
Rank-aware Query Optimization ∗

Ihab F. Ilyas Rahul Shah Walid G. Aref Jeffrey Scott Vitter Ahmed K. Elmagarmid

Department of Computer Sciences, Purdue University
250 N. University Street

West Lafayette, Indiana, 47907-2066
{ilyas,rahul,aref,jsv,ake}@cs.purdue.edu

ABSTRACT
Ranking is an important property that needs to be fully
supported by current relational query engines. Recently,
several rank-join query operators have been proposed based
on rank aggregation algorithms. Rank-join operators pro-
gressively rank the join results while performing the join
operation. The new operators have a direct impact on tra-
ditional query processing and optimization.

We introduce a rank-aware query optimization framework
that fully integrates rank-join operators into relational query
engines. The framework is based on extending the System R
dynamic programming algorithm in both enumeration and
pruning. We define ranking as an interesting property that
triggers the generation of rank-aware query plans. Unlike
traditional join operators, optimizing for rank-join opera-
tors depends on estimating the input cardinality of these
operators. We introduce a probabilistic model for estimat-
ing the input cardinality, and hence the cost of a rank-join
operator. To our knowledge, this paper is the first effort
in estimating the needed input size for optimal rank aggre-
gation algorithms. Costing ranking plans, although chal-
lenging, is key to the full integration of rank-join operators
in real-world query processing engines. We experimentally
evaluate our framework by modifying the query optimizer of
an open-source database management system. The experi-
ments show the validity of our framework and the accuracy
of the proposed estimation model.

1. INTRODUCTION
Emerging applications that depend on ranking queries

warrant efficient support of ranking queries in real-world
database management systems. Supporting ranking queries
gives database systems the ability to efficiently answer Infor-
mation Retrieval (IR) queries. For many years, combining
the advantages of both worlds, databases and information
retrieval systems, has been the goal of many researchers.
Database systems provide efficient handling of data with

∗This work was supported in part by the National Science Foundation

under Grants IIS-0093116, EIA-9972883, IIS-0209120, CCR–9877133,

and by the Army Research Office under Grant DAAD19–03–1–0321.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06...$5.00.

solid integrity and consistency guarantees. On the other
hand, IR provides mechanisms for effective retrieval and
fuzzy ranking that are more appealing to the user.

One approach toward integrating databases and IR is to
introduce IR-style queries as a challenging type of database
queries. The new challenge requires several changes that
vary from introducing new query language constructs to aug-
menting the query processing and optimization engines with
new query operators. It may also introduce new indexing
techniques and other data management challenges. A rank-
ing query (also known as top-k query) is an important type
of query that allows for supporting IR-style applications on
top of database systems.

In contrast to traditional join queries, the answer to a
top-k join query is an ordered set of join results according
to some provided function that combines the orders of each
input. The following query (Query Q1) is an example of a
top-k join query expressed in SQL99.

Q1: WITH RankedABC as (
SELECT A.c1 as x ,B.c2 as y, rank() OVER
(ORDER BY (0.3*A.c1+0.7*B.c2)) as rank
FROM A,B,C
WHERE A.c1 = B.c1 and B.c2 = C.c2)

SELECT x,y,rank
FROM RankedABC
WHERE rank <=5;

where A, B and C are three relations and A.c1,B.c1,B.c2

and C.c2 are attributes of these relations. The
only way to produce ranked results on the expression
0.3*A.c1+0.7*B.c2 in Q1 is by using a sort operator on
top of the join.

Efficient processing of ranking queries gained the atten-
tion of many researchers and database vendors. For exam-
ple, strategies for answering top-k selection queries over re-
lational databases have been introduced in [3] and were pro-
totyped on top of Microsoft SQL Server. In [3], top-k selec-
tion queries are mapped to range queries with an adaptable
range parameter to produce the top-k results. We further
discuss related work on optimizing this implementation of
top-k queries in Section 6. Other techniques that maintain
materialized views or special indexes to enhance the pere-
sponse time of top-k queries are introduced in [8, 22, 29].

Although these techniques enhance the database system
performance in answering top-k queries, they are imple-
mented either at the application level or outside the core
query engine. Hence, processing and optimizing top-k
queries lose the benefit of true integration with other basic
database query types. A more promising approach is to de-
vise new core query operators that are rank-aware and that

Figure 1: Estimated I/O Cost for Two Ranking
Plans.

can be easily integrated in current query engines. Backed
with many algorithms for rank aggregation [13, 14, 27, 17,
18], the new query operators combine both algorithmic effi-
ciency (and optimality) and system practicality. Rank-join
operators, introduced in [23, 24, 26], progressively rank the
join results according to a given scoring function. The join
operation has an early out condition that stops the opera-
tion once the top-ranked join results can be reported. Top-k
join query evaluation was also introduced in [1] in querying
XML data for the special case of left-outer joins.

1.1 Motivation
For the new rank operators to be practically useful they

must be integrated in real-world query optimizers. Top-k
queries often involve other query operations such as join,
selection and grouping. A key challenge is how to choose a
query execution plan that uses the new rank-join operators
most efficiently.

An observation that motivates the need for integrating
rank-join operators in query optimizers, is that a rank-join
operator may not always be the best way to produce the
required ranked results. In fact, depending on many param-
eters (for example, the join selectivity, the available access
paths and the memory size) a traditional join-then-sort plan
may be a better way to produce the ranked results.

Figure 1 gives the estimated I/O cost of two plans: a
sort plan and a rank-join plan, for various values of the join
selectivity. The sort plan is a traditional plan that joins
two inputs and sorts the results on the given scoring func-
tion, while the rank-join plan uses a rank-join operator that
progressively produces the join results ranked on the scor-
ing function. The figure shows that for low values of the
join selectivity, the traditional sort-plan is cheaper than the
rank-join plan. On the other hand, for higher selectivity
values, the rank-join plan is cheaper.

The previous example highlights the need to optimize top-
k queries by integrating rank-join operators in query opti-
mization. This approach, although appealing and intuitive,
is hindered by the following challenges:

• How to generate plans that make use of rank-join op-
erators ? What will be the plan property that triggers
the generation of such plans ?

• How to estimate the cost of a rank-join query opera-
tor ? What will be the value of k when pushed all the

way down in the query pipeline ? What is the effect
of other operators in the plan on the cost estimation ?

Another way to phrase the first set of questions is how
to make the query optimizer “aware” of the newly available
ranking operators and their unique properties. Throwing
these operators as yet another join implementation would
not work without defining new physical properties that guar-
antee the best use of these operators.

Unlike traditional query operators, it is hard to estimate
the cost of rank-join operators because of their “early out”
feature; whenever the top k results are reported, the exe-
cution stops without consuming all the inputs. The “early
out” feature poses many challenges in costing rank-join op-
erators.

In this paper, we show how to generate the rank-join plan
as an alternative execution plan to answer top-k queries.
We also show how we came up with the cost estimation
of the rank-join plan used in Figure 1, for effective query
optimization.

1.2 Contribution
In this paper, we introduce a framework that extends tra-

ditional query optimization to be “rank-aware”. We can
summarize our contributions as follows:

• We extend the notion of interesting properties in query
optimization to include interesting rank expressions.
The extension triggers the generation of a space of
rank-aware query execution plans. The new generated
plans make use of the proposed rank-join operators and
integrate them with other traditional query operators.

