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Abstract
We propose new succinct representations of ordinal trees,
which have been studied extensively. It is known that any
n-node static tree can be represented in 2n + o(n) bits
and a large number of operations on the tree can be sup-
ported in constant time under the word-RAM model. How-
ever existing data structures are not satisfactory in both
theory and practice because (1) the lower-order term is
Ω(n log log n/ log n), which cannot be neglected in practice,
(2) the hidden constant is also large, (3) the data structures
are complicated and difficult to implement, and (4) the tech-
niques do not extend to dynamic trees supporting insertions
and deletions of nodes.

We propose a simple and flexible data structure, called
the range min-max tree, that reduces the large number
of relevant tree operations considered in the literature to
a few primitives, which are carried out in constant time
on sufficiently small trees. The result is then extended
to trees of arbitrary size, achieving 2n + O(n/polylog(n))
bits of space. The redundancy is significantly lower than
in any previous proposal, and the data structure is easily
implemented. Furthermore, using the same framework, we
derive the first fully-functional dynamic succinct trees.

1 Introduction

Trees are one of the most fundamental data structures,
needless to say. A classical representation of a tree with
n nodes uses O(n) pointers or words. Because each
pointer must distinguish all the nodes, it requires logn
bits1 in the worst case. Therefore the tree occupies
Θ(n logn) bits, which causes a space problem for ma-
nipulating large trees. Much research has been devoted
to reducing the space to represent static trees [20, 26,
27, 29, 16, 17, 5, 10, 7, 8, 22, 19, 2, 18, 35, 21, 9] and
dynamic trees [28, 34, 6, 1], achieving so-called succinct
data structures for trees.

A succinct data structure stores objects using space
close to the information-theoretic lower bound, while si-
multaneously supporting a number of primitive opera-
tions on the objects in constant time. The information-
theoretic lower bound for storing an object from a uni-
verse with cardinalityL is logL bits because in the worst
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1The base of logarithm is 2 throughout this paper.

case this number of bits is necessary to distinguish any
two objects. The size of the corresponding succinct data
structure is typically (1 + o(1)) logL bits.

In this paper we are interested in ordinal trees,
in which the children of a node are ordered. The
information-theoretic lower bound to store an ordinal
tree with n nodes is 2n − Θ(logn) bits because there
exist

(
2n−1
n−1

)
/(2n − 1) = 22n/Θ(n

3
2 ) such trees [26].

We assume that the computation model is the word
RAM with word length Θ(logn) in which arithmetic
and logical operations on Θ(logn)-bit integers and
Θ(logn)-bit memory accesses can be done in constant
time. Under this model, there exist many succinct
representations of ordinal trees achieving 2n+ o(n) bits
of space.

Basically there exist three types of such tree
representations: the balanced parentheses sequence
(BP) [20, 26], the level-order unary degree sequence
(LOUDS) [20, 8], and the depth-first unary degree se-
quence (DFUDS) [5, 21]. An example of them is shown
in Figure 1. LOUDS is a simple representation, but it
lacks many basic operations, such as giving the subtree
size of a tree node. Both BP and DFUDS build on a
sequence of balanced parentheses, the former using the
intuitive depth-first-search representation and the lat-
ter using a more sophisticated one. The advantage of
DFUDS, when it was created, was that it supported a
more complete set of operations in constant time, most
notably going to the i-th child of a node. Later, this
was also achieved using BP representation, yet requir-
ing complicated additional data structures with non-
negligible lower-order terms in their space usage [22].
Another type of succinct ordinal trees, based on tree
covering [17, 19, 9], has also achieved constant-time sup-
port of known operations, yet inheriting the problem of
nonnegligible lower-order terms in size.

1.1 Our contributions
We focus on the BP representation, and achieve con-

stant time for a large set of operations2. What dis-
tinguishes our proposal is its simplicity, which allows

2Moreover, as we manipulate a sequence of balanced paren-
theses, our data structure can be used to implement a DFUDS
representation as well.
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Figure 1: Succinct representations of trees.

easy implementation and derivation of dynamic vari-
ants with the same functionality; and its economy in
the sublinear-space structures, which results in a con-
siderably smaller lower-order term in the space usage.

For the static case, we obtain the following result.

Theorem 1.1. For any ordinal tree with n nodes, all
operations in Table 1 except insert and delete are carried
out in constant time O(c2) with a data structure using
2n + O(n/ logc n) bits of space on a Θ(logn)-bit word
RAM, for any constant c > 0. The data structure can
be constructed from the balanced parentheses sequence
of the tree, in O(n) time using O(n) bits.

Our data structure improves upon the lower-order
term in the space complexity of previous representa-
tions. For example, formerly the extra data structure
for level-ancestor has required O(n log logn/

√
log n)

bits [29], or O(n(log logn)2/ logn) bits3 [21], and
that for child has required O(n/(log logn)2) bits [22].
The previous representation with maximum function-
ality [9] supports all the operations in Table 1, ex-
cept insert and delete, in constant time using 2n +
O(n log log logn/ log logn)-bit space. Ours requires
O(n/ logc n) bits for all the operations.

For the dynamic case, the following theorem sum-
marizes our results.

3This data structure is for DFUDS, but the same technique
can be also applied to BP.

Theorem 1.2. On a Θ(logn)-bit word RAM, all op-
erations on a dynamic ordinal tree with n nodes can
be carried out within the worst-case complexities given
in Table 1, using a data structure that requires 2n +
O(n log logn/ logn) bits. Alternatively, they can be car-
ried out in O(logn) time using 2n+O(n/ logn) bits of
space.

There exist no previous dynamic data structures
supporting all the operations in Table 1. The data
structure of Raman and Rao [34] supports, for binary
trees, parent , left and right child, and subtree-size of
the current node in the course of traversing the tree in
constant time, and updates in O((log logn)1+ε) time.
Note that this data structure assumes that all traver-
sals start from the root. Chan et al. [6] gave a dynamic
data structure using O(n) bits and supporting find-
close and enclose, and updates, in O(logn/ log logn)
time. They show this time is indeed optimal, by reduc-
tion from dynamic rank/select on bitmaps and given
the lower bound of Fredman and Saks [14]. They also
gave another data structure using O(n) bits and sup-
porting findclose, enclose, lca, leaf-rank , leaf-select , and
updates, in O(logn) time.

The simplicity and space-efficiency of our data
structures stem from the fact that any query operation
in Table 1 is reduced to a few basic operations on a
bit vector, which can be efficiently solved by a range
min-max tree. This approach is different from previous
studies in which each operation needs distinct auxiliary
data structures. Therefore their total space is the
summation over all the data structures, which enlarges
the hidden constant in the lower-order term of the size.
For example, the first succinct representation of BP [26]
supported only findclose, findopen, and enclose (and
other easy operations) and each operation used different
data structures. Later, many further operations such
as lmost-leaf [27], lca [35], degree [7], child and child-
rank [22], and level-ancestor [29], were added to this
representation by using other types of data structures
for each. There exists another elegant data structure
for BP supporting findclose, findopen, and enclose [16].
This reduces the size of the data structure for these
basic operations, but still has to add extra auxiliary
data structures for other operations.

Former static approaches use two-level data struc-
tures to reduce the size, which causes difficulties in dy-
namic case. Our approach using the range min-max
tree, instead, is easily translated to the dynamic setting,
resulting in simple and efficient dynamic data structures
that support all of the operations in Table 1.

