
The Pervasiveness of Global Data in Evolving
Software Systems�

Fraser P. Ruffell and Jason W.A. Selby

School of Computer Science, University of Waterloo,
Ontario, Canada, N2L 3G1

{fruffell, j2selby}@uwaterloo.ca

Abstract. In this research, we investigate the role of common coupling
in evolving software systems. It can be argued that most software de-
velopers understand that the use of global data has many harmful side-
effects, and thus should be avoided. We are therefore interested in the
answer to the following question: if global data does exist within a soft-
ware project, how does global data usage evolve over a software project’s
lifetime? Perhaps the constant refactoring and perfective maintenance
eliminates global data usage, or conversely, perhaps the constant addi-
tion of features and rapid development introduce an increasing reliance
on global data? We are also interested in identifying if global data usage
patterns are useful as a software metric that is indicative of an interesting
or significant event in the software’s lifetime.

The focus of this research is twofold: first to develop an effective and
automatic technique for studying global data usage over the lifetime of
large software systems and secondly, to leverage this technique in a case-
study of global data usage for several large and evolving software systems
in an effort to reach answers to these questions.

1 Introduction

A focus of the software engineering discipline has been, and continues to be,
the development and deployment of techniques for yielding reusable, extensible,
and reliable software [3]. One proven approach toward obtaining these goals
and others, is to develop software as a collection of independent modules [9, 6].
This technique is especially effective when the individual modules experience
a low-degree of inter-dependence or coupling [18, 11]. Modules which are self-
contained and communicate with others strictly through well-defined interfaces
are not likely to be affected by changes made to the internals of other unrelated
components.

Although designing software which exhibits a low degree of coupling is highly
desirable, if the modules of a software system are to communicate at all, some
form of coupling must exist. In [11] the following seven types of coupling are

� This research was supported in part by a Natural Sciences and Engineering Research
Council of Canada Strategic grant.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 396–410, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Pervasiveness of Global Data in Evolving Software Systems 397

defined in increasing severeness: no coupling, data coupling, stamp coupling,
control coupling, external coupling, common coupling, and content coupling.

The focus of this paper is on the second most undesirable form: common
coupling. This manifestation of coupling implicitly occurs between all modules
accessing the same global data. In [20], this form of coupling is referred to as
clandestine coupling. Many different programming languages, old and new alike,
provide support for global data, and as illustrated later in this paper, common
coupling is rampant in many large software systems.

In this research, we investigate the role of global data in evolving software
systems. It can be argued that most software developers understand that the
use of global data has many harmful side-effects and thus should be avoided.
We are therefore interested in the answer to the following question: if global
data does exist within a software project, how does global data usage evolve over
a software project’s lifetime? Perhaps the constant refactoring and perfective
maintenance eliminates global data usage or, conversely, perhaps the constant
addition of features and rapid development introduce an increasing reliance on
global data? We are also interested if global data usage patterns are useful as
a software metric. For example, if a large number of global variables are added
across two successive versions, is this indicative of an interesting or significant
event in the software’s lifetime? The focus of this research is twofold: first to
develop an effective and automatic technique for studying global data usage over
the lifetime of large software systems and secondly, to leverage this technique in
a case-study of global data usage for several large and evolving software systems
in an effort to attain answers to these questions.

This paper is organized as follows. Section 2 discusses the many pitfalls and
possible reasons for using global data. Section 3 then presents our thoughts and
expectations on global data usage in the three software systems examined. In
Section 4, an in-depth discussion on our tool gv-finder is presented. Section
5 provides an overview of the systems examined in this study, followed by the
results and analysis of applying gv-finder to these systems in Section 5. Finally,
Section 7 concludes.

2 Global Data

The notion of scope is intrinsic to the declaration of source code entities (e.g.
class, function, datum) in all programming languages. Scope is simply a maximal
region of code for which the declared source code item is bound to [6]. Depending
on language semantics, the scope may vary from a single compound statement
(local scope), to any and every source file in a software project (global scope).
The focus of this paper is on the set of variables within an application’s source
code that are declared with a global scope. As discussed later in Section 4 we
further build upon this definition to include other variables of interest.