• We tackle the challenge of pruning rank-aware execu-
tion plans based on cost. Since a rank-join plan can
stop at any time once the top-k answers are produced,
the input cardinality of the operators (and hence the
cost) can vary significantly and in many cases depends
on the query itself. We provide an efficient proba-
bilistic model for estimating the minimum input size
(depth) needed by rank-join operators. We use the
estimation in pruning the generated plans.

• We experimentally validate our probabilistic estima-
tion of the input cardinality of rank-join operators.
We show how we use the model to prune the space of
generated plans and ultimately, in choosing the overall
query execution plan.

The work introduced in this paper completes the picture
of a full integration between IR-style rank aggregation algo-
rithms and current relational query processing. We believe
that this integration is the first in a series of extensions and
modifications to current database management systems to
efficiently support IR-style queries.

The remainder of the paper is organized as follows. Sec-
tion 2 gives the necessary background on rank aggregation
algorithms, rank-join operators and cost-based query opti-
mization. We show how to extend traditional query opti-
mization to be rank-aware in Section 3. Moreover, in Sec-
tion 3, we show how to treat ranking as an interesting phys-
ical property and its impact on plan enumeration. In Sec-
tion 4, we introduce a novel probabilistic model for estimat-
ing the input size (depth) of rank-join operators and hence
estimating the cost and space complexity of these operators.

In Section 5, we experimentally verify the proposed estima-
tion model and show the accuracy of estimating the input
size and the maximum buffer size needed by rank-join oper-
ators. We discuss related work in Section 6 and conclude in
Section 7 by a summary and final remarks.

2. BACKGROUND
For the paper to be self-contained, we give an overview

of relevant techniques we rely on in this work. First, we
briefly overview rank aggregation methods as an efficient
approach to evaluate top-k queries. We highlight the un-
derlying concept of most rank aggregation algorithms pro-
posed in the literature. Second, we overview rank-join oper-
ators, an efficient implementation of rank aggregation algo-
rithms in terms of physical join operators. Third, we give an
overview of cost-based optimization as a practical optimiza-
tion method used by current real-world database systems.
Specifically, we briefly describe the dynamic programming
optimization framework introduced in System R [28] as the
basic optimization technique. We would like to emphasize
that the ideas introduced in this paper can be applied to
other cost-based optimization frameworks. Choosing the dy-
namic programming technique is merely for demonstrating
the applicability of our approach.

2.1 Rank Aggregation
Rank aggregation is an efficient way to produce a global

rank from multiple input rankings. The problem goes back
to at least a couple of centuries in effort to come up with
a “robust” voting technique [10, 2]. Rank aggregation can
be achieved through various techniques. The simplest tech-
nique is positional ranking or Borda’s method [2], since it is
easy to compute in linear time and enjoys some nice prop-
erties such as consistency [12]. In a nut-shell, rank aggre-
gation algorithms view the database as multiple lists. Each
list contains a ranking of some objects; each object in a list
is assigned a score that determines its rank within the list.
The goal is to be more efficient than the näıve approach of
joining the lists together, and then sorting the output list
on the combined score. To get a total ranking, a rank aggre-
gation algorithm incrementally maintains a temporary state
that contains all “seen” object scores. The algorithm re-
trieves objects from the lists (along with their scores) until
the algorithm has “enough” information to decide on the top
ranked objects, and then terminates. The reader is referred
to [13, 14, 27, 17, 18, 26, 4, 24, 21, 7] for more details on
the various proposed algorithms.

In general, the proposed rank aggregation algorithms can
be classified according to two major criteria. The first classi-
fication is based on the type of access available on the input
lists. Each ranked input can support sorted access and/or
random access. Sorted access enables object retrieval in a
descending order of their scores. Random access enables
probing or querying an input to retrieve a score of a given
object. For example, the NRA algorithm introduced in [14]
assumes only sorted access on the ranked inputs, while the
TA algorithm, introduced also in [14], assumes the availabil-
ity of both random access and sorted access on all inputs.
On the other hand, the algorithms introduced in [4, 7] as-
sume that at least one source has sorted access capability
while other sources can have only random access (probing)
available.

The second classification of rank aggregation algorithms

is based on the assumptions on the underlying ranked ob-
jects. In the first category, all inputs contain the same set
of objects ranked on different criteria. Hence, all the in-
puts can be viewed as one list of objects, where each object
has a set of score attributes. The output is the same set
of objects ranked on a combination (aggregation) of these
score attributes. We refer to this problem as top-k selection.
Most of the proposed algorithms belong to this category,
e.g., [13, 14, 27, 17, 18]. In the second category of algo-
rithms, e.g., [26, 24], each input contains a different set of
objects. A “join” condition among objects in different in-
puts joins them together in one output join result. Each
join result has a combined score computed from the scores
of participating objects. The goal is to produce the top-k
join results. We refer to this problem as top-k join.

2.2 Rank-Join Query Operators
To support rank aggregation algorithms in a database sys-

tem, we have the choice of implementing these algorithms
at the application level as user-defined functions or to im-
plement them as core query operators (rank-join operators).
Although the latter approach requires more effort in chang-
ing the core implementation of the query engine, it sup-
ports ranking as a basic database functionality. The authors
in [23, 24], show the benefit of having rank-aware query op-
erators that can be smoothly integrated with other operators
in query execution plans. In general, rank-join query oper-
ators are physical join operators that, besides joining the
inputs, they produce the join results ranked according to a
provided scoring function.

Rank-join operators require the following: (1) the inputs
(or at least one of them) are ranked and each input tuple has
an associated score, (2) the input may not be materialized,
but a GetNext interface on the input should retrieve the
next tuple in a descending order of the associated scores,
and (3) there is a monotone scoring function, say f , that
computes a total score of the join result by applying f on
the scores of the tuples from each input.

Rank-join operators are almost non-blocking. The next
ranked join result is usually produced in a pipelined fashion
without the need to exhaust all the inputs. On the other
hand, a rank-join operator may need to exhaust part of the
inputs before being able to report the next ranked join re-
sult.

It is proved that rank-join operators can achieve a huge
benefit over the traditional join-then-sort approach to an-
swer top-k join queries especially for small values of k.

For clarity of the presentation, we give a brief overview on
two possible rank-join implementations: nested-loops rank-

join (NRJN) and hash rank-join (HRJN). For any rank-join
operator, the operator is initialized by specifying the two
inputs, the join condition, and the combining function.

HRJN can be viewed as a variant of the symmetrical hash

join algorithm [20, 30] or the hash ripple join algorithm [19].
HRJN maintains an internal state that consists of three
structures. The first two structures are two hash tables,
i.e., one for each input. The hash tables hold input tuples
seen so far and are used in order to compute the valid join
results. The third structure is a priority queue that holds
the valid join combinations ordered on their combined score.

At the core of HRJN is the rank aggregation algorithm.
The algorithm maintains a threshold value that gives an
upper-bound of the scores of all join combinations not yet

seen. To compute the threshold, the algorithm remembers
and maintains the two top scores and the two bottom scores
(last scores seen) of its inputs. A join result is reported as
the next top-k answer if the join result has a combined score
greater than or equal the threshold value. Otherwise, the al-
gorithm continues by reading tuples from the left and right
inputs and performs a symmetric hash join to generate new
join results. In each step, the algorithm decides which input
to poll depending on different strategies (e.g., depending on
the score distribution of each input).

