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ABSTRACT
This paper presents a principled framework for efficient process-
ing of ad-hoc top-k (ranking) aggregate queries, which provide the
k groups with the highest aggregates as results. Essential support
of such queries is lacking in current systems, which process the
queries in a naı̈ve materialize-group-sort scheme that can be pro-
hibitively inefficient. Our framework is based on three fundamental
principles. The Upper-Bound Principle dictates the requirements of
early pruning, and the Group-Ranking and Tuple-Ranking Princi-
ples dictate group-ordering and tuple-ordering requirements. They
together guide the query processor toward a provably optimal tu-
ple schedule for aggregate query processing. We propose a new
execution framework to apply the principles and requirements. We
address the challenges in realizing the framework and implement-
ing new query operators, enabling efficient group-aware and rank-
aware query plans. The experimental study validates our frame-
work by demonstrating orders of magnitude performance improve-
ment in the new query plans, compared with the traditional plans.

1. INTRODUCTION
Aggregation is a key operation in OLAP (On-Line Analytical

Processing), and dominates a variety of decision support applica-
tions such as manufacturing, sales, stock analysis, network mon-
itoring, etc. In aggregate queries, aggregates are computed over
groups by some grouping attributes. As decision making natu-
rally involves comparing and ranking data, among the large num-
ber of groups, often only the ones with certain significance are of
interest. To support such applications, ranking (top-k) aggregate
queries rank the groups by their aggregate values and return the
top k groups with the highest aggregates. Further, decision makers
often need to specify analysis queries in an ad-hoc manner, with
respect to how the data is aggregated and ranked. Such ad-hoc
ranking criteria fit very well to the exploratory nature of decision
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support and enable flexible and expressive data analysis. Moreover,
decision support queries are commonly executed in an interactive
environment where the results must be quickly presented to users
and become the basis of further queries. Efficient processing of
ad-hoc top-k aggregate queries is thus crucial.

However, such efficient support of ad-hoc ranking is critically
lacking in current decision support systems. Most OLAP query
processing focuses on pre-computation and full-answer. Such sys-
tems maintain pre-computed simple aggregates that can only bene-
fit queries over these aggregates. Moreover, the notions of ranking
and its optimization are missing as current systems always provide
full answers and do not optimize for the small retrieval size k. This
paper thus aims at supporting efficient ad-hoc ranking aggregates.

1.1 Query Model and Motivating Examples
Below is a SQL-like template for expressing top-k aggregate

queries and an example query Q. While we use LIMIT, various
RDBMS use different SQL syntax to specify k.
SELECT ga1 , ..., gam, F
FROM R1 , ..., Rh

WHERE c1 AND ... AND cl

GROUP BY ga1 , ..., gam

ORDER BY F
LIMIT k

Q:SELECT A.g, B.g, C.g, SUM(A.v
B.v+C.v) as score

FROM A, B, C
WHERE A.jc=B.jc AND B.jc=C.jc
GROUP BY A.g, B.g, C.g
ORDER BY score
LIMIT k

That is, the groups are ordered by a ranking aggregate F =G(T ),
where G is an aggregate function (e.g., sum) over an expression T
on the table columns (e.g., A.v+B.v+C.v). The top k groups with
the highest F values are returned as the query result. Formally,
each group g={t1, . . . , tn} has a ranking score F [g], defined as

F [g] = G(T )[g] = G(T [g]) = G(T [{t1, . . . , tn}])
= G({T [t1], . . . , T [tn]}). (1)

As the result, Q returns a sorted list K of k groups, ranked by their
scores according to F , such that F [g] ≥ F [g′], ∀g ∈ K and ∀g′ /∈
K. When there are ties in scores, an arbitrary deterministic “tie-
breaker” function can be used to determine an order, e.g., by the
grouping attribute values of each group.

A distinguishing goal of our work is to support ad-hoc ranking
aggregate criteria. With respect to G, we aim to support not only
standard (e.g., sum, avg), but also user-defined aggregate func-
tions. With respect to the aggregated expression T , we allow T
to be any expression, from simply a table column to very complex
formulas. Below we show some motivating examples.

Example 1 (Motivating Queries):
Q1:
SELECT zipcode, AVG(income*w1+age*w2+credit*w3) as score
FROM customer
WHERE occupation=’student’
GROUP BY zipcode
ORDER BY score
LIMIT 5
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Q2:
SELECT P.category, S.zipcode,

MID_SUM(S.price-P.manufacturer_price) as score
FROM part as P, sales as S
WHERE P.part_key=S.part_key
GROUP BY P.category, S.zipcode
ORDER BY score
LIMIT 5

The above query, Q1, returns the best 5 areas to advertise a stu-
dent insurance product, according to the average customer score of
each area. The score indicates how likely a customer will buy the
insurance. A manager can explore various ways in computing the
score, according to her analysis. For example, a weighted average
of customer’s income, age, and credit is used in Q1. Query Q2
finds the 5 best matches of part category and sales area that gener-
ate the highest profits. A pair of category and area is evaluated by
aggregating the profits of all sales records in that category and area.
A user-defined aggregate function mid sum is used to accommo-
date flexible metrics in such evaluation. For example, it can remove
the top and bottom 5% (with respect to profit) sales records within
each group and sum up the rest, to reduce the impact of outliers.

We emphasize that such ad-hoc aggregate queries often run in
sessions, where users execute related queries with similar Boolean
conditions but different ranking criteria, for exploratory and inter-
active data analysis. For example, in the above Q1, the manager
can try various aggregate function and/or many combinations of
the values of w1, w2, and w3 until an appropriate ranking crite-
rion is determined. Moreover, such related queries also exist across
different sessions of decision support tasks over the same data.

In this paper, we concentrate on a special but large class of ag-
gregate queries F = G(T ), where the aggregate function G satisfies
what we refer to as the max-bounded property: An upper-bound of
the aggregate F over a group g, denoted by Fg , can be obtained
by applying G to the maximum values of the member tuples in g.
The class of max-bounded functions include many typical aggre-
gate functions such as sum, weighted average, etc., as well as
user-defined aggregate functions such as the mid sum in query
Q2 above. In fact, we believe that most ranking aggregate queries
will use functions that satisfy this property.

1.2 Limitations of Current Techniques
A popular conceptual data model for OLAP is data cube [16].

A data cube is derived from a fact table consisting of a measure
attribute and a set of dimensional attributes that connect to the di-
mension tables. A cube consists of a lattice of cuboids, where each
cuboid corresponds to the aggregate of the measure attribute ac-
cording to a Group-By over a subset of the dimensional attributes.
With respect to various measures and dimensions, multiple cubes
may be necessary. As a conceptual model, data cube is seldom
fully materialized given its huge size. Instead, in ROLAP servers,
many materialized views (or summary tables) are selected to be
built to cover certain tables and attributes for answering aggregate
queries [21]. Pervasive summary and index structures are further
built upon the base tables and materialized views.

Many works studied the problem of answering aggregate queries
using views [17, 32, 11, 1, 28]. They provide significant perfor-
mance improvement when appropriate materialized views for the
given query are available. However, they cannot answer ad-hoc
ranking aggregate queries. Materialized views only maintain in-
formation of the pre-determined attribute or expression using the
prescribed aggregate function. In contrast, ad-hoc ranking condi-
tions are determined or defined on-the-fly during decision making.
Therefore in order to answer a ranking aggregate F =G(T ), G must
be the aggregate function used when the cubes (views) are materi-
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Figure 1: Traditional plan vs. new plan.
alized or can be derived from the materialized aggregate function
(e.g., avg derived from sum and count), and T must happen to
be simply some measure attribute or expression that can be derived
from the summary tables, instead of arbitrarily complex expression.
Given the virtually infinite choices of G and T in ad-hoc data anal-
ysis, the pre-computed information easily become irrelevant when
the query is different from what the summary tables are built for.

