2 ð1; :::; kÞ:

We can ensure that the state space X, related to
these possible actions, is denumerable and finite,
considering that: (1) admissions are ceased when at
least one of the resources is expected to be over-
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utilized in the next period; (2) the available capa-
city of all resources is limited; (3) there is an
absorbing treatment pattern for all specialties that
represents the hospital discharge; (4) we do not add
up in the next state (t + 1 state) patients that are in
the discharge pattern in t; and (5) in the initial
state, we impose that Ed

i;0 is limited for all
d 2 {1,. . .,m} and i 2 {1,. . .,n}.

4.5. Cost function

Motivated by Adan and Vissers [2], we developed a
cost function considering our model objective:
determine the patients’ number from each specialty
to be admitted during fixed planning periods, aimed
at stabilizing average hospital resources utilization
at desirable levels, preventing idleness or excessive
Figure 1 Markov decision process applied to
use while considering the relative importance of the
resources.

We define the target level as the desired utiliza-
tion of a resource in each planning period. The level
attained should be as close as possible to the target.
The target level for each hospital resource Lj,
j 2 {1,. . .,k}, is the quantity designated by Nj,
j 2 {1,. . .,k}.

In order to keep resources utilization close to the
target levels we set costs for deviations. When the
use of the resource Lj is below the target level by
one unit during a period, we set the idleness cost at
unit Oj. When the utilization of Lj is above the target
level by one unit, we set the excess cost at unit Bj.
We also impute a cost for the resource use above its
available capacity. When the utilization of Lj is
above the available capacity maxLj by one unit
the control of elective patients admissions.
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we set the over cost unit Cj. The quantities for the
parameters Nj, Oj, Bj, and Cj must be defined on
strategic/tactical levels by hospital managers, tak-
ing into account the hospital objectives and the
relative importance of each resource.

Considering that in the observed state xt action a
is adopted, in order to estimate the system perfor-
mance during the next period, we define the
expected cost function R(xt, a) as:
Rðxt; aÞ ¼
X

xtþ1 2X
Pðxtþ1jðxt; aÞÞ

Xk
j¼1

Oj �max N j �
Xn
i¼1

Li j
Xm
d¼1

Ed
i;tþ1; 0

 !
þ

Bj �max
Xn
i¼1

Li j
Xm
d¼1

Ed
i;tþ1 � N j; 0

 !
þ

Cj �max
Xn
i¼1

Li j
Xm
d¼1

Ed
i;tþ1 �maxL j; 0

 !

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
;

where, as defined in Subsection 3.3, Lij is the aver-
age amount of resources type Lj spent in one period
by one patient who is under treatment pattern Ei.

4.6. Model summary

The model dynamics is summarized in Fig. 1: there
are patients of m different specialties waiting for
Table 1 Model design.

Specialties
Maximum admission capacity per period
specialty 1
specialty 2

Resources
Available capacity per period
L1
L2

Treatment patterns
Average resource utilization per period

E1
E2
E3 (discharge)

Desired utilization level
L1 target level
L2 target level

Costs for deviation from desired utilization level

idleness cost
excess cost
over cost
treatment; and there are k hospital resources
whose utilization must be considered. At the
beginning of each period, the system state is
observed and a decision is made about the number
of new patients that must be admitted from
each specialty in the next period; from this deci-
sion, it is possible to determine the next state
probabilities and the expected cost incurred in
one period.
5. Model implementation

In this section we present the implementation of a
small-sized hypothetical model. We describe the
example design (Tables 1 and 2) and show some
results to illustrate the correct working of themodel
(Tables 3 and 4).
2 specialties

2 patients
2 patients

2 resources

5 units
5 units

3 patterns

L1 L2
2.2 units 2.6 units
2.6 units 2.2 units
— —

4 units
4 units

L1 L2
1.0 1.6
1.5 1.0
1.0 1.0



168 L.G.N. Nunes et al.

Table 2 Probability configuration.

Transition probability among treatment patterns
E1 E2 E3

specialty 1
E1 0.4 0.1 0.5
E2 0.1 0.3 0.6
E3 0.0 0.0 1.0

specialty 2
E1 0.2 0.1 0.7
E2 0.1 0.2 0.7
E3 0.0 0.0 1.0

Entering probability
specialty 1 specialty 2

E1 0.5 0.4
E2 0.5 0.6
E3 0.0 0.0
We apply the value iteration algorithm (see Sec-
tion 2) in order to obtain an optimal admission
policy. We compare the optimal policy with two
non-optimal policies: the ‘‘greedy’’ policy, and
the ‘‘fixed’’ policy. Given an observed state, the
greedy admission policy prescribes an action that
minimizes the next period’s expected cost without
taking into account the possibilities for future per-
iods. The fixed policy admits one patient from each
specialty whenever the system is observed in a state
that allows new admissions.