NRJN is similar to HRJN except that it follows a nested-
loops strategy to generate valid join results. NRJN internal
states contains only a priority queue of all seen join com-
binations. Similar to HRJN, NRJN maintains a threshold
that upper-bounds the scores of all unseen join results.

The depth of a rank-join operator is defined as the number
of input tuples needed to produce top-k join results. We will
elaborate more on integrating rank-join operators in query
optimization in the following sections.

2.3 Cost-Based Query Optimization
The optimizer is the component in the query processing

engine that transforms a parsed input query into an efficient
query execution plan. The execution plan is then passed to
the run-time engine for evaluation. The task of a query op-
timizer is to find the best execution plan for a given query.
This task is usually accomplished by examining a large space
of possible execution plans and comparing these plans ac-
cording to their “estimated” execution cost. To estimate the
cost of an execution plan, the optimizer adopts a cost model
that takes several inputs, such as the estimated input size
and the estimated selectivity of the individual operations,
and estimates the total execution cost of the query. Most of
the different generated plans come from different organiza-
tions of the join operations. In general, the larger the space
of possible plan, the higher the chance that the optimizer
will get a better execution plan.

Plan Enumeration Using Dynamic Programming
Since the join operation is implemented in most systems as a
diadic (2-way) operator, the optimizer must generate plans
that transform an n-way join into a sequence of 2-way joins
using binary join operators. The two most important tasks
of an optimizer are to find the optimal join sequence as well
as the optimal join method for each binary join. Dynamic
programming (DP) was first used for join enumeration in
System R [28]. The essence of the DP approach is based on
the assumption that the cost model satisfies the principle of

optimality, i.e., the subplans of an optimal plan must be op-
timal themselves. Therefore, in order to obtain an optimal
plan for a query joining n tables, it suffices to consider only
the optimal plans for all pairs of non-overlapping m tables
and n − m tables, for m = 1, 2, ..., n − 1.

To avoid generating redundant plans, DP maintains a
memory-resident structure (referred to as MEMO, follow-
ing the terminology used in [15]) for holding non-pruned
plans. Each MEMO entry corresponds to a subset of the
tables (and applicable predicates) in the query. The algo-
rithm runs in a bottom-up fashion by first generating plans
for single tables. Then it enumerates joins of two tables,
then three tables, etc., until all n tables are joined. For
each join it considers, the algorithm generates join plans
and incorporates them into the plan list of the correspond-

Select A.c2
From A,B,C

 and B.c2 = C.c2 ;
Where A.c1 = B.c1

From A,B,C

 and B.c2 = C.c2
Where A.c1 = B.c1		

Order By A.c2 ;

Select A.c2

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

Number of Plans = 12 Number of Plans = 15

Both Queries Have 4 Joins

(b)(a)

AB

BC

ABC

C

B

A

AB

BC

ABC

C

B

A

MEMO Structure MEMO Structure

(A,B) (B,C) (A,BC) (AB,C)

DC

B.c1

B.c2

C.c2

B.c1

A.c1

B.c2

A.c2

B.c1

B.c2

C.c2

B.c1

A.c1

A.c2

B.c2

A.c2

Figure 2: Number of Joins vs. Number of Plans.

ing MEMO entry. Plans with larger table sets are built from
plans with smaller table sets. The algorithm prunes a higher
cost plan if there is a cheaper plan with the same or more
general properties for the same MEMO entry. Finally, the
cheapest plan joining n tables is returned.

Plan Properties Such properties are extensions of the
important concept of interesting orders [28] introduced in
System R. Suppose that we have two plans generated for
table R, one produces results ordered on R.a (call it P1)
and the other does not produce any ordering (call it P2).
Also suppose that P1 is more expensive than P2. Normally,
P1 should be pruned by P2. However, if table R can later
be joined with table S on attribute a, P1 can actually make
the sort-merge join between the two tables cheaper than P2

since it doesn’t have to sort R. To avoid pruning P1, System
R identifies orders of tuples that are potentially beneficial to
subsequent operations for that query (hence the name inter-
esting orders), and compares two plans only if they represent
the same expression and have the same interesting order. In
Figure 2(a), we show a 3-way join query and the plans kept
in the corresponding MEMO structure. For each MEMO
entry, a list of plans is stored, each carrying a different or-
der property that is still interesting. We use DC to represent
a “don’t care” property value, which corresponds to “no or-
der”. The cheapest plan with a DC property value is also
stored in each MEMO entry if this plan is cheaper than any
other plan with interesting orders. Modifying the query to
that in Figure 2(b), by adding an orderby clause, increases
the number of interesting order properties that need to be
kept in all MEMO entries containing A. By comparing Fig-
ure 2(a) with Figure 2(b), we can see that the number of
generated join plans changes, even though the join graph
is still the same. The idea of interesting orders was later
generalized to multiple physical properties in [16, 25] and is
used extensively in modern optimizers. Intuitively, a physi-
cal property is a characteristic of a plan that is not shared
by all plans for the same logical expression (corresponding
to a MEMO entry), but can impact the cost of subsequent
operations.

3. RANK-AWARE OPTIMIZATION
Having described an efficient implementation of the rank

aggregation algorithms in terms of new rank-join query op-
erators, we now describe how to extend the traditional query
optimization–one that uses dynamic programming a la [28]–
to handle the new rank-join operators. Integrating the new
rank-join operators in the query optimizer includes two ma-
jor tasks:(1) enlarging the space of possible plans to include
those plans that use rank-join operators as a possible join
alternative, and (2) providing a costing mechanism for the
new operators to help the optimizer prune expensive plans
in favor of more general cheaper plans.

In this section, we elaborate on the first task while in
the following section we provide an efficient costing mech-
anism for rank-join operators. Enlarging the plan space is
achieved by extending the enumeration algorithm to pro-
duce new execution plans. The extension must conform to
the enumeration mechanism of other traditional plans. In
this work, we choose the DP enumeration technique, de-
scribed in Section 2. The DP enumeration is one of the
most important and widely used enumeration techniques in
commercial database systems. Current systems use different
flavors of the original DP algorithm that involve heuristics
to limit the enumeration space and can vary in the way the
algorithm is applied (e.g., bottom-up versus top-down). In
this paper, we stick to the bottom-up DP as originally de-
scribed in [28]. Our approach is equally applicable to other
enumeration algorithms.

3.1 Ranking as an Interesting Property
As described in Section 2.3, interesting orders are those

orders that can be beneficial to later operations. Prac-
tically, interesting orders are collected from: (1) columns
in equality predicates in the join condition, as orders on
these columns make upcoming sort-merge operations much
cheaper by avoiding the sort, (2) columns in the groupby

clause to avoid sorting in implementing sort-based group-
ing, and (3) columns in the orderby clause since they must
be enforced on the final answers. Current optimizers usu-
ally enforce interesting orders in an eager fashion. In the
eager policy, the optimizer generates plans that produce the
interesting order even if they do not exist naturally (e.g.,
through the existence of an index).

In the following example, we describe a top-k query using
current SQL constructs by specifying the ranking function in
the orderby clause.

