
Holistic Data Cleaning: Putting Violations Into
Context

Xu Chu1? Ihab F. Ilyas2 Paolo Papotti2

1 University of Waterloo, Canada 2 Qatar Computing Research Institute (QCRI), Qatar
x4chu@uwaterloo.ca, {ikaldas,ppapotti}@qf.org.qa

Abstract—Data cleaning is an important problem and data
quality rules are the most promising way to face it with a
declarative approach. Previous work has focused on specific
formalisms, such as functional dependencies (FDs), conditional
functional dependencies (CFDs), and matching dependencies
(MDs), and those have always been studied in isolation. Moreover,
such techniques are usually applied in a pipeline or interleaved.

In this work we tackle the problem in a novel, unified
framework. First, we let users specify quality rules using denial
constraints with ad-hoc predicates. This language subsumes
existing formalisms and can express rules involving numerical
values, with predicates such as “greater than” and “less than”.
More importantly, we exploit the interaction of the heteroge-
neous constraints by encoding them in a conflict hypergraph.
Such holistic view of the conflicts is the starting point for a
novel definition of repair context which allows us to compute
automatically repairs of better quality w.r.t. previous approaches
in the literature. Experimental results on real datasets show that
the holistic approach outperforms previous algorithms in terms
of quality and efficiency of the repair.

I. INTRODUCTION

It is well recognized that business and scientific data are
growing exponentially and that they have become a first-class
asset for any institution. However, the quality of such data is
compromised by sources of noise that are hard to remove in the
data life-cycle: imprecision of extractors in computer-assisted
data acquisition may lead to missing values, heterogeneity
in formats in data integration from multiple sources may
introduce duplicate records, and human errors in data entry can
violate declared integrity constraints. These issues compromise
querying and analysis tasks, with possible damage in billions
of dollars [9]. Given the value of clean data for any operation,
the ability to improve their quality is a key requirement for
effective data management.

Data cleaning refers to the process of detecting and cor-
recting errors in data. Various types of data quality rules
have been proposed for this goal and great efforts have been
made to improve the effectiveness and efficiency of their
cleaning algorithms (e.g., [4], [8], [21], [18], [13]). Currently
existing techniques are used in isolation. One naive way to
enforce all would be to cascade them in a pipeline where
different algorithms are used as black boxes to be executed
sequentially or in an interleaved way. This approach minimizes
the complexity of the problem as it does not consider the

? Work done while interning at QCRI.

interaction between different types of rules. However, this
simplification can compromise the quality in the final repair
due to the lack of end-to-end quality enforcement mechanism
as we show in this paper.

Example 1.1: Consider the GlobalEmployees table (G for
short) in Figure 1. Every tuple specifies an employee in a
company with her id (GID), name (FN, LN), role, city, area
code (AC), state (ST), and salary (SAL). We consider only two
rules for now. The first is a functional dependency (FD) stating
that the city values determine the values for the state attribute.
We can see that cells in t4 and t6 present a violation for this
FD: they have the same value for the city, but different states.
We highlight the set S1 of four cells involved in the violation
in the figure. The second rule states that among employees
having the same role, salaries in NYC should be higher. In this
case cells in t5 and t6 are violating the rule, since employee
Lee (in NYC) is earning less than White (in SJ). The set S2

of six cells involved in the violation between Lee and White
is also highlighted.

The two rules detect that at least one value in each set of
cells is wrong, but taken individually they offer no knowledge
of which cells are the erroneous ones. �

Fig. 1: Local (L) and Global (G) relations for employees data.

Previously proposed data repairing algorithms focus on re-
pairing violations that belong to each class of constraints in
isolation, e.g., FD violation repairs [6]. These techniques miss
the opportunity of considering the interaction among different
classes of constraints violations. For the example above, a

desirable repair would update the city attribute for t6 with
a new value, thus only one change in the database would fix
the two violations. On the contrary, existing methods would
repair the FD by changing one cell in S1, with an equal chance
to pick any of the four by being oblivious to violations in
other rules. In particular, most algorithms would change the
state value for t6 to NY or the state for t4 to AZ. Similarly,
rule based approaches, when dealing with application-specific
constraints such as the salary constraint above, would change
the salaries of t5 or t6 in order to satisfy the constraints. None
of these choices would fix the mistake for city in t6, on the
contrary, they would add noise to the existing correct data.

This problem motivates the study of novel methods to
correct violations for different types of constrains with de-
sirable repairs, where desirability depends on a cost model
such as minimizing the number of changes, the number of
invented values, or the distance between the value in the
original instance and the repair. To this end, we need quality
rules that are able to cover existing heterogeneous formalisms
and techniques to holistically solve them, while keeping the
process automatic and efficient.

