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Abstract
We introduce Logic Guided Machine Learning (LGML), a
novel approach that symbiotically combines machine learn-
ing (ML) and logic solvers to learn mathematical functions
from data. LGML consists of two phases, namely a learning-
phase and a logic-phase with a corrective feedback loop, such
that, the learning-phase learns symbolic expressions from in-
put data, and the logic-phase cross verifies the consistency
of the learned expression with known auxiliary truths. If in-
consistent, the logic-phase feeds back ”counterexamples” to
the learning-phase. This process is repeated until the learned
expression is consistent with auxiliary truth. Using LGML,
we were able to learn expressions that correspond to the
Pythagorean theorem and the sine function, with several or-
ders of magnitude improvements in data efficiency compared
to an approach based on an out-of-the-box multi-layered per-
ceptron (MLP).

Logic Guided Machine Learning (LGML) is a new ap-
proach that combines an ML model (the learning-phase)
with a logic solver (the logic-phase) in a corrective feed-
back loop from the logic-phase to the learning-phase (see
Figure 1). LGML takes the following as input: labeled data
corresponding to an unknown target mathematical function
f to be learned and an auxiliary truth ψ (theorems or in-
variants over f in a suitable fragment of mathematics). The
learning-phase fits a symbolic function f̂ , that approximates
f , over this data which is then fed to a logic solver (e.g.,
SAT/SMT solvers) along with the auxiliary truth ψ. If the
symbolic expression f̂ is inconsistent with the given aux-
iliary truth ψ, the logic-phase feeds back the data point that
violates the auxiliary truth the ”strongest”. While the ground
truth function f underlying the dataset is unknown to the
system, LGML does require access to an oracle to produce
labels to the returned point from the logic-phase. This pro-
cess is repeated until f̂ and ψ are consistent with each other,
i.e., f̂ |= ψ (By this notation, we mean ∀x.ψ(x, f̂(x)) is
true). This work is inspired by (Clarke et al. 2000).

Input to LGML: The input to LGML is a labeled dataset
that relates the inputs and output of some function f whose
symbolic representation is not known to the system, and an
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Figure 1: Architecture Diagram of of LGML

auxiliary theorem or truth ψ known to be true for the in-
puts and output f . For example, consider f(a, b) to be the
function that takes as input the length a and b of the sides
of a right-angled triangle and computes the length of its hy-
potenuse using the Pythagorean theorem. Then, one possible
ψ is the triangle inequality a+ b > f(a, b). Even if one may
not quite know the statement of the Pythagorean theorem,
one may have a large sample of right-angled triangles (input
data set) and know the statement of the triangle inequality
(auxiliary truth). Combinatorial mathematicians and physi-
cists routinely have access to such data sets and auxiliary
truths and want to learn some previously unknown function
or invariant over such data (Larson and Van Cleemput 2017).

Output of LGML: LGML outputs some function f̂ that
fits the labeled dataset and is consistent with ψ. Unlike clas-
sical regressors, LGML starts with a small dataset and aug-
ments it with additional points during runtime, obtained via
a logical-phase.

The learning-phase of LGML: The learning-phase ap-
plies a regression algorithm on the current dataset to obtain
a math expression f̂ that fits the input data. Examples of
regression algorithms include symbolic regression methods
and deep neural networks. Importantly, we require the re-
gressor to fit all data points with near-perfect accuracy.

The logic-phase of LGML: The logic-phase checks
whether the learned function f̂ is consistent with the input
auxiliary truth ψ, denoted as f̂ |= ψ. As long as this is not



Figure 2: Visualization of LGML for select iterations

Figure 3: RMSE of LGML vs. standard MLP regressor.

the case, LGML computes the ’strongest’ counterexample
resulting in inconsistency, inserts it into the training set, and
repeats the learning-phase on the augmented training data.
First note that ψ is a logical equation in terms of the fea-
ture space and the unknown function f , or more precisely,
in terms of the output of f̂ that approximates f . Hence, in
its logic-phase, LGML constructs a satisfiability query that
checks whether f̂ |= ψ. If inconsistent, a counterexample is
extracted from the logic solver. LGML finds the ’strongest’
such counterexample and returns it to the learning-phase.

Auxiliary Truth as a Satisfiability Query: We weaken
the auxiliary truth ψ (a quantifier-free mathematical for-
mula) to be written with an error term ε, denoted as ψε. Sup-
pose the auxiliary truth ψ is of the form α = β, where α and
β are well-formed symbolic expressions. Then we construct
the query:

¬ψε := |α[f/f̂ ]− β[f/f̂ ]| > ε

Further, if ψ is of the form of an inequality, (e.g α > β),
then:

¬ψε := β[f/f̂ ]− α[f/f̂ ] > ε

where the / is the logical substitution. The satisfiability is
checked via a floating-point (FP) SMT solver for a fixed
ε. We model f̂ with 16-bit precision and use CVC4 as the
backend FP SMT solver.

Extracting Proof and the Strongest Erroneous Point:
We use a variant of the well-known bisection method to find
both proofs and the strongest erroneous points with respect
to an auxiliary truth. By making multiple queries to an FP
SMT solver, we compute ε∗ such that

f̂ |= ψε

for all ε > ε∗, and for all ε < ε∗,

f̂ 6|= ψε

For a target machine error ρ, we first query ε = ρ. The
terminating condition of LGML is the proof of f̂ |= ψρ. We
exponentially increase ε by doubling its value until a SAT re-
sult (i.e f̂ 6|= ψε). An UNSAT result (i.e f̂ |= ψε) establishes
an interval containing ε∗, which we narrow using the bisec-
tion method until convergence on ε∗ and as consequently the
strongest erroneous point.

Evaluation: We empirically tested LGML on two tasks:
learning the function f corresponding to Pythagorean the-
orem and the sine function. For brevity, we focus on sine
function here. The auxiliary truth we use ψ := sin2(x) +
cos2(x) = 1, and the satisfiability query that we use is

|f̂(x)2+
(
d
dx f̂(x)

)2

−1| > ε, for various ε as described un-
til ε∗ is found. As the base learning model, we use an MLP
regressor with two hidden layers of 3 nodes each. Figure 2
visualizes select iterations of LGML. As can be seen, the
LGML learns the Sine function almost perfectly.

We evaluate LGML at the 30th iteration (for a total of 32
training points) with a testing set of 10,000 points and com-
pute an RMSE of 0.037. As a baseline, an MLP regressor
was trained to learn the same function without using LGML,
but given increasingly large training sets. Figure 3 demon-
strates that the LGML model achieved lower error scores on
learning f(x) = sin(x) using just 32 training points than the
non-LGML MLP model when given even 100,000 points.
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