Q2:
WITH RankedABC as (
SELECT A.c1 as x ,B.c1 as y, C.c1 as z, rank() OVER
(ORDER BY (0.3*A.c1+0.3*B.c1+0.3*C.c1)) as rank
FROM A,B,C
WHERE A.c2 = B.c1 and B.c2 = C.c2)

SELECT x,y,z,rank
FROM RankedABC
WHERE rank <=5;

where A, B and C are three relations and A.c1, A.c2,

B.c1, B.c2, C.c1 and C.c2 are attributes of these rela-
tions. Following the concept of interesting orders, the opti-
mizer considers orders on A.c2, B.c1, B.c2 and C.c2 as in-
teresting orders (because of the join) and eagerly enforces the
existence of plans that access A, B and C ordered on A.c2,

B.c1, B.c2 and C.c2, respectively. This enforcement can
be done by gluing a sort operator on top of the table scan or

Interesting Order Expressions Reason
A.c1 Rank-join
A.c2 Join
B.c1 Join and Rank-join
B.c2 Join
C.c1 Rank-join
C.c2 Join
0.3*A.c1+0.3*B.c1 Rank-join
0.3*B.c2+0.3*C.c2 Rank-join
0.3*A.c1+0.3*C.c2 Rank-join
0.3*A.c1+0.3*B.c2+0.3*C.c2 Orderby

Table 1: Interesting Order Expressions in Query Q2.

by using an available index that produces the required or-
der. Currently, orders on A.c1 or C.c1 are ”not interesting”
since they are not beneficial to other operations such as a
sort-merge join or a sort. The reason being that a sort on the
expression (0.3*A.c1+0.3*B.c1+0.3*C.c1) cannot benefit
from ordering the input on A.c1 or C.c2 individually.

Having the new rank-aware physical join operators, or-
derings on the individual scores (for each input relation)
become interesting in themselves. In the previous example,
an ordering on A.c1 is interesting because it can serve as
input to a rank-join operator. Hence, we extend the notion
of interesting orders to include those attributes that appear
in the ranking function.

Definition 1. An Interesting Order Expression is order-

ing the intermediate results on an expression of database

columns that can be beneficial to later query operations.

In the previous example, we can identify some interesting
order expressions according to the previous definition. We
summarize these orders in Table 1. Like an ordinary inter-
esting order, an interesting order expression retires when it
is used by some operation and is no longer useful for later
operations. In the previous example, an order on A.c1 is no
longer useful after a rank-join between table A and B.

3.2 Extending the Enumeration Space
In this section, we show how to extend the enumeration

space to generate rank-aware query execution plans. Rank-
aware plans will integrate the rank-join operators, described
in Section 2.2, into general execution plans. The idea is to
devise a set of rules that generate rank-aware join choices
at each step of the DP enumeration algorithm. For exam-
ple, on the table access level, since interesting orders now
contain ranking score attributes, the optimizer will enforce
the generation of table and index access paths that satisfy
these orders. In enumerating plans at higher levels (join
plans), these ordered access paths will make it feasible to
use rank-join operators as join choices.

For a query with n input relations, T1 to Tn, assume there
exists a ranking function f(s1, s2, . . . , sn), where si is score
expression on relation Ti. For two sets of input relations, L
and R, we extend the space of plans that join L and R to
include rank-join plans by adapting the following:

• Join Eligibility L and R are rank-join-eligible if all
the following apply:

1. There is a join condition that relates at least one
input relation in L to an input relation in R.

2. f can be expressed as f(f1(SL), f2(SR), f3(SO)),
where f1, f2 and f3 are three scoring functions,
SL are the score expressions on the relations in

DC

DC

DC

DC

DC

DC

Number of Plans = 12 Number of Plans = 17

(b)(a)

MEMO Structure

AB

BC

ABC

C

B

A

Interesting Order Expression

Interesting Order

MEMO Structure

AB

BC

ABC

C

B

A DC

DC

DC

0.3*B.c1+0.3*C.c1

DC

DC

DC0.3*A.c1+0.3*B.c1

C.c1

B.c1

A.c1 A.c2

B.c2

C.c2

B.c2

B.c1B.c1

B.c2

C.c2

B.c1

A.c2

B.c2

0.3*A.c1+0.3*B.c1+0.3*C.c2

Figure 3: Enumerating Rank-aware Query Plans.

L, SR are the score expressions on the relations
in R, and SO are the score expressions on the rest
of the input relations.

3. There is at least one plan that accesses L and/or
R ordered on SL and/or SR, respectively.

• Join Choices Rank-join can have several implemen-
tations as physical join operators. In Section 2.2, we
presented the hash rank-join operators (HRJN) and
the nested-loops rank-join operator (NRJN). For each
rank-join between L and R, plans can be generated
for each join implementation. For example, an HRJN
plan is generated if there exist plans that access both
L and R sorted on SL and SR, respectively. On the
other hand, an NRJN plan is generated if there exists
at least one plan that accesses L or R sorted on SL or
SR, respectively.

• Join Order For symmetric rank-join operators (e.g.,
HRJN), there is no distinction between outer and in-
ner relations. For the nested-loops implementation, a
different plan can be generated by switching the inner
and the outer relations. L (R) can serve as inner to
an NRJN operator if there exists a plan that accesses
L (R) sorted on SL (SR).

For example, for Query Q2 in Section 3.1, new plans
are generated by enforcing the interesting order expressions
listed in Table 1 and using all join choices available including
the rank-join operators. As in traditional DP enumeration,
generated plans are pruned according to their cost and prop-
erties. For each class of properties, the cheapest plan is kept.
Figure 3 gives the MEMO structure of the retained subplans
when optimizing Q2. Each oval in the figure represents the
best plan with a specific order property. Figure 3 (a) gives
the MEMO structure for the traditional application of the
DP enumeration without the proposed extension. For exam-
ple, we keep two plans for Table A; the cheapest plan that
does not have any order property (DC) and the cheapest plan
that produces results ordered on A.c2 as an interesting or-
der. Figure 3 (b) shows the newly generated classes of plans
that preserve the required ranking. For each interesting or-
der expression, the cheapest plan that produces that order is
retained. For example, in generating plans that join Tables
A and B, we keep the cheapest plan that produces results
ordered on 0.3*A.c1 + 0.3*B.c1.

Figure 4: Example Rank-join Plan.

3.3 Pruning Plans
A subplan P1 is pruned in favor of subplan P2 if and only

if P1 has both higher cost and weaker properties than P2.
In Section 3.2, we discussed extending the interesting order
property to generate rank-aware plans. A key property of
top-k queries is that users are interested only in the first k
results and not in a total ranking of all query results. This
property directly impacts the optimization of top-k queries
by optimizing for the first k results. Traditionally, most real-
world database systems offer the feature of First-N-Rows-

Optimization. Users can turn on this feature when desiring
fast response time to receive results as soon as they are gen-
erated. This feature translates into respecting the “pipelin-
ing” of a plan as a physical plan property. For example, for
two plans P1 and P2 with the same physical properties, if
P1 is a pipelined plan (e.g., nested-loops join plan) and P2 is
a non-pipelined plan (e.g., sort-merge join plan), P1 cannot
be pruned in favor of P2, even if P2 is cheaper than P1.