1.2 Organization of the paper
In Section 2 we review basic data structures used in
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Table 1: Operations supported by our data structure. The time complexities are for the dynamic case; in the
static case all operations are performed in constant time. The first group is composed of basic operations, used
to implement the others, yet they could have other uses.
operation description time complexity

inspect(i) P [i] O(log n/ log log n)
findclose(i)/findopen(i) position of parenthesis matching P [i] O(log n/ log log n)
enclose(i) position of tightest open parent. enclosing node i O(log n/ log log n)
rank((i)/rank)(i) number of open/close parentheses in P [1, i] O(log n/ log log n)
select((i)/select)(i) position of i-th open/close parenthesis O(log n/ log log n)
rmqi(i, j)/RMQi(i, j) position of min/max excess value in range [i, j] O(log n/ log log n)

pre-rank(i)/post-rank(i) preorder/postorder rank of node i O(log n/ log log n)
pre-select(i)/post-select(i) the node with preorder/postorder i O(log n/ log log n)
isleaf(i) whether P [i] is a leaf O(log n/ log log n)
isancestor(i, j) whether i is an ancestor of j O(log n/ log log n)
depth(i) depth of node i O(log n/ log log n)
parent(i) parent of node i O(log n/ log log n)
first-child(i)/last-child(i) first/last child of node i O(log n/ log log n)
next-sibling(i)/prev-sibling(i) next/previous sibling of node i O(log n/ log log n)
subtree-size(i) number of nodes in the subtree of node i O(log n/ log log n)
level-ancestor(i, d) ancestor j of i such that depth(j) = depth(i) − d O(log n) or

O(d + log n/ log log n)
level-next(i)/level-prev(i) next/previous node of i in BFS order O(log n/ log log n)
level-lmost(d)/level-rmost(d) leftmost/rightmost node with depth d O(log n) or

O(d + log n/ log log n)
lca(i, j) the lowest common ancestor of two nodes i, j O(log n/ log log n)
deepest-node(i) the (first) deepest node in the subtree of i O(log n/ log log n)
degree(i) number of children of node i O(log n/ log log n)
child(i, q) q-th child of node i O(log n/ log log n)
child-rank(i) number of siblings to the left of node i O(log n/ log log n)
in-rank(i) inorder of node i O(log n/ log log n)
in-select(i) node with inorder i O(log n/ log log n)
leaf-rank(i) number of leaves to the left of leaf i O(log n/ log log n)
leaf-select(i) i-th leaf O(log n/ log log n)
lmost-leaf(i)/rmost-leaf(i) leftmost/rightmost leaf of node i O(log n/ log log n)
insert(i, j) insert node given by matching parent. at i and j O(log n/ log log n)
delete(i) delete node i O(log n/ log log n)

this paper. In Section 3 we describe the main ideas for
our new data structures for ordinal trees. Sections 4
and 5 describe the static construction. In Sections 6
and 7 we give two data structures for dynamic ordinal
trees. In Section 8 we conclude and give future work
directions.

2 Preliminaries
Here we describe the balanced parentheses sequence and
basic data structures used in this paper.

2.1 Succinct data structures for rank/select
Consider a bit string S[0, n − 1] of length n. We

define rank and select for S as follows: rankc(S, i)
is the number of occurrences c ∈ {0, 1} in S[0, i],
and selectc(S, i) is the position of the i-th occurrence
of c in S. Note that rankc(S, selectc(S, i)) = i and

selectc(S, rankc(S, i)) ≤ i.
There exist many succinct data structures for

rank/select [20, 25, 33]. A basic one uses n + o(n)
bits and supports rank/select in constant time on the
word RAM with word length O(logn). The space can
be reduced if the number of 1’s is small. For a string
with m 1’s, there exists a data structure for constant-
time rank/select using log

(
n
m

)
+O(n log log n/ logn) =

m log n
m + O(m + n log logn/ logn) bits [33]. Recently

[30] the extra space has been reduced to m log n
m +

O(n tt/ logt n + n3/4) bits, performing rank and select
in O(t) time. This can be built in linear worst-case
time4.

4They use a predecessor structure by Pǎtraşcu and Thorup
[31], more precisely their result achieving time “lg �−lg n

a
”, which

is a simple modification of van Emde Boas’ data structure.
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A crucial technique for succinct data structures is
table lookup. For small-size problems we construct a
table which stores answers for all possible sequences
and queries. For example, for rank and select , we
use a table storing all answers for all 0,1 patterns of
length 1

2 logn. Because there exist only 2
1
2 logn =

√
n

different patterns, we can store all answers in a universal
table (i.e., not depending on the bit sequence) that uses√
n · polylog(n) = o(n/polylog(n)) bits, which can be

accessed in constant time on a word RAM with word
length Θ(logn).

2.2 Succinct tree representations
We will focus on the BP representation of trees. A

rooted ordered tree T , or ordinal tree, with n nodes
is represented by a string P [0, 2n − 1] of balanced
parentheses of length 2n. A node v ∈ T is represented
by a pair of matching parentheses ( . . . ) and all subtrees
rooted at the node are encoded in order between the
matching parentheses (see Figure 1 for an example).
Moreover, node v is identified with the position i of the
open parenthesis P [i] representing the node.

In the static setting, the tree does not change. In
the dynamic setting, we consider insertion and deletion
of internal nodes or leaves. More precisely, we accept
inserting a new pair of matching parentheses at any legal
position of P , as well as deleting any existing pair of
matching parentheses.

3 Fundamental concepts
In this section we give the basic ideas of our ordinal tree
representation. In the next sections we build on these
to define our static and dynamic representations.

We represent a possibly non-balanced5 parentheses
sequence by a 0,1 vector P [0, n−1] (P [i] ∈ {0, 1}). Each
opening/closing parenthesis is encoded by ( = 1, ) = 0.

First, we remind the reader that several operations
of Table 1 either are trivial in a BP representation, or
are easily solved using enclose, findclose, findopen, rank,
and select [26]. These are:

inspect(i) = rank1(P, i) − rank1(P, i− 1)
(if accessing P [i] is problematic)

isleaf(i) = [inspect(i+ 1) = 0]
isancestor(i, j) = i ≤ j and

findclose(P, j) ≤ findclose(P, i)
depth(i) = rank1(P, i) − rank0(P, i)

parent(i) = enclose(P, i)
pre-rank(i) = rank1(P, i)

5Later we will use these constructions to represent arbitrary
chunks of a balanced sequence.

pre-select(i) = select1(P, i)
post-rank(i) = rank0(P, i)

post-select(i) = select0(P, i)
first-child(i) = i+ 1 (if i is not a leaf)
last-child(i) = findopen(P,findclose(P, i) − 1)

(if i is not a leaf)
next-sibling(i) = findclose(i) + 1

(if P [findclose(i) + 1] = 0,
then i is the last sibling)

prev-sibling(i) = findopen(i− 1) (if P [i− 1] = 1
then i is the first sibling)

subtree-size(i) = (findclose(i)− i+ 1)/2

Hence the above operations will not be considered
further in the paper. Let us now focus on a small set
of primitives needed to implement most of the other
operations. For any function g(·) on {0, 1}, we define
the following.

Definition 1. For a 0,1 vector P [0, n − 1] and a
function g(·) on {0, 1},

sum(P, g, i, j) def=
j∑
k=i

g(P [k])

fwd-search(P, g, i, d) def= min
j≥i

{j | sum(P, g, i, j) = d}

bwd-search(P, g, i, d) def= max
j≤i

{j | sum(P, g, j, i) = d}

rmq(P, g, i, j) def= min
i≤k≤j

{sum(P, g, i, k)}

rmqi(P, g, i, j) def= argmin
i≤k≤j

{sum(P, g, i, k)}

RMQ(P, g, i, j) def= max
i≤k≤j

{sum(P, g, i, k)}

RMQi(P, g, i, j) def= argmax
i≤k≤j

{sum(P, g, i, k)}

The following function is particularly important.

Definition 2. Let π be the function such that π(1) =
1, π(0) = −1. Given P [0, n − 1], we define the excess
array E[0, n − 1] of P as an integer array such that
E[i] = sum(P, π, 0, i).

Note that E[i] stores the difference between the
number of opening and closing parentheses in P [0, i].
When P [i] is an opening parenthesis, E[i] = depth(i) is
the depth of the corresponding node, and is the depth
minus 1 for closing parentheses. We will use E as
a conceptual device in our discussions, it will not be
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stored. Note that, given the form of π, it holds that
|E[i+ 1] −E[i]| = 1 for all i.

The above operations are sufficient to implement
the basic navigation on parentheses, as the next lemma
shows. Note that the equation for findclose is well
known, and the one for level-ancestor has appeared as
well [29], but we give proofs for completeness.