Global variables can be used indiscriminately in any module within a software
project, and thereby all modules referencing the same global data are implicitly
coupled. For this reason, it is well known that the use of global variables poses

398 F.P. Ruffell and J.W.A. Selby

a real and serious threat to software maintainability. The resulting rampant
coupling can greatly impair program comprehension through a wide range of
unanticipated side-effects; from hidden aliasing problems, namespace pollution,
to even hampering code reuse across projects. Without a full understanding all
of these and other less obvious implications of using global data, misconceptions
about the safety of read-only access to globals, or the judicious use of file scope
globals (e.g. statics in C) will continue to exist. For an in-depth discussion as to
why global variables are harmful, the reader is referred to [6, 9, 17, 20].

Despite the well known drawbacks of using global data, there are a small
number of valid reasons justifying their use. For example, global data can be
used to emulate named constants and enumerations in those languages which
do not support them directly [9]. However, situations which require the use of
global data are rare and can almost always be avoided.

Previous work by Briand et al. [2] found that the degree of common coupling
inside of a system is related to fault-proneness. Yu et al. [20] and Schach et al.
[16] also examined common coupling in terms of the effects on maintainability
and quality, respectively.

The application of data mining to various entities of the software development
process to discover and direct evolution patterns has recently received extensive
treatment, most notably in [4, 13, 21].

3 Exploration of Global Variables in Software Evolution

Two opposing views of software evolution exist. In the first view, early releases
of a software project are seen as pristine, and that as the software ages, entropy
takes hold and it enters into a constant state of decay and degradation [12].
Accordingly, one may hypothesize about the pervasiveness of global data with
this view in mind:

Since evolving software is in a perpetual state of entropy, the degree of
maintainability will decrease partially due to an increase in both the num-
ber and usage of global variables within an aging software project.

Conversely, another view is that software is in a constant state of refactoring
and redesign and, along with perfective maintenance, one can conclude that
the early releases of a software project are somewhat unstructured, and as the
project ages the design and implementation become more stable and mature.
With this view in mind, one can suggest the following about the pervasiveness
of global data in evolving software:

As software evolves in an iterative development cycle of constant refac-
toring and redesign, the degree of maintainability will increase partially
due to an increase in both the number and usage of global variables within
a growing software project.

Although both hypotheses are convincing when viewed in isolation, it appears
to us that it is more likely that neither will apply uniformly to all evolving soft-

The Pervasiveness of Global Data in Evolving Software Systems 399

ware systems. Instead, we propose that the defining characteristics of each soft-
ware system (such as the development model, development community, relative
age, project goals, etc.) are the factors determining which viewpoint is more in-
fluential. In particular, we adopt the three-pronged classification of Open Source
Software (OSS) as defined in [10]. The three types of OSS, and predictions on
the global data usage for each, are:

1. Exploration-Oriented. Research software which has the goal of sharing
knowledge with the masses. Such software usually consists of a single main
branch of development, which is tightly controlled by a single leader. In such
a project we predict to see very few global variables and, as the software
evolves, a decrease if any change in global variable usage.

2. Utility-Oriented. This type of software is feature-rich, and often experi-
ences rapid development, possibly with forks. In this category of software, we
expect to see a relatively high reliance on global data, which will gradually
increase over the software’s lifetime, possibly with periods of refactoring.

3. Service-Oriented. Software in this category tends to be very stable and
development is relatively inactive due to its large user-base and small devel-
oper group. Unlike exploration-oriented software, where a single person has
complete authority, a small number of “council” members fulfill the decision-
making role. For software of this classification, we predict global data usage
to be higher than exploration-oriented software but less than utility-oriented
software. As the software evolves, we also expect to observe a decrease in
reliance upon global data.

4 Methodology

Our objective was to study both the presence and role of global data in several
large-scale software systems, and therefore, it was important to devise an ap-
proach for automatically collecting such data. Whereas in [20], global data usage
was collected for a single version of the Linux kernel, our focus was more exten-
sive, as we were interested in examining numerous versions of multiple software
projects. Consider one of the three case studies presented later in Section 5:
GNU Emacs. In total, 15 versions of Emacs were examined (across a 14 year
time period), the accumulative source code base consists of roughly 4 million
lines of code. Clearly, examining the pervasiveness of global data over the evo-
lution of such a large-scale software system requires an automated process. This
section provides an overview and discussion of the design and implementation
of our global data collection tool called gv-finder.

