CS 840 Self Organizing Linear Search

We will consider searching under the comparison model

Binary tree – lg n upper and lower bounds

This also holds in "average case" Updates also in O(lg n)

Linear search – worst case n

If all elements have equal probability of search, expected time is (n+1)/2 in successful case(n for unsuccessful search)

Real Questions:

- 1. What if probabilities of access differ? How well can we do under stochastic model? (Easiest example: p_i is probability of requesting element i, probabilities are independent)
- 2. What if these (independent) probabilities are not given?
- 3. How do these methods compare with the best we could do?
 - given the frequencies (and later given the <u>sequence</u> of requests)

This leads to issues of

- expected behaviour (given independent probabilities)
- what if probabilities change
- amortized behaviour (running versus an adversary so we are considering worst-case but for a sequence of operations)
- amortized or expected cost could be compared with but possible for the given probabilities/sequence ... perhaps compare with optimal static structure
- consider our structures that will adapt, (self-adjust, though perhaps <u>on-line</u> and compare with the optimal adjusting structure that knows the sequence in advance (off-line)

Model is a key issue

4. How can we develop self-adjusting data structures? – Adapt to changing probabilities.

Start with linear search. As noted

Worst case n (succ); also amortized "Average (all equal probabilities) (n+1)/2

– it doesn't matter how you change the structure for worst case or for all probabilities same and independent.

But

- 1) Start with $\{P_i\}$ i = 1, n $P_i > P_{i+1}$ independent (Stochastic process)
- 2,3) Clearly the best order is $a_1 cdots a_n$. Expected cost would be Sopt = $\sum_{i=1}^{n} i p_i$

Clearly, we could count accesses and converge

- But count and "chase" probability changes.
- 4) How can we adapt to changes in probability or "self adjust" to do better? -- other than count

Move elements forward as accessed

- Move to Front MTF
- Transpose TR
- Move halfway ---

Theorem: Under the model in which the probabilities of access are independent, and fixed, the transpose rule performs better than move to front unless

- n ≤ 2 or
- all p_i's are the same, in which case the rules have the same expected performance (Rivest, CACM '76)

Theorem: Under the model in which probabilities of access are independent (and fixed) the move to front gives an expected behaviour asymptotically of $< 2 \Sigma$ i p_i , i.e. less than a factor of 2 of the optimal (Rivest, *CACM '76*).

Can this be improved?

If all probabilities equal MTF = Sopt, the actual result is harder (much).

With
$$P_i = i^{-2}/(\pi^2/6)$$
 as $n \to \infty$ $(\pi^2/6 - \text{fudge factor})$

MTF/Sopt = $\pi/2$ (Gonnet, Munro, Suwanda SICOMP '81)

and that is the worst case (Chung, Hajela, Seymour JCSS '88) (uses Hilbert's inequalities)

But how about – an amortized result, comparing these with Sopt in <u>worst case</u>. Note Sopt takes into account the frequencies

Transpose is a problem: alternate request for last 2 values - n is cost; MTF uses only 2.

Move to Front – although "disaster" may be better

But how do we handle the "startup"

note Rivest result asymptotic.

Bentley-McGeough (CACM '85).

The model:

Start with empty list

Scan for element requested, if not present,

Insert (and charge) as if found at end of list (then apply heuristic)

Theorem: Under the "insert on first request" startup model, the cost of MTF is ≤ 2 Sopt for any sequence of requests.

Proof. Consider an arbitrary list, but focus only on searches for b and for c, and "unsuccessful" comparisons where we compare query value "b or c" versus the other "c or b".

Assume sequence has k b's and m c's $k \le m$

Sopt order is cb

and there are k "unsuccessful comparisons"

What order of requests maximizes this number under MTF? Clearly

$$c^{m-k}(bc)^k$$

So there are 2k "unssuccessful compares" (one for each b & one for each of the last k c's)

Now observe that this holds in any list for any pair of elements.

Sum over all

$$Cost \le 2 Sopt$$

Note: This bound is tight.

Given $a_1, a_2, ..., a_n$, repeatedly ask for last in list, so all requested equally often.

Cost is n per search

Whereas "do nothing" = Sopt $\approx (n+1)/2$

Note again Transpose is a disaster if we always ask for the last in its list.

Observe, for some sequences we do a lot better than static optimal $a_1^n a_2^n a_3^n \dots a_n^n$

Sopt -
$$(n+1)/2$$

$$\left(\frac{n+1}{2} + n - 1\right)/n = \frac{n+1+2n-2}{2n}$$

$$= \frac{3}{2} - O(1/n)$$

Next – Suppose you are given the entire sequence in advance. Sleator & Tarjan (1985).

The model we will discuss may or may not be realistic, but it is a benchmark. We consider the idea of a "dynamic offline" method. The issue is:

on line: Must respond as requests come

offline: Get to see entire schedule an determine how to move values

Competitive Ratio of Alg = Worst Case of $\frac{\text{Onlinetime of Alg}}{\text{Optimal Offlinetime}}$

A method is "competitive" if this ratio is a constant.

But the model becomes extremely important

Basics – Search for or change element in position i: scan to location i at cost i.

Unpaid exchange – can move element i closer to front of list free (keep others in same order)

Paid -

can swap adjacent pairs at cost 1 Borodin and El-Yaniv prohibit going past location i Sleator-Tarjan proof seems ok though.

Issues – Long/Short scan (ie passing location i) Exchanging only adjacent values

Further

Access costs i if element in position i

Delete costs i if element in position i

costs n+1 if n elements already there. Insert

After any we can apply update.