Lemma 3.1. Let P be a BP sequence encoded by {0, 1}.
Then findclose, findopen, enclose, and level-ancestor
can be expressed as follows.

findclose(i) = fwd-search(P, π, i, 0)
findopen(i) = bwd-search(P, π, i, 0)
enclose(i) = bwd-search(P, π, i, 2)

level-ancestor(i, d) = bwd-search(P, π, i, d+ 1)

Proof. For findclose, let j > i be the position of the
closing parenthesis matching the opening parenthesis at
P [i]. Then j is the smallest index > i such that E[j] =
E[i]−1 = E[i−1] (because of the node depths). Since by
definition E[k] = E[i−1]+ sum(P, π, i, k) for any k > i,
j is the smallest index > i such that sum(P, π, i, j) = 0.
This is, by definition, fwd-search(P, π, i, 0).

For findopen, let j < i be the position of the opening
parenthesis matching the closing parenthesis at P [i].
Then j is the largest index < i such that E[j−1] = E[i]
(again, because of the node depths)6. Since by definition
E[k − 1] = E[i] − sum(P, π, k, i) for any k < i, j is the
largest index < i such that sum(P, π, j, i) = 0. This is
bwd-search(P, π, i, 0).

For enclose, let j < i be the position of the open-
ing parenthesis that most tightly encloses the opening
parenthesis at P [i]. Then j is the largest index < i such
that E[j− 1] = E[i]− 2 (note that now P [i] is an open-
ing parenthesis). Now we reason as for findopen to get
sum(P, π, j, i) = 2.

Finally, the proof for level-ancestor is similar to
that for enclose. Now j is the largest index < i such
that E[j − 1] = E[i] − d − 1, which is equivalent to
sum(P, π, j, i) = d+ 1. ��

We also have the following, easy or well-known,
equalities:

lca(i, j) =

⎧⎨
⎩

i (if isancestor(i, j))
j (if isancestor(j, i))
parent(rmqi(P, π, i, j) + 1)

deepest-node(i) = RMQi(P, π, i,findclose(i))
level-next(i) = fwd-search(P, π, findclose(i), 0)

6Note E[j] − 1 = E[i] could hold at incorrect places, where
P [j] is a closing parenthesis.

level-prev(i) = findopen(bwd-search(P, π, i, 0))
level-lmost(d) = fwd-search(P, π, 0, d)
level-rmost(d) = findopen(bwd-search(P, π, n−1,−d))

To compute degree, child , and child-rank , the fol-
lowing lemma is important.

Lemma 3.2. The number of children of node i is equal
to the number of occurrences of the minimum value in
E[i+ 1,findclose(i) − 1].

Proof. Let d = E[i] = depth(i) and j = findclose(i).
Then E[j] = d−1 and all excess values in E[i+1, j−1]
are ≥ d. Therefore, as |E[r + 1] − E[r]| = 1 for all r,
the minimum value in E[i + 1, j − 1] is d. Moreover,
for the range [ik, jk] corresponding to the k-th child of
i, E[ik] = d + 1, E[jk] = d, and all the values between
them are > d. Therefore the number of occurrences of
d, which is the minimum value in E[i+1, j−1], is equal
to the number of children of i. ��

We also show that the above functions unify the
algorithms for computing rank/select on 0,1 vectors and
those for balanced parenthesis sequences. Namely, let
φ, ψ be functions such that φ(0) = 0, φ(1) = 1, ψ(0) =
1, ψ(1) = 0. Then the following equalities hold.

Lemma 3.3. For a 0,1 vector P ,

rank1(P, i) = sum(P, φ, 0, i)
select1(P, i) = fwd-search(P, φ, 0, i)
rank0(P, i) = sum(P, ψ, 0, i)

select0(P, i) = fwd-search(P, ψ, 0, i)

Therefore, in principle we must focus only on the
following set of primitives: fwd-search, bwd-search, sum,
rmqi , RMQi , degree, child , and child-rank . The few
remaining operations will be handled later.

Our data structure for queries on a 0,1 vector P is
basically a search tree in which each leaf corresponds to
a range of P , and each node stores the last, maximum,
and minimum values, within its subtree, of prefix sums
of P .

Definition 3. A range min-max tree for a vector
P [0, n − 1] and a function g(·) is defined as follows.
Let [�1..r1], [�2..r2], . . . , [�q..rq] be a partition of [0..n−1]
where �1 = 0, ri + 1 = �i+1, rq = n − 1. Then the i-th
leftmost leaf of the tree stores the sub-vector P [�i, ri],
as well as e[i] = sum(P, g, 0, ri), m[i] = e[i − 1] +
rmq(P, g, �i, ri) and M [i] = e[i− 1] + RMQ(P, g, �i, ri).
Each internal node u stores in e[u]/m[u]/M [u] the
last/minimum/maximum of the e/m/M values stored
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Figure 2: An example of the range min-max tree using
function π, and showing the m/M values.

in its child nodes. Thus, the root node stores e =
sum(P, g, 0, n − 1), m = rmq(P, g, 0, n − 1) and M =
RMQ(P, g, 0, n− 1).

Example 1. An example of range min-max tree is
shown in Figure 2. Here we use g = π, and thus the
nodes store the minimum/maximum values of array E
in the corresponding interval.

4 A simple data structure for moderate-size
trees

Building on the previous ideas, we give a simple data
structure to compute fwd-search, bwd-search, and sum
in constant time for arrays of moderate size. Then we
will consider further operations.

Let g(·) be a function on {0, 1} taking values in
{1, 0,−1}. We call such a function ±1 function. Note
that there exist only six such functions where g(0) �=
g(1), which are indeed φ,−φ, ψ,−ψ, π,−π.

Let w be the bit length of the machine word in the
RAM model, and c ≥ 1 any constant. We have a (not
necessarily balanced) parentheses vector P [0, n− 1], of
moderate size n ≤ N = wc. Assume we wish to solve
the operations for an arbitrary ±1 function g(·), and let
G[i] denote sum(P, g, 0, i), analogously to E[i] for g = π.

Our data structure is a range min-max tree TmM for
vector P and function g(·). Let s = 1

2w. We imaginarily
divide vector P into 	n/s
 blocks of length s. These
form the partition alluded in Definition 3: �i = s·(i−1).
Thus the values m[i] and M [i] correspond to minima
and maxima of G within each block, and e[i] = G[ri].

Furthermore, the tree will be k-ary and complete,
for k = Θ(w/ logw). Because it is complete, the tree can
be represented just by three integer arrays e′[0,O(n/s)],
m′[0,O(n/s)], and M ′[0,O(n/s)], like a heap.

Because −wc ≤ e′[i],m′[i],M ′[i] ≤ wc for any i,
arrays e′, m′ and M ′ occupy at most (i.e., for k = 2)

2ns · 	log(2wc + 1)
 = O(nc logw/w) bits each. The
depth of the tree is 	logk(n/s)
 = O(c).

The following fact is well known; we reprove it for
completeness.

Lemma 4.1. Any range [i..j] ⊆ [0..n − 1] in TmM can
be represented by a disjoint union of O(ck) subranges
where the leftmost and rightmost ones may be subranges
of leaves of TmM , and the others correspond to whole
tree nodes.

Proof. Let a be the smallest value such that i ≤
ra and b be the largest such that j ≥ �b. Then
the range [i..j] is covered by the partition [i..j] =
[i..ra][�a+1..ra+1] . . . [�b..j] (we can discard the special
case a = b, as in this case we have already one leaf
covering [i..j]). Then [i..ra] and [�b..j] are the leftmost
and rightmost leaf subranges alluded in the lemma; all
the others are whole tree nodes.

It remains to show that we can reexpress this
partition using O(ck) tree nodes. If all the k children
of a node are in the range, we replace the k children
by the parent node, and continue recursively level by
level. Note that if two parent nodes are created in a
given level, then all the other intermediate nodes of
the same level must be created as well, because the
original/created nodes form a range at any level. At
the end, there cannot be more than 2k−2 nodes at any
level, because otherwise k of them would share a single
parent and would have been replaced. As there are c
levels, the obtained set of nodes covering [i..j] is of size
O(ck). ��

Example 2. In Figure 2 (where s = k = 3), the range
[3..18] is covered by [3..5], [6..8], [9..17], [18..18]. They
correspond to nodes d, e, f , and a part of leaf k,
respectively.