Considering the system under control of these
three policies, we analyze performance parameters
such as the average cost per period, the average
number of patients from each specialty in the hos-
pital per period, the average number of patients in
each treatment pattern per period, the average
utilization of each resource per period, and the
average number of patients from each specialty
admitted per period. As mentioned in Section 2,
the performance parameters are computed through
application of the steady state probabilities from
Table 3 Optimal policy, greedy policy, and fixed policy de

Selected
statesa:

fE1
1 ; E

1
2 ; E

1
3 ;

E2
1 ; E

2
2 ; E

2
3g

Number of patients assisted in
the last period

in
hospital

per
specialty

per
pattern

1 2 E1

{0,0,1,0,1,3} 1 0 1 0
{0,0,2,0,4,0} 4 0 4 0
{1,0,4,2,1,1} 4 1 3 3
{1,0,2,0,1,2} 2 1 1 1
{1,1,2,0,1,0} 3 2 1 1
a State: observed number of patients from each specialty per tre
b Policy: number of patients to be admitted per specialty, given
the Markov chain embedded in the MDP under con-
trol of a stationary policy.

The calculations for the VIA, as well as for the
other decision policies (greedy and fixed), were
programmed in C language. The solutions were
obtained using a common PC, with 1GB of RAM
and 2.4 GHz Pentium IV processor.

The example model consists of two specialties,
two hospital resources, and three treatment pat-
terns (Table 1). We considered the maximum capa-
city of admission as being two patients per period for
each specialty, and the available capacity of each
resource as five units per period. A patient who
spends one period in treatment pattern E1 is
expected to utilize in average 2.2 units of resource
L1 and 2.6 units of resource L2; while in treatment
pattern E2 is expected the utilization of 2.6 unit of
resource L1 and 2.2 units of resource L2. The treat-
ment pattern E3 represents the hospital discharge;
there is no resource utilization in this pattern. We
have established the desired stabilized level of
utilization (target level) for each resource as being
four units per period, corresponding to 80% of the
available capacity.

Concerning the deviation costs from the target
level, we have considered dimensionless quantities
in order to control the relative importance for each
resource. Each unit of deviation smaller than the
target level for the resource L1 has an idleness cost
of 1.0; each unit of deviation larger than the target
level has an excess cost of 1.5; and each unit of
deviation larger than the available capacity has an
over cost of 1.0. Considering the resource L2, the
idleness cost is 1.6, the excess cost is 1.0, and the
over cost is 1.0.

The probability configuration considered for each
specialty is shown in Table 2: the transitions prob-
abilities of one patient among treatment patterns,
and the probability of a new patient entering under
each treatment pattern.
cisions for five selected states.

Optimal
policy
decisionb

(S1, S2)

Greedy
policy
decisionb

(S1, S2)

Fixed
policy
decisionb

(S1, S2)

E2

1 (1,1) (2,0) (1,1)
4 (1,0) (1,0) (1,1)
1 (0,0) (1,0) (1,1)
1 (0,1) (0,1) (1,1)
2 (0,1) (1,0) (1,1)

atment pattern, in the last period.
the observed sate.
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Table 4 Performance measures.

Under the optimal
policy control

Under the greedy
policy control

Under the fixed
policy control

Expected number of admissions per period
specialty 1 0.28 0.85 0.98
specialty 2 0.99 0.31 0.98
admissions 1.27 1.16 1.95

Expected number of patients being served per period
specialty 1 0.51 1.55 1.79
specialty 2 1.42 0.44 1.39
pattern E1 0.87 1.01 1.54
pattern E2 1.06 0.98 1.64
patients being served 1.93 1.99 3.18
discharge (pattern E3) 1.27 1.16 1.95

Expected average resource utilization per period
resource L1 4.66 4.77 7.65
resource L2 4.59 4.78 7.61

Expected cost per period (available capacity: L1 = 5, L2 = 5; target level: L1 = 4, L2 = 4)
idleness cost 0.00 0.00 0.00
excess cost 1.58 1.94 9.09
over cost 0.00 0.00 5.27
total cost per period 1.58 1.94 14.36
The actions for five states selected from the
model state space are shown in Table 3 to exemplify
the decisions determined by the admission policies
(optimal, greedy, and fixed). We also present for
each selected state the corresponding number of
patients in the hospital per specialty and per treat-
ment pattern. For instance, in the fifth line of
Table 3 (shaded line), this observed state indicates
that, in the last period, two patients from specialty
1 were discharged, and three patients were being
given hospital assistance: two patients in specialty 1
classified as being assisted in treatment patterns E1
and E2, and one patient in specialty 2 classified as
being assisted in treatment pattern E2. For this
observed state the optimal policy determines the
admission of one patient in specialty 2, the greedy
policy determines the admission of one patient in
specialty 1, and the fixed policy determines, as
always, the admission of one patient in each speci-
alty.

