Chapter 2
Compact Trees and Tries

In this chapter, we present techniques for constructing traversable compact
representations of trees and tries. We first review some tree representations from
Guy Jacobson’s thesis and then extend these methods to the MBRAM model of
computation. We also show how these methods can be used to construct a
compact traversable representation for tries. Finally, we present a second compact
traversable representation for binary trees that is again based on earlier work by
Jacobson but with improved space efficiency.

Jacobson([27][26] presents several compact representations of binary trees and
unlabelled general trees with efficient, in terms of bit accesses, implementations
for the selection of the parent and children of a node. We first review two such
representations and then extend Jacobson’s results to the wide bus model of
computation we are using. Using these tools we develop a new representation for
tries by constructing a representation for trees with edge labels and efficient
selection of an edge based on its label. This last result is based on simple hashing
so the performance claims are probabilistic, although low fill ratios make
reasonable performance likely. Finally we present an improved version of another
of Jacobson’s encodings. These representations will be used in the following
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chapters to represent the tree structure of a PAT tree.

We are interested in compact representations of various types of trees and tries
that allow common tree traversal operations to operate directly on the compact
form of the tree. The operations we will be interested in include:

® selecting the left or right child of a binary tree or selecting one of the
children of a node in a general tree based on ordinal number, or, in the case
of a trie, edge label,

e locating the parent of a node,

® determining the size of the sub-tree rooted at a node.

In each case, we require that the operations be performed in a constant number of
operations on lg n size objects so they will operate in constant time on the
MBRAM model. For the purposes of this chapter, we let n represent the number
of nodes in the trees being discussed instead of a document size. Jacobson’s
thesis[27] presents two different methods of efficiently representing and traversing
trees: rank/select directories and a recursive encoding for binary trees.

2.1 Rank/Select Representations

Jacobson[27][26] defines two new operations, rank and select, on bit-maps that can
be efficiently implemented and are crucial in manipulating his compact bit map
representations of trees and other structures. The operations are defined as:

» rank(z) computes the number of ones preceding (to the left of) and
including the bit in position z,

® select(z) computes the position of the z’th one in the bit map.
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Note that rank(select(z)) = z and select(rank(z)) = z if the z’th bit is a one.
Also define rank0 and select0 as performing the analogous operations of
counting or finding zeroes instead of ones.

2.1.1 Binary Trees

The number of binary trees on n vertices is denoted C, and called the n’th
Catalan number, C, = 35 (’:) [41]. A compact encoding of a binary tree
structure should require about lg C, bits. Using Stirling’s approximation to the
logarithm of the factorial function, lg C, can be shown to be approximately 2n
(see Section 2.3 for a full derivation). The survey papers of Makinen[34] and
Katajainen and Makinen[28] present many techniques for representing binary
trees that attain the 2n bound, however none provide the functionality required.

For representing binary trees, Jacobson starts with a level order binary tree
encoding. Consider the tree in Figure 2.1. To form the level order encoding first

Figure 2.1: Sample Binary Tree

extend the tree by adding new leaf nodes below each leaf or non-full internal node
in the original tree. Then assign a 1 to each node that exists in the original tree
and a 0 to each leaf in the extended tree, as in Figure 2.2. Note that the extended
tree is a strictly binary tree in that all internal nodes have degree two. The level
order encoding of the tree is created by performing a level order traversal of the
extended tree and recording the labels on the nodes encountered. The level order
encoding of the tree in Figure 2.1 is
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Figure 2.2: Labelled Extended Tree

1[1]1]aofa]1]1]1 o o]o 1 oo oo a0
1|2]3]4]| [5]6]7]s] | 9

where the node numbers appear below their position in the encoding. The bits
comprising the encoding are broken into segments of five solely for ease of reading.
This encoding occurs in the construction of Zaks’ sequences[50] and was also
studied by Lee et al.[31]. This level order encoding requires 2n + 1 bits to
represent a tree on n nodes, so it is near-optimal, but it does not appear to
support the efficient location of the parent or children of a node. Jacobson noted
that using the rank() and select() operations, the parent and child operations

can be computed as

leftchild(z) = 2 rank(z)
rightchild(z) = 2rank(z)+1
parent(z) = select ( I;J)

where each function takes the offset of the node and returns the offset of the child
or parent. If the bit at the offset returned by the child operations is zero, then
that child is not present in the tree. As an example, node 4 is located at offset 4,
so its right child is at offset 9 = 2 « 4 + 1. Similarly, the parent of the node at
offset 13, node 9, is at select(6 = |4|) = 7 which is the offset of node 6.
Formulas similar to the equations above occur in the implicit representation of
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complete binary trees used by Williams in Heapsort[48] where the special form of
the tree reduces rank and select to identity functions.