Computing fwd-search(P, g, i, d) is done as follows
(bwd-search is symmetric). First we check if the block
of i, [�k, rk] for k = �i/s, contains fwd-search(P, g, i, d)
with table lookup using vector P , by precomputing a
simple universal table of 2s·2s2 ·log s = O(

√
2ww2 logw)

bits. If so, we are done. Else, we compute the global
target value we seek, d′ = G[i − 1] + d = e[k] −
sum(P, g, i, rk) + d (again, the sum inside the block is
done in constant time using table lookup). Now we
divide the range [rk + 1, n− 1] into subranges I1, I2, . . .
represented by range min-max tree nodes u1, u2, . . . as
in Lemma 4.1. Then, for each Ij , we check if the target
value d′ is between m[uj] and M [uj], the minimum and
maximum values of subrange Ij . Let Ik be the first j
such thatm[uj ] ≤ d′ ≤M [uj], then fwd-search(P, g, i, d)
lies within Ik. If Ik corresponds to an internal tree node,
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we iteratively find the leftmost child of the node whose
range contains d′, until we reach a leaf. Finally, we find
the target in the block corresponding to the leaf by table
lookup, using P again.

Example 3. In Figure 2, where G = E and g = π,
computing findclose(3) = fwd-search(P, π, 3, 0) = 12 can
be done as follows. Note this is equivalent to finding the
first j > 3 such that E[i] = E[3 − 1] + 0 = 1. First
examine the node �3/s = 1 (labeled d in the figure).
We see that the target 1 does not exist within d after
position 3. Next we examine node e. Since m[e] = 3 and
M [e] = 4, e does not contain the answer either. Next we
examine the node f . Because m[f ] = 1 and M [f ] = 3,
the answer must exist in its subtree. Therefore we scan
the children of f from left to right, and find the leftmost
one with m[·] ≤ 1, which is node h. Because node h is
already a leaf, we scan the segment corresponding to it,
and find the answer 12.

The sequence of subranges arising in this search
corresponds to a leaf-to-leaf path in the range min-
max tree, and it contains O(ck) ranges according to
Lemma 4.1. We show now how to carry out this search
in time O(c2) rather than O(ck).

According to Lemma 4.1, the O(ck) nodes can be
partitioned into O(c) sequences of sibling nodes. We
will manage to carry out the search within each such
sequence in O(c) time. Assume we have to find the
first j ≥ i such that m[uj] ≤ d′ ≤ M [uj], where
u1, u2, . . . , uk are sibling nodes in TmM . We first check if
m[ui] ≤ d′ ≤ M [ui]. If so, the answer is ui. Otherwise,
if d′ < m[ui], the answer is the first j > i such that
m[uj] ≤ d′, and if d′ > M [ui], the answer is the first
j > i such that M [uj] ≥ d′.

Lemma 4.2. Let u1, u2, . . . a sequence of TmM nodes
containing consecutive intervals of P . If g(·) is a ±1
function and d < m[u1], then the first j such that
d ∈ [m[uj],M [uj]] is the first j > 1 such that d ≥ m[uj].
Similarly, if d > M [u1], then it is the first j > 1 such
that d ≤M [uj ].

Proof. Since g(·) is a ±1 function and the intervals
are consecutive, M [uj] ≥ m[uj−1] − 1 and m[uj] ≤
M [uj−1] + 1. Therefore, if d ≥ m[uj] and d < m[uj−1],
then d < M [uj] + 1, thus d ∈ [m[uj ],M [uj]]; and of
course d �∈ [m[uk],M [uk]] for any k < j as j is the first
index such that d ≥ m[uj ]. The other case is symmetric.

��

Thus the problem is reduced to finding the first j >
i such that m[j] ≤ d′, among (at most) k sibling nodes
(the case M [j] ≥ d′ is symmetric). We build a universal

table with all the possible sequences of k/c m[·] values
and all possible −wc ≤ d′ ≤ wc values, and for each such
sequence and d′ we store the first j in the sequence such
that m[j] ≤ d′ (or we store a mark telling that there
is no such node in the sequence). Thus the table has
(2wc+1)(k/c)+1 entries, and log(1+k/c) bits per entry.
By choosing the constant of k = Θ(w/ logw) so that
k ≤ cw

2 log(2w+1) −c, the total space is O(
√

2w logw) (and
the arguments for the table fit in a machine word). With
the table, each search for the first node in a sequence of
siblings can be done by chunks of k/c nodes, which takes
O(k/(k/c)) = O(c) rather than O(k) time, and hence
the overall time is O(c2) rather than O(ck). Note that
k/c values to input to the table are stored in contiguous
memory, as we store them′[·] values in heap order. Thus
we can access any k/c consecutive children values in
constant time. We use an analogous table for M [·].

Finally, the process to solve sum(P, g, i, j) in O(c2)
time is simple. We descend in the tree up to the
leaf [�k, rk] containing j. In the process we eas-
ily obtain sum(P, g, 0, �k − 1), and compute the rest,
sum(P, g, �k, j), in constant time using a universal table
we have already introduced. We repeat the process for
sum(P, g, 0, i− 1) and then subtract both results.

We have proved the following lemma.

Lemma 4.3. In the RAM model with w-bit word size,
for any constant c ≥ 1 and a 0,1 vector P of length
n < wc, and a ±1 function g(·), fwd-search(P, g, i, j),
bwd-search(P, g, i, j), and sum(P, g, i, j) can be com-
puted in O(c2) time using the range min-max tree
and universal lookup tables that require O(

√
2ww2 logw)

bits.

4.1 Supporting range minimum queries
Next we consider how to compute rmqi(P, g, i, j) and

RMQi(P, g, i, j).

Lemma 4.4. In the RAM model with w-bit word size,
for any constant c ≥ 1 and a 0,1 vector P of length
n < wc, and a ±1 function g(·), rmqi(P, g, i, j) and
RMQi(P, g, i, j) can be computed in O(c2) time using
the range min-max tree and universal lookup tables that
require O(

√
2ww2 logw) bits.

Proof. Because the algorithm for RMQi is analogous
to that for rmqi, we consider only the latter. From
Lemma 4.1, the range [i, j] is expressed by a disjoint par-
tition of O(ck) subranges, each corresponding to some
node of the range min-max tree. Let μ1, μ2, . . . be the
minimum values of the subranges. Then the minimum
value in [i, j] is the minimum of them. The minimum
values in each subrange are stored in array m ′, ex-
cept for at most two subranges corresponding to leaves
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of the range min-max tree. The minimum values of
such leaf subranges are found by table lookups using P ,
by precomputing a universal table of O(

√
2ww2 logw)

bits. The minimum value of a subsequence μ�, . . . , μr
which shares the same parent in the range min-max
tree can be also found by table lookups. There are at
most k such values, and for consecutive k/c values we
use a universal table to find their minimum, and re-
peat this c times, as before. The size of the table is
O(

√
2w(k/c) log(k/c)) = O(

√
2ww) bits (the k/c factor

is to account for queries that span less than k/c blocks,
so we can compute the minimum up to any value in the
sequence).

Let μ be the minimum value we find in
μ1, μ2, . . . , μm. If there is a tie, we choose the leftmost
one. If μ corresponds to an internal node of the range
min-max tree, we traverse the tree from the node to a
leaf having the leftmost minimum value. At each step,
we find the leftmost child of the current node having
the minimum, in O(c) time using our precomputed ta-
ble. We repeat the process from the resulting child, until
reaching a leaf. Finally, we find the index of the mini-
mum value in the leaf, in constant time by a lookup on
our other universal table. The overall time complexity
is O(c2). ��

4.2 Other operations
The previous development on fwd-search, bwd-search,

rmqi, and RMQi, has been general, for any g(·). Applied
to g = π, they solve a large number of operations, as
shown in Section 3. For the remaining ones we focus
directly on the case g = π.

It is obvious how to compute degree(i), child(i, q)
and child-rank(i) in time proportional to the degree of
the node. To compute them in constant time, we use
Lemma 3.2, that is, the number of children of node i is
equal to the number of minimum values in the excess
array for i. We add another array n ′[·] to the data
structure. In the range min-max tree, each node stores
the minimum value of its subrange. In addition to this,
we also store in n′[·] the number of the minimum values
of the subrange of each node in the tree.