When pre-computed cubes cannot answer the query, the pro-
cessing has to fall back to base tables, where the query is evalu-
ated by the relational query engine of the ROLAP server as fol-
lows: (1) fully consume all the input tables; (2) fully materialize
the selection and join results; (3) group the results by grouping at-
tributes and compute the aggregates for every group; (4) fully sort
the groups by their ranking aggregates; and (5) report only the top k
groups. The user is only interested in the k top groups instead of a
total order on all groups. The traditional processing strategy is thus
an overkill, with unnecessary overhead from full scanning, joining,
grouping, and sorting. Given the large amount of data in a ware-
housing environment, such a naı̈ve materialize-group-sort scheme
can be unacceptably inefficient. Moreover, the users may have to go
through it many times in their exploratory and interactive analysis
tasks. Such inefficiency thus significantly impacts the usefulness of
decision support applications, resulting in low productivity.

1.3 Contributions
In this paper, we propose a principled framework for efficient

processing of ad-hoc top-k aggregate queries. We define a cost
metric on the number of “consumed” tuples, capturing our goal of
producing only necessary tuples for generating top k groups. We
identify the best-possible goal in terms of this metric that can be
achieved by any algorithm, as well as the must-have information
for achieving the goal. The key in realizing this goal is to find some
good order of producing tuples (among many possible orders) that
can guide the query engine toward processing the most promising
groups first, and exploring a group only when necessary. We fur-
ther discover that a provably optimal total schedule of tuples can
be fully determined by two orders– the order of retrieving groups
(group ordering) and the order of retrieving tuples (tuple ordering)
within each group. Based on this view, we develop three fundamen-
tal principles and a new execution framework for processing top-k
aggregate queries. We summarize our contributions as follows:
• Principle for optimal aggregate processing: We develop three

properties, the Upper-Bound, Group-Ranking and Tuple-Ranking
Principles that lead to the exact-bounding, group-ordering and
tuple-ordering requirements, respectively. We formally show
that the optimal aggregate query processing, with respect to our
cost metric, can be derived by following these requirements.

• Execution framework and implementations: Guided by the
principles, we propose a new execution framework, which en-
ables query plans that are both group-aware and rank-aware. We
further address the challenges of applying the principles and im-
plementing the new query operators in this framework.
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Figure 2: Top-k aggregates query processing.

• Experimental Study: We implement the proposed techniques
in PostgreSQL. The experiments verify that our techniques can
achieve orders of magnitude improvement in performance; e.g.,
Figure 1 compares a new query plan with the traditional plan.

The rest of the paper is organized as follows. We present the prin-
ciples in Section 2. Section 3 introduces the execution framework
of top-k aggregate query plans and the implementations of physical
operators. We experimentally evaluate the proposed framework in
Section 4. Section 5 reviews related work, and Section 6 concludes.

2. PRINCIPLES: OPTIMAL AGGREGATE
PROCESSING

Efficient support of ranking aggregate queries is critically lack-
ing in current systems. To motivate, Figure 2(a) illustrates the tra-
ditional materialize-group-sort query plan, consisting of three com-
ponents: 1) tuple generation: the from-where subtree for producing
the member tuples of every group; 2) group ranking: the group and
sort operators for generating the groups and ranking them; and 3)
output: the limit operator returning the top-k groups. As Section 1
discussed, this approach fully materializes and aggregates all tu-
ples, and then fully materializes and sorts all groups. Since only
top-k groups are requested, much of the effort is simply wasted.

Our goal is thus to design a new execution model, as Figure 2(b)
contrasts. We need a new non-blocking rankagg operator, which
incrementally draws tuples, as its input from the underlying sub-
tree, and generates top groups in the ranking order, as its output.
For efficiency, rankagg must minimize its consumption of input tu-
ples: Although in practice the cost formula can be quite complex
with many parameters, this input cardinality (i.e., number of tuples
consumed) is always an essential factor. As our metric, for a group
g with n tuples {t1, . . ., tn}, how “deep” into the group shall we
process, for determining the top-k groups? We refer to this number
of tuples consumed for g as its tuple depth, denoted Hg . Our goal
is thus to minimize the total cost of all groups, i.e., ΣgHg.

As the foundation of our work, while the new rankagg can be im-
plemented in different ways, what are the requirements and guide-
lines for any such algorithm? To minimize tuple consumption (i.e.,
to stop processing and to prune the groups early), what information
must we have and what is the criterion in such pruning? As tuples
flow from the underlying subtree, in what order shall rankagg re-
quest and process tuples? Is there an optimal tuple schedule that
minimizes the total tuple depths? We develop three fundamental
principles for determining provably optimal tuple schedule (Theo-
rem 1) that achieves the theoretical minimal tuple consumption: the
Upper-Bound Principle for early pruning, the Group-Ranking Prin-
ciple for asserting “inter-group” ordering, and the Tuple-Ranking
Principle for further deciding “intra-group” ordering. These princi-
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→ → → 95.12.13 824 rrr
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Figure 3: Relation R and some tuple orders.
ples guide our implementation of rankagg and determine its impact
to the underlying query tree. (The subtrees for tuple generation in
Figure 2(a) and (b) use different shapes to emphasize that rankagg
requires modifying the underlying operators such as scan and join.)

The following query is our running example. The input relation
R, with two attributes R.g and R.v, is shown in Figure 3(a). The
query groups by R.g, and our following discussion refers to those
R.g=1, 2, and 3 as group g1, g2, and g3, respectively. The query
specifies a ranking aggregate function F = G(T )=sum(R.v) and
k=1. Throughout this paper, we assume T is in the range of [0, 1].

Select R.g, SUM(R.v) From R
Group By R.g Order By SUM(R.v) Limit 1

2.1 Upper-Bound Principle
Our first principle deals with the requirements of early pruning:

what information must we have in order to prune? During process-
ing, before a group g is fully evaluated, the obtained tuples of g can
effectively bound its ultimate aggregate score. For a ranking aggre-
gate F = G(T ), we define FIg [g], the maximal possible score of g,
with respect to a set Ig of obtained tuples (Ig ⊆ g), as the upper-
bound score that g may eventually achieve, i.e., F [g] ≤ FIg [g].

The upper-bound score of a group thus indicates the best the
group can achieve. For our discussion, call the lowest top-k score
of the query as the threshold, denoted θ. (For instance, θ=F [g1]=2.2
in our running example.) Note that θ would not be known before
the processing ends. Given a group g, if its upper-bound score is
higher than or equal to θ, it has a chance to make into the top k
groups. To conclude that g does not belong to the top k and thus
prune it from further processing, the upper-bound score of g must
be below θ, otherwise we may incorrectly prune g that indeed be-
longs to the top k. Therefore the upper-bound score decides the
minimal number of tuples that any algorithm (that processes by ob-
taining tuples) must obtain from g before it can prune g. As stated
in the following property 1, this minimal tuple depth is the best-
possible goal of any algorithm, due to that pruning a group with
less obtained tuples can result in wrong query answers.

For the properties and theorems in this paper, we leave the details
of proofs in an extended version [25] of the paper and only provide
intuitive justification, as above.

Property 1 (Best-Possible Goal): With respect to a ranking ag-
gregate F = G(T ), let the lowest top-k group score be θ. For any
group g, let Hmin

g be its minimal tuple depth, i.e., the number of
tuples to retrieve from g before it can be pruned from further pro-
cessing, or otherwise determined to be in the top-k groups. The
Hmin

g is the smallest number of tuples from g that makes the max-
imal possible score of g to be below θ, i.e.,

Hmin
g = min{|Ig ||FIg [g] < θ, Ig ⊆ g}, (2)

or otherwise Hmin
g =|g| if such a depth does not exist.
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We emphasize that, as Property 1 implies, an algorithm must
have certain information about upper-bound score for pruning. Var-
ious algorithms may exploit various ways in computing FIg [g], re-
sulting in different pruning power, i.e., different Hmin

g . For an al-
gorithm that has no knowledge to derive a non-trivial upper-bound,
FIg [g] would be in its most trivial form, that is, infinity. Such
a trivial upper-bound cannot realize any pruning at all, since the
upper-bound score would never go below θ.

Property 2 (Must-Have Information): For any group g, with a
trivial upper-bound FIg [g]= +∞ under every Ig , Hmin

g =|g|.