Hospital average performance measures over the
long-run for the model under control of the optimal
policy (OP), the greedy policy (GP), and the fixed
policy (FP) are presented in Table 4. The expected
number of admissions per period was greater under
OP control (1.27 patients) than under GP control
(1.16 patients). Under FP control the expected
number of admissions was 1.95 patients per period.
As the FP prescribes the admission of one patient in
each specialty whenever the observed state allows
new admissions, the expected number of admissions
per period was the same for each specialty (.98
patients). The OP prescribed more admissions of
patients in specialty 2 (.99 patients) than the GP
(.31 patients), while the GP prescribed more admis-
sions from specialty 1 (.85 patients) than the OP (.28
patients). In the long-run equilibrium, the number
of discharges is equal to the number of admissions.
In average there were 1.27 discharges per period
under control of OP, 1.16 discharges under GP, and
1.95 discharges under FP.

The expected number of patients served per
period under OP control (1.93 patients) was almost
the same as under the GP control (1.99 patients).
However, most patients under OP were treated in
specialty 2 (1.42 patients) and were classified into
treatment pattern E2 (1.06 patients), while most
patients under GP were treated in specialty 1 (1.55
patients) and were classified into treatment pattern
E1 (1.06 patients). The FP kept more patients being
served (3.18 patients) than the OP and the GP, the
majority of patients treated in specialty 1 (1.79
patients) and in treatment pattern E2 (1.64
patients).

Considering the resource utilization and the
operational costs, we observe in Table 4 that the
average resource utilization per period was closer to
the target level under OP control (L1 = 4.66 and
L2 = 4.59) than under GP (L1 = 4.77 and L2 = 4.78),
and consequently, the OP had lower expected aver-
age cost per period (1.58) than the GP (1.94). The
cost incurred in both policy, OP and GP, was the
excess cost in relation to the target level.
The average resource utilization per period under
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FP (L1 = 7.65 and L2 = 7.61) exceeded the target
level and the available capacity of both resources,
and, thus, the FP presented the largest average cost
per period (14.36).

6. Discussion

Rather than the number of admission on a daily basis
(operational level), we looked for the number of
admissions within successive planning periods (stra-
tegic/tactical levels). In this context, with the aim
of stabilizing average hospital resources utilization
at desirable levels, preventing idleness or excessive
use while considering the relative importance of the
resources, we modeled the control of patients’
admissions as a Markov decision process.

Based on the results described in the previous
section, we can conclude that the model is able to
generate an optimal admission control policy that
keeps the resources utilization close to the desired
levels while optimizing the established deviation
costs. Furthermore, it enables performance para-
meters analysis of different admission control poli-
cies, as we did with the greedy policy and the fixed
policy.

It should be noted that the model suits the admis-
sion process in elective hospitals, such as rehabili-
tation hospitals. However, with some modifications,
the model developed in this paper can also be
applied to emergency care hospitals.

A serious limitation of this model pertains to
dimensionality. The small-sized example configura-
tion presented in Section 5 comprises 5765 possible
states, which generate, considering the system
under control of the optimal policy, 482,504 possible
transitions among states with no null probability. It
is evident, as far as state and action spaces are
concerned, that the model will assume very large
dimensions when more realistic systems are evalu-
ated. Fortunately, new approaches that apply con-
cepts of reduced and sampled planning horizons, as
well as evolutionary searches, are being developed
for solving MDPs with large dimensions. Among
them, we can mention the ‘‘parallel rollout’’
method for MDPs with large state space and small
action space, and the ‘‘evolutionary random policy
search’’ method for MDPs with small state space and
large action space [20]. A time aggregation
approach, as introduced in [21], can also be con-
sidered for solving MDPs with large state space and
small action space. It is worth emphasizing that the
authors of the present paper are developing a meth-
odology that combines the aforementionedmethods
for solving MDPs with simultaneously large state and
action spaces.
With regards to the model parameters, further
studies are required for applying appropriate group-
ing methods [22] to real data in order to determine
the treatment patterns and the related transition
probability matrices. We are currently adjusting the
model to real data from a rehabilitation hospital to
include it in a future project.

7. Conclusion

Controlling the admission of patients into hospitals
with limited resources is a traditional and common
problem faced by health care systems. Modeling
this control as an MDP is a new approach, which may
lead to more effective decisions involving the bal-
ance between admission of elective patients and
utilization of available hospital resources. Com-
bined with an efficient solution method for large
dimensionMDPs, thismethod has great potential for
application.
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