Enhanced Multi-Touch Gestures for Complex Tasks


Recent technological advances have resulted in a major shift, from high-performance notebook and desktop computers – devices that rely on keyboard and mouse for input – towards smaller, personal devices like smartphones, tablets and smartwatches which rely primarily on touch input. Users of these devices typically have a relatively high level of skill in using multi-touch gestures to interact with them, but the multi-touch gesture sets that are supported are often restricted to a small subset of one and two-finger gestures, such as tap, double tap, drag, flick, pinch and spread. This is not due to technical limitations, since modern multi-touch smartphones and tablets are capable of accepting at least ten simultaneous points of contact. Likewise, human movement models suggest that humans are capable of richer and more expressive forms of interaction that utilize multiple fingers. This suggests a gap between the technical capabilities of multi-touch devices, the physical capabilities of end-users, and the gesture sets that have been implemented for these devices. Our work explores ways in which we can enrich multi-touch interaction on these devices by expanding these common gesture sets. Simple gestures are fine for simple use cases, but if we want to support a wide range of sophisticated behaviours – the types of interactions required by expert users – we need equally sophisticated capabilities from our devices. In this thesis, we refer to these more sophisticated, complex interactions as “enhanced gestures” to distinguish them from common but simple gestures, and to suggest the types of expert scenarios that we are targeting in their design. We do not need to necessarily replace current, familiar gestures, but it makes sense to consider augmenting them as multi-touch becomes more prevalent, and is applied to more sophisticated problems. This research explores issues of approachability and user acceptance around gesture sets. Using pinch-to-zoom as an example, we establish design guidelines for enhanced gestures, and systematically design, implement and evaluate two different types of expert gestures, illustrative of the type of functionality that we might build into future systems.

University of Waterloo