2.1.2 General Trees

10

Figure 2.3: Sample General Tree

The representation of general trees, such as the one in Figure 2.3, provides
another use for rank() and select(). By observing the well known isomorphism
with the binary trees obtained by mapping a node’s first child to its left child and
its right sibling to its right child, one can determine that there are C, such trees
on n nodes and so 2n bits are again sufficient. However, using this isomorphism to
represent such trees results in a sequential scan of the children of a node in order
to locate the encoding of a particular child. Instead, Jacobson uses an encoding
from Read[40] that is again based on a level order traversal of the nodes. The
encoding is obtained by labelling each node with the unary encoding of its child
count using ones for the count and a zero for the terminator. In order to represent
the empty tree, an extra “super-root” is added above the real root of the tree.
Figure 2.4 shows the tree from Figure 2.3 using this encoding. Again generate the

110 1110

Figure 2.4: Unary Labelling of Sample Tree
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bit representation for the tree using a level order traversal of the tree. The bit
string for Figure 2.4 is

tjofrf1frfofafsfofof1]2]2]o]o]o]o]1]o]0] o
5l HE 3[4 sfe[7][s] [9]10

Note that each node has one '1’ bit, found in its parent’s label, and one ’0’ bit,
terminating its label, associated with it plus an extra 0’ bit for the saper-root so
2n + 1 bits are used in encoding.

Again, efficient implementations of the traversal operations are not obvious with
this representation, but Jacobson shows that the rank() and select() operations
can be used to implement these operations. In this case, if we represent a node by
the offset of the corresponding one bit in the parent’s label, then:

degree(z) = selectO(rank(z) + 1) — selectO(rank(z)) — 1
child(z,i) = selectO(rank(z))+1:

parent(z) = select(rank0(z))

where children are numbered starting from 1. For convenience, we refer to the
rank of the set bit representing a node as the rank of the node for both general
and binary level order encoded trees. This convention allows us to associate a
unique integer in range 1..n with each node. In Figures 2.1 and 2.3, a node’s label
is equal to its rank.

2.2 Implementing Rank and Select

Jacobson([27](26] presented implementations of rank() and select() that are
efficient in terms of the number of bits accessed. However, his implementation of

select() requires non-constant time when run under the MBRAM model of
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computation. In this section we review Jacobson’s implementation of rank(),
which runs in constant time on an MBRAM, and present a new implementation
of select() that runs in constant time on an MBRAM.

2.2.1 Jacobson’s Rank Implementation

Given a string of n bits, Jacobson constructs a two-level auxiliary directory
structure allowing constant time computation of the rank function The first
auxiliary directory contains rank(z) for every ¢ a multiple of [lgn]®.* A second
auxiliary directory contains rank’(j) for j a multiple of [Ign] within each
subrange where rank’ computes the rank within the subranges of size [lgn]’.

Theorem 2.1 (Jacobson) Rank can be performed on an MBRAM in constant

time using % -+ O(E";) bits of extra space.

Proof: rank(z) is calculated by locating the correct first auxiliary directory
entry, at position I.ﬁ'zr'ﬁ’J‘ and the correct second level entry, at position '.Tfif J
Adding these two values gives the rank of the first bit in a [lgn] sized range. The
final component of rank(z) could be computed by scanning z mod [lgn] bits in
the bit string. Using table lookup, however, this scan can be performed in
constant time. We simply retain a table which for each possible bit pattern of
length kf, for some integer ¢ > 1 (¢ = 2 suffices), gives the number of 1’s in the
pattern. After masking out unwanted trailing bits, our final term is found by
adding at most c entries in the table. There are approximately nt entries in this
table.