Since the focus of this paper is the holistic repair of a set of
integrity constraints more general than existing proposals, we
introduce a model that accepts as input Denial Constraints
(DCs), a declarative specification of the quality rules which
generalizes and enlarge the current class of constraints for
cleaning data. Cleaning algorithms for DCs have been pro-
posed before [4], [20], but they are limited in scope, as they
repair numeric values only, generality, only a subclass of DCs
is supported, and in the cost model, as they aim at minimizing
the distance between original database and repair only. On the
contrary, we can repair any value involved in the constraints,
we do not have limits on the allowed DCs, and we support
multiple quality metrics (including cardinality minimality).

Example 1.2: The two rules described above can be ex-
pressed with the following DCs:

c1 : ¬(G(g, f, n, r, c, a, s), G(g′, f ′, n′, r′, c′, a′, s′),
(c = c′), (s 6= s′))

c2 : ¬(G(g, f, n, r, c, a, s), G(g′, f ′, n′, r′, c′, a′, s′),
(r = r′), (c = “NY C”), (c′ 6= “NY C”), (s′ > s))

The DC in c1 corresponds to the FD: G.CITY → G.ST and
has the usual semantics: if two tuples have the same value for
city, they must have the same value for state, otherwise there
is a violation. The DC in c2 states that every time there are
two employees with the same rank, one in NYC and one in a
different city, there is a violation if the salary of the second
is greater than the salary of the first. �

Given a set of DCs and a database to be cleaned, our
approach starts by compiling the rules into data violations
over the instance, so that, by analyzing their interaction, it is
possible to identify the cells that are more likely to be wrong.
In the example, t6[CITY] is involved in both violations,
so it is the candidate cell for the repair. Once we have
identified what are the cells that are most likely to change,
we process their violations to get information about how

to repair them. In the last step, heterogeneous requirements
from different constraints are holistically combined in order to
fix the violations. In the case of t6[CITY], both constraints
are satisfied by changing its value to a string different from
“NYC”, so we update the cell with a new value.

A. Contributions

We propose a method for the automatic repair of dirty data,
by exploiting the evidence collected with the holistic view of
the violations:

• We introduce a compilation mechanism to project denial
constraints on the current instance and capture the inter-
action among constraints as overlaps of the violations on
the data instance. We compile violations into a Conflict
Hypergraph (CH) which generalizes the one previously
used in FD repairing [18] and is the first proposal to
treat quality rules with different semantics and numerical
operators in a unified artifact.

• We present a novel holistic repairing algorithm that
repair all violations together w.r.t. one unified objective
function. The algorithm is independent of the actual cost
model and we present heuristics aiming at cardinality and
distance minimality.

• We handle different repair semantics by using a novel
concept of Repair Context (RC): a set of expressions
abstracting the relationship among attribute values and
the heterogeneous requirements to repair them. The RC
minimizes the number of cells to be looked at, while
guaranteeing soundness.

We verify experimentally the effectiveness and scalability of
the algorithm. In order to compare with previous approaches,
we use both real-life and synthetic datasets. We show that the
proposed solution outperforms state of the art algorithms in all
scenarios. We also verify that the algorithms scale well with
the size of the dataset and the number of quality rules.

B. Outline

We discuss related work in Section II, introduce preliminary
definitions in Section III, and give an overview of the solution
in Section IV. Technical details of the repair algorithms are
discussed in Section V. System optimizations are discussed
in Section VI, while experiments are reported in Section VII.
Finally, conclusions and future work are discussed in Section
VIII.

II. RELATED WORK

In industry, major database vendors have their own products
for data quality management, e.g., IBM InfoSphere Quali-
tyStage, SAP BusinessObjects, Oracle Enterprise Data Qual-
ity, and Google Refine. These systems typically use simple,
low-level ETL procedural steps [3]. On the other hand, in
academia, researchers are investigating declarative, constraint-
based rules [4], [5], [13], [8], [11], [12], [21], [18], which
allow users to detect and repair complicated patterns in the

data. However, a unified approach to data cleaning that com-
bines evidence from heterogeneous rules is still missing and
it is the subject of this work.

Interleaved application of FDs and MDs has been studied
before [13] and some works (e.g., [6], [5], [8]) compute sets of
cells that are connected by violations from different FDs. This
connected component is usually called “equivalence class”
and it is a special case of the notion of repair context that
we introduce next. Another work [18] exploits the interaction
among FDs by using a hypergraph. In our proposal we extend
the use of hypergraphs to denial constraints, thus significantly
generalizing the original proposal. Moreover, we simplify it,
by considering only current violations, thus avoiding a large
number of hyperedges that they compute in order to execute
the repair process with a single iteration. In fact, by using
multiple iterations we can be more general and compute
interactions of rules happening in more than two steps.