Now we can compute degree(i) in constant time.
Let d = depth(i) and j = findclose(i). We partition the
range E[i+1, j−1] into O(ck) subranges, each of which
corresponds to a node of the range min-max tree. Then
for each subrange whose minimum value is d, we sum up
the number of occurrences of the minimum value (n′[·]).
The number of occurrences of the minimum value in leaf
subranges can be computed by table lookup on P , with
a universal table using O(

√
2ww2 logw) bits. The time

complexity is O(c2) if we use universal tables that let us

process chunks of k/c children at once, that is, the one
used for rmqi plus another telling the number of times
the minimum appears in the sequence. This table also
requires O(

√
2ww) bits.

Operation child-rank(i) can be computed similarly,
by counting the number of minima in E[parent(i), i−1].
Operation child(i, q) follows the same idea of degree(i),
except that, in the node where the sum of n′[·] exceeds
q, we must descend until the range min-max leaf that
contains the opening parenthesis of the q-th child. This
search is also guided by the n′[·] values of each node, and
is done also in O(c2) time by using another universal
table of O(

√
2w logw) bits (that tells us where the n′[·]

exceed some threshold in a sequence of k/c values).
For operations leaf-rank, leaf-select, lmost-leaf and

rmost-leaf, we define a bit-vector P1[0, n − 1] such
that P1[i] = 1 ⇐⇒ P [i] = 1 ∧ P [i + 1] = 0.
Then leaf-rank(i) = rank1(P1, i) and leaf-select(i) =
select1(P1, i) hold. The other operations are computed
by lmost-leaf(i) = select1(P1, rank1(P1, i − 1) + 1) and
rmost-leaf(i) = select1(P1, rank1(P1,findclose(i))).

We recall the definition of inorder of nodes, which
is essential for compressed suffix trees.

Definition 4. ([35]) The inorder rank of an internal
node v is defined as the number of visited internal nodes,
including v, in the left-to-right depth-first traversal,
when v is visited from a child of it and another child
of it will be visited next.

Note that an internal node with q children has q−1
inorders, so leaves and unary nodes have no inorder. We
define in-rank(i) as the smallest inorder value of internal
node i.

To compute in-rank and in-select, we use another
bit-vector P2[0, n− 1] such that P2[i] = 1 ⇐⇒ P [i] =
0∧P [i+1] = 1. The following lemma gives an algorithm
to compute the inorder of an internal node.

Lemma 4.5. ([35]) Let i be an internal node, and let
j = in-rank(i), so i = in-select(j). Then

in-rank(i) = rank1(P2,findclose(P, i+ 1))
in-select(j) = enclose(P, select1(P2, j) + 1)

Note that in-select(j) will return the same node i
for any its degree(i) − 1 inorder values.

Note that we need not store P1 and P2 explicitly;
they can be computed from P when needed. We only
need the extra data structures for constant-time rank
and select , which can be reduced to the corresponding
sum and fwd-search operations on the virtual P1 and
P2 vectors.
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4.3 Reducing extra space
Apart from vector P [0, n − 1], we need to store vec-

tors e′, m′, M ′, and n′. In addition, to imple-
ment rank and select using sum and fwd-search, we
would need to store vectors e′φ, e′ψ, m′

φ, m′
ψ, M ′

φ,
and M ′

ψ which maintain the corresponding values for
functions φ and ψ. However, note that sum(P, φ, 0, i)
and sum(P, ψ, 0, i) are nondecreasing, thus the mini-
mum/maximum within the block is just the value of
the sum at the beginning/end of the block. Moreover,
as sum(P, π, 0, i) = sum(P, φ, 0, i) − sum(P, ψ, 0, i) and
sum(P, φ, 0, i) + sum(P, ψ, 0, i) = i, it turns out that
both eφ[i] = (ri+ e[i])/2 and eψ[i] = (ri− e[i])/2 are re-
dundant; analogous formulas hold for M and m and for
internal nodes. Moreover, any sequence of k/c consecu-
tive such values can be obtained, via table lookup, from
the sequence of k/c consecutive values of e[·], because
the ri values increase regularly at any node. Hence we
do not store any extra information to support φ and ψ.

If we store vectors e′, m′, M ′, and n′ naively, we
require O(nc log(w)/w) bits of extra space on top of the
n bits for P .

The space can be largely reduced by using a recent
technique by Pǎtraşcu [30]. They define an aB-tree over
an array A[0, n− 1], for n a power of B, as a complete
tree of arity B, storing B consecutive elements of A in
each leaf. Additionally, a value ϕ ∈ Φ is stored at each
node. This must be a function of the corresponding
elements of A for the leaves, and a function of the
ϕ values of the children, and of the subtree size, for
internal nodes. The construction is able to decode the
B values of ϕ for the children of any node in constant
time, and to decode the B values of A for the leaves in
constant time, if they can be packed in a machine word.

In our case, A = P is the vector, B =
k = s is our arity, and our trees will be of size
N = Bc, which is slightly smaller than the wc

we have been assuming. Our values are tuples
ϕ ∈ 〈−Bc,−Bc, 0,−Bc〉 . . . 〈Bc, Bc, Bc, Bc〉 encoding
the m, M , n, and e values at the nodes, respectively.
We give next their result, adapted to our case.

Lemma 4.6. (adapted from Thm. 8 in [30])
Let Φ = (2B + 1)4c, and B be such that
(B + 1) log(2B + 1) ≤ w

8c (thus B = Θ( w
c logw )).

An aB-tree of size N = Bc with values in Φ can be
stored using N + 2 bits, plus universal lookup tables of
O(

√
2w) bits. It can obtain the m, M , n or e values of

the children of any node, and descend to any of those
children, in constant time. The structure can be built
in O(N + w3/2) time, plus O(

√
2wpoly(w)) for the

universal tables.

The “+w3/2” construction time comes from a fusion

tree [15] that is used internally on O(w) values. It could
be reduced to wε time for any constant ε > 0 and
navigation time O(1/ε), but we prefer to set c > 3/2
to make it irrelevant.

These parameters still allow us to represent our
range min-max trees while yielding the complexities
we had found, as k = Θ(w/ logw) and N ≤ wc.
Our accesses to the range min-max tree are either (i)
partitioning intervals [i, j] into O(ck) subranges, which
are easily identified by navigating from the root in O(c)
time (as the k children are obtained together in constant
time); or (ii) navigating from the root while looking
for some leaf based on the intermediate m, M , n, or e
values.

Thus we retain all of our time complexities. The
space, instead, is reduced to N + 2 + O(

√
2w), where

the latter part comes from universal tables (ours also
shrink due to the reduced k and s). Note that our vector
P must be exactly of length N ; padding is necessary
otherwise. Both the padding and the universal tables
will lose relevance for larger trees, as seen in the next
section.

The next theorem summarizes our results in this
section. We are able of handling trees of Θ(( w

c logw )c)
nodes, for any c > 3/2.

Theorem 4.1. On a w-bit word RAM, for any con-
stant c > 3/2, we can represent a sequence P of N = Bc

parentheses, with sufficiently small B = Θ( w
c logw ), com-

puting all operations of Table 1 in O(c2) time, with a
data structure depending on P that uses N + 2 bits,
and universal lookup tables (i.e., not depending on
P ) that use O(

√
2w) bits. The preprocessing time is

O(N +
√

2wpoly(w)) (the latter being needed only once
for universal tables) and the working space is O(N) bits.

In case we need to solve the operations that build
on P1 and P2, we need to represent their corresponding
φ functions (as ψ is redundant). This can still be
done with Lemma 4.6 using Φ = (2B + 1)6c and (B +
1) log(2B + 1) ≤ w

12c . Theorem 4.1 applies verbatim.

5 A data structure for large trees

In practice, one can use the solution of the previous
section for trees of any size, achieving O( k logn

w logk n) =
O( logn

logw−log logn ) = O(logn) time (using k = w/ logn)
for all operations with an extremely simple and elegant
data structure (especially if we choose to store arrays
m′, etc. in simple form). In this section we show how
to achieve constant time on trees of arbitrary size.