Each of the I-T'S’A"T] entries in the first auxiliary directory requires [Ign] bits.
Each of the { [‘%“l entries in the second level auxiliary directories requires

*Jacobson actually uses Innlgn.
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2 [Ig [Ign]] bits because they contain values less than [Ign]>. The total storage
requirement, ignoring floors and ceilings, for these directories is 2 + 2%/E5®. The
final table requires fewer than [ni‘] [lg [lgn]] bits. Hence the storage required in
addition to the original bit map is 2EE® 4 O(;2.). QED

2.2.2 Implementation of Select on an MBRAM

While Jacobson’s ranking function operates in constant time on a MBRAM, his
implementation of select() requires © (log log n) time because it includes a binary
search on a region of lg?n bits. In this section, we present a new solution that
operates in constant time under a wide bus model. As in the rank case, we use a
multi-level auxiliary directory structure and find that the final case can be
scanned using a constant number of table lookups. Qur goal is to use O (,—;f‘;;)
extra bits to store the auxiliary directory structure. In order to achieve this goal,
we will ensure that for the ranges of length r in the auxiliary directory structures
we will use ’_i?li‘?f] bits of storage. This condition also allows us to index into
these directories to locate the appropriate bit sequences for each range.

Theorem 2.2 Select can be performed on an MBRAM in constant time using
eyt O(n’lgnlglgn) bits of exira space.

Proof: We use three levels of auxiliary directory structures to compute select.
The first auxiliary directory records the position of every [lgn] [lglg n]’th one
bit. This directory requires [lgn] bits for each entry and has l.ﬁET-Tﬁ?l?ﬂ'J entries
so at most ’.ﬁa—lns_""l' J bits are used. Let r be the size of a subrange between two
values in the first auxiliary directory and consider the sub-directory for this range.
Note that during traversal operations r is easily computed and does not need to
be stored explicitly. We are willing to spend IJE;F'T} bits on this range in the
second level of directories. As with the inference of the value », we can also infer
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the location of this block of bits. To explicitly record the [lgn] [Iglgn] possible
answers in that range requires [Ign)? [iglgn] bits. If
r > [lgn]’* iglgn]®
then
r 2
—_— 2> n n
R
and we have sufficient storage to explicitly record the answers.
If instead
r < ([lgn] lglgn})? (2.1)
we re-subdivide the range and record the position, relative to the start of the
range, of each [lgr] [lglg n]’th one bit in the second level auxiliary directory.

Each entry requires Ig » bits and there are at most ’.WT{EIFTJ entries so again
this takes at most |ty | bits.

Let r be the size of a subrange between values in the second level auxiliary
directory. To explicitly record the relative positions of all the possible answers

requires [lg+’] [Igr] [lglgn] bits. If
' > [lgr'] [lgr] [lglgn]’

r
| > [lgr' n

|y 2 Ml g Mtga
so there is sufficient space to record all the answers in a third level of auxiliary
directories.
In the final case we have

r' < [lgr'] (igr] [lglgn]®. (22)

From equation 2.1 we obtain

lgr < 2(lg([lgn]) +1g([lglgn1))



CHAPTER 2. COMPACT TREES AND TRIES 32

so lgr < 4[lglgn] by observing that Ig [Iglgn] <lg [lgn] and

Ig [lgn] < [lglgn]. In addition we know +’ < r s0 Ig7' < lgr and equation 2.2
implies v’ < 16 [lglgn]*. Because (Iglgn)* is asymptotically smaller than ign we
know that we can perform select on a range of [lglgn]* bits using a constant
number of operations on regions of size [lgn] bits. Computing select on a small
range of bits is again performed using table lookup. Again let ¢ be an integer
greater than one. For each possible bit pattern of length !‘c-'-‘- and each value i in
the range 1..!‘&'1 we record the position of the i’th one in the bit pattern and, in a
separate table, the number of ones in the bit pattern. To compute select on a
small range we scan the range using the second table until we know which
subrange contains the answer and use the first table to compute the answer. At

most a constant number of subranges can be considered.