Therefore we must look for a non-trivial definition of FIg [g]
in order to prune. Since we focus on aggregate functions G that
are max-bounded (which describes a wide class of functions, as
Section 1 defined), the maximal-possible score can be obtained by
Eq. 3 below, which simply substitutes unknown tuple scores with
their maximal value of T , denoted by TIg .

FIg [g] = G

(
{Ti|

Ti = T [ti] if ti ∈ Ig (seen tuples);
Ti = TIg otherwise (unseen tuples). ∀ti ∈ g}

)
. (3)

Example 2 (Maximal-Possible Scores): Consider our running ex-
ample F =G(T )=sum(R.v). Suppose the rankagg operator has
processed tuples r1 and r2; i.e., Ig1={r1}, Ig2={r2}, and Ig3=φ.
Suppose the exact size of every group is known a priori. As g1 has
seen only r1 with T [r1]=.7 and the two unseen tuples (its count is
3) can score as high as 1.0, F [g1] can aggregate to F [g1]≤sum(.7+
1.0×2)=2.7, or FIg1

[g1]=2.7. Similarly, FIg2
[g2]=sum(.3+1.0

×2)=2.3; FIg3
[g3]=sum(1.0×2)=2.0.

Note that Eq. 3 requires to know TIg and the count (size) of a
group, or at least an upper-bound of this count, to constraint the
number of unknown tuples. (For example, if 4 is used as the upper-
bound of g1’s size in Example 2, F [g1]≤sum(.7+1.0×3)=3.7.)
We refer to these values as the “grouping bounds”, consisting of
tuple count (|g|, the upper-bound of g’s size) and tuple max (TIg ).

Eq. 3 captures a class of definitions of maximal-possible score,
as different ways can be explored in getting the grouping bounds,
resulting in different FIg [g] and thus different Hmin

g . For instance,
using infinity to bound the tuple count or the tuple max results in
FIg [g] as infinity, with no pruning power. Given Eq. 3, for any
group g, the smaller |g| and TIg , the smaller FIg [g]. Therefore
the most pruning power, i.e., the smallest Hmin

g , is realized by the
exact group size and the exact highest T , as stated below.

Requirement 1 (Exact Bounding): With respect to a ranking ag-
gregate F = G(T ), let the lowest top-k group score be θ. Given the
definition of FIg [g] in Eq. 3, to obtain the smallest Hmin

g , we must
use |g|=|g| and TIg =max{T [ti] | ti ∈ g − Ig}.

Based on Requirement 1, our implementation choice of grouping
bounds is the exact count of a group as |g| and a value very close to
max{T [ti] | ti ∈ g − Ig} as T Ig . We justify this choice and show
how to obtain such grouping bounds in Section 3.1.1. Note that our
discussion of the following principles is orthogonal to the choices
of grouping bounds, which only result in different best-possible
tuple depth Hmin

g that our algorithm sets to achieve.

2.2 Group-Ranking Principle
Property 1 gives the minimal tuple depth Hmin

g for each g, thus
the minimal total cost ΣgHmin

g . The essence of Eq. 2 lies in that we
should stop processing a group as soon as it can be excluded from

top-k answers. That is, we should only further process a group if
it is proven to be absolutely necessary, i.e., its upper-bound score
above the threshold θ. While Eq. 2 hints on such “necessity”, it
does not suggest how to determine the necessity, because θ can
only be known at the conclusion of a query. Therefore we wonder,
as an algorithm retrieves tuples one by one, is there an optimal tuple
schedule that achieves the minimum depth?

A schedule is determined by inter-group and intra-group order-
ing. Our Group-Ranking principle asserts inter-group ordering:
When selecting the next tuple t to process, how to order between
groups? Which group should t be selected from? (While this
work defines such insight of “branch-and-bounding” for aggregate
queries for the first time, similar intuition has also been applied to
ordering individual tuples [6, 4, 26] in top-k queries.) Thus the
Group-Ranking Principle builds upon the basis that groups with
higher bounds must be processed further before others.

Such bounds guide our selection of the next tuple. Let’s illus-
trate with Example 2: The next tuple should be selected from g1.
Consider g1 vs. g2 (and similarly g3). If g1 will be the top-1, we
must complete its score. Otherwise, since FIg1

[g1] > FIg2
[g2],

whatever score g2 can achieve, g1 can possibly do better. Thus,
first, although g2 is incomplete, it may not be necessary for further
processing, since g1 may turn out to be the answer (i.e., g1 should
be processed before g2). Second, even if g2 were complete, it is
not sufficient to declare g2 as the top-1, since g1 may be a better
answer. In all cases, we must process the next tuple from g1.

The above explanation intuitively motivates the priority between
g1 and g2, for the special case when k=1. The Group-Ranking
Principle formally states this property, for general top-k (k ≥ 1)
situations (as aforementioned, proof in [25]), which mandates the
priority of current top k groups (i.e., g1) over others (i.e., g2).

Property 3 (Group-Ranking Principle): Let g1 be any group in
the current top-k ranked by maximal-possible scores F and g2 be
any group not in the current top-k. We have 1) g1 must be further
processed if g1 is not fully evaluated, 2) it may not be necessary
to further process g2 even if g2 is not fully evaluated, and 3) the
current top-k are the answers if they are all fully evaluated.

The Group-Ranking Principle guides our inter-group ordering
for query processing, by prioritizing on F . Essentially, the prin-
ciple states that, to avoid unnecessary tuple evaluations, our algo-
rithms must prioritize any incomplete g1 within the current top-k
over those g2 outside. Thus, first, as the progressive condition, to
reach the final top-k, any such g1 must be further processed (or else
there are no enough k complete groups to conclude as better than
g1). Second, as the stop condition, when and only when no such g1
exists, i.e., all top-k groups are completed, we can conclude these
groups as the final answers. Below we summarize this requirement.

Requirement 2 (Group Ordering): To avoid the unnecessary tu-
ple consumption, query processing should prioritize groups by their
maximal-possible score F :

• (Progressive Condition) If there are some incomplete groups g1

in the top-k, then the next tuple should be selected from such g1;
• (Stop Condition) Otherwise, we can stop and conclude the cur-
rent top-k groups as the final answers.

Example 3 (Sample Execution 1): For our example F = G(T ) =
sum(R.v), to find the top-1 group, Figure 4(b) conceptually exe-
cutes Requirement 2. (We discuss the corresponding Figure 4(a) in
Section 3.) We prioritize groups by F scores, initially (3.0, 3.0,
2.0), when no tuples in any group g are seen (Ig=φ) and thus
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limit k

rankagg

group-aware
scan

5.
4.
3.
2.
1.
0.

step

2.01.72.2*(r4, 2, .4)
2.02.3*2.2(r7, 1, .6)
2.02.32.6*(r5, 1, .9)
2.02.32.7*(r2, 2, .3)
2.03.0*2.7(r1, 1, .7)
2.03.03.0*initial

action [ ]1gF [ ]2gF [ ]3gF

R
(a) Query plan. (b) Tuple flow to rankagg.

S*: Top-1 score    S: Final score

Figure 4: Query execution 1: GroupOnly.

limit k

rankagg

group &
rank-aware

scan 4.
3.
2.
1.
0.

step

2.01.22.2*(r7, 1, .6)
2.01.22.3*(r1, 1, .7)
2.01.22.7*(r4, 2, .4)
2.03.0*2.7(r5, 1, .9)
2.03.03.0*initial

action [ ]1gF [ ]2gF [ ]3gF

R
(a) Query plan. (b) Tuple flow to rankagg.

S*: Top-1 score    S: Final score

Figure 5: Query execution 2: GroupRank.

T Ig =1.0 in Equation 3. As the Progressive Condition dictates,
we always choose the top-1 group (marked *) for the next tuple,
thus accessing r1 from g1, r2 from g2, . . ., and finally r4 from
g2. Now, since the top-1 group g1 is completed (with final score
F [g1]=F [g1]=2.2), the Stop Condition asserts no more processing
necessary, and thus we return g1 as the top-1.

2.3 Tuple-Ranking Principle
Our last principle addresses the intra-group order: When we

must necessarily process group g (as the Group-Ranking Principle
dictates), which tuple in g should we select? This tuple ordering,
together with the group ordering just discussed, will determine a to-
tal schedule of tuple access for the rankagg operator (Figure 2(b)).

