CS 840 Introduction

Winter 2013

Time & Place: 10:30-11:50 pm Wednesdays and Fridays.

Background

Requirements: somewhat modified from original handout

assignments/short paper review (3) \sim project – paper review/start \sim - written \sim - present \sim participation \sim

Starting:

Problem: Insert/Delete/find/find next largest etc. from ordered set

Solution: Balanced Search Tree (AVL, etc.)

Cost $\Theta(\lg n)$ time

linear number of "words"

can we do better?

Decision tree model:

Theorem: If n leaves then height \geq [lg n] include average path to leaf \geq lg n

Counter Example: But Hashing takes O(1) on average for <u>static</u> can be made worst case. Indeed we can come up with a hashing approach that gives:

Worst case search time = O(1)

Expected update time = O(1)

The approach is "dynamic perfect hashing"

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarjan, Dynamic perfect hashing: upper and lower bounds, SIAM J. Comput. 23 (1994), 738-761. http://citeseer.ist.psu.edu/dietzfelbinger90dynamic.html

Contradiction? No different model.

To think out of the Box – first Define the Box!

Now can we beat O(lg n) for insert/delete/successor

(if element not present find the next larger and call it successor)

In "general" – keys "real numbers" only have natural order ... not in worst case ...

though for static: Interpolation search gives O(lglg n) extended search.

[- can we make it dynamic – mostly Mehlhorn and Tsakalidis (JACM 1993)]

Key idea of interpolation:

Guess position ((x - min-key) / (max-key - min-key) * range-size) as location of value.

How far off will we be on average? – about \sqrt{n}

Why? Flip coin n times exp [#heads - #tails] = $\Theta(\sqrt{n})$.

So
$$T(n) = 1 + T(\sqrt{n}).$$

How many times do we recurse

n lg n bits
$$\sqrt{n}$$
 1/2 lg n bits ... lglg n times

Under what circumstances can we guarantee better than $\Theta(\lg n)$ insert/delete/find closest?

A classic (and there are not many classics) data structure due to van Emde Boas in *SWAT* (now called *FOCS*) 1975 – then *Math. Syst. Theory* (1977).

Papers:

The version everyone remembers: Peter van Emde Boas: Preserving Order in a Forest in less than Logarithmic Time. <u>FOCS 1975</u>: 75-84

The polished journal form:

Peter van Emde Boas, <u>R. Kaas</u>, <u>E. Zijlstra</u>: Design and Implementation of an Efficient Priority Queue. <u>Mathematical Systems Theory 10</u>: 99-127 (1977)

But more general

insert
delete
search
successor
find closest above/below
& extract/find max/mix

I'll give a different presentation.

The result:

Universe of $\underline{\mathbf{u}}$ values $\{0,...,\mathbf{u-1}\}$ n of which are currently in the set. The result $lglg \ \mathbf{u}$ time lglg u – We have already seen how this bound arises

$$T(u) = T(\sqrt{u}) + O(1)$$

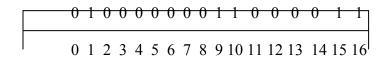
or

$$T'(\lg u) = T'((\lg u)/2) + O(1)$$
$$= \Theta(\lg\lg u)$$

Start ... we admit (at least for now) space depending on u.

Natural Start

Bit vector: u = 16, n = 4, $S = \{1, 9, 10, 15\}$



Insert/Delete/Find – O(1) Successor/Pred – O(u)

Let's try to improve.

Carve into widgets ... of size \sqrt{u} (we need a \sqrt{u} somehow)

$$w_i$$
 denotes $i\sqrt{u} + j$, $j = 0...\sqrt{u} - 1$

so given a value x = 9 = 1001 we have

$$high(x) = 10 (= 2)$$

 $low(x) = 01 (= 1)$

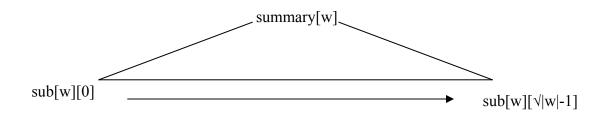
So we got to widget $w_2 = 0 \ 1 \ 1 \ 0$, and look at element 1 which is 1.

Insert/Delete/Find cost is 0(1).

successor -
$$0(\sqrt{u})$$
 \rightarrow look in appropriate widget \rightarrow find next \rightarrow find next non empty widget \rightarrow find 1^{st} in it

Revelation: each is a recursive call.

Representing widgets of size u as



So to insert

Runtime:
$$T(u) = 2 T(\sqrt{u}) + O(1)$$

= $O(\lg u)$

Successor (x,w)

- 1. $j \leftarrow Successor (low(x), sub[w][high(x)])$ if $j < \infty$ then return $high(x)\sqrt{|w|} + j$
- 2. else $i \leftarrow Successor(high(x),summary[w])$
- 3. $j \leftarrow Successor(-\infty, sub[w][i])$ return $i\sqrt{|w|} + j$

Runtime: 3 recursive calls.

Looks like
$$O((\lg u)^{\lg 3})$$
 [lg 3 = 1.58...]

Get down to 1 call in each

```
1 call O(lg lg u)
2 calls O(lg u)
3 calls O((lg u) lg 3)
```

<u>Fixes</u>

If x has successor in sub[w][high(x)] then only 1 call

Otherwise 3 calls.

- So in each widget keep max value hence we don't make call 1 unless we need it for answer So max 2 calls
- Now assume not in 1^{st} call, so that's O(1)
- 2nd call gets appropriate sub widget (a real call)
- 3rd call just needs min value in sub widget (keep min, like max)

Hence only 1 "real" recursive call for successor

For Insert much the same but ...

```
Insert(x,w)
if sub[w][high(x)] is empty
then Insert(high(x),summary[w])
Insert(low(x),sub[w][high(x)]
if x < min[w] then min[w] \leftarrow x
if x > min[w] then max[w] \leftarrow x
```

2 recursive calls

⇒ Improvement if only 1 or 2 elements in a widget just store max/min

Now only 1 recursive call.

Runtime: $\Theta(\lg \lg u)$

Deletion: similar.

Further

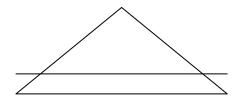
Lower bound Mehlhorn and Naher SICOMP '88

But Brodnik, Carlsson, Karlsson, Munro

O(1) time on Rambo (<u>Random Access Memory with Byte Overlap</u> ..a different model of memory in which words may share bits)

Another issue – space

We take $O(u) \sim looks like u lg u bits but easy to reduce to u$



so structure on u/lg u objects each is a bit vector length lg u

How do we reduce this to something in n? Answer \sim hash