Select(k) is performed by locating the pair of first auxiliary directory entries
bracketing the desired value starting at f—rii—r [lgn] and from these
computing r. If r > ([Ign] [Iglgn])? the storage in the second level auxiliary
directory is treated as an array and the correct answer is read off from the correct
entry. Otherwise a similar search is performed in the second level auxiliary
directory resulting in either a scan of a small number of bits or reading the answer
from the third level auxiliary directory and then summing the results from all the
levels. The critical point is that we know where the appropriate directory bits at
each level are located and how to interpret them based on the value of k and the
preceding directory levels. The storage used for the auxiliary directories is iﬁll:?i}'
and the storage used for the lookup tables is nt (%lgnlglgn + lglgn) so the
extra storage for auxiliary directories is Tlﬁr?f + O(n<lgnlglgn) which matches
the statement of the theorem given c is at least 2. QED

This shows that select() can be implemented in constant time under a wide bus

model using asymptotically negligible storage.
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Theorem 2.3 A binary tree on n nodes can be represented in 2n + o(n) bits and
support parent, leftchild end rightchild operations in constant time on an
MBRAM. Similarly, a general tree on n nodes can be represented in 2n + o(n) bits
and support the child, parent and degree operations in constant time on an
MBRAM.

Proof: Using Jacobson’s rank and our select directory structures on the level
order encodings from Sections 2.1.1 and 2.1.2, the result follows. QED

While asymptotically small, the extra storage required by the rank and select
directories is significant when considering trees of a size comparable to modern
computer memories. For n = 2'¢, the extra storage required by the auxiliary
directories is slightly larger than the bit maps. However, the size of the directories
can be reduced by storing less frequent samples in the directories and performing
larger linear scans. These reductions are necessary in the next section.

The rank/select based operations on the level order encodings of binary and
general trees do not appear to directly support the inclusion of fixed sized fields of
different sizes in the leaves and internal nodes of the trees. Such fields are
required in many applications, including the tries covered in the next section. In
an application where both leaves and internal nodes require fields and these fields
are approximately the same size, we can store the field values in a separate array
indexed by the rank of the corresponding node. However, when the field sizes for
the two classes of nodes are not equal, this method may waste too much storage
to be practical. In order to solve this problem, we associate a separate bit vector,
indexed by the ranks of the nodes, that distinguishes internal nodes from leaves
using a one bit for a leaf and a zero bit for an internal node. Using the rank()
function on this bit vector we can map any leaf to a number in the range 1..L,
where L is the number of leaves, and then store the leaf data in a separate array.
rank(() can be used to perform the analogous task for internal nodes. This adds
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n 4 o(n) bits or about one bit per node to the total storage requirements.

2.3 Compact Tries

Now we consider the compact implementation of a trie. The primary differences
between a general tree and a trie are:

e the addition of edge labels in the range 1...m such that no two edges from
a node have the same label (this also places a bound of m on the degree of a
node but this bound is not significant to us), and

® a new operation triechild(z,) that returns the child of z with the label ¢
(as opposed to child which returns the ¢’th child).

As with binary trees, we first determine the asymptotic number of bits needed to

represent a trie.

Theorem 2.4 The number of bits required to represent an order m trie onn
nodes is at least, asymptotically in n,

n (mlgm — (m ~ 1)Ig (m — 1)) + O(log n). (2.3)

Proof: The number of order m tries on n nodes satisfies the recurrence relation:

Cém} = 1
cm = Z C,(,':"C,(,;“’...C,(,:’.

mn +ng+...Fnm=n-—1

The numbers C{™ are called the Fuss-Catalan numbers and can be shown to
equal —— ("":’") (cf. [25]). For m = 2 the superscript is omitted and we obtain

mn+1
the Catalan numbers of Section 2.1.1. To determine the minimum number of bits
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needed to represent a trie, we need to compute lg C{™). Convert the binomial to
factorials, simplify some terms, and expand the logarithm to obtain:

Ig((mn)!) — Ig(n!) ~ Ig((mn ~ n)!) ~ lg(mn —n +1). (24)

Stirling’s approximation to In(z!) is zlnz—z - 22+ 0 + 0 (i) [25). Substituting
this approximation into formula 2.4, dropping low order terms (o and the order
term), converting from In to lg, and cancelling some terms we obtain:

mn ]g(mn)—!-g—(-’;—?l—ﬂ Ig n+1—g§3—(m-—l)u Ig((m~—1)n)+ Mrfzrit-;t‘l--lg(ﬂ'm—ﬂ.+].).