Initial approaches to developing the global data collection tool included hand
coding a parser, and the modification of gcc. However, the approach decided
upon was to write a stand-alone tool similar to a linker, which takes as input a
collection of relocatable object files. Relocatable object files are usually produced
as the output from either a compiler or assembler, and contain the machine code
representation for some source code entity (e.g., a file or a concatenation of files)

400 F.P. Ruffell and J.W.A. Selby

along with information needed by both the linker and loader [15]. The following
two observations lead us to adopt this approach:

– If a source file uses global data which happens to be instantiated within a
different source file, the corresponding relocatable object file will contain a
symbol table entry indicating that the global data is undefined. When the
linker is invoked with the complete set of object files used for constructing
the target application, it will replace any reference to the undefined global
data with the address of the global data instantiated in one of the other
object files.

– If a source file instantiates and exports global data, the corresponding relo-
catable object for that file will contain a symbol table entry declaring the
data as global. The linker uses the address of a global symbol (also found in
the symbol table) to resolve references to the same global data occurring in
other external source files, as well as for any internal references.

Therefore, by inspection of the set of object files which constitute the final
executable application, one can determine (a) the names of all global data and
the corresponding module in which they are defined and (b) for each global
data, the name of the modules which refer to it. In addition to satisfying all of
our design criteria, this method offers the advantage of being portable across
different compiler suites. This may be useful if an application only compiles
with a certain version of a compiler, or a specific company’s compiler — native
compilers for a given platform target a common standard object file format.

Our analysis of relocatable ELF object files makes the following distinction
between different types of global data:

– External Global Data. If one or more object files contain an undefined
reference to global data, but no object file is found to provide a matching
definition, we consider the global data to be external to the application. This
occurs when the application makes use of a library which exports global
state. A common example is the use of stdout from the C standard library.
This is the least severe type of global data since the application itself is not
responsible for the design of the libraries it depends upon.

– Static Global Data. If an object file contains a definition of global data
which is marked as “local” then the global data is classified as static. This
occurs in languages such as C and C++ where global data is declared with the
static keyword[7, 19]. Static global data can only be used in the file which
declares the variable, and therefore can not introduce “clandestine” coupling
[20] with other external modules. However, all the other disadvantages asso-
ciated with using global data are applicable to static data, and therefore we
feel it is important to make the distinction as static data is still potentially
dangerous and undesirable.

– True Global Data. If an object file contains a definition of data marked
as “global”, the data is then classified as true global data. This data can be
referenced in any other module without restriction, simply by referring to
the data’s name. This is the most dangerous type of global data since every

The Pervasiveness of Global Data in Evolving Software Systems 401

module which references the exported global variable becomes implicitly
coupled [20].

It should be noted that this approach to global data analysis requires the
target application to be compiled. This turned out to be a challenge for the
very early versions of the software studied in Section 6, as language standards,
system header files, and the required build tools have also evolved independently,
and tend not to be backward compatible. However, for global variable analysis,
it is only required that the source files compile, even if the resulting executable
does not run correctly (or at all). Therefore, with a relatively small investment in
time, we found that many of the older versions could be compiled by strategically
adding fix-up macros, re-using configuration files across different versions and,
in the worst-case scenario, simply removing offending lines of code (less than 100
lines of code were commented out in any given release).

5 Case Study

Over the course of this study we examined one example of each of the three
classifications of OSS projects defined in [10]. Specifically, the Vim, Emacs and
PostgreSQL projects were examined.

5.1 Vi IMproved (Vim)

The Vi IMproved (Vim) editor began as an open-source version of the popular VI
editor, and has now eclipsed the popularity of the original Vi. Vim was created
by Bram Moolenar, who based upon it another editor, Stevie[1]. Development of
Vim centres around Moolenar, with other developers contributing mostly small
features, however, the process relies upon the user community for bug reports.
In terms of the classification of open-source software defined in [10], Vim is
considered an example of a utility-oriented project.

Sixteen releases of Vim dating back to 1996 were studied (four earlier versions
which target the Amiga were unanalyzable). Table 1 displays the Vim chronology
of the examined releases. Most of the releases are considered minor, however,
releases 5.3 and 6.0 are major, contributing at least 50KLOC each to the system.