In real-world query optimizers, the cost model for differ-
ent query operators is quite complex and depends on many
parameters. Parameters include cardinality of the inputs,
available buffers, type of access paths (e.g., a clustered in-
dex) and many other system parameters. Although cost
models can be very complex, a key ingredient of accurate
estimation is the accuracy of estimating the size of interme-
diate results.

In traditional join operators, the input cardinalities are
independent of the operator itself and only depend on the
input subplan. Moreover, the output cardinality depends
only on the size of the inputs and the selectivity of the logi-
cal operation. On the other hand, since a rank-join operator
does not consume all of its inputs, the actual input size de-
pends on the operator itself and how the operator decides
that it has seen “enough” information from the inputs to
generate the top k results. Hence, the input cardinality de-
pends on the number of ranked join results requested from
that operator. Thus, the cost of a rank-join operator de-
pends on the following:

• The number of required results k and how k is propa-

gated in the pipeline. For example, Figure 4 gives a real
similarity query that uses two rank-join operators to
combine the ranking based on three features, referred
to as A , B and C. To get 100 requested results (i.e.,
k = 100), the top operator has to retrieve 580 tuples
from each of its inputs. Thus, the number of required
results from the child operator is 580 in which it has to
retrieve 783 tuples from its inputs. Notice that while
k = 100 in the top rank-join operator, k = 580 in the
child rank-join operator that joins A and B. In other
words, in a pipeline of rank-join operators, the input
depth of a rank-join operator is the required number

Figure 5: Two Enumerated Plans.

of ranked results from the child rank-join operator.

• The number of tuples from inputs that contain enough

information for the operator to report the required

number of answers, k. In the previous example, the
top operator needs 580 tuples from both inputs to re-
port 100 rankings, while the child operator needed 783
tuples from both inputs to report the required 580 par-
tial rankings.

• The selectivity of the join operation. The selectivity of
the join affects the number of tuples propagated from
the inputs to higher operators through the join oper-
ation. Hence, the join selectivity affects the number
of input tuples required by the rank-join operator to
produce ranked results.

There are two ways to produce plans that join two sets of
input relations, L and R, and produce ranked results: (1) by
using rank-join operators to join L and R subplans, or (2) by
gluing a sort operator on the cheapest join plan that joins L
and R without preserving the required order. One challenge
is in comparing two plans when one or both of them are
rank-join plans. For example, in the two plans depicted
in Figure 5, both plans produce the same order property.
Plan (b) may or may not be pipelined depending on the
subplans of L and R. In all cases, the cost of the two plans
need to compared to decide on pruning. While the current
traditional cost model can give an estimate total cost of
Plan (a), it is hard to estimate the cost of Plan (b) because
of its strong dependency on the number of required ranked
results, k. Thus, to estimate the cost of Plan (b), we need
to estimate the propagation of the value of k in the pipeline
(refer to Figure 4). In Section 4, we give a probabilistic
model to estimate the depths (dL and dR in Figure 5 (b))
required by a rank-join operator to generate top k ranked
results. The estimate for the depths is parameterized by k
and by the selectivity of the join operation. It is important
to note that the cost of Plan (a) is (almost) independent of
the number of output tuples pulled from the plan since it is
a blocking sort plan. In Plan (b), the number of required
output tuples determines how many tuples will be retrieved
from the inputs and that greatly affects the plan cost.

Plan Pruning According to our enumeration mechanism,
at any level, there will be only one plan similar to Plan (a)
of Figure 5 (by gluing a sort on the cheapest non-ranking
plan). At the same time, they may be many plans similar
to Plan (b) of Figure 5 (e.g., by changing the type of the
rank-join operator or the join order).

For all rank-join plans, the cost of the plan depends on k
and the join selectivity s. Since these two parameters are
the same for all plans, the pruning among these plans follows

the same mechanism as in traditional cost based pruning.
For example, pruning a rank-join plan in favor of another
rank-join plan depends on the input cardinality of the rela-
tions, the cost of the join method, the access paths, and the
statistics available on the input scores.

We assume the availability of an estimate of the join selec-
tivity, which is the same for both sort-plans and rank-join
plans. A challenging question is how to compare between
the cost of a rank-join plan and the cost of a sort plan, e.g.,
Plans (a) and (b) in Figure 5, when the number of required
ranked results is unknown. Note that the number of results,
k, is known only for the final complete plan. Because sub-
plans are built in a bottom-up fashion, the propagation of
the final k value to a specific subplan depends on the loca-
tion of that subplan in the complete evaluation plan.

We introduce a mechanism for comparing the two plans in
Figure 5 using the estimated total cost of Plan (a) and the
estimated cost of Plan (b), parametrized by k. Section 4 de-
scribes how to obtain the parametrized cost of Plan (b). For
Plan (a), we can safely assume that Costa(k) = TotalCosta

where Costa(k) is the cost to report k results from Plan (a),
and TotalCosta is the cost to report all join results of
Plan (a). This assumption follows directly from Plan (a)
being a blocking sort plan. Let k∗ be that value of k
at which the cost of the two plans are equal. Hence,
Costa(k∗) = Costb(k

∗) = TotalCosta. The output cardi-
nality of Plan (a) (call it na) can be estimated as the product
of the cardinalities of all inputs multiplied by the estimated
join selectivity. Since k cannot be more than na, we com-
pare k∗ with na. Let kmin be the minimum value of k for
any rank-join subplan. A reasonable value for kmin would
be the value specified in the query as the total number of
required answers. Consider the following cases:

• k∗ > na: Plan (b) is always cheaper than Plan (a).
Hence Plan (a) should be pruned in favor of Plan (b).

• k∗ < na and k∗ < kmin: Since for any subplan,
k ≥ kmin, we know that we will require more that
k∗ output results from Plan (b). In that case Plan (a)
is cheaper. Depending on the nature of Plan (b) we
decide on pruning:

– If Plan (b) is a pipelined plan (e.g., a left deep
tree of rank-join operators), then we cannot prune
Plan (b) in favor of Plan (a) since it has more
properties, the pipelining property.

– If Plan (b) is not a pipelined tree, then Plan (b)
is pruned in favor of Plan (a).

• k∗ < na and k∗ > k: We keep both plans since de-
pending on k, Plan (a) may be cheaper than Plan (b)
and hence cannot be pruned.

As an example, we show how the value of k affects the cost
of rank-join plans and hence the plan pruning decisions. We
compare two plans that produce ranked join results of two
inputs. The first plan is a sort plan similar to that in Fig-
ure 5(a), while the second plan is a rank-join plan similar to
that in Figure 5(b). The sort plan sorts the join results of
an index nested-loops join operator while the rank-join plan
uses HRJN as its rank-join operator. The estimated cost
formula for the sort plan uses the traditional cost formulas
for external sorting and index nested-loops join, while the
estimated cost of the rank-join plan is based on our model

Figure 6: The Effect of k on the Rank-join Cost.

to estimate the input cardinality (as will be shown in Sec-
tion 4). Both cost estimates use the same values of input
relations cardinalities, total memory size, buffer size, and in-
put tuple sizes. Figure 6 compares the estimate of the costs
of the two plans for different values of k. While the sort
plan cost can be estimated to be independent of k, the cost
of the rank-join plan increases with increasing the value of
k. In this example, k∗ = 176.