In order to determine the number of bits needed asymptotically in n, we place any
terms not at least linear in n in an order term. After expanding the logs and
cancelling two mnlgn terms of opposite sign, we obtain:

n(mlgm — (m —1)lg (m — 1)) + O(log n).
QED
Note that binary trees are the same as 2-ary tries, so, for m = 2, this result
confirms our previous goal of 2n bits per node for binary trees. To obtain the
asymptotic number of bits required for general m, rewrite formula 2.3 as:
n(lgm-f-lg( )) + O(logn).

mm-l
As m — oo the second log term approaches Ig e so the number of bits required to
represent a trie is approximately Ig m + Ig e bits per node where lge ~ 1.44. We
will not actually attain this goal but will be satisfied with Ig m + c bits per node
in the trie provided c is small. As before we want to obtain traversal operations in
constant time on an MBRAM. However, we will have to be satisfied with an
expected constant cost instead of a deterministic one.

Our approach to representing a trie compactly builds on the previous structure
for general trees and adds edge labels and hash tables for rapidly locating a
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labelled child. By using the rank() function, the fill ratio of the hash tables can
be kept near 50% without adding greatly to the storage requirements. In addition
to the above requirements, in a typical application each leaf of a trie is labelled
with a data element so, as discussed in the previous section, we require one more
ranked bit map to map leaves to data elements. This structure adds about one bit
per node to the storage cost.

Recall from Section 2.1.2 that, in the general tree encoding, a node is represented
by the position of the corresponding one in its parent node’s label. This
convention allows us to number the nodes during a level order traversal of the tree
and obtain each node’s number using the rank() function. We move the edge
labels to their destination node and place the labels in a simple array indexed
from 1 to n. The label for a node can then be obtained using rank. The
remaining step is to provide a mapping from the node labels to the ordinal
number of a child. We could simply order the children of a node according to
their label value and use a binary search to obtain logarithmic time traversal
operations. In order to obtain constant time operations we reserve 2 bits per child
in each node of the trie and use them to store a hash table.

The 2k bits available for a hash table for k children will be split into two pieces: a
bit map and a ranking directory for the bit map. Each child will be inserted into
the hash table using a hash value based on its label and the hash table size. We
do not concern ourselves with the exact hash functions used or the details of the
collision resolution strategy. The hash table is stored in the bit map with a one
bit representing a full slot and a zero bit representing an empty slot. The children
of a node are sorted according to their final position in the hash table. Using the
rank() function on a hash table position we can obtain the ordinal number of the
child. Another use of rank() on the main tree representation obtains the node
number of the child and its label. If we let ¢, be the number of bits required to
build a ranking directory on a k bit bitmap then the fill ratio of the hash table is
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3ies;- By modifying the rank construction we can still obtain constant time but
ensure that £ < -:- The modifications needed reduce the number of samples
stored in the directories and use larger linear scans. With this change, the hash
tables are at most 2 full and for large k the fill ratio approaches ; because t; is
o(k). This ensures we can search the hash table in constant expected time[23].
Because we reserve exactly 2 bits per child we can store all the hash tables in a
separate bit map with each node’s hash table starting at offset

2 rank(child(z,1)). The degree() operation can be used to compute the size of
the hash table and hence the correct hash function.

Theorem 2.5 A static trie on an alphabet of size m with n nodes can be
represented in lgm + 4 + o(1) bits per node and provide the parent operation in
constant time and the triechild operation in constant ezpected time.

Proof: The storage required for the underlying tree representation is 2n + o(n)
bits. The node labels require nlgm bits and the hash tables require 2n bits.
Summing up, the total storage used is lgm + 4 + o(1) bits per node. QED

While higher than the previously obtained optimum, it is within our goal of

lg m + ¢. The parent operation is unchanged from the general tree and so operates
in constant time. The triechild operation requires a search through a hash table
where each step in the search requires a constant number of rank and select
operations. The expected number of steps is constant so the overall running time
is constant.