Table 1. Chronological data for the releases of Vim examined in this study [5, 8]

Release Date SLOC Total LOC Release Date SLOC Total LOC
4.0 05/1996 43594 59966 5.5 09/1999 94247 127055
4.1 06/1996 43891 60396 5.6 01/2000 94964 128102
4.2 07/1996 44017 60600 5.7 06/2000 96225 129681
4.3 08/1996 44621 61606 5.8 05/2001 95548 128864
4.4 09/1996 44693 61751 6.0 09/2001 140182 187196
4.5 10/1996 44742 61875 6.1 03/2002 142091 189632
5.3 08/1998 79260 107876 6.2 06/2003 156700 209680
5.4 07/1999 93771 126383 6.3 06/2004 162441 217501

402 F.P. Ruffell and J.W.A. Selby

5.2 GNU Emacs

The Emacs editor is one of the most widely used projects developed by GNU.
It was originally developed by Richard Stallman, who still remains the project
maintainer. Given the development process and community that supports
Emacs, we consider it to be an exploration-oriented project.

Our examination of Emacs consisted of fifteen releases stretching as far back as
1992. Details pertaining to the releases that we studied can be found in Table 2.

Table 2. Chronological data for the releases of Emacs examined in this study

Release Date SLOC Total LOC Release Date SLOC Total LOC
18.59 10/1992 56216 74752 20.5 12/1999 105324 146655
19.25 05/1994 75412 104608 20.6 02/2000 105336 146693
19.30 11/1995 80824 112780 20.7 06/2000 105437 146849
19.34 08/1996 100514 140000 21.1 10/2001 137615 197481
20.1 09/1997 100406 140357 21.2 03/2002 137835 197814
20.2 09/1997 100408 140357 21.3 03/2003 138035 198130
20.3 08/1998 104193 145258 21.4 02/2005 138035 198130
20.4 07/1999 105170 146422

5.3 PostgreSQL

As an example of service-oriented OSS, the PostgreSQL relational database
system was examined. PostgreSQL is an example of a exploration-oriented (re-
search) project that has morphed into a service-oriented project. The system was
initially developed under the name POSTGRES at the University of California
at Berkeley[14]. It was soon released to the public and is now under the control
of the PostgreSQL Global Development Group.

Table 3. Chronological data for the releases of PostgreSQL examined in this study

Release Date SLOC Total LOC Release Date SLOC Total LOC
1.02 08/1996 102965 175538 7.4 11/2003 222694 349461
6 07/1997 98062 162253 8.0.0 19/01/2005 242887 382686

7.2 02/2202 252155 276496 8.0.1 31/01/2005 242991 382865
7.3 11/2002 194822 308305

We studied seven releases, of which three are considered major releases (1.02,
6.0 and 8.0.0). Version 1.02 (aka Postgres95) was the first version released outside
of Berkeley, and incorporated a SQL frontend into the system. Although, the
PostgreSQL project is composed of many programs, we limited our study to the
PostgreSQL backend server. Table 3 outlines the date and size changes of the
PostgreSQL server for the releases examined.

The Pervasiveness of Global Data in Evolving Software Systems 403

6 Experimental Results and Discussion

In this section we report and discuss the results gathered through the use of
gv-finder on the selected open-source projects. Specifically, we examine the
evolution of the projects in terms of their size (lines of code), the number of
global variables referenced, their reliance upon global variables, and finally, the
extent to which global data is used throughout the system.

6.1 Changes in Number of Lines of Code

Over the lifetimes of the projects that we studied, each has at least doubled in
terms of their code size. Size data collected includes uncommented, non-white
space source lines of code (SLOC), and total lines of code (LOC). Referring back
to Tables 1, 2, and 3 we see the changes in source lines of code as well as total
lines of code for Vim, Emacs and PostgreSQL, respectively.

As expected, each project shows a small increase in size over the minor releases
as a result of perfective maintenance which can be attributed primarily to bug
fixes. However, the large increases stems from the the major releases when new
features were added to the systems.

Interestingly, the LOC decreases substantially from version 7.2 to 7.3 of Post-
greSQL. Examination of the documented changes revealed that support for a
specific protocol was removed. However, it is unclear if this change alone ac-
counts for the 70KLOC that was removed from the system.

6.2 Evolution of the Number of Global Variables

Initially it was hypothesized that the number of global variables would decrease
over the lifetime of a project as the developers had more time to perform cor-
rective maintenance and replace them with safer alternatives. However, this was
not what was discovered. In fact, we found that the number of global variables
present in all of the systems examined grew alongside the code size as demon-
strated in Figs. 1, 2, and 3. In the figures, the number of distinct global variables
is classified as being either true, static or external. To further clarify the figures,
consider Fig. 1. Examination of Vim release 5.3 shows that the total number of
global variables identified is 684. These 684 references are composed of 426 true,
238 static, and 20 external global variables.