For simplicity, let us assume in this section that we
handle trees of size wc in Section 4. We comment at the
end the difference with the actual size Bc handled.
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For large trees with n > wc nodes, we divide the
parentheses sequence into blocks of length wc. Each
block (containing a possibly non-balanced sequence of
parentheses) is handled with the range min-max tree of
Section 4.

Let m1,m2, . . . ,mτ ; M1,M2, . . . ,Mτ ; and
e1, e2, . . . , eτ ; be the minima, maxima, and excess
of the τ = 	2n/wc
 blocks, respectively. These values
are stored at the root nodes of each TmM tree and can
be obtained in constant time.

5.1 Forward and backward searches on π
We consider extending fwd-search(P, π, i, d) and

bwd-search(P, π, i, d) to trees of arbitrary size. We focus
on fwd-search, as bwd-search is symmetric.

We first try to solve fwd-search(P, π, i, d) within the
block j = �i/wc of i. If the answer is within block j, we
are done. Otherwise, we must look for the first excess
d′ = ej−1 + sum(P, π, 0, i − 1 − wc · (j − 1)) + d in the
following blocks (where the sum is local to block j).
Then the answer lies in the first block r > j such that
mr ≤ d′ ≤ Mr. Thus, we can apply again Lemma 4.2,
starting at [mj+1,Mj+1]: If d′ �∈ [mj+1,Mj+1], we must
either find the first r > j + 1 such that mr ≤ j, or such
that Mr ≥ j. Once we find such block, we complete
the operation with a local fwd-search(P, π, 0, d′ − er−1)
query inside it.

The problem is how to achieve constant-time search,
for any j, in a sequence of length τ . Let us focus on left-
to-right minima, as the others are similar.

Definition 5. Let m1,m2, . . . ,mτ be a sequence of in-
tegers. We define for each 1 ≤ j ≤ τ the left-to-
right minima starting at j as lrm(j) = 〈j0, j1, j2, . . .〉,
where j0 = j, jr < jr+1, mjr+1 < mjr , and
mjr+1 . . .mjr+1−1 ≥ mjr .

The following lemmas are immediate.

Lemma 5.1. The first element ≤ x after position j in
a sequence of integers m1,m2, . . . ,mτ is mjr for some
r > 0, where jr ∈ lrm(j).

Lemma 5.2. Let lrm(j)[pj ] = lrm(j′)[pj′ ]. Then
lrm(j)[pj + i] = lrm(j′)[pj′ + i] for all i > 0.

That is, once the lrm sequences starting at two
positions coincide in a position, they coincide thereafter.
Lemma 5.2 is essential to store all the τ sequences
lrm(j) for each block j, in compact form. We form
a tree Tlrm, which is essentially a trie composed of the
reversed lrm(j) sequences. The tree has τ nodes, one
per block. Block j is a child of block j1 = lrm(j)[1]
(note lrm(j)[0] = j0 = j), that is, j is a child of the

first block j1 > j such that mj1 < mj . Thus each j-
to-root path spells out lrm(j), by Lemma 5.2. We add
a fictitious root to convert the forest into a tree. Note
this structure is called 2d-Min-Heap by Fischer [11], who
shows how to build it in linear time.

Example 4. Figure 3 illustrates the tree built from
the sequence 〈m1..m9〉 = 〈6, 4, 9, 7, 4, 4, 1, 8, 5〉. Then
lrm(1) = 〈1, 2, 7〉, lrm(2) = 〈2, 7〉, lrm(3) = 〈3, 4, 5, 7〉,
and so on.

If we now assign weight mj − mj1 to the edge
between j and its parent j1, the original problem of
finding the first jr > j such that mjr ≤ d′ reduces to
finding the first ancestor jr of node j such that the sum
of the weights between j and jr exceeds d′′ = mj − d′.
Thus we need to compute weighted level ancestors in
Tlrm. Note that the weight of an edge in Tlrm is at
most wc.

Lemma 5.3. For a tree with τ nodes where each edge
has an integer weight in [1,W ], after O(τ log1+ε τ) time
preprocessing, a weighted level-ancestor query is solved
in O(t + 1/ε) time on a Ω(log(τW ))-bit word RAM.
The size of the data structure is O(τ log τ log(τW ) +
τWtt

logt(τW )
+ (τW )3/4) bits.

Proof. We use a variant of Bender and Farach’s
〈O(τ log τ),O(1)〉 algorithm [4]. Let us ignore weights
for a while. We extract a longest root-to-leaf path of
the tree, which disconnects the tree into several sub-
trees. Then we repeat the process recursively for each
subtree, until we have a set of paths. Each such path,
say of length �, is extended upwards, adding other �
nodes towards the root (or less if the root is reached).
The extended path is called a ladder, and its is stored
as an array so that level-ancestor queries within a lad-
der are trivial. This guarantees that a node of height
h has also height h in its path, and thus at least its
first h ancestors in its ladder. Moreover the union
of all ladders has at most 2τ nodes and thus requires
O(τ log τ) bits. For each tree node v, an array of its
(at most) log τ ancestors at depths depth(v)− 2i, i ≥ 0,
is stored (hence the O(τ log τ)-number space and con-
struction time). To solve the query level-ancestor(v, d),
where d′ = depth(v) − d, the ancestor v′ at distance
d′′ = 2�log d

′� from v is computed. Since v′ has height at
least d′′, it has at least its first d′′ ancestors in its lad-
der. But from v′ we need only the ancestor at distance
d′ − d′′ < d′′, so the answer is in the ladder.

To include the weights, we must be able to find the
node v′ and the answer considering the weights, instead
of the number of nodes. We store for each ladder of
length � a sparse bitmap of length at most �W , where
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Figure 3: A tree representing the lrm(j) sequences of values m1 . . .m9.

the i-th 1 left-to-right represents the i-th node upwards
in the ladder, and the distance between two 1s, the
weight of the edge between them. All the bitmaps are
concatenated into one (so each ladder is represented
by a couple of integers indicating the extremes of its
bitmap). This long bitmap contains at most 2τ 1s,
and because weights do not exceed W , at most 2τW
0s. Using Pǎtraşcu’s sparse bitmaps [30], it can be
represented using O(τ logW + τWtt

logt(τW )
+(τW )3/4) bits

and do rank/select in O(t) time.
In addition, we store for each node the log τ accu-

mulated weights towards ancestors at distances 2i, us-
ing fusion trees [15]. These can store z keys of � bits
in O(z�) bits and, using O(z5/6(z1/6)4) = O(z1.5) pre-
processing time, answer predecessor queries in O(log� z)
time (via an �1/6-ary tree). The 1/6 can be reduced to
achieve O(z1+ε) preprocessing time and O(1/ε) query
time for any desired constant 0 < ε ≤ 1/2.

In our case this means O(τ log τ log(τW )) bits
of space, O(τ log1+ε τ) construction time, and O(1/ε)
access time. Thus we can find in constant time,
from each node v, the corresponding weighted ancestor
v′ using a predecessor query. If this corresponds to
distance 2i, then the true ancestor is at distance < 2i+1,
and thus it is within the ladder of v′, where it is found
using rank/select on the bitmap of ladders (each node
v has a pointer to its 1 in the ladder corresponding to
the path it belongs to). ��

To apply this lemma for our problem of computing
fwd-search outside blocks, we have W = wc and τ = n

wc .
Then the size of the data structure becomes O(n log2 n

wc +
n tt

logt n
+n3/4). By choosing ε = min(1/2, 1/c2), the query

time is O(c2 + t) and the preprocessing time is O(n) for
c ≥ 1.47.

5.2 Other operations
For computing rmqi and RMQi, we use a simple data

structure [3] on the mr and Mr values, later improved

to require only O(τ) bits on top of the sequence of
values [35, 12]. The extra space is thus O(n/wc) bits,
and it solves any query up to the block granularity.
For solving a general query [i, j] we should compare the
minimum/maximum obtained with the result of running
queries rmqi and RMQi within the blocks at the two
extremes of the boundary [i, j].