It is worth noting that if m is very small relative to n, specifically mlgm < clgn
for some small constant ¢, then we do not need the hash tables and can obtain
constant time operations while saving two bits per node. For such m and n, we
can scan the labels for all of a node’s children in a constant number of word
operations. For example, for each value ¢ in 1..m we can have table, log;, of all bit
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Name | #Index Points | #Nodes | Index Size (bytes)
Holmes 43745 95512 235726
X1t 924430 | 1728510 3931554
Bible 1202504 | 4187104 9175535

Table 2.1: Suffix Trie Sizes

patterns of length &% that gives the location of any aligned occurrence of i in the
bit pattern. Using these tables, we can search for a particular child using 2c table
lookups. In practice, the application of some simple bitwise boolean and
arithmetic operations can replace the table lookups. The packing of multiple
values in a single word and then using word operations to perform parallel
computations on the original values is called “word-size parallelism” and is further
discussed by Brodnik|8].

The only comparably compact representation for a trie that we are aware of is the
Bonsai structure of Darragh et al.[13] which is stated to require (6 +1gm) bits
per node. It appears, however, that the 6 hides some non-constant but slowly
growing terms. The $ factor is based on an 80% full hash table. For large n the
structure developed here will be significantly smaller than the Bonsai structure.
However, the Bonsai structure allows a limited number of insertions, with a small
probability of failure, and so a direct comparison is not really meaningful.

While we are not recommending the structure above for general text searching
(our solution for that problem lies in the next chapter), we list the estimated
index sizes for three of our test documents in Table 2.1. Using techniques similar
to those developed in the next chapter, the trie representation here can also be
used to develop a compact suffix tree representation for main memory.
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2.4 Recursive Encoding: Binary Trees Revisited

The previous section introduced an asymptotically optimal encoding for binary
trees that provides leftchild, rightchild and parent operations. In this section, we
provide a slightly less space efficient encoding that provides the leftchild,
rightchild and sub-tree size operations. When working with PAT trees, the
sub-tree size is the size of the query result and so is a useful unit cost operation,
particularly when the search result is large. The new representation is very
similar to one also developed by Jacobson(27], although ours uses a more efficient
prefix code to obtain a smaller representation.

The tree encoding represents each tree as a bit string

Header | Left Sub-tree Encoding | Right Sub-tree Encoding

where the header contains two fields:

e a single bit indicating which of the two children has fewer nodes with an
arbitrary choice made in the case of a tie, and,

e a prefix coded integer indicating the size of the smaller child.

To represent an integer i, we concatenate the unary encoding of [lg(i + 1)] with
the binary encoding of i + 1. This constructs a prefiz code such that no code value
is a prefix of any other code value and so we can, in a left to right scan of the
data, determine when we have the complete encoding of an integer. The first few
code values are shown in Table 2.2. In order to ensure that the operations of
locating the encodings of the left and right sub-trees of a node can be efficiently
implemented, each tree encoding is padded out to the length of the longest
encoding of a tree of the same number of nodes.
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0 1| 6 00111
1| 010| 7 (0001000
2 011 | 8| 0001001
3 | 00100 | 9 { 0001010
4 | 00101 | 10 | 0001011

5| 00110 | 11 | 0001100

Table 2.2: Integer Prefix Code

The integer prefix code requires 2 [Ig(: + 2)] — 1 bits, so the size of the encoding

of a tree on n vertices satisfies

B(0) = 0
B(l) = 1 (2.5)
B(n) = max B(i)+Bn—-i—-1)+2[lg(i+2)].

i=0..|(n~1)/2]

The initial values for the recurrence are based on the fact that we do not need to
encode the structure of trees with zero or one nodes. The ability to solve this
recurrence is the primary requirement when choosing a prefix code for use in this
type of tree encoding. We will see that the closed form solution to formula 2.5 is
of the form B(n) = 3n ~ f(n) where f(r) is O(lg n). Before proving this closed
form, a few lemmas are needed. We use the notation (z)2 to denote the base 2

representation of z and vi(z) to denote the number of ones in this representation.

Lemma 2.1 Forn >0 and0<i<n, vy(i +1) +va(n —1) = va(n + 1) + k where
k is the number of carries that occur when adding i + 1 and n — i in base two.