The finding that the number of global variables increases alongside the lines of
code might suggest that the use of global variables is inherent in programming
large software systems (at least those programmed in C). This is even more
interesting given that according to the classifications in [10], PostgreSQL and
Emacs are developed under a stringent process that ideally would attempt to
limit the introduction and use of global variables.

6.3 Evolution of the Reliance Upon Global Variables

In an attempt to evaluate how reliant the systems are upon global data, we
recorded the number of lines of code that reference global data. Using this, we

404 F.P. Ruffell and J.W.A. Selby

Fig. 1. The number of true, static and external globals identified by gv-finder in Vim

Fig. 2. The number of true, static and external globals identified by gv-finder in
Emacs

Fig. 3. The number of true, static and external globals identified by gv-finder in
PostgreSQL

The Pervasiveness of Global Data in Evolving Software Systems 405

Fig. 4. The percentage of references to global data per line of source code. The percent-
ages are classified as either true, static and external globals as identified by gv-finder
in Vim.

Fig. 5. The percentage of references to global data per line of source code identified
by gv-finder in Emacs

are able to report the percentage of lines of source code (SLOC) that reference
global data as displayed in Figs. 4, 5, and 6.

In this form the figures diminish the actual reliance of the projects upon global
data. This can be attributed to two factors. First, each line that references a
global variable is only counted once, even if it might reference multiple global
variables. However, the most important factor is simply that the number of
lines of code is growing much faster than the number of globals. Therefore, even
though the number of global variables present in each system is growing, the use
of SLOC as the divisor negates this fact.

To gain a better perspective on the reliance of global data, we plotted the
number of references to global data divided by the total number of globals.
Examining Figs. 7, 8, and 9, a wave pattern is observed for all projects. This
might indicate that the original intuition that global variables were added to
code as a quick fix in order to ship the initial release, after which their number
would decrease, was simply too limited. The wave pattern that is evident in the
figures could be interpreted as the iterative process of adding new features, and
hence new globals, to the system and the later factoring out of them over time.

406 F.P. Ruffell and J.W.A. Selby

Fig. 6. The percentage of references to global data per line of source code identified
by gv-finder in PostgreSQL

Fig. 7. The number of references per global variable discovered by gv-finder in Vim

Fig. 8. The number of references per global variable discovered in Emacs

The Pervasiveness of Global Data in Evolving Software Systems 407

Fig. 9. The number of references per global variable discovered in PostgreSQL.

However, contrary to our intuition the reliance upon global data appears to
peak at mid-releases. This may indicate that the addition of new features in
major-releases are the result of clean, well-planned designs. It appears that the
process of identifying bugs and patching them as quickly as possible results in
the introduction of the majority of references to global data. As the frequency
of bug reports curtail the developers are able to focus on refactoring the hastily
coded bug fixes, thereby reducing the reliance upon globals.

6.4 Evolution of the Extent of Use of Global Variables

Finally, in order to examine how widespread the use of global variables is through-
out the systems, we collected data pertaining to the number of functions which
make use of global data as displayed in Figs. 10, 11, and 12. The extent of usage
of global data in Vim and Emacs is considerably higher than in PostgreSQL. The
percentage of functions which reference global data is greater than 80% for both
of the editors, while the percentage in PostgreSQL is approximately 45%.

Fig. 10. The percentage of functions which reference global data. The percentages are
classified as either true, static and external globals as identified by gv-finder in Vim.

408 F.P. Ruffell and J.W.A. Selby

Fig. 11. The percentage of functions which reference global data as identified by
gv-finder in Emacs

Fig. 12. The percentage of functions which reference global data as identified by
gv-finder in PostgreSQL

We should note that there are some threats to the validity of our work. As
noted earlier, we were unable to examine every single release of all three projects.
The application of gv-finder to all releases would result in a more precise view
of the evolution of global data usage across the entire lifetime of the projects.
However, we believe that the examined releases provide sufficient insight into
the projects in order to base our findings.

Additionally, the usage pattern of global data discovered by our work may
not be visible in other types of software. Specifically, our findings are the result
of the examination of open-source projects, two of which are text editors. There-
fore, it is not clear if our results would hold for a wider spectrum of software
(for example, closed-source projects). In order to draw any further conclusions
we plan on examining a larger number of projects, ranging from compilers to
multimedia players.