To start with, we note that different tuple orders result in different
cost efficiency, in terms of tuple depth of each group. Given a tuple
order α for group g, what would be the resulting tuple depth Hα

g

that must be accessed? Recall in Example 3 we order tuples arbi-
trarily by tuple IDs (see relation R in Figure 3(a)), i.e., group g1 as
x1:r1→r5→r7, g2 as x2:r2→r4→r8, and g3 as x3:r3→r6. These
orders result in depths Hx1

g1 =3 (i.e., all of r1, r5, r7 accessed),
Hx2

g2 =2, Hx3
g3 =0, as Figure 4(b) shows. To contrast, Example 4

below shows how different tuple orders result in different depths.

Example 4 (Sample Execution 2): Rerun Example 3 but with tu-
ple orders as sorted by tuple scores T =R.v in each group, thus
ordering g1 as d1:r5→r1→r7, g2 as d2:r4→r2→r8, and g3 as
d3:r3→r6. These descending orders, together with Requirement 2,
result in the execution of Figure 5(b). (Again, Figure 5(a) is dis-
cussed in Section 3.) Note that, for each group, the descending
order sorted by T effectively bounds the T -score of unseen tuples
by the last-seen T -score. Thus, for group g1, after r5 at step 1
with T [r5]=r5.v=.9, F [g1]=0.9+0.9×2 (for 2 unseen tuples)=2.7.
Then, after r1 in step 3, F [g1]=0.9+0.7+0.7×1 (for 1 unseen tuple)
= 2.3. In this execution, each group is accessed to depth Hd1

g1 =3,
Hd2

g2 =1, and Hd3
g3 =0. In particular, group g2 has a depth Hx2

g2 = 2
and Hd2

g2 = 1 (out of 3), and thus d2 is a better order than x2.

To minimize the total costs (as the sum of tuple depths), how do
we find the optimal order α for each group g such that Hα

g =Hmin
g ?

Apparently, this “space” of orders seems prohibitively large: If

there are n tuples in each of the m groups, as each group has n!
permutations, there will be (n!)m different orders. Thus, our Prop-
erty 4, or the Tuple-Ranking Principle, addresses this tuple ordering
issue. It has two main results:

First, order independence: To find the optimal orders, shall we
consider the combinations among the orders of different groups? It
turns out that, if we follow Requirement 2 for group ordering, the
optimal tuple order of each group is independent of all others. That
is, the tuple depth of a group g depends on only its own order α.

To see why, let’s consider g2 in Figure 4 and 5. As Requirement 2
dictates, by the Progressive Condition, we only necessarily access
a next tuple from the group, when and only when F [g2] remains in
the top-k (k=1 in this case). The execution halts, as the Stop Con-
dition asserts, when the top-k groups are completed and “surfaced”
to the top, at which point F [g2]<θ and thus no longer needs fur-
ther processing. Thus, in Figure 4, with tuple order x2:r2→r4→r8,
F [g2] progressively lowers its upper bounds as 3.0

r2→2.3
r4→1.7, at

which point it stops, because 1.7<2.2, or 1.7<θ. To contrast, in
Figure 5, the tuple order d2 results in 3.0

r4→1.2, where it stops as
1.2<θ. While the different orders result in different depths Hx2

g2 =2
and Hd2

g2 =1, both are the “smallest” depths (under the respective
orders) that make F [g2] go below θ– which are dependent on only
the tuple order of g2 and independent of others.

Second, T -based Ranking: While groups are independent, for
each group, what orders α as t1→· · ·→tn, out of the n! permu-
tations (for a group of n tuples), should we consider? As just ex-
plained above, a better order (e.g., d2 vs. x2) of g will decrease
the upper bounds F [g] more rapidly to go below θ with less tuple
accesses. What orders can achieve such rapid decreasing?

As the upper bounds F are defined by Eq. 3, the answer naturally
lies there. There are two components in the equation: 1) the scores
T [ti] of the seen tuples ti in Ig , and 2) the upper bound TIg of
the unseen tuples. Intuitively, first, a good order can lower the seen
scores, by accessing tuples with the smallest T . Second, it can
also lower the upper bounds of those unseen, by retrieving tuples
from high T to low, where the unseen are bounded by the last-seen
tuple (as in Example 4). Following this intuition, we only need to
consider T -desc/asc, a class of orders that always choose either the
highest or the lowest from the unseen tuples as the next. That is,
any other order must be inferior to some order in this class.

Property 4 formalizes the two results (proof in [25]), with our
intuitive explanation above.

Property 4 (Tuple-Ranking Principle): With respect to a rank-
ing aggregate F =G(T ), let the lowest top-k group score be θ. For
any group g, let Hα

g be the tuple depth with respect to tuple order
α:t1→· · ·→tn, when the inter-group ordering follows Require-
ment 2.

• (Order Independence) The depth Hα
g depends on only α (the

order of this group) and θ (the global threshold), and not on the
order of other groups. Specifically, Hα

g is the smallest depth l of
sequence α that makes the the maximal possible score of g to be
below θ, i.e.,

Hα
g = minl∈[1:n]

{l|F {t1 ,...,tl}[g] < θ}, (4)

or otherwise Hα
g =n if such a depth does not exist.

• (T -based Ranking) To find the optimal order α that results in
the minimum Hα

g , i.e., Hα
g =Hmin

g , we only need to consider the
class of orders T -desc/asc =

{α : t1 → · · · → tn|
either T [ti] ≥ T [tj ]∀j > i (from top);
or T [ti] ≤ T [tj ]∀j > i (from bottom). ∀ti}. (5)
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To conclude, we summarize the implementation implications of
the Tuple-Ranking Principle as Requirement 3, which guides our
design of a processing model for finding the optimal tuple ordering.

Requirement 3 (Tuple Ordering): If Requirement 2 is followed,
to minimize the total tuple depths across all groups: 1) the order
of each group can be optimized independently; and 2) the optimal
order is one from T -desc/asc, that results in the minimum Hα

g as
governed by Eq. 4.

2.4 Putting Together: Overall Optimality
Together, the Upper-Bound Principle dictates the best-possible

goal and the must-have information (the maximal-possible score)
in early pruning for any algorithm; based on the maximal-possible
score, the Group-Ranking and Tuple-Ranking Principles guide the
tuple scheduling for our rankagg operator to selectively draw from
the underlying query tree (Figure 2(b)). We stress that, as the fol-
lowing Theorem 1 states, the Group-Ranking and Tuple-Ranking
Principles enable the finding of an optimal tuple schedule which
processes every group minimally, thus achieving an overall mini-
mum tuple depth ΣgHmin

g (i.e., the best-possible goal) with respect
to some upper-bound mechanism FIg [g]. While we provide proof
in [25], we note that Requirement 2 determines an inter-group or-
der that only accesses a group when necessary, and Requirement 3
further leads to a “cost-based” optimal intra-group order for each
group, with a significantly reduced space of only T -desc/asc orders.

Theorem 1 (Optimal Aggregate Processing): If query processing
follows Requirements 2 and 3, the number of tuples processed
across all groups, i.e., ΣgHg , is the minimum possible for query
answering, i.e., ΣgHmin

g .

3. EXECUTION FRAMEWORK AND
IMPLEMENTATIONS

The principles developed in Section 2 provide a guideline in re-
alizing the new model of execution plans in Figure 2(b). In this
section, we propose an execution framework for applying the prin-
ciples (Section 3.1). We address the challenges in implementing
the new rankagg operator (Section 3.2) and discuss its impacts to
the existing operators (Section 3.3).

3.1 The Execution Framework
We design a framework to apply the principles. The frame-

work consists of two orthogonal components. The first component
provides the grouping bounds, which define the maximal possible
score FIg [g], the must-have information according to the Upper-
Bound Principle. The second component schedules tuple process-
ing based on the grouping bounds by exploiting the Group-Ranking
and Tuple-Ranking Principles. The two components are orthogo-
nal because the Grouping-Ranking and Tuple-Ranking principles
are applicable to any grouping bounds, from which the only im-
pact is that different bounds result in different best-possible tuple
depth Hmin

g that can be achieved by tuple scheduling. Below we
discuss how to obtain the grouping bounds (Section 3.1.1), how to
implement the Tuple-Ranking Principle (Section 3.1.2), and how
to implement the Group-Ranking Principle and how to enable new
group-aware and rank-aware query plans that apply the principles
(Section 3.1.3). Finally, we discuss variations of the querying plans
that are applicable under various situations (Section 3.1.4).