Proof: Each carry that occurs during the addition of (i + 1); and (n — i),
requires two one bits and produces another. If k carries occur, we have

v2(2 + 1) + v2(n — 1) + k ones available and we require exactly one bit for each one
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in (n + 1); and two for each carry so

v3(i+1)+v(n—i)+k=vi(n+1)+2k

va(i + 1) +v2(n ~ i) = v3(n + 1) + £.
QED

Lemma 2.2 If n is even, min;—q_nj2-122(i + 1) + va(n — i) + |lg(n — i) | occurs at
t =0 and so0 is 1 + v3(n) + [Ig(n)].

Proof: This result is a simple corollary of the previous lemma. Because n is even
there are no carries when adding 1 and » so ¢ = 0 minimizes the first two terms.
For n = 2% — 2, the Ig term is constant over the range of i values so © = 0 still the
produces minimum total. For other values of n, the lg term takes on one of two
values over the range of ¢: |lg(n)] and |lg(n)| — 1. However, those values of ¢
resulting in the smaller value necessarily require a carry when adding (i + 1); and
(n — £); so the sum of the first two terms increases by at least one and this
increase offsets the saving in the lg term. QED

Lemma 2.3 Ifn is odd, min;—g_(n-1)/2 v2(t + 1) 4+ va(n — i)+|lg(n — i) | + [i is odd]
occurs at i = 2* — 1 where

i-lifn=2-1

the number of trailing 1 bits in the binary representation of n otherwise
and so is 2+ va(n) + |lgn| — k.

k=

Proof: First consider n = 27 — 1. At least one carry must occur when adding

(i + 1); and (n — i); because representing n + 1 requires more bits than either of
these two terms. Setting ¢ = 27~! — 1 results in exactly one carry and so
minimizes the first two terms. [lg(n —{)] is constant over the range of ¢ values so
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i = 29~ — 1 optimizes the first three terms. Selecting an even value of i requires
two carries when adding (i + 1); and (» — £);, one in the least significant bit and
another in the most significant bit and so cannot lessen the total. Setting

i = 29! — 1 in the sum and using the relationships v3(27) = 1,

v2(n+1) =va(n) —k+ 1 and |lg(n —i)| = (Ign| produces the final result.

Now consider the more general case, setting ¢ = 2* — 1 results in no carries and so
minimizes first two terms. As in the proof of Lemma 2.2 the lg term takes on two
successive values but choosing i sufficiently large that the smaller of the two
values occurs necessarily results in a carry that offsets the saving in the lg term.
Finally, as with the first case, making i even results in a carry in the low order bit
that offsets any savings in the last term. Setting i = 2* — 1 in the sum and using
the same relationships that occurred in the first case yields the final total. Q&D

We are now able to state and prove the closed form solution to formula 2.5.

Theorem 2.6 B(n) =3n+2—2|lg(n+1)] — 2va(n + 1) — [n is odd], where v,

denotes the number of ones in the binary representation of its argument.

Proof: Recall the recurrence relation for B:

B(0) = 0
B(l) =1
B(n) = B(i)+ B(n—1-1) +2[lg(i + 2)].

i=o0.{(n=1)/2]
The proof proceeds by induction. The base cases, B(0) and B(1), satisfy the
equation for B. Assuming the formula is correct for 0..n — 1, the recurrence
relation gives:

B(n) = max, o | ez J3i+2-2|lgi+1)] ~2vi(i+1)—[iis odd] +3(n —i —1)
+2—2|lg(n ~3)] - 2va(n — i) — [n — i — 1 is odd]

+2[1g(i +2)].
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Simplifying and using the fact that [Ig(i +2)] = |lg(i + 1)] + 1, obtain

B(n)= 3n+3 +maxX,_g |t | —2v3(3 + 1) ~ 2v3(n — 1)
—2|lg(n —i)| — [¢is odd] — [n — i — 1 is odd]. (2.6)

Consider even and odd values of n:

e If n is even, then if ¢ is odd, n — i — 1 is even and vice-versa so the last two
terms in formula 2.6 always sum to minus one. Bring the —2 outside the
max and replace the max with a min and simplify to obtain:

3n+2-2 min vy(i+1)+va(n—i)+ [lg(n-1)].
l=ﬂ..]--1
Using Lemma 2.2, this simplifies to
3n — 2vy(n) — 2|lgn].
In this case, the closed form gives