4. ESTIMATING INPUT CARDINALITY
OF RANK-JOIN OPERATORS

In this section, we give a probabilistic model to estimate
the input cardinality (depth) of rank-join operators. The
estimate is parameterized with k, the number of required
answers from the (sub)plan, and s, the selectivity of the
join operation. We describe the main idea of the estimation
procedure by first considering the simple case of two ranked
relations. Then, we generalize to the case of a hierarchy of
rank-join operators.

Let L and R be two ranked inputs to a rank-join oper-
ator. Let m and n be the table cardinalities of L and R,
respectively. Our objective is to get an estimate of depths
dL and dR (see Figure 9) such that it is sufficient to retrieve
only up to dL and dR tuples from L and R, respectively, to
produce the top k join results. We denote the top i tuples
of L and R as L(i) and R(i), respectively. We outline our
approach to estimate dL and dR in Figure 7.

In the following subsections, we elaborate on steps of the
outline in Figure 7. Figure 8 gives Algorithm Propagate

used by the query optimizer to compute the values of dL

and dR at all levels in a rank-join plan. We set k to the
value specified in the query when we call the algorithm for
the final plan.

We assume the following to simplify the analysis: (1) the
combining scoring function is a linear combination of the
scores (e.g., a weighted sum of the input scores), and (2) each
tuple in L is equally likely to join with sn tuples in R and
each tuple in R is equally likely to join with sm tuples in L.

4.1 Estimating Any-k Depths
In the first step of the outline in Figure 7, we estimate the

depths cL and cR in L and R, respectively, required to get
any k join results. “Any k” join results are valid join results,
but not necessarily among the top k answers in score.

Outline EstimateTop-kDepth
INPUT: Two ranked relations L and R

The number of required ranked results, k

The join selectivity, s

Any-k Depths
1. Compute the value of cL and cR, where

cL is the depth in L and cR is the depth in R such that,
∃ expected k valid join results between L(cL) and R(cR)

Top-k Depths
2. Compute the value of dL and dR, where

dL is the depth in L and dR is the depth in R such that,
∃ expected k top-scored join results between L(dL).
and R(dR). dL and dR are expressed in terms of cL and cR.

Minimize Top-k Depths
3. Compute the values of cL and cR to minimize dL and dR.

cL, cR, dL and dR are paramterized by k

Figure 7: Outline of the Estimation Technique.

Algorithm Propagate (subplan P , k)
INPUT: The number of required ranked results, k

The root of a subplan, P

OUTPUT: dL and dR for the operator rooted at P

1. Compute dL and dR according to the formulas in Section 4.3
2. Call Propagate(left subplan of P , dL)
3. Call Propagate(right subplan of P , dR)

Figure 8: Propagating the Value of k.

Figure 9: Depth Estimation of Rank-join Operators.

Theorem 1. If cL and cR are chosen such that

scLcR ≥ k, then the expected number of valid join results

between L(cL) and R(cR) is ≥ k.

Proof. Let Xi,j denote a random variable that is equal
to the number of join results produced by joining the first
i tuples from L and the first j tuples from R. Since every
tuple in L is likely to join with sj tuples in R(j), then the
expected value of this random variable is E[Xi,j] = sij. Let
cL = i and cR = j, hence, if scLcR ≥ k, then we can expect
at least k valid join results between L(cL) (the top cL tuples
in L) and R(cR).

In general, the choice of cL and cR can be arbitrary as
long as they satisfy scLcR ≥ k. We show that we choose
values for cL and cR in Section 4.3.

4.2 Estimating Top-k Depths
In the second step in the outline given in Figure 7, we

aim at obtaining good estimates for dL and dR, where dL

and dR are the depths into L and R, respectively, needed
to produce an expected number of top k join results. For
the simplicity of presentation, the formulas presented in this
section assume that the scoring function is the summation
of individual scores.

Let SL(i) and SR(i) be the scores of the tuples at depth
i in L and R, respectively. Moreover, let δL(i) and δR(i) be
the score difference between the top ranked tuple and the
score of the tuple at a depth i in L and R, respectively, i.e.,
δL(i) = SL(1) − SL(i) and δR(i) = SR(1) − SR(i)

Theorem 2. If there are k valid join results between

L(cL) and R(cR), and if dL and dR are chosen such that

δL(dL) ≥ δL(cL) + δR(cR) and δR(dR) ≥ δL(cL) + δR(cR),
then the top k join results can be obtained by joining L(dL)
and R(dR).

Proof. Refer to Figure 9 for illustration. Let δ =
δL(cL) + δR(cR) and S = SL(1) + SR(1). Since, there are
k join tuples between L(cL) and R(cR), the final score of
each of the join results is ≥ S − δ. Consequently, the scores
of all of the top k join results are ≥ S − δ. Assume that
one of the top-k join results, J , joins a tuple t at depth d in
L with some tuple in R such that δL(d) > δ. The highest
possible score of J is SL(d) + SR(1) = S − δL(d) < S − δ.
By contradiction, Tuple t cannot participate in any of the
top k join results. Hence, any tuple in L (similarly R) that
is at a depth > dL (dR) cannot participate in the top k join
results.

Since the choice of cL and cR can be arbitrary as long
as they satisfy the condition in Theorem 1, Step (3) of the
outline in Figure 7 chooses the values of cL and cR that min-
imize the values of dL and dR. Note that both dL and dR are
minimized when δ = δL(cL) + δR(cR) is minimized. Hence
we minimize δ subject to the constraint scLcR ≥ k. The
rationale behind this minimization is that an optimal rank-
aggregation algorithm does not need to retrieve more than
the minimum dL and dR tuples from L and R, respectively,
to generate the top k join results.

4.3 Estimating the Minimum dL and dR

Till now, we did not have any assumptions on the score
distributions of L and R. We showed that dL and dR are
related to cL and cR in terms of the scores of the tuples at
these depths.

To have a closed formula for the minimum dL and dR,
we assume that the rank scores in L and R are from some
uniform distribution. Let x be the average decrement slab
of L (i.e., the average difference between the scores of two
consecutive ranked objects in L) and let y be the average
decrement slab for R. Hence, the expected value of δL(cL) =
xcL and the expected value of δR(cR) = ycR. To minimize
δ = δL(cL) + δR(cR), we minimize xcL + ycR, subject to
scLcR ≥ k. The minimization is achieved by setting cL =
p

(yk)/(xs) and cR =
p

(xk)/(ys). In this case, dL = cL +
(y/x)cR and dR = cR + (x/y)cL

In the simplistic case, where both the relations come from
the same uniform distribution, i.e., x = y, then cL = cR =
p

k/s and dL = dR = 2
p

k/s.
In a hierarchy of joins, where the output of one rank-

join operator serves as input to another operator, the score
distributions of the second level join are no longer uniform.
Assuming the scoring function is the sum of two scores, the

u u

u

1 2

3

Figure 10: Central Limit Theorem.

scores of rank join with two uniform distributions follows
a triangular distribution. As we go higher up in the join
hierarchy, the distribution tends to be normal (bell-shaped
curve) by central limit theorem (see Figure 10).