For the remaining operations, we define pio-
neers [20]. We divide the parentheses sequence P [0, 2n−
1] into blocks of length wc. Then we extract pairs (i, j)
of matching parentheses (j = findclose(i)) such that
i and j belong to different blocks. If we consider a
graph whose vertex set consists of the blocks and whose
edge set consists of the pairs of parentheses, the graph
is outer-planar. To remove multiple edges, we choose
the tightest pair of parentheses for each pair of vertices.
These parentheses are called pioneers. Because pioneers
correspond to the edges (without multiplicity) of an
outer-planar graph, their number is O(n/wc). Further-
more, they form another balanced parentheses sequence
P ′ representing an ordinal tree with O(n/wc) nodes.

To encode P ′ we use a compressed bit vector
C[0, 2n−1] such that C[i] = 1 indicates that parenthesis
P [i] is a pioneer. Using again Pǎtraşcu’s result [30],
vector C can be represented in at most n

wc log(wc) +
O( n tt

logt n +n3/4) bits, so that operations rank and select
can be computed in O(t) time.

For computing child and child-rank, it is enough to
consider only nodes which completely include a block
(otherwise the query is solved in constant time by
considering just two adjacent blocks). Furthermore,
among them, it is enough to consider pioneers because
if pair (i, j), with i and j in different blocks, is not a
pioneer, then it must contain a pioneer matching pair
(i′, j′), with i′ in the same block of i and j ′ in the same
block of j. Thus i′ is a descendant of i and all the
children of i start within [i+1, i′] or within [j′+1, j−1],
thus all are contained in two blocks. Hence computing
child(i, q) and child-rank for a child of i can be done in
constant time by considering just these two blocks.
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Thus we only need to care about pioneer nodes
containing at least one block; let us call marked these
nodes, of which there are only O(n/wc). We focus on
the children of marked nodes placed at the blocks fully
contained in them, as the others lie in at most the two
extreme blocks and can be dealt with in constant time.

For each marked node v we store a list formed
by the blocks fully contained in v, and that contain
(starting positions of) children of v. Since each block
contains children of at most one marked node fully
containing the block, each block belongs to at most one
list, and it stores its position in the list it belongs to.
All this data occupies O(n logn

wc ) bits. In addition, the
contained blocks store the number of children of v that
start within them. The sequence of number of children
formed for each marked node v is stored as gaps between
consecutive 1s in a bitmap Cv. All these lists together
contain at most n 0s and O(n/wc) 1s, and thus can
be stored within the same space bounds of the other
bitmaps in this section.

Using this bitmap child and child-rank can easily be
solved using rank and select . For child(v, q) on a marked
node v we start using p = rank1(Cv, select0(Cv, q)).
This tells the position in the list of blocks of v where
the q-th child of v lies. Then the answer corre-
sponds to the q′-th minimum within that block, for
q′ = q − rank0(select1(Cv, p)). For child-rank(u),
where v = parent(u) is marked, we start with z =
rank0(Cv, select1(Cv, pu)), where pu is the position of
the block of u within the list of v. Then we add to z
the number of minima in the block of u until u− 1.

For degree, similar arguments show that we only
need to consider marked nodes, for which we simply
store all the answers within O(n logn

wc ) bits of space.
Finally, the remaining operations require just rank

and select on P , or the virtual bit vectors P1 and P2. We
can make up a sequence with the accumulated number
of 1s in each of the τ blocks. The numbers add up to
O(n) and thus can be represented as gaps of 0s between
consecutive 1s in a bitmap, which can be stored within
the previous space bounds. Performing rank and select
on this bitmap, in time O(t), lets us know in which block
must we finish the query, using its range min-max tree.

5.3 The final result
Recalling Theorem 4.1, we have O(n/Bc) blocks, for
B = O( w

c logw ). The sum of the space for all the blocks is
2n+O(n/Bc), plus shared universal tables that add up
to O(

√
2w) bits. Padding the last block to size exactly

Bc adds up another negligible extra space.
On the other hand, in this section we have extended

the results to larger trees of n nodes, adding time
O(t) to the operations. By properly adjusting w to

B in the results, the overall extra space added is
O(n(c logB+log2 n)

Bc + n tt

logt n
+
√

2B+n3/4) bits. Assuming
pessimistically w = logn, setting t = c2, and replacing
B, we get that the time for any operation is O(c2), and
the total space simplifies to 2n+ O(n logc logn

logc−2 n
).

Construction time is O(n). We now analyze the
working space for constructing the data structure. We
first convert the input balanced parentheses sequence
P into a set of aB-trees, each of which represents a
part of the input of length Bc. The working space is
O(Bc) from Theorem 4.1. Next we compute pioneers:
We scan P from left to right, and if P [i] is an opening
parenthesis, we push i in a stack, and if it is closing,
we pop an entry from the stack. Because P is nested,
the values in the stack are monotone. Therefore we can
store a new value as the difference from the previous
one using unary code. Thus the values in the stack
can be stored in O(n) bits. Encoding and decoding
the stack values takes O(n) time in total. It is easy to
compute pioneers from the stack. Once the pioneers are
identified, Pǎtraşcu’s compressed representation [30] of
bit vector C is built in O(n) space too, as it also cuts the
bitmap into polylog-sized aB-trees and then computes
some directories over just O(n/polylog(n)) values.

The remaining data structures, such as the lrm
sequences and tree, the lists of the marked nodes, and
the Cv bitmaps, are all built on O(n/Bc) elements, thus
they need at most O(n) bits of space for construction.

By rewriting c−2−δ as c, for any constant δ > 0, we
get our main result on static ordinal trees, Theorem 1.1.

6 A simple data structure for dynamic trees

In this section we give a simple data structure for
dynamic ordinal trees. In addition to the previous
query operations, we add now insertion and deletion
of internal nodes and leaves. We then consider a more
sophisticated representation giving sublogarithmic time
for almost all of the operations.

6.1 Memory management
We store a 0,1 vector P [0, 2n − 1] using a dynamic

min-max tree. Each leaf of the min-max tree stores a
segment of P in verbatim form. The length � of each
segment is restricted to L ≤ � ≤ 2L for some parameter
L > 0.

If insertions or deletions occur, the length of a
segment will change. We use a standard technique for
dynamic maintenance of memory cells [24]. We regard
the memory as an array of cells of length 2L each, hence
allocation is easily handled in constant time. We use
L + 1 linked lists sL, . . . , s2L where si stores all the
segments of length i. All the segments with equal length
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i are packed consecutively, without wasting any extra
space, in the cells of linked list si. Therefore a cell (of
length 2L) stores (parts of) at most three segments,
and a segment spans at most two cells. Tree leaves
store pointers to the cell and offset where its segment is
stored. If the length of a segment changes from i to j,
it is moved from si to sj . The space generated by the
removal is filled with the head segment in si, and the
removed segment is stored at the head of sj .

With this scheme, scanning any segment takes
O(L/ logn) time, by processing it by chunks of Θ(logn)
bits. This is also the time to compute operations
fwd-search, bwd-search, rmqi, etc. on the segment, using
proper universal tables. Migrating a node to another list
is also done in O(L/ logn) time.

If a migration of a segment occurs, pointers to the
segment from a leaf of the tree must change. For this
sake we store back-pointers from each segment to its
leaf. Each cell stores also a pointer to the next cell of
its list. Finally, an array of pointers for the heads of
sL, . . . , s2L is necessary. Overall, the space for storing a
0,1 vector of length 2n is 2n+ O( n log n

L ) bits.
The rest of the dynamic tree will use sublinear

space, and thus we allocate fixed-size memory cells for
the internal nodes, as they will waste at most a constant
fraction of the allocated space.

6.2 A dynamic tree
We give a simple dynamic data structure representing

an ordinal tree with n nodes using 2n + O(n/ logn)
bits, and supporting all query and update operations
in O(logn) worst-case time.

We divide the 0,1 vector P [0, 2n−1] into segments of
length from L to 2L, for L = log2 n. We use a balanced
binary tree for representing the range min-max tree.
If a node of the tree corresponds to a vector P [i, j],
the node stores i and j, as well as e = sum(P, π, i, j),
m = rmq(P, π, i, j), M = RMQ(P, π, i, j), and n, the
number of minimum values in P [i, j] regarding π. (Data
on φ for the virtual vectors P1 and P2 is handled
analogously.)