B(rn) = 3n+2-2v(n+1)—2|lg(n+1)] — [ris odd]
= In+2-2vyn)+1)—-2|lgn|
= 3n —2vy(n) -2|lgn].

so the equations are equal.

e If n is odd, then n —i — 1 is odd iff ¢ is odd so the last two terms of formula
2.6 become 2 [z is odd]. As before we bring the —2 outside the max and
replace the max with a min to correct the sign change to obtain:

B(n)=3n+3-2 min vy(3 + 1) + va(n — i) + [lg(n — 7)| + [¢ is odd]
which by Lemma 2.3 gives

B(n)=3n+3-2(2+vs(n) + |lgn] — k)
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where k is as defined in the lemma. In both of the cases of Lemma 2.3, we
obtain v(n) + |Ign] = va(n + 1) + |lg(r + 1)| + k& — 1. Using this formula,

we obtain:

B(n) = 3n+3-2Q2+wn(r+1)+|lgn+1)] +k~1—k)

= 3n+1-2v(n+1)—2[lg(n+1)].

Which is equal to the closed form, given that n is odd.

n|B@)] n [Bw) | » B(u)Hn B(n)
0 UII 8| 16[16] 38[24] 60
1/ ofo| 1817| 4of25] 62
2| 2fw0| 20]18] 42[26] e
3 afu| 2af19] af2r| es
4| 6f12] 26[20] 48 H:28 70
5 s8f13] 28f21| s0f2] 7
6| 10[14] 30[22] s52[30] 7
7| 1af15] 36[23| s8fa]| s

Table 2.3: B(n)

QED

From the closed form equation, it is clear that B(n) < 3n so the total storage
requirement for the binary tree information is less than three bits per node. Table
2.3 shows the value of B for small n. Using this representation, the tree structure

for the tree in Figure 2.1 on page 25 is represented by the bit string

100101011010101011. Figure 2.5 shows this tree with each sub-tree labelled with

its description.

The simple formula for B(n) allows efficient implementation of the operations of
fetching the left and right children of a node. The left child is found immediately
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100101,011010,101011

Olﬁ 10, 1010,,11
0

oo 7L

Figure 2.5: Tree Encoding
rightchild(node,size) =

small_child = read bit at position node
child_size = read prefix code at position node + 1
children = node+2%ceil(lg(child_size+2))
if (small_child = ’1’) then

return (children+B(child_size)), size-child_size-1)
else return (children+B(size-child_size-1),child_size)

end

Figure 2.6: Pseudo-code for Rightchild

following the prefix code of the integer giving the size of the smaller tree and the
right child can be found immediately after the description of the left child whose
size can be computed based on the number of nodes in the left sub-tree which can
in turn be computed given we know which sub-tree is smaller, the size of the
smaller sub-tree and the size of the overall tree. The pseudo-code for the
rightchild operation is found in Figure 2.6. The pseudo-code for leftchild does not
add B(leftchildsize) to “children” and reverses the cases of the if statement.
Each of these operations require and return both the location of the node in the
bit stream and the size of the sub-tree rooted at the node.

A natural question to ask is “can we change this encoding to obtain 2n bits per
node?” In his thesis, Jacobson investigates the use of optimal prefix codes for this
application and determines that while it is theoretically possible to obtain a
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bound of less than 2.5 bits per node using more compact prefix codes, this
approach has a lower bound of about 2.3 bits per node. We also want to mention
that some slight improvements can be made by increasing the number of base
cases in formula 2.5. If, for example, we add the conditions B(2) =1, B(3) =3
and B(4) = 4 (using B(n) = [IgC,]) to the recurrence then B(r) is reduced by
[E-flj This change reduces the asymptotic requirement to 2.75 bits per node.
Further increases in the number of base cases appear to reduce the requirements
further although we have yet to determine a closed form for these cases.

In this chapter we have provided some extensions and improvements to the results
presented by Jacobson([27](26] that will be useful in our PAT representation as
well as other tree based structures. We have also provided further demonstration
of the usefulness of rank and select by using them to construct a representation
for static tries requiring Igm + 4 + o(1) bits per node.