3.1.1 Obtaining Grouping Bounds: Exploiting Upper-
Bound Principle

Based on Requirement 1, the smallest Hmin
g with respect to

Eq. 3 is obtained by the tightest grouping bounds, i.e., the exact

tuple count and the highest unseen tuple value. In our framework
we aim at using this tightest bounds for maximal pruning.

With respect to the tuple max, the tightest bound TIg =max{T [ti]
| ti ∈ g−Ig} is impossible to obtain though. The reason is simply
that, without actually seeing the unseen tuples, we cannot know the
exact highest value among them. However, we can obtain a value
that is very close to it. For instance, if the tuples in g are retrieved
in T -desc/asc order, the T value of the last seen tuple from the top
end bounds the value of the unseen tuples. Before any member
tuple of g is retrieved, TIg has an initial value Tg , which is the
maximum-possible value of T among all the tuples in g. A tight
T g can be obtained either by application semantic (e.g., according
to the definition of T ), or by the indices that are pervasively built
upon base tables and materialized views in OLAP environment. It
can be either global (e.g., using the overall highest T value accord-
ing to the index), or group-specific (e.g., using multi-key index over
the grouping attribute and the attributes involved in T .)

With respect to the tuple count, the tightest bound (i.e., the exact
size of a group), |g|=|g|, provides the most pruning power. Looser
bounds can be also obtained. For example, we may use the size
of a base table to bound the size of any base table group, and the
product of base table group sizes to bound the joined group size (by
assuming full join, i.e., Cartesian product). However, such upper-
bounds are very loose and are unlikely to realize early pruning. We
note that any efficient method to compute a tight upper-bound of
the count can be plugged into our framework as another choice of
the tuple count. Below we discuss how to obtain the exact tuple
count |g|=|g|. There are three situations:

• Counts ready: In decision support, although the ranking aggre-
gate function G(T ) can be very ad-hoc, the join and grouping
conditions are largely shared across many related queries, as mo-
tivated in Section 1. In such an environment, materialized views
are built based on the query workload to cover frequently asked
query conditions. As a very basic aggregate function in OLAP, the
count of each group is thus often ready through the materialized
views, e.g., in data cube.

• Counts computed from materialized information: In certain
cases, the counts are not directly ready, but can be efficiently ob-
tained by querying the materialized views [17, 32, 11, 1, 28]. For
example, for a top-k aggregate query with selection conditions in-
volving some dimensional attributes (e.g., May≤month≤June),
a group (e.g., city=‘Chicago’) corresponds to the aggregate of
multiple underlying groups (e.g., (city=‘Chicago’, month=May)
and (city=‘Chicago’, month=June)). Its size can thus be ob-
tained by aggregating upon the materialized views (e.g., the view
containing the count of each (city, month) group).

• Counts computed from scratch: When counts cannot be directly
or indirectly obtained, we have to compute it from scratch. That
is, we replace the ranking function F = G(T ) by count(∗) and
remove the ORDER BY and LIMIT clauses. The resulting query
(let’s call it count query) is executed by any traditional approach
to obtain the counts. For instance, the count query corresponding
to our running example is

Select R.g, COUNT(∗) From R Group By R.g

In Section 4, our experimental results show that our approach is
orders of magnitude more efficient than the materialize-group-sort
approach when counts are available. When we have to compute the
counts from scratch (or similarly from materialized views), the cost
of the first single query is comparable to that of materialize-group-
sort. More importantly, the resulting counts can be materialized
and maintained to benefit many subsequent related ad-hoc queries,
thus the cost of computing the counts is amortized.
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(a)Uniform distribution in [0 : 1]. (b)Normal distribution µ=0.5, σ=0.3. (c)Exponential distribution λ=1. (d)Gamma distribution α=0.5, β=0.5.

Figure 6: Number of tuples retrieved by random(r), ascending (a), descending (d), and optimal (o) order to get the same or lower
upper-bound as descending order.

3.1.2 T -descending Heuristic: Implementing Tuple-
Ranking Principle

As Requirement 3 states, we only need to consider the class of T -
desc/asc orders for finding an optimal tuple order of a group. Such
orders retrieve the tuples from only the top and bottom ends with
respect to the value of T , thus exploit T -based ranking to either
reduce the seen scores or the upper bound of those unseen. Based
on the intuition of retrieving tuples from two ends, we thus consider
two simple heuristics of choosing intra-group order, each of which
produces a representative case of T -desc/asc, for α: t1→· · ·→tn.
1. T -descending: Always choose the tuple with the highest T -

score as the next, i.e., T [t1]≥· · ·≥T [tn].
2. T -ascending: Always choose the tuple with the lowest T -score

as the next, i.e., T [t1]≤· · ·≤T [tn].

Example 5 (Tuple Orders): Consider group g2 in our example.
Figure 3(b) shows four example orders: descending, ascending, hy-
brid, and random. The descending and ascending are special cases
of T -desc/asc, hybrid is another instance in T -desc/asc, and ran-
dom is an order that does not belong to T -desc/asc. For each order,
the figure shows how F [g2] changes in sequence, e.g., descend-
ing decreases F as 3, 1.2, 1, .95 (the final score). By comparison,
descending is the best order, which lowers F most rapidly.

We choose T -descending as our implementation heuristic. We
show that T -descending in practice is often the best choice for typ-
ical score distributions (e.g., uniform and normal) and aggregate
functions (e.g., sum and avg). In Figure 6 we empirically compare
T -ascending (a), T -descending (d), the random order (r), and the
optimal order (o) which results in Hmin

g . The tuple score T [ti]
within a group g of n=10, 000 tuples are generated by various dis-
tributions, in the range of [0, 1]. The aggregate function is sum.
(The results for avg are similar.) Suppose the maximal-possible
score is f after |Id

g | tuples are retrieved by d. Ranging |Id
g | from

1 to n (x-axis), we compare |Ia
g |, |Id

g |, |Ir
g |, and |Io

g |(y-axis), the
number of retrieved tuples by a, d, r, and o, respectively, to get
their maximal-possible scores lower than or equal to f . The curve
for T -descending is the diagonal since it is the reference order. The
figure shows that (1) T -descending in most cases overlaps with the
optimal order, justifying our implementation heuristic; and (2) the
random order is always worse than others, verifying that simply
choosing any order is not appropriate.

There are data distributions where T -descending is worse than
other orders. For instance, let’s change g2 to g′

2 in Figure 3(b),
which shows four example orders for both g2 and g′

2. Now, T -
ascending is the best order, by getting low scores from the bot-
tom(i.e., r8.v=0). In general, in a dataset, if many tuples are in the
high score end, T -descending at the beginning cannot effectively
lower the upper-bound of unseen tuples, resulting in low efficiency.

Note that more sophisticated heuristic may be applied in deter-
mining intra-group tuple order. For instance, a heuristic can indeed

retrieve both the high and low score ends, by determining to re-
trieve from top or bottom based on the distribution of seen data.
Such heuristic would require complex implementation and bring
more overheads, for ranking on both ends and the analysis of data
distribution. More seriously, such greedy algorithm based on the
seen data may led to local optimum. For instance, if there are sev-
eral tuples with the same score clustered at the high score end, such
heuristic may determine that retrieving tuples from the top end can-
not reduce the upper-bound of the unseen tuples, thus will only
retrieve from the bottom end. However, it may turn out that tuple
scores decrease rapidly after those with the same score, thus retriev-
ing from the top end can be much better in the long run. Compared
with such heuristic, T -descending is much simpler and empirically
almost as good as the optimal order, as discussed above.