Let X, Y be two independent random variables from the
uniform distribution [0, n]. We refer to this uniform dis-
tribution as u1. We refer to the summation of j indepen-
dent random variable from u1 as uj . The random variable
Z = X+Y , which follows the distribution u2, is a triangular
distribution over [0, 2n] with a peak at n. If we choose n ele-
ments from the u2 distribution, the score of the ith element
(i ≤ n/2), in a decreasing order of the scores, is expected to

be 2n −
√

2in. In general, if we choose m elements from uj ,
which ranges from [0, jn], then the score of the ith element
is expected to be

scorei = jn − (j!inj/m)1/j (1)

Using the described distribution scores, we estimate the
values of cL and cR that give the minimum values of dL

and dR for the general rank-join plan in Figure 5 (b). Let
the output of L be the output of rank-joining l ranked re-
lations. Let the output of R be the output of rank-joining
r ranked relations. Let k be the number of output ranked
results required from the subplan, and s be the join selec-
tivity. Then minimizing δ = δL(cL) + δR(cR) amounts to

minimizing δ = (l!cLnl−1)1/l + (r!cRnr−1)1/r. We substi-
tute cR = k

scL

and minimize δ with respect to cL. The

minimizations yield:

cr+l
L =

(r!)lklnr−llrl

sl(l!)rrrl
(2)

cr+l
R =

(l!)rkrnl−rrrl

sr(r!)llrl
(3)

dL = cL[1 + r/l]l (4)

dR = cR[1 + l/r]r (5)

Note that dL and dR are strict upper-bounds assuming
worst-case behavior. For an average case analysis, assume
that L follows a ul distribution and R follows a ur dis-
tribution with each having n tuples. The join of L and
R produces another relation, G with a ul+r distribution
and sn2 tuples. Using Equation 1 and setting j = l + r
and m = sn2, the score of the top kth tuple in G is
scorek = (l + r)n − ((l + r)!knl+r−2/s)1/(l+r). Hence, we
need to check in L (R) up to a tuple that joins with R (L)
to produce scorek. We can show that on average, dL and
dR can be computed as follows:

dl+r
L =

((l + r)!)lklnr−l

(l!)l+rsl
and dl+r

R =
((l + r)!)rkrnl−r

(r!)l+rsr

Because the distribution of the depths is tight around the
mean, we can apply the formulas recursively in a rank-join
plan, as shown in the algorithm in Figure 8, by replacing

k of the left and right subplans by dL and dR, respectively.
The value of k for the top operator is the value specified by
the user in the query.

5. EXPERIMENTAL VERIFICATION OF
THE ESTIMATION MODEL

In this section, we experimentally verify the accuracy of
our model for estimating the depths (input size) of rank-join
operators and estimating an upper-bound of the buffer size
maintained by these operators. Estimating the input size
and the space requirements of a rank-join operator make it
easy to estimate the total cost of a rank-join plan according
to any practical cost model.

5.1 Implementation Issues and Setup
All experiments are based on a research platform for a

complete video database management system running on a
Sun Enterprise 450 with 4 UltraSparc-II processors running
SunOS 5.6 operating system. The prototype is built on top
of an open-source database management system that allows
us to implement a simple cost-based rank-aware optimizer in
the query engine (details are omitted for expository reasons).
We have implemented a simple DP join enumerator that
generates all possible rank-join plans in a bottom-up fashion.

In the experiments conducted in this section, the user
query provides the system with an example image and re-
quests the most similar video objects (segments or snap-
shots) to the query image based on multiple visual features.
The visual features are extracted from the video data and
are stored in separate relations. High-dimensional index ac-
cess paths are available on these relations to rank the ob-
jects according to each of the corresponding features. Ex-
ample features include color histograms (ColorHist), color
layout (ColorLayout), texture (Texture) and edge orienta-
tion (Edges). Hence, for a multi-feature similarity query,
each input ranks the stored video objects according to a
single feature. The top-k query produces the k objects with
the top combined scores. We use the following top-k query:

Q: Retrieve the k most similar video shots to a given image

based on m visual features.

In the implemented prototype, we automatically show the
generated evaluation (sub)plans at each level of the DP algo-
rithm. We only display “templates” of the execution plans.
Each of these plan templates generates several evaluation
plans by changing the join implementation choices, switch-
ing the join order, or gluing sort operators to enforce inter-
esting order properties.

Figure 12 gives a snapshot of the plan generation interface
for joining 4 inputs. We focus on the first complete gener-
ated plan and annotate it in Figure 11 for easy referencing.
We refer to this plan as Plan P.

5.2 Verifying Input Cardinality Estimation
In this experiment, we evaluate the accuracy of the depth

estimates of rank-join operators. We conducted several ex-
periments on a variety of example evaluation plans of Query
Q. Since all experiments show similar behavior, we show a
representative sample results for this experiment. The re-
sults shown here represent the estimates for Plan P in Fig-
ure 11. We use HRJN as the implementation of the rank-
join operator. k ranked results are required from the top
rank-join operator in the plan.

Varying the Number of Required Answers (k) For
different values of k, Figure 13 (a) compares the actual
values of d1 and d2 (refer to Figure 11) with two esti-
mates:(1) Any-k Estimate, the estimated values for d1 and
d2 to get any k join results (not necessary the top k),
and (2)Top-k Estimate, the estimated values for d1 and d2

to get the top k join results. Any-k Estimate and Top-k

Estimate are computed according to Section 4. The actual
values of d1 and d2 are obtained by actually running the
query and by counting the number of retrieved input tu-
ples by each operator. Figure 13 (b) gives similar results
for comparing the actual values of d5 and d6 to the same
estimates. The figures show that the estimation error is less
than 25% of the actual depth values. In general, for all con-
ducted experiments, this estimation error is less than 30%
of the actual depth values. Note that the measured values
of d1 and d2 lie between the Any-k Estimate and the Top-

k Estimate. The Any-k Estimate can be considered as a
lower-bound on the depths required by a rank-join operator.

Varying the Join Selectivity Figure 14 compares the
actual and estimated values for the depths of Plan P in
Figure 11 for various values of the join selectivity. For low
selectivity values, the required depths increase as the rank
aggregation algorithm needs to retrieve more tuples from
each input to have enough information to produce the top
ranked join results. The maximum estimation error is less
than 30% of the actual depth values.

5.3 Estimating the Maximum Buffer Size
Rank-join operators usually maintain a buffer of all join

results produced and cannot yet be reported as the top k re-
sults. Estimating the maximum buffer size is an important
parameter in estimating the total cost of a rank-join opera-
tor. In this experiment, we use Plan P in Figure 11. The left
child rank-join operator in Plan P needs d1 and d2 tuples
from its left and right inputs, respectively, before producing
the top k results. The worst case (maximum) buffer size
occurs when the rank-join operator cannot report any join
result before retrieving all the d1 and d2 tuples. Hence, an
upper bound on the buffer size can be estimated by d1d2s,
where s is the join selectivity. We use our estimates for
top-k depths, d1 and d2, to estimate the upper bound of the
buffer size. We compare the actual (measured) buffer size to
the following two estimates: (1) Actual upper-bound, the up-
per bound computed using the measured depths d1 and d2,
and (2) Estimated upper-bound, the upper bound computed
using our estimation of top-k depths.