It is clear that fwd-search, bwd-search, rmqi, RMQi,
rank, select, degree, child and child-rank can be com-
puted in O(logn) time, by using the same algorithms
developed for small trees in Section 4. These opera-
tions cover all the functionality of Table 1. Note the
values we store are local to the subtree (so that they
are easy to update), but global values are easily de-
rived in a top-down traversal. For example, to solve
fwd-search(P, π, i, d) starting at the min-max tree root
v with children vl and vr, we first compute the desired
global excess d′ = E[i− 1] + d, where E[i− 1] is found
in a top-down traversal towards position i − 1, adding

up e(vl) each time we descend to vr. Once we obtain
d′, we start again at the root and see if j(vl) ≥ i, in
which case try first on vl. If the answer is not there or
j(vl) < i, we try on vr, now seeking excess d′ − e(vl).

Because each node uses O(logn) bits, and the
number of nodes is O(n/L), the total space is 2n +
O(n/ logn) bits. This includes the extra O(n logn

L )
term for the leaf data. Note that we need to maintain
several universal tables that handle chunks of 1

2 logn
bits. These require just O(

√
n · polylog(n)) extra bits.

If insertion/deletion occurs, we update a segment,
and the stored values in the leaf for the segment. If
the length of the segment exceeds 2L, we split it into
two and add a new node. If the length becomes shorter
than L, we find the adjacent segment to the right. If
its length is L, we concatenate them; otherwise move
the leftmost bit of the right segment to the left one. In
this manner we can keep the invariant that all segments
have length L to 2L. Then we update all the values
in the ancestors of the modified leaves. If a balancing
operation occurs, we also update the values in nodes.
All these updates are easily carried out in constant time
per involved node, as the values to update are minima,
maxima, and sum over the two children values. Thus
the update time is also O(logn).

When 	logn
 changes, we must update the allowed
values for L, recompute universal tables, change the
width of the stored values, etc. Mäkinen and Navarro
[23] have shown how to do this for a very similar case
(dynamic rank/select on a bitmap). Their solution of
splitting the bitmap into 5 parts and moving border bits
across parts to deamortize the work applies verbatim to
our case, thus we can handle changes in 	logn
 without
altering the space nor the time complexity (except for
O(w) extra bits in the space due to a constant number
of system-wide pointers, a technicism we ignore). This
applies to the next solution too, where we will omit the
issue.

7 A faster dynamic data structure
Instead of the balanced binary tree, we use a B-tree with
branching factor Θ(

√
log n), as in previous work [6].

Then the depth of the tree is O(logn/ log logn). The
lengths of segments is L to 2L for L = log2 n/ log logn.
The required space for the range min-max tree and the
vector is now 2n+O(n log logn/ logn) bits (the internal
nodes use O(log3/2 n) bits but there are only O( n

L
√

logn
)

internal nodes). Now each leaf can be processed in time
O(logn/ log logn).

Each internal node v of the range min-max tree has
k children, for

√
logn ≤ k ≤ 2

√
logn. Let c1, c2, . . . , ck

be the children of v, and [�1..r1], . . . , [�k..rk] be their
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corresponding subranges. We store (i) the chil-
dren boundaries �i, (ii) sφ[1, k] and sψ [1, k] storing
sφ/ψ[i] = sum(P, φ/ψ, �1, ri), (iii) e[1, k] storing e[i] =
sum(P, π, �1, ri), (iv) m[1, k] storing m[i] = e[i − 1] +
rmq(P, π, �i, ri), and M [1, k] storing M [i] = e[i − 1] +
RMQ(P, π, �i, ri). Note that the values stored are local
to the subtree (as in the simpler balanced binary tree
version) but cumulative with respect to previous sib-
lings. Note also that storing sφ, sψ and e is redundant,
as noted in Section 4.3, but we need them in explicit
form to achieve constant-time searching into their val-
ues.

Apart from simple accesses, we need to support the
following operations within a node:

• p(i): the largest j such that �j−1 ≤ i (or j = 1).

• wφ/ψ(i): the largest j such that sφ/ψ[j − 1] ≤ i (or
j = 1).

• f(i, d): the smallest j ≥ i such that m[j] ≤ d ≤
M [j].

• b(i, d): the largest j ≤ i such thatm[j] ≤ d ≤M [j].

• r(i, j, t): the t-th x such that m[x] is minimum in
m[i, j].

• R(i, j, t): the t-th x such that M [x] is maximum in
M [i, j].

• n(i, j): the number of times the minimum occurs
in m[i, j].

• update: updates the data structure upon ±1
changes in some child.

Operations fwd-search/bwd-search can then be
carried out via O(logn/ log logn) applications of
f(i, d)/b(i, d). Recalling Lemma 4.1, the interval of
interest is partitioned into O(

√
logn · logn/ log log n)

nodes of the B-tree, but these can be grouped into
O(logn/ log logn) sequences of siblings. Within each
such sequence a single f(i, d)/b(i, d) operation is suf-
ficient. Once the answer of interest j is finally found
within some internal node, we descend to its j-th
child and repeat the search until finding the cor-
rect leaf, again in O(logn/ log logn) applications of
f(i, d)/b(i, d). Operations rmqi and RMQi are solved
in very similar fashion, using O(logn/ log logn) ap-
plications of r(i, j, 1)/R(i, j, 1). Also, operations rank
and select on P are carried out in obvious manner
with O(logn/ log logn) applications of p(i) and wφ/ψ(i).
Handling φ for P1 and P2 is immediate; we omit it.

For degree we partition the interval as for rmqi
and then use m[r(i, j, 1)] in each node to identify those

holding the global minimum. For each node holding
the minimum, n(i, j) gives the number of occurrences
of the minimum in the node. Thus we apply r(i, j, 1)
and n(i, j) O(logn/ log log n) times. Operation child-
rank is very similar, by changing the right end of the
interval of interest, as before. Finally, solving child is
also similar, except that when we exceed the desired
rank in the sum (i.e., in some node n(i, j) ≥ t, where
t is the local rank of the child we are looking for), we
find the desired min-max tree branch with r(i, j, t), and
continue until finding the proper leaf with one r(i, j, t)
operation per level.

By using the dynamic partial sums data struc-
ture [32] and the Super-Cartesian tree [13], we obtain:

Lemma 7.1. For a 0,1 vector of length 2n, there ex-
ists a data structure using 2n + O(n log logn/ logn)
bits supporting fwd-search and bwd-search in O(logn)
time, and all other operations (including update) in
O(logn/ log logn) time.

In many operations to support, we carry out
fwd-search(P, π, i, d) or bwd-search(P, π, i, d) for a small
constant d. Those particular cases can be made more
efficient.

Lemma 7.2. For a 0,1 vector P , fwd-search(P, π, i, d)
and bwd-search(P, π, i, d) can be computed in O(d +
logn/ log logn) time.

The proofs will be given in the full paper.
This completes our main result in this section,

Theorem 1.2.

8 Concluding remarks

In this paper we have proposed flexible and powerful
data structures for the succinct representation of ordinal
trees. For the static case, all the known operations are
done in constant time using 2n+ O(n/polylog(n)) bits
of space, for a tree of n nodes. This largely improves
the redundancy of previous representations, by building
on a recent result [30]. The core of the idea is the range
min-max tree, which has independent interest. This
simple data structure reduces all of the operations to
a handful of primitives, which run in constant time on
polylog-sized subtrees. It can be used in standalone
form to obtain a simple and practical implementation
that achieves O(logn) time for all the operations. We
then achieve constant time by using the range min-max
tree as a building block for handling larger trees.

For the dynamic case, there have been no data
structures supporting several of the usual tree opera-
tions. The data structures of this paper support all of
the operations, including node insertion and deletion,
in O(logn) time, and a variant supports most of them
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in O(logn/ log logn) time. They are based on dynamic
range min-max trees, and especially the former is ex-
tremely simple and can be easily implemented.

Future work includes reducing the time complex-
ities for all of the operations in the dynamic case to
O(log n/ log logn), as well as trying to improve the re-
dundancy (this is O(n/ logn) for the simpler structure
and O(n log logn/ logn) for the more complex one).
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