3.1.3 Group-Aware and Rank-Aware Plans: Exploit-
ing Group- and Tuple-Ranking Principles

To exploit the Group-Ranking Principle, our proposed new rank-
agg operator (Figure 2(b)) explicitly controls the inter-group or-
dering. Instead of passively waiting for the underlying subtree to
fully materialize all the groups, the rankagg operator actively de-
termines the most promising group g according to the maximal-
possible scores of all valid groups, and draws the next tuple in g
from the underlying subtree. (By Requirement 2, any current top-k
incomplete group can be such g to request.) When the most promis-
ing group is complete, its aggregate is returned as a query result.
Therefore, the groups are always output from the rankagg operator
in the ranking order of their aggregates, eliminating the need for
the blocking sorting operator in Figure 2(a).

This “active grouping” is a clear departure from the materialize-
group-sort scheme and it requires changing the interface of oper-
ators. Specifically, we change the GetNext method of the iterator
to take g as a parameter. Our operators are thus group-aware so
that grouping is seamlessly integrated with other operations. Re-
cursively starting from the rankagg operator, an upper operator in-
vokes the GetNext(g) methods of its lower operators, providing the
most promising group g as the parameter. For a unary operator, the
same g is passed as the parameter to its lower operator. For a binary
operator such as join, g is decomposed into two components g′ and
g′′ and are passed as the parameters to the left and the right child
operators, respectively. In response, each operator sends the next
output tuple from the designated group g to its upper operator.

To enforce the T -descending heuristic (Section 3.1.2), the query
tree underlying rankagg must be rank-aware as well. For this pur-
pose, we leverage the recent work on ranking query processing [23,
26]. However, we must address the challenges in satisfying group-
awareness and rank-awareness together.
Example 6: Consider again Example 3. Figure 4 illustrates (a) a
group-aware plan which we call GroupOnly and (b) its execution.
The group-aware scan operator can produce tuples from the group
designated by the rankagg operator above it. The tuples within each
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group are produced in their on-disk order. To contrast, Figure 5
illustrates (a) a plan that is both group-aware and rank-aware which
we call GroupRank and (b) its execution. The group- and rank-
aware scan operator in this plan produces tuples in the descending
order of R.v within each group. The executions of these two plans
are already explained in Examples 3 and 4. Note that GroupOnly
does not exhaust the tuples in g2 and does not touch the tuples in
g3 at all. GroupRank takes even fewer steps than the GroupOnly
plan, by exploiting order within groups.

3.1.4 Variations of Query Plans: Trading off Group-
and Rank-Awareness

The group- and rank-aware query plans can be much more effi-
cient than traditional plans. We call them GroupRank plans (e.g.,
Figure 5(a)). However, there can be situations under which these
plans are inapplicable or inefficient, therefore we propose vari-
ations of plans. These variations cover many different applica-
ble situations, thus serve as a robust solution that provides better
strategies than the traditional approach. Moreover, both group-
awareness and rank-awareness can bring overhead, respectively.
For example, to enable rank-aware join, we adapt techniques in
recent work [23], where the join operator buffers the joined tuples
in ranking queues. Maintaining the ranking queues can bring sig-
nificant overheads or even offset the advantages of processing joins
incrementally. Therefore the variations provide ways to trade off
their overheads. We study the performances of these plans in Sec-
tion 4. However, we leave the problem of optimizing among mul-
tiple applicable plans as our future topic.

First, GroupOnly plans (e.g., Figure 4(a)), where the operators
are group-aware but not rank-aware. The rankagg operator still gets
the next tuple from the most promising group, but in arbitrary order
within each group. Such plans are applicable when ranking on T
cannot be efficiently supported. For example, ranking processing
techniques require monotonic T [23] or splitting and interleaving
T [26], which may not be applicable in certain situations.

Second, RankOnly plans where the operators are rank-aware only.
Instead of telling the underlying operator the designated group, the
rankagg operator gets interleaved tuples from all groups and orders
the groups by their aggregate scores.

Finally, GroupRank-ε (0 ≤ ε ≤ 1) plans which are the same as
GroupRank except that the join operators output tuples out-of-order,
while at the same time not in arbitrary order. Since full ranking
can be expensive, we experiment with approximations, which trade
ranking overhead with precision of tuple ranking. In a GroupRank-ε
plan, upon the request of sending the next tuple from a given group,
a join operator outputs the top tuple t in its ranking queue for that
group if ubt ≥ ub × ε, where ubt is the upper-bound of t and ub
is the upper-bound of the unseen tuples. The greater value between
ubt and ub is reported to the upper operator as the upper-bound
of any future tuples to be reported. Note that the scan operators
in GroupRank-ε are still rank-aware and group-aware. It is clear
GroupRank is actually an extreme case, GroupRank-1. As another
extreme case, in GroupRank-0, a join operator outputs the top tuple
in the ranking queue of a group whenever the queue is not empty.
Note that GroupRank-0 is not a GroupOnly plan as all seen tuples in
the ranking queue are still ordered.

3.2 Implementing the New rankagg Operator
The iterator interface for rankagg is shown in Figure 7. The

rankagg operator maintains a priority queue storing the upper-bounds
of groups that are not output yet. Note that the priority queue
in rankagg and the ranking queues in the group- and rank-aware
join operators serve different purposes. While the ranking queues

1: //input: the underlying operator.
2: //k: the requested number of groups.
3: //q: the priority queue of groups.
4: //g.obtained: the number of obtained tuples in g, i.e., |Ig|.
5: //g.count: the size of g.

Procedure Open()
1: input.Open(); q.clear()
2: for each group g do
3: init ub(g); q.insert(g)
4: return

Procedure GetNext()
1: while true do
2: if k==0 ∨ q.isEmpty() then
3: Close()
4: return
5: g ← q.top()
6: if g.count==g.obtained then
7: finalize ub(g); k ← k − 1
8: return g
9: t ← input.GetNext(g); update ub(g,t); q.insert(g)

Procedure Close()
1: input.Close(); q.clear()
2: return

Figure 7: The interface methods of rankagg.

1: //g.ub: the maximal-possible score of a group g, i.e., FIg [g].
2: //g.sum: the sum of T for obtained tuples in g.
3: //TIg : the maximal-possible value of T among g’s unseen tu-

ples, retrieved in T -descending order.
4: //T g: the initial T Ig when no tuple is obtaind.

Procedure init ub(g)
1: g.sum ← 0; g.obtained ← 0
2: T Ig =T g

3: g.ub = g.count × T Ig

4: return
Procedure update ub(g,t)
1: g.sum ← g.sum + T [t]
2: g.obtained ← g.obtained + 1
3: T Ig =T [t]

4: g.ub ← g.sum + (g.count − g.obtained) × T Ig

5: return
Procedure finalize ub(g)
1: //nothing needs to be done
2: return

Figure 8: The upper-bound routines for G=sum.

in joins are used to buffer tuples for providing ranking access to
the tuples, the priority queue is used for efficiently maintaining
the current top group dynamically. The rankagg always gets the
next tuple from the top group in the priority queue and updates its
upper-bound. When the top group is complete, it is guaranteed to
be the best among those in the queue, thus can be reported. (In
RankOnly plans, a hash table instead of priority queue is used to
give fast access to the upper-bounds. An iteration through the hash
table is performed periodically and the top group is output when it
is complete.) Below we discuss how to maintain the routines for
upper-bound computation and how to manage the priority queue.

Upper-Bound Computation: For a ranking aggregate F =G(T ),
the maximal-possible score of a group g with obtained tuples Ig ,
FIg [g], can be computed by Eq. 3. Starting from the initial upper-
bound, we must keep updating FIg [g] when tuples are incremen-
tally obtained. When the last tuple from g is obtained, FIg [g] be-
comes the aggregate value F [g]. This description clearly indicates
that the upper-bound itself can be maintained by an external aggre-
gate function. (Let’s call it upper-bound routine.) For example, in
PostgreSQL, a user-defined aggregate function is defined by an ini-
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Figure 9: Priority queue.
tial state, a state transition function, and a final calculation function.
Therefore for the G in a ranking aggregate query F =G(T ), the cor-
responding upper-bound routines consist of init ub, update ub, and
finalize ub. They are invoked in the interface methods of rankagg
(Figure 7). Such routines can be pre-defined if G is a built-in func-
tion. For example, Figure 8 illustrates the upper-bound routines for
G=sum. As an alternative, in GroupOnly plans, the upper-bound
in the update db procedure should become g.ub←g.sum+(g.size-
g.count)×T g . When G is a user-defined aggregate function itself,
the upper-bound routine is defined by straightforward adaptation of
the utilities (initialization, state transition, final calculation) of G,
mainly to substitute the value of unknown tuples with TIg . We
omit further discussion of these details.