Figure 15 shows that the estimated upper-bound has an
estimation error less than 40% of the actual upper-bound
(computed using the measured values of d1 and d2). Fig-
ure 15 also shows that the actual buffer size is less than
the upper-bound estimates. The reason being that in the
average case, the operator progressively reports ranked join
results from the buffer before completing the join between
the d1 and d2 tuples. The gap between the actual buffer
size and the upper-bound estimates increases with k, as the
probability of the worst-case scenario decreases.

6. RELATED WORK
Another approach to evaluate top-k queries is the fil-

ter/restart approach [6, 5, 11, 3]. Ranking is mapped to
a filter condition with a cutoff parameter. If the filtering

Figure 11: Example Rank-join Plan. Figure 12: A Snapshot of the Plan Generation Interface.

(a) (b)

Figure 13: Estimating the Input Cardinality for Different Values of k.

(a) (b)

Figure 14: Estimating the Input Cardinality for Different Values of Join Selectivity.

produces less than k results, the query is restarted with a
less restrictive condition. The final output results are then
sorted to produce the top k results. A probabilistic opti-
mization of top-k queries is introduced in [11] to estimate
the optimal value of the cutoff parameter that minimizes the
total cost including the risk of restarts. Optimizing top-k
queries that contain only selection has been studied in [9]
in the context of querying multimedia repositories. The op-
timization in [9] focuses on determining the best way to
execute a set of filtering conditions given different costs of

searching and probing the available indexes.
In contrast to previous work, we focus on optimizing rank-

ing queries that involve joins. Moreover, our ranking evalu-
ation encapsulates optimal rank aggregation algorithms. To
the best of our knowledge, this is the first work that tries
to estimate the cost of optimal rank aggregation algorithms
and incorporate them in relational query optimization. We
believe that the proposed optimization model for filtering
operations in [9] can be used in tandem with our proposed
optimization technique for selection predicates.

Figure 15: Estimating the Buffer Size of Rank-join.

7. CONCLUSION
We introduced a framework for integrating rank-join op-

erators in real-world query optimizers. Our framework was
based on two key steps. First, we extended the enumeration
phase of the query optimizer to generate rank-aware plans.
The extension was achieved by providing rank-join operators
as possible join choices, and by defining ranking expressions
as a new physical plan property. The new property trig-
gered the generation of a new space of ranking plans either
“naturally” by using rank-join operators or “enforced” by
gluing sort operators to sort the partial results. Next, we
provided a probabilistic technique to estimate the minimum
required input cardinalities by rank-join operators to pro-
duce top k join results. Estimating the minimum required
input cardinalities emerged from realizing the unique “early-
out” property of rank-join operator. Unlike traditional join
operators, rank-join operators do not need to consume all
their inputs. Hence, estimating the cost of rank-join oper-
ator depends on estimating the number of tuples required
from the input.

Our proposed estimation model captured this property
with estimation error less than 30% of the actually measured
input cardinality under some reasonable assumptions on the
score distributions. We also estimated the space needed by
rank-join operators with estimation error less than 40%. We
conducted several experiments to evaluate the accuracy of
our estimation model and the validity of our enumeration
extension. The results proved the concept and showed the
robustness of our estimation to several parameters such as
the number of required answers and the join selectivity.

8. REFERENCES
[1] Sihem Amer-Yahia, SungRan Cho, and Divesh Srivastava.

Tree pattern relaxation. In EDBT, 2002.
[2] J.C. Borda. M.émoire sur les élections au scrutin. Histoire

de l’Académie Royale des Sciences, 1781.
[3] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano.

Top-k selection queries over relational databases: Mapping
strategies and performance evaluation. TODS, 27(2), 2002.

[4] Nicolas Bruno, Luis Gravano, and Amelie Marian.
Evaluating top-k queries over web-accessible databases. In
ICDE, 2002.

[5] Michael J. Carey and Donald Kossmann. Reducing the
braking distance of an SQL query engine. In VLDB.

[6] Michael J. Carey and Donald Kossmann. On saying
“Enough already!” in SQL. In SIGMOD, 1997.

[7] Kevin Chen-Chuan Chang and Seung won Hwang. Minimal
probing: supporting expensive predicates for top-k queries.
In SIGMOD, 2002.

[8] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli,
Chung-Sheng Li, Ming-Ling Lo, and John R. Smith. The
onion technique: indexing for linear optimization queries.
In SIGMOD, pages 391–402, 2000.

[9] Surajit Chaudhuri, Luis Gravano, and Amelie Marian.
Optimizing top-k selection queries over multimedia
repositories. IEEE Transactions on Knowledge and Data
Engineering, to appear.

[10] M.-J. Condorcet. Éssai sur l’application de l’analyse à la
probabilité des décisions rendues à la puralité des voix,
1785.

[11] Donko Donjerkovic and Raghu Ramakrishnan. Probabilistic
optimization of top N queries. In VLDB, 1999.

[12] Cynthia Dwork, S. Ravi Kumar, Moni Naor, and
D. Sivakumar. Rank aggregation methods for the web. In
World Wide Web, 2001.

[13] Ronald Fagin. Combining fuzzy information from multiple
systems. Journal of Computer and System Sciences
(JCSS), 58(1), Feb 1999.

[14] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal
aggregation algorithms for middleware. In PODS, Santa
Barbara, California, May 2001.

[15] G. Graefe and W. J. McKenna. The volcano optimizer
generator: Extensibility and efficient search. In ICDE, 1993.

[16] Goetz Graefe and David J. DeWitt. The exodus optimizer
generator. In SIGMOD, 1987.

[17] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling.
Optimizing multi-feature queries for image databases. In
VLDB, 2000.

[18] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling.
Towards efficient multi-feature queries in heterogeneous
environments. In ITCC, 2001.

[19] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for
online aggregation. In SIGMOD, june 1999.

[20] W. Hong and M. Stonebraker. Optimization of parallel
query execution plans in XPRS. Distributed and Parallel
Databases, 1(1), Jan. 1993.

[21] Vagelis Hristidis, Luis Gravano, and Yannis
Papakonstantinou. Efficient ir-style keyword search over
relational databases. In VLDB, 2003.

[22] Vagelis Hristidis, Nick Koudas, and Yannis
Papakonstantinou. Prefer: A system for the efficient
execution of multi-parametric ranked queries. In SIGMOD,
2001.

[23] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid.
Joining ranked inputs in practice. In VLDB, 2002.

[24] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid.
Supporting top-k join queries in relational databases. In
VLDB, 2003.

[25] Guy M. Lohman. Grammar-like functional rules for
representing query optimization alternatives. In SIGMOD,
1988.

[26] Apostol Natsev, Yuan-Chi Chang, John R. Smith,
Chung-Sheng Li, and Jeffrey S. Vitter. Supporting
incremental join queries on ranked inputs. In VLDB, 2001.

[27] Surya Nepal and M. V. Ramakrishna. Query processing
issues in image (multimedia) databases. In ICDE, 1999.

[28] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path election in a relational
database management system. In SIGMOD, 1979.

[29] Panayiotis Tsaparas, Themistoklis Palpanas, Yannis
Kotidis, Nick Koudas, and Divesh Srivastava. Ranked join
indices. In ICDE, 2003.

[30] Annita N. Wilschut and Peter M. G. Apers. Dataflow query
execution in a parallel main-memory environment.
Distributed and Parallel Databases, 1(1), 1993.