In this work we compute repairs with a large class of
operators in the quality rules: =, 6=, <, >, ≤, ≥, ≈ (similarity).
Most of the previous approaches [6], [8] were dealing only
with equality, and can be seen as special cases of our work.
Exceptions are [4], [20], where the authors propose algorithms
to repair numerical attributes for denial constraints. In our
work we extend their results in three important aspects: (i)
we treat both strings and numeric values together, thus not
restricting updates to numeric values only; (ii) we do not
limit the input constraints to local denial constrains; and
(iii) we allow multiple quality metrics (including cardinality
minimality), while still minimizing the distance between the
numeric values in the original and the repaired instances. We
show in the experimental study that our algorithms provide
repairs of better quality, even for the quality metric in [4].

In general, denial constraints can be extracted from ex-
isting business rules with human intervention. Moreover, a
source of constraints with numeric values from enterprise
databases is data mining [2]. Inferred rules always have a
confidence, which clearly points to data quality problems in
the instances. For example, a confidence of 98.5% for a rule
“discountedPrice<unitPrice” implies that 1.5% of the records
require some cleaning.

III. PRELIMINARIES

A. Background

Consider database schema of the form S = (U,R,B), where
U is a set of database domains, R is a set of database predicates
or relations, and B is a set of finite built-in predicates. In this
paper, B = {=, <,>, 6=,≤,≈}. For an instance I of S, and
an attribute A ∈ U, and a tuple t, we denote by Dom(A) the
domain of attribute A. We denote by t[A] or I(t[A]) the value
of the cell of tuple t under attribute A.

In this work we support the subset of integrity con-
straints identified by denial constraints (DCs) over relational
databases. Denial constraints are first-order formulae of the
form ϕ : ∀x¬(R1(x1)∧ . . .∧Rn(xn)∧P1 ∧ . . .∧Pm), where
Ri ∈ R is a relation atom, and x = ∪xi, and each Pi of
the form v1θc, or v1θv2, where v1, v2 ∈ x, c is a constant,

and θ ∈ B. Similarity predicate ≈ is positive when the edit
distance between two strings is above a user-defined threshold
δ.

Single-tuple constraints (such as SQL CHECK constraints),
Functional Dependencies, Matching Dependencies, and Con-
ditional Functional Dependencies are special cases of unary
and binary denial constraints with equality and similarity
predicates.

Given a database instance I of schema S and a DC ϕ, if I
satisfies ϕ, we write I |= ϕ. If we have a set of DC Σ, I |= Σ
if and only if ∀ϕ ∈ Σ, I |= ϕ. A repair I ′ of an inconsistent
instance I is an instance that satisfies Σ and has the same
set of tuple identifiers in I . Attribute values of tuples in I
and I ′ can be different and, for infinite domains of attributes
in R, there is an infinite number of possible repairs. Similar
to [5], [18], we represent the infinite space of repairs as a finite
set of instances with fresh attribute values. In a repair, each
fresh value FV for attribute A can be replaced with a value
from Dom(A) \ Doma(A), where Doma(A) is the domain
of the values for A which satisfy at least a predicate for each
denial constraints involving FV . In other words, fresh values
are values of the domain for the actual attributes which do not
satisfy any of the predicates defined over them.

Notice that our setting does not rely on restrictions such
as local constraints [20] or certain regions [14]: it is possible
that a repair for a denial constraint triggers a new violation
for another constraint. In order to enforce termination of the
cleaning algorithm fresh values are introduced in the repair.
More details are discussed in the following sections.

B. Problem Definition

Since the number of possible repairs is usually very large
and possibly infinite, it is important to define a criterion to
identify desirable ones. In fact, we aim at solving the following
data cleaning problem: given as input a database I and a
set of denial constraints Σ, we compute a repair Ir of I
such that Ir |= Σ (consistency) and their distance cost(Ir,
I) is minimum (accuracy). A popular cost function from the
literature [6], [8] is the following:∑

t∈I,t′∈Ir,A∈AR

disA(I(t[A]), I(t′[A]))

where t′ is the repair for tuple t and disA(I(t[A]), I(t′[A]))
is a distance between their values for attribute A (an exact
match returns 0)1. There exist many similarity measurements
for structured values (such as strings) and our setting does
not depend on a particular approach, while for numeric values
we rely on the squared Euclidian distance (i.e., the sum of
the square of differences). We call this measure of the quality
the Distance Cost. It has been shown that finding a repair of
minimal cost is NP-complete even for FDs only [6]. Moreover,

1We omit the confidence in the accuracy of attribute A for tuple t because it
is not available in many practical settings. While our algorithms can support
confidence, for simplicity we will consider the cells with confidence value
equals to one in the rest of the paper, as confidence does not add specific
value to our solution.

minimizing the above function for DCs and numerical values
only it is known to be a MaxSNP-hard problem [4].