Efficient Ranking Priority Queue Implementation: For a rank-
ing aggregate query, the total number of groups can be huge al-
though only the top k groups are requested. For example, joining
three tables with 1, 000 groups on each table can potentially lead
to 1 billion joined groups. Managing the upper-bounds of the huge
number of groups by a simple priority queue implementation can
thus bring significant overhead.

We address this challenge from two aspects, illustrated by our
new priority queue in Figure 9. First, we populate the priority
queue incrementally. It is necessary to insert a group into the prior-
ity queue only when its maximal-possible score is among the cur-
rent top-k, by Requirement 2. By using a global tuple max (the
overall highest T value across all groups), the tuple count effec-
tively determines the initial maximal-possible score of every group,
based on Eq. 3. Therefore the groups can be incrementally inserted
from higher to lower counts, utilizing the index on the tuple count.
Such index over summary tables is extensively built and utilized
in decision support. Moreover, there are techniques (e.g., [27]) for
getting the groups with the largest sizes (incrementally). Second,
when the (incrementally expanding) priority queue does become
too big to fit in the memory, we use a 2-level virtual priority queue
q consisting of (1) an in-memory priority queue q′ (implemented
by the heap algorithm), and (2) a set of in-memory buffer blocks of
sorted lists and a set of on-disk sorted lists.

Initially, only the first batch of groups (1, 000 in our experi-
ments) with the largest counts are inserted into q′. Whenever q′

is full, it is emptied and its elements are converted into a sorted list
(ordered by upper-bounds), of which the first top block is kept in
buffer and the rest is sent to the disk. When a request is issued to
get the top element (group) from q, the top elements from q′ and
from every buffer block are compared and the overall top group is
returned. When a buffer block is exhausted, the next block from the
corresponding sorted list is read from the disk into the buffer. If the
top group is complete, it is returned as a query result, otherwise the
next tuple from the group is obtained to update its upper-bound and
the group is inserted back to q. It is possible the upper-bound of the
top group becomes smaller than that of the group with the largest
size among those that are not inserted. Under such situation, the
next batch of groups are inserted into q′.

With the new priority queue, only the top groups (which are more
likely to remain at the top) are kept in memory, in analogy to vari-
ous cache replacement policies. Moreover, many groups may have
initial upper-bounds smaller than the top-k threshold θ, thus may
even never be necessarily touched when the top k answers are ob-
tained. Therefore our concern with the potentially huge number of
groups is addressed, as verified by the experiments in Section 4.

3.3 Impacts to Existing Operators
In this section we discuss the impacts of rankagg to other query

operators, scan and join in particular.
Scan: To be group-aware, the new scan operator must access the
next tuple in the group g requested by its upper operator. In [22],
a round-robin index striding method was introduced to compute
on-line aggregates with probabilistic guarantees. Our scan opera-
tor adopts the index striding technique. Multiple cursors, one per
group, are maintained on the index to enable such striding. A cursor
is advanced whenever a tuple is obtained from the cursor. However,
there are two important differences: (1) in our case, index retrieval
is governed by the dynamically designated group instead of fixed
weights; and (2) to access tuples within each group in the descend-
ing order of T , i.e., to be rank-aware, we build multi-key index, by
using the grouping attribute as the first key and the attribute in T as
the second key. For example, for the following query:

Select R.g, S.g, SUM(R.v+S.v) From R, S
Group By R.g, S.g Order By SUM(R.v+S.v) Limit 1,

a multi-key index on (R.g, R.v) can be used for accessing R and
another index on (S.g, S.v) for S. (Similarly when there are multi-
ple grouping attributes on a table.) Note that we do not discuss how
to select which indices to build, as such index selection problem has
been studied before (e.g., [18]) and is complementary to our tech-
niques. When index on a table is unavailable, we have to scan the
whole table and build a temporary index or search structure.
Join: For group-awareness, when a join operator is required to pro-
duce a tuple of group g, it outputs such a tuple from its buffer when
available, otherwise it recursively invokes the GetNext(g′) and Get-
Next(g′′) methods of its left and right input operators, respectively.
For instance, for the above query, suppose a join operator that joins
R and S is requested by rankagg to output the next tuple from a
group (R.g=1, S.g=2). The join operator directly returns a joined
tuple from its buffer when available. Otherwise, it requests the next
tuple with R.g=1 from R or the next tuple with S.g=2 from S.

To be rank-aware, the join operator must output joined tuples in
the order with respect to T , e.g., R.v+S.v. We adopt the HRJN al-
gorithm [23]. The algorithm maintains a ranking priority queue
(not to be confused with the priority queue in Section 3.2) for
buffering joined tuples, ordered on their upper-bound scores. The
top tuple from the queue is output if its upper-bound score is greater
than a threshold, which gives an upper-bound score of all unseen
join combinations. Otherwise, the algorithm continues by reading
tuples from the inputs and performs a symmetric hash join to gen-
erate new join results. The threshold is continuously updated as
new tuples arrive. In the new implementation, we manage multiple
ranking queues, one for each joined group and use a hash table to
maintain the pointers to each ranking queue. In GroupOnly plans,
the join operator uses a FIFO queue instead of priority queue to
buffer join results (thus HRJN becomes the hash ripple join [19]).

4. EXPERIMENTS
4.1 Settings

The proposed techniques are implemented in PostgreSQL. The
experiments are conducted on a PC with 2.8GHz Intel Xeon SMP
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Figure 10: Performance of different execution plans.
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(dual hyperthreaded CPUs each with 512KB cache), 2GB RAM,
and 260GB RAID5 array of 3 SCSI disks, running Linux 2.6.9.

We use a synthetic data set of three tables (A, B, C) with the
same schema and similar size. Each table has one join attribute jc,
one grouping attribute g and one attribute v that is aggregated. For
each tuple, the three attribute values are independently generated
random numbers. In each base table, the values of v follow the
uniform distribution in the range of [0, 1]. The number of distinct
values of j is 1

j , where j is a configurable parameter capturing join
selectivity. The values of j follow the uniform distribution in the
range of [1, 1

j ]. The number of distinct values of g is g, i.e., g cap-
tures the number of groups on each table. For example, when g=10,
the maximal number of joined groups over ABC is g3=1, 000. The
number of tuples corresponding to each distinct value of g follows
normal distribution, with average s, i.e., s is the average size of
base table groups.

We use the star-join query Q in Section 1. We compare five ex-
ecution plans, Traditional, RankOnly, GroupOnly, GroupRank (i.e.,
GroupRank-1), and GroupRank-0. They have the same plan struc-
ture that joins A with B and then with C. Traditional is an instance
of the materialize-group-sort plan in Figure 2(a). It uses sort-merge
join as the join algorithm and scans the base tables by the indices
on the join attributes. The RankOnly, GroupOnly, GroupRank, and
GroupRank-0 use the new rankagg operator. Moreover the join and
scan operators in these plans are group-aware and/or rank-aware,
as described in Section 3.1.4. We executed these plans under var-
ious configurations of four parameters, which are the number of
requested groups (k), the number of groups on each table (g), the
average size of base table group (s), and the join selectivity (j). We
use gWsXkY jZ to annotate the configuration g=10W , s=10X ,
k=10Y , and j=10−Z .

4.2 Results
We first performed 4 sets of experiments. In each set, we var-

ied the value of one parameter and fixed the values of other three
parameters, among k, g, s, and j. The plan execution time un-
der these settings is shown in Figure 10. (Both x and y axes are in
logarithmic scale.) The figure clearly shows that our new plans out-
performed the traditional plan by orders of magnitude. Traditional is

only comparable to the new plans when there are not many groups,
the group size is small, many results are requested, and joins are
very selective. RankOnly is as inefficient as Traditional. It did
not finish after running for fairly long under some configuration
(g=10, 000 in Figure 10(a)) and is excluded from Figure 10(c) for
the same reason. As an intuitive explanation, if the top-1 group
has a member tuple that is ranked at the last place, all the groups
must be materialized in order to obtain the top-1 group. This in-
dicates that being rank-aware itself [23, 26] does not help to deal
with top-k aggregate queries.

The differences among the new plans are not obvious in Fig-
ure 10(a)(b)(d) because Traditional and RankOnly are too far off
the scale. However, Figure 10(c) clearly illustrates their differ-
ences. In Figure 12, we further compare GroupOnly, GroupRank
and GroupRank-0 under the 8 configurations in Figure 10(c)(d).
For each plan, we show the ratio of its execution time to the execu-
tion time of GroupRank. The results show that GroupOnly in many
cases is better than GroupRank, verifying that the ranking overhead
can offset the advantages of group-awareness in certain cases. On
the other hand, the performance is much improved when we reduce
the ranking overhead, as GroupRank-0 almost always outperformed
GroupOnly and GroupRank.

We further analyze these plans by comparing the output cardi-
nalities of their operators. Figure 11 reports the comparisons under
two configurations. The results for other configurations are simi-
lar. As it shows, Traditional enforces full materialization. RankOnly
was not able to reduce the cardinalities and further incurred rank-
ing overhead, which explains why it is even worse than Traditional
in many cases. GroupOnly reduced the cardinalities significantly
by partial consumption of base tables and partial materialization of
join results. GroupRank produced less join results than GroupOnly
because of rank-awareness. However, it also consumed more base
table inputs because join operators must buffer more inputs to pro-
duce ranked outputs (the ranking overhead). Finally, GroupRank-0
balanced the benefits and overhead of rank-awareness, as explained
in Section 3.1.4. Therefore it consumed less number of base table
inputs, although produced some more join results.

To further study the tradeoff in being rank-aware, we show the
performance of GroupRank-ε in Figure 13 by ranging ε from 0 to 1.
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Figure 15: The cost of computing counts from scratch.
Note that GroupRank and GroupRank-0 are extreme cases for ε=1
and 0, respectively. Interestingly none of them is the best, which
indicates the choice of ε should be captured by query optimizer.

We verify that managing the priority queue of rankagg (Sec-
tion 3.2) does not require significant overhead, although the total
number of groups can be potentially huge. In Figure 14, we com-
pare the number of joined groups touched by GroupRank-0 and
Traditional under the 11 distinct configurations from Figure 10. (We
count a group as “touched” if at least 1 tuple from the group is pro-
duced during the plan execution. Therefore the touched groups are
maintained by the priority queue and the top k groups come from
the touched groups.) The results show that most of the groups never
need to be touched by the new plans, therefore it is not expensive
to maintain the priority queue. Figure 14 also clearly illustrates
why the new plans outperform Traditional, together with Figure 11.
While Traditional processes every group and every tuple in each
group due to its nature of full materialization, our new plans save
significantly by the early pruning resulting from the group-ranking
and tuple-ranking principles.

Our framework requires tuple count, which can be obtained as
discussed in Section 3.1.1. Specifically, when the tuple count must
be computed from scratch by a count query, the cost of answer-
ing one ranking aggregate query consists of the cost of the cor-
responding count query and executing the new query plan based
on the obtained counts. In Figure 15, we compare the costs of
Traditional and the count query under 8 configurations from Fig-
ure 10. Note that k is irrelevant in this experiment since Traditional
generates the total order of all groups and the count query gen-
erates the count of every group. (There are overlapping configu-
rations in Figure 10(a)-(d) when k is ignored, resulting in totally
8 distinct configurations.) The results verify that computing the
count query is slightly cheaper than the original ranking aggregate
query. Since our new query plans are orders of magnitude more ef-
ficient than the traditional plan, the total cost of a count query and
a new plan is comparable to, or even cheaper than, that of the tra-
ditional plan. More importantly, the materialized tuple counts are
then used by the future related ranking aggregate queries that share
the same Boolean conditions with the original query (scenario 1 in
Section 3.1.1), or of which the tuple count can be computed from
the materialized counts (scenario 2). Nevertheless, it brings us the
advantages of “paying one, getting the following (almost) free”.

Discussions: We should emphasize that although the new query
plans are not always equally efficient, they provide better strategies
than the traditional approach in processing top-k aggregate queries,
under various applicable conditions, as discussed in Section 3.1.4.
Moreover, the experimental results indicate that none of the plans
is always the best and their costs can be orders of magnitude dif-
ferent. Their diverse applicability and performance thus call for
new query optimization techniques. Especially, the performance of
our methods depends on multiple parameters, including the num-
ber of groups, the sizes of groups, the distribution of tuple scores,
the memory buffer size, etc. Thus a cost model incorporating these
parameters to estimate the costs of plans is the key to the new opti-
mizer. The estimates can enable us to choose among the new plans
and even the traditional plans. Developing such cost model and
optimizer thus is an important topic of future research.

5. RELATED WORK
To the best of our knowledge, this is the first piece of work that

provides efficient support of ad-hoc top-k aggregate queries. In this
section, we highlight the recent efforts related to this work.

Ranking or top-k queries have recently gained much attention of
the research community. Works in this area mainly include those in
the middleware scenario [13, 14, 4, 6], or in RDBMS setting [5, 12,
7, 23, 24, 8, 26]. None of these works support aggregate queries.

Order optimization [31] was proposed in relational query opti-
mizer to avoid sorting or to minimize the number of sorting columns.
Eager aggregation [34, 9] and lazy aggregation [35] were proposed
to optimize GROUP-BY processing by functional dependencies.
[10, 29] proposed algorithms and framework for combining order
and grouping optimization. [33] extended eager aggregation in
OLAP environment by utilizing special access methods.

Efficient computation of data cubes [2, 36, 30] focuses on shar-
ing the computation across different cuboids instead of how to pro-
cess a single cuboid. Answering aggregate queries using material-
ized views was addressed in [17, 32, 11, 1, 28].

Semantically similar to top-k aggregate queries, iceberg queries
[15] retrieve only the groups that qualify under a Boolean condi-
tion (expressed in the HAVING clause). The techniques in [15]
are confined to single-table queries (joins have to be materialized
beforehand) and sum or count instead of general aggregate func-
tions. The notion of iceberg queries was extended to iceberg cubes
[3, 20]. Iceberg cuboids with the same dimensional attributes in-
volve the computation of an iceberg query, or essentially a ranking
aggregate query. These works focused on pruning cuboids in an
iceberg cube, while how to efficiently compute a cuboid was not
considered. Hence, we consider our work to be complementary in
evaluating iceberg cubes.

Online aggregation [22, 19] supports approximate query answer-
ing by providing running aggregates with statistical confidence in-
tervals. We extend its index striding technique to support the group-
aware and rank-aware scan operator.
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The work closest to ours is [27], where ranking aggregates are
computed over a specified range on some dimensions other than
the grouping dimensions, by storing pre-computed partial aggre-
gate information in the data cube. Therefore it can only support pre-
determined aggregate function and aggregated expression, lacking
the ability to support ad-hoc queries. However, it is complemen-
tary to our work as it can be used to obtain the group sizes when
there are selection conditions over the dimensional attributes, as
mentioned in Section 3.2.

6. CONCLUSION
We introduced a principled and systematic framework to effi-

ciently support ad-hoc top-k (ranking) aggregate queries. As the
foundation, we developed the Upper-Bound Principle that dictates
the requirements of early pruning, and the Group- and Tuple-Ranking
Principles that dictate the group-ordering and tuple-ordering re-
quirements. The principles together realize optimal aggregate query
processing. We proposed an execution framework for applying the
principles and addressed the challenges in implementing the frame-
work. The experiment results validate our framework by showing
significant performance improvement. To the best of our knowl-
edge, this is the first work that provides efficient support of ad-
hoc top-k aggregates. The techniques address a significant research
challenge and can be useful in many decision support applications.
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