The Pervasiveness of Global Data in Evolving Software Systems 409

7 Conclusion

In this study we performed a detailed analysis of the pervasiveness of global data
in three open-source projects. Our contributions are twofold. First, the catego-
rization of a project as either service-, utility- or exploration-oriented does not
appear to be indicative of the usage of global data over its lifetime. In conjunc-
tion with the fact that the number of global variables increase alongside the lines
of code could indicate that the use of global data is inherent in programming
large software systems and can not be entirely avoided. Second, and most inter-
esting is the finding that the usage of global data followed a wave pattern which
peaked at mid-releases for all of the systems examined. This might suggest that
the addition of new features in major-releases are the result of proper software
design principles while the corrective maintenance performed immediately after
a major-release may result in increasing the reliance upon global data. Later
phases of refactoring (preventative maintenance) appear to be able to slightly
reduce this reliance.

Acknowledgments

We would like to Mark Giesbrecht, Michael Godfrey and the students of Prof.
Godfrey’s CS846 class at UW where this work was initially developed, Cory
Kasper, and the FASE referees for their comments on this work.

References

1. Vim F.A.Q. Available at http://vimdoc.sourceforge.net/vimfaq.html.
2. L. C. Briand, J. Daly, V. Porter, and J. Wüst. A comprehensive empirical validation

of design measures for object-oriented systems. In METRICS ’98: Proceedings of
the 5th International Symposium on Software Metrics, page 246, Washington, DC,
USA, 1998. IEEE Computer Society.

3. F. P. Brooks Jr. No silver bullet - essence and accidents of software engineering.
IEEE Computer, 20(4):10–19, 1987.

4. M. Fischer, J. Oberleitner, J. Ratzinger, and H. Gall. Mininig evolution data of a
product family. In MSR’05: Proceedings of the International Workshop on Mining
Software Repositories, May 2005.

5. S. Guckes. Vim history - release dates of user versions and developer versions.
Available at http://www.vmunix.com/vim/hist.html.

6. A. Hunt and D. Thomas. The pragmatic programmer: from journeyman to master.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

7. B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

8. J. Magid. Historic linux archive. Available at http://www.ibiblio.org/pub/
historic-linux/ftp-archives/sunsite.unc.edu/Sep-29-1996/apps/editors/vi/.

9. S. McConnell. Code complete: a practical handbook of software construction. Mi-
crosoft Press, Redmond, WA, USA, second edition, 2004.

410 F.P. Ruffell and J.W.A. Selby

10. K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye. Evolution pat-
terns of open-source software systems and communities. In IWPSE ’02: Proceedings
of the International Workshop on Principles of Software Evolution, pages 76–85.
ACM Press, 2002.

11. A. J. Offutt, M. J. Harrold, and P. Kolte. A software metric system for module
coupling. J. Syst. Softw., 20(3):295–308, 1993.

12. D. L. Parnas. Software aging. In ICSE ’94: Proceedings of the 16th Interna-
tional Conference on Software Engineering, pages 279–287. IEEE Computer Soci-
ety Press, 1994.

13. M. Pinzger, M. Fischer, and H. Gall. Towards an integrated view on architecture
and its evolution. Electronic Notes in Theoretical Computer Science, 127(3):183–
196, April 2005.

14. PostgreSQL Global Development Group. PostgreSQL 8.0.0 Documentation, 2005.
15. L. Presser and J. R. White. Linkers and loaders. ACM Comput. Surv., 4(3):149–

167, 1972.
16. S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and J. Offutt. Quality impacts

of clandestine common coupling. Software Quality Control, 11(3):211–218, 2003.
17. S. R. Schach and A. J. Offutt. On the nonmaintainability of open-source software

position paper. 2nd Workshop on Open Source Software Engineering, May 2002.
18. W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM

Systems J., 13(2):115–139, 1974.
19. B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2000.
20. L. Yu, S. R. Schach, K. Chen, and J. Offutt. Categorization of common coupling

and its application to the maintainability of the linux kernel. IEEE Trans. Software
Eng., 30(10):694–706, 2004.

21. T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller. Mining version histories
to guide software changes. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 563–572, Washington, DC, USA, 2004.
IEEE Computer Society.

	Introduction
	Global Data
	Exploration of Global Variables in Software Evolution
	Methodology
	Case Study
	Vi IMproved (Vim)
	GNU Emacs
	PostgreSQL

	Experimental Results and Discussion
	Changes in Number of Lines of Code
	Evolution of the Number of Global Variables
	Evolution of the Reliance Upon Global Variables
	Evolution of the Extent of Use of Global Variables

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