Theorem: Under the model described, MTF is within a factor of 2 of offline optimal i.e. is 2-competitive.

Let A denote any algorithm, and MF denote the move to front heuristic.

We will consider the situation in which we deal with a sequence, S, having a total of M queries and a maximum of n data values. By convention we start with the empty list. The cost model for a search that ends by finding the element in position i is

i + # paid exchanges

Recall the element sought may be moved forward in the list at no charge (free exchange) while any other moves must be made by exchanging adjacent values.

Notation

 $C_A(S)$ total cost of all operations in S with algorithm A

 $X_A(S)$ # paid exchanges

 $F_A(S)$ # free exchanges

Note: $X_{MF}(S) = X_{T}(S) = X_{FC}(S) = 0$

(T denotes the transpose heuristic, FC denotes frequency count)

 $F_A(S) \leq C_A(S) - M$

(Since after accessing the ith element there are at most i-1 free exchanges)

Theorem: $C_{MF}(S) \le 2C_A(S) + X_A(S) - F_A(S) - M$, for any algorithm A starting with the empty set.

Proof: The key idea is the use of a potential function Φ . We run algorithm A and MF, in parallel, on the same sequence, S.

 Φ maps the configuration of the current status of the two methods onto the reals.

Running an operation (or sequence) maps Φ to Φ' and the amortized time of the operation is

$$T + \Phi' - \Phi$$

(i.e. amortized time = real time + $\Delta\Phi$)

(so we will aim at amortized time as an overestimate)

The jth operation takes actual time (cost) t_i and amortized cost a_i

$$\Sigma_i t_i = \Phi - \Phi' + \Sigma_i a_i$$

where Φ is the initial potential and Φ' , the final.

 Φ is defined as the number of inversions between the status of A and MF, at the given time.

So
$$\Phi \leq n (n-1)/2$$

We want to prove that the amortized time to access element i in A's list is at most 2i - 1 in MF's.

Similarly inserting in position i+1 has amortized cost 2(i+1) - 1. (Deletions are similar).

Furthermore: we can make the amortized time charged to MF when A does an exchange

-1 for free exchanges at most +1 for paid exchanges

Initial configuration – empty; so $\Phi = 0$

Final value of Φ is nonnegative

So actual MF cost $\leq \Sigma$ amortized time \leq our bound

{ access or insertion amortized time $\leq 2C_A - 1$; amortized delete time $\leq 2C_A - 1$. The -1's, one per operation, sum to -M }

Now we must bound the amortized times of operations.

Consider access by A to position \underline{i} and assume we go to position \underline{k} in MF.

 x_i = # items preceding it in MF, but not in A

so # items preceding it in both is $(k-1 - x_i)$

Moving it to front in MF creates

$$k - 1 - x_i$$
 inversions

and destroys x_i others

so amortized time is

$$k + (k - 1 - x_i) - x_i = 2(k - x_i) - 1$$

But $(k - x_i) < i$ as k-1 items precede it in MF and only i-1 in A.

So amortized time $\leq 2 i - 1$.

The same argument goes through for insert and delete.

An exchange by A has zero cost to MF, so amortized time of an exchange is just increase in # inversions caused by exchange, i.e. 1 for paid, -1 for free.

Extension

Let MF(d) $(d \ge 1)$ be a rule by which the element inserted or accessed in position k is moved at least k/d-1 units closer to the front. Then

$$C_{MF(d)}(S) \le d (2C_A(S) + X_A(S) - F_A(S) - M)$$

$$\{ \text{ eg. MF} \equiv \text{MF}(1) \}$$

Also

Theorem: Given any algorithm A running on a sequence S, there exists another algorithm for S that is no more expensive and does no paid exchanges.

Proof Sketch: Move elements only after an access, to corresponding position. There are details to work through.

Further applications can be made to paging.

However – there is a question about the model.

Given the sequence

$$1 \rightarrow 2 \rightarrow \cdots \rightarrow n/2 \rightarrow n/2+1 \rightarrow \cdots \rightarrow n$$

suppose we want to convert it to

$$n/2 \rightarrow \cdots \rightarrow n \rightarrow 1 \rightarrow \cdots n/2$$

what "should" I pay?

Observe that all only 3 pointers are changed, though presumably I have to scan the list $(\Theta(n))$.

Sleator and Tarjan model says $\Theta(n^2)$, perhaps $\Theta(n)$ is a fairer charge.

So for an offline algorithm: To search for element in position \underline{i} , we probe up to position k ($k \ge i$) and can reorder elements in positions 1 through k. Cost is k.

J.I. Munro: On the Competitiveness of Linear Search. ESA '00 (LNCS 1879 pp 338-345)

Consider the following rule, Order by Next Request (ONR):

To search for element in position i, continue scan to position $2^{\lceil \lg i \rceil}$.

Then reorder these $2^{\lceil \lg i \rceil}$ elements according to the time until their next requests.

(The next of these to be accessed goes in position 1)

$$Cost \ 2^{\lceil \lg i \rceil} = \Theta(i)$$

How does this do? First try a permutation, say 1, ..., n (let n = 16) and assume 1 is initially in the last half).

(To simplify diagram we move requested value to front)

Request	Cost	New Ordering				
1	16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16				
2	2	21••				
3	4	3 4 1 2 • •				
4	2	43 • •				
5	8	5 6 7 8 1 2 3 4 • •				
6	2	65 • •				
7	4	7856 • •				
8	2	87••				
9	16	9 10 11 12 13 13 14 15 16 1 2 3 4 5 6 7 8				

Clearly the same cost applies to any permutation

Under our model this cost is \sim n lg n.