Interestingly, if we rely on a binary distance between
values (0 if they are equal, 1 otherwise), the above cost
function corresponds to aiming at computing the repair with
the minimal number of changes. The problem of computing
such cardinality-minimal repairs is known to be NP-hard to
be solved exactly, even in the case with FDs only [18]. We
call this quality measure Cardinality-Minimality Cost.

Given the intractability of the problems, our goal is to
compute nearly-optimal repairs. We rely on two directions to
achieve it: approximation holistic algorithms to identify cells
that need to be changed, and local exact algorithms within the
cells identified by our notion of Repair Context. We detail our
solutions in the following sections.

IV. SOLUTION OVERVIEW

In this Section, we first present our system architecture, and
we explain two data structures: the conflict hypergraph (CH)
to encode constraint violations and the repair context (RC) to
encode violation repairs.

Fig. 2: Architecture of the system.

A. System Architecture

The overall system architecture is depicted in Figure 2. Our
system takes as input a relational database (Data) and a set of
denial constraints (DCs), which express the data quality rules
that have to be enforced over the input database.

Example 4.1: Consider the LocalEmployee table (L for
short) in Figure 1. Every tuple represents information stored
for an employee of the company in one specific location:
employee local id (LID), name (FN, LN), rank (RNK), number
of days off (DO), number of years in the company (Y), city
(CT), manager id (MID), and salary (SAL). LocalEmployee
table and GlobalEmployee table constitute the input database.
We introduce a third DC:
c3 : ¬(L(l, f, n, r, d, y, c,m, s), L(l′, f ′, n′, r′, d′, y′, c′,m′, s′),

G(g∗, f∗, n∗, r∗, c∗, a∗, s∗), (l 6= l′), (l = m′),
(f ≈ f∗), (n ≈ n∗), (c = c∗), (r∗ 6= “M”))

The constraint states that a manager in the local database L
cannot be listed with a status different from “M” in the global
database G. The rule shows how different relations, similarity
predicate, and self-joins can be used together. �

The DCs Parser provides rules for detecting violations
(through the Detect module) and rules for fixing the violations
to be executed by the LookUp module as we explain in the
following example.

Example 4.2: Given the database in Figure 1, the DCs
Parser processes constraint c3 and provides the Detect module
the rule to identify a violation spanning ten cells over tuples
t1, t2, and t3 as highlighted. Since every cell of this group
is a possible error, DCs Parser dictates the LookUp module
how to fix the violation if any of the ten cells is considered
to be incorrect. For instance, the violation is repaired if “Paul
Smith” is not the manager of “Mark White” in L (represented
by the repair expression (l 6= m′)), if the employee in L does
not match the one in G because of a different city (c 6= c∗),
or if the role for the employee in G is updated to manager
(r∗ = M). �

We described how each DC is parsed so that violations and
fixes for that DC can be obtained. However, our goal is to
consider violations from all DCs together and generate fixes
holistically. For this goal we introduce two data structures: the
Conflict Hypergraph (CH), which encodes all violations into a
common graph structure, and the Repair Context (RC), which
encodes all necessary information of how to fix violations
holistically. The Detect module is responsible for building the
CH that is then fed into the LookUp module, which in turn
is responsible for building the RC. The RC is finally passed
to a Determination procedure to generate updates. Depending
on the content of the RC, we have two Determination cores,
i.e., Value Frequency Map (VFP) and Quadratic Programming
(QP). The updates to the database are applied, and the process
is restarted until the database is clean (i.e., empty CH), or a
termination condition is met.

B. Violations Representation: Conflict Hypergraph

We represent the violations detected by the Detect module in
a graph, where the nodes are the violating cells and the edges
link cells involved in the same violation. As an edge can cover
more than two nodes, we use a Conflict Hypergraph (CH)
[18]. This is an undirected hypergraph with a set of nodes
P representing the cells and a set of annotated hyperedges
E representing the relationships among cells violating a con-
straint. More precisely, a hyperedge (c; p1, . . . , pn) is a set of
violating cells such that one of them must change to repair the
constraint, and contains: (a) the constraint c, which induced the
conflict on the cells; (b) the list of nodes p1, . . . , pn involved
in the conflict.

Example 4.3: Consider Relation R in Figure 3a and the
following constraints (expressed as FDs and CFDs for read-
ability): ϕ1 : A → C, ϕ2 : B → C, and ϕ3 : R[D = 5] →
R[C = 5]. CH is built as in Figure 3b: ϕ1 has 1 violation e1;
ϕ2 has 2 violations e2, e3; ϕ3 has 1 violation e4.

�
The CH represents the current state of the data w.r.t.

the constraints. We rely on this representation to analyze
the interactions among violations on the actual database. A
hyperedge contains only violating cells: in order to repair it,

(a) Data (b) CH

Fig. 3: CH Example.

at least one of its cells must get a new value. Interestingly, we
can derive a repair expression for each of the cell involved in
a violation, that is, for each variable involved in a predicate
of the DC. Given a DC d : ∀x¬(P1 ∧ . . . ∧ Pm) and a set of
violating cells (hyperedge) for it V = {v1, . . . , vn}, for each
vi ∈ V there is at least one alternative repair expression of
the form viψt, where t is a constant or a connected cell in V .
This leads to the following property of hyperedges.

Lemma 4.4: All the repairs for hyperedge e have at most
cardinality n with n ≤ m, where m is the size of the biggest
chain of connected variables among its repair expressions. �
Proof Sketch. We start with the case with one predicate only in
the DC d. If it involves a constant, then the repair expression
contains only one cell and its size coincides with the size of
the hyperedge. If it is a predicate involving another cell, then at
least one of them is going to change in the repair. We consider
now the case with more than a predicate in d. In this case,
as the predicates allowed are binary, there may be a chain of
connected variables of size m in the repair expressions: when
a value is changed for a cell, it may triggers changes in the
connected ones. Therefore, in the worst case, to repair them
m changes are needed. �

The Lemma states an upper bound for the number of
changes that are needed to fix a hyperedge. More importantly,
it highlights that in most cases one change suffices as we show
in the following example.

Example 4.5: In c3 the biggest chain of variables in the
repair expressions comes from l = l′ (from the first predicate)
and l 6= m′ (from the second predicate). This means that,
to repair violations for c3, at most three changes are needed.
Notice that only one change is needed for most of the cells
involved in a violation. �

A naı̈ve approach to the problem is to compute the repair
by fixing the hyperedges one after the other in isolation.
This would lead to a valid repair, but, if there are interacting
violations, it would certainly change more cells than the repair
with minimal cost. As our goal is to minimize changes in the
repair, we can rely on hyperedges for identifying cells that
are very likely to be changed. The intuition here is that, in
the spirit of [18], by using algorithms such as the Minimum
Vertex Cover (MVC), we can identify at the global level what
are the minimum number of violating cells to be changed in

order to compute a repair.2 For instance, a possible MVC for
the CH in Figure 3b identifies t2[C] and t4[C].

After detecting all violations in the current database and
building the CH, the next step is to generate fixes taking into
account the interaction among violations. In order to facilitate
a holistic repair, we rely on another data structure, which is
discussed next.

C. Fixing Violation Holistically: Repair Context

We start from cells that MVC identifies as likely to be
changed, and incrementally identify other cells that are in-
volved in the current repair. We call the starting cells and the
newly identified ones frontier. We call repair expressions the
list of constant assignments and constraints among the frontier.
The frontier and the repair expressions form a Repair Context
(RC). We elaborate RC using the following example.

Example 4.6: Consider the database and CH in Example
4.3. Suppose we have t2[C] and t4[C] from the MVC as
starting points. We start from t2[C], which is involved in 3
hyperedges. Consider e1: given t2[C] to change, the expression
t2[C] = t1[C] must be satisfied to solve it, thus bringing t1[C]
into frontier. Cell t1[C] is not involved in other hyperedges,
so we stop. Similarly, t2[C] = t3[C] must be satisfied to
resolve e2 and t3[C] is brought into the frontier. For e3,
t2[C] = t4[C] is the expression to satisfy, however, t4[C]
is involved also in e4. We examine e4 given t4[C] and we
get another expression t4[C] = 5. The resulting RC consists
of frontier: t1[C], t2[C], t3[C], t4[C], and repair expressions:
t2[C] = t1[C], t2[C] = t3[C], t2[C] = t4[C], t4[C] = 5.

Notice that by starting from t4[C] the same repair is
obtained and the frontier contains only four cells instead of
ten in the connected component of the hypergraph. �

An RC is built from a starting cell c with violations from
DCs D with a recursive algorithm (detailed in the next section)
and has two properties: (i) there is no cell in its frontier that
is not (possibly transitively) connected to c by a predicate in
the repair expression of at least a d ∈ D, (ii) every cell that
is (possibly transitively) connected to c by a predicate in the
repair expression of at least a d ∈ D is in its frontier. In
other terms, RC contains exactly the information required by
a repair algorithm to make an informed, holistic decision.

Lemma 4.7: The Repair Context contains the sufficient and
necessary information to repair all the cells in its frontier. �
Proof Sketch. We start with the necessity. By definition, the RC
contains the union of the repair expressions over the cells in
the frontier. If it is possible to find an assignment that satisfies
the repair expressions, all the violations are solved. It is evident
that, if we remove one expression, then it is not guaranteed
that all violations can be satisfied. The repair expressions are
sufficient because of the repair semantics of the DCs. As the
frontier contains all the connected cells, any other cell from
V would add an expression that is not needed to repair the
violation for d and would require to change a cell that is not
needed for the repair. �

2In order to keep the execution time acceptable an approximate algorithm
is used to compute the MVC.

We can now state the following result regarding the RC:
Proposition 4.8: An RC always has a repair of cardinality

n with n ≤ u, where u is the size of its frontier. �
Proof Sketch. From Lemmas 4.7 and 4.4 it can be derived that
(i) it is always possible to find a repair for RC, and (ii) in the
worst case the repair has the size of the union of the chains
of the connected variables in its repair expressions. �

In practice, the number of cells in a DC is much smaller
than the number of cells in the respective hyperedges. For
t6[CITY], the size of the RC is one, while there are nine
cells in the two hyperedges for c1 and c2.

Given the discussion above, for each cell in the MVC we
exploit its violations with the LookUp module to get the RC.
Once all the expressions are collected, a Determination step
takes as input the RC and computes the valid assignments for
the cells involved in it. In this step, we rely on a function
to minimize the cost of changing strings (VFM) and on
an external Quadratic Programming (QP) tool in order to
efficiently solve the system of inequalities that may arise when
numeric values are involved. The assignments computed in this
step become the updates to the original database in order to fix
the violations. The following example illustrates the use of QP,
while LookUp and Determination processes will be detailed
in the next section.

Example 4.9: Consider again the L relation in Figure 1.
Two DCs are defined to check the number of extra days off
assigned to each employee:

c4 : ¬(L(l, f, n, r, d, y, c,m, s), (r = “A”), (d < 3)
c5 : ¬(L(l, f, n, r, d, y, c,m, s), (y > 4), (d < 4))

In order to minimize the change, the QP formulation of the
problem for t1[DO] is (x − 2)2 with constraints x ≥ 3 and
x ≥ 4. Value 4 is returned by QP and assigned to t1[DO]. �

The holistic reconciliation provided by the RC has several
advantages: the cells connected in the RC form a subset of
the connected components of the graph and this leads to better
efficiency in the computation and better memory management.
Moreover, the holistic choice done in the RC minimizes the
number of changes for the same cell; instead of trying different
possible repairs, an informed choice is made by considering
all the constraints on the connected cells. We will see how
this leads to better repairs w.r.t. previous approaches.

V. COMPUTING THE REPAIRS

In this Section we give the details of our algorithms. We
start by presenting the iterative algorithm that coordinates the
detect and repair processes. We then detail the technical solu-
tions we built for DETECT, LOOKUP, and DETERMINATION.

A. Iterative Algorithm

Given a database and a set of DCs, we rely on Algorithm 1.
It starts by computing violations, the CH, and the MVC over
it. These steps bootstrap the outer loop (lines 5–26), which is
repeated until the current database is clean (lines 19–22) or a
termination condition is met (lines 23–26). Cells in the MVC
are ranked in order to favor those involved in more violations

Algorithm 1 Holistic Repair

Input: Database data, Denial Constraints dcs
Output: Repair data

1: Compute violations, conflict hypergraph, MVC.
2: Let processedCells be a set of cells in the database that

have already been processed.
3: sizeBefore ← 0
4: sizeAfter ← 0
5: repeat
6: sizeBefore ← processedCell.size()
7: mvc ← Re-order the vertices in MVC in a priority

queue according to the number of hyperedges
8: while mvc is not empty do
9: cell ← Get one cell from mvc

10: rc ← Initialize a new repair context for that cell
11: edges ← Get all hyperedges for that cell
12: while edges is not empty do
13: edge ← Get an edge from edges
14: LOOKUP(cell, edge, rc)
15: end while
16: assignments ← DETERMINATION(cell, exps)
17: data.update(assignments)
18: end while
19: reset the graph: re-build hyperedges, get new MVC
20: if graph has no edges then
21: return data
22: end if
23: tempCells ← graph.getAllCellsInAllEdges()
24: processedCells ← processedCells ∪ tempCells
25: sizeAfter ← processedCell.size()
26: until sizeBefore ≤ sizeAfter
27: return data.PostProcess(tempCells,MV C)

and are repaired in the inner loop (lines 8–18). In this loop,
the RC for the cell is created with the LOOKUP procedure.
When the RC is completed, the DETERMINATION step assigns
the values to the cells that have a constant assignments in the
repair expressions (e.g., t1[A] = 5). Cells that do not have
assignments with constants (e.g., t1[A] 6= 1), keep their value
and their repair is delayed to the next outer loop iteration. If
the updates lead to a new database without violations, then it
can be returned as a repair, otherwise the outer loop is executed
again. If no new cells have been involved w.r.t. the previous
loop, then the termination condition is triggered and the cells
without assignments are updated with new fresh values in the
post processing final step.

The outer loop has a key role in the repair. In fact, it is
possible that an assignment computed in the determination
step solves a violation, but raises a new one with values that
were not involved in the original CH. This new violation is
identified at the end of the inner loop and a new version of the
CH is created. This CH has new cells involved in violations
and therefore the termination condition is not met.

Before returning the repair, a post-processing step updates

all the cells in the last MVC (computed at line 19) to fresh
values. This guarantees the consistency of the repair and no
new violations can be triggered. Pushing to the very last the
assignment of a fresh value forces the outer loop to try to find
a repair with constants until the termination condition is met,
as we illustrate in the following example.

Example 5.1: Consider again only rules c1 and c2 in the
running example. After the first inner loop iteration, the RC
contains an assignment t6[CITY] 6= “NY C”, which is not
enforced by the determination step and therefore the database
does not change. The HC is created again (line 19) and it still
has violations for c1 and c2. The cells involved in the two
violations go into tempCells and sizeAfter is set to 9. A new
outer loop iteration sets sizeBefore to 9, the inner loop does
not change the data, and it gets again the same graph at line
19. As sizeBefore = sizeAfter, it exits the outer loop and the
post processing assigns t6[CITY] = “FV ”. �

Proposition 5.2: For every set of DCs, if the determination
step is polynomial, then Holistic Repair is a polynomial
time algorithm for the data cleaning problem. �
Proof sketch. It is easy to see that the output of the algorithm
is a repair for an input database D with DCs dcs. In the outer
loop we change cells to constants that satisfy the violations and
in the post process we resolve violations that were not fixable
with a constant by introducing fresh values. As fresh values
do not match any predicate, the process eventually terminates
and returns a repair which does not violate the DCs anymore.

The vertex cover problem is an NP-complete problem and
there are standard approaches to find approximate solutions.
We use a greedy algorithm with factor k approximation, where
k is the maximum number of cells in a hyperedge of the HC.
Our experimental studies show that a k approximation of the
MVC lead to better results w.r.t. alternative ways to identify
the seed cells for the algorithm. The complexity of the greedy
algorithm is linear in the number of edges. In the worst case,
the number of iterations of the outer loop is bounded by the
number of constraints in dc plus one: it is possible to design
a set of DCs that trigger a new violation at each repair, plus
one extra iteration to verify the termination condition. The
complexity of the algorithm is bounded by the polynomial
time for the detection step: three atoms in the DC need a
cubic number of comparisons in order to check all the possible
triplets of tuples in the database. In practice, the number of
tuples is orders of magnitude bigger than the number of DCs
and therefore the size of the data dominates the complexity
O(|data|c|dcs|), where c is the largest number of atoms in a
rule of dcs. The complexity of the inner loop depends on the
number of edges in the CH and on the complexity of LOOKUP
and DETERMINATION that we discuss next. �

Though Algorithm 1 is sound, it is not optimal, as it is
illustrated in the following example.

Example 5.3: Consider again Example 4.3. We showed a
repair with four changes obtained with our algorithm, but there
exists a cardinality minimal repair with only three changes:
t1[C] = 3, t2[C] = 3, t4[D] = NV . �
We now describe the functions to generate and manipulate the

predicate in dcs = 6= > >= < <= ≈t

predicate in repair exps 6= = <= < >= > 6=t

TABLE I: Table of conversion of the predicates in a DC for
their repair. Predicate 6=t states that the distance between two
strings must be greater than t.

building blocks of our approach.

B. DETECT: Identifying Violations

Identifying violations is straightforward: every valid assign-
ment for the denial constraint is tested, if all the atoms for an
assignment are satisfied, then there is a violation.

However, the detection step is the most expensive operation
in the approach as the complexity is polynomial with the
number of atoms in the DC as the exponent. For example,
in the case of simple pairwise comparisons (such as in FDs),
the complexity is quadratic in the number of tuples, and it
is cubic for constraints such as c3 in Example 4.1. This is
also exacerbated by the case of similarity comparisons, when,
instead of equality check, there is the need to compute edit
distances between strings, which is an expensive operation.

In order to improve the execution time on large relations,
optimization techniques for matching records [10] are used.
In particular, the blocking method partitions the relations into
blocks based on discriminating attributes (or blocking keys),
such that only tuples in the same block are compared.

C. LOOKUP: Building the Repair Context

Given a hyperedge e = {c; p1, . . . , pn} and a cell p =
ti[Aj] ∈ P , the repair expression r for p may involve other
cells that need to be taken into account when assigning a value
to p. In particular, given e and p, we can define a rule for the
generation of repair expressions.

As p ∈ Aφ(c), then it is required that r : pφcc, where φc is
the predicate converted as described in Table I. Variable c can
be a constant or another cell. For denial constraints, we defined
a function DC.Repair(e,c), based on the above rule, which
automatically generates a repair expression for a hyperedge e
and a cell c. We first show an example of its output when
constants are involved in the predicate and then we discuss
the case with variables.

Example 5.4: Consider the constraint c2 from the example
in Figure 1. We show below two examples of repair expres-
sions for it.

DC.Repair((c2; t5[ROLE], t5[CITY], t5[SAL], . . . , t6[SAL]),
t5[ROLE]) = {t5[ROLE] 6= “E”}

DC.Repair((c2; t5[ROLE], t5[CITY], t5[SAL], . . . , t6[SAL]),
t6[SAL]) = {t6[SAL] ≥ 80}

In the first repair expression the new value for t5[ROLE]
must be different from “E” to solve the violation. The re-
pair expression does not state that its new value should be
different from the active domain of ROLE (i.e., t5[ROLE] 6=
{“E”,“S”,“M”}), because in the next iteration of the outer
loop it is possible that another repair expression imposes

t5[ROLE] to be equal to a constant already in the active domain
(e.g., a MD used for entity resolution). If there is no other
expression suggesting values for t5[ROLE], in a following step
the termination condition will be reached and the post-process
will assign a fresh value to t5[ROLE]. �

Given a cell to be repaired, every time another variable is
involved in a predicate, at least another cell is involved in the
determination of its new value. As these cells must be taken
into account, we also collect their expressions, thus possibly
triggering the inclusion of new cells. We call LOOKUP the
recursive exploration of the cells involved in a decision.

Algorithm 2 LOOKUP

Input: Cell cell, Hyperedge edge, Repair Context rc
Output: updated rc

1: exps ← Denial.repair(edge, cell)
2: frontier ← exps.getFrontier()
3: for all cell ∈ frontier do
4: edges ← cell.getEdges()
5: for all edge ∈ edges do
6: exps ← exps ∪ LOOKUP(cell,edge,rc).getExps()
7: end for
8: end for
9: rc.update(exps)

Algorithm 2 describes how, given a cell c and a hyperedge
e, LOOKUP processes recursively in order to move from a
single repair expression for c to a Repair Context.

Proposition 5.5: For every set of DCs and cell c, LOOKUP
always terminates in linear time and returns a Repair Context
for c. �
Proof sketch. The correctness of the RC follows from the
traversal of the entire graph. Cycles are avoided as in the
expressions the algorithm keeps track of previously visited
nodes. As it is a Depth-first search, its complexity is linear in
the size of graph and is O(2V − 1), where V is the largest
number of connected cells in an RC. �

Example 5.6: Consider the constraint c3 from the example
in Figure 1 and the DC:

c6 : ¬(G(g, f, n, r, c, a, s), (r = “V ”), (s < 200))

That is, a vice-president cannot earn less than 200. Given
t3[ROLE] as input, LOOKUP processes the two edges over it
and collects the repair expressions t3[ROLE] 6= “V ” from c6
and t3[ROLE] = “M” from c3. �

D. DETERMINATION: Finding Valid Assignments

Given the set of repair expressions collected in the RC,
the DETERMINATION function returns an assignment for the
frontier in the RC. The process for the determination is
depicted in Algorithm 3: Given an RC and a starting cell,
we first choose a (maximal) subset of the repair expressions
that is satisfiable, then we compute the value for the cells in
the frontier aiming at minimizing the cost function, and update
the database accordingly later.

Algorithm 3 DETERMINATION

Input: Cell cell, Repair Context rc
Output: Assignments assigns

1: exps ← rc.getExps()
2: if exps contain >,<,>=, <= then
3: QP ← computeSatisfiable(exps)
4: assigns ← QP.getAssigments()
5: else
6: V FM ← computeSatisfiable(exps)
7: assigns ← V FM.getAssigments()
8: end if
9: return assigns

In Algorithm 3, we have two determination procedures. One
is Value Frequency Map (VFM), which deals with string typed
expressions. The other is quadratic programming (QP), which
deals with numerical typed expressions3.

1) Function computeSatisfiable: Given the current set of
expressions in the context, this function identifies the subset
of expressions that are solvable.

Some edges may be needed to be removed from the RC to
make it solvable. First, a satisfiability test verifies if the repair
expressions are in contradiction. If the set is not satisfiable,
the repair expressions coming from the hyperedge with the
smallest number of cells are removed. If the set of expressions
is now satisfiable, the removed hyperedge is pushed to the
outer loop in the main algorithm for repair. Otherwise, the
original set minus the next hyperedge is tested. The process
of excluding hyperedges is then repeated for pairs, triples, and
so on, until a satisfiable set of expressions is identified. In the
worst case, the function is exponential in the number of edges
in the current repair context. The following example illustrates
how the function works.

Example 5.7: Consider the example in Figure 1 and two
new DCs:

c7 : ¬(L(l, f, n, r, d, y, c,m, s), (r = “B”), (d > 4))
c8 : ¬(L(l, f, n, r, d, y, c,m, s), (y > 7), (d < 6))

That is, an employee after 8 years should have at least 6
extra days off, and an employee of rank “B” cannot have
more than 4 days. Given t2[DO] as input by the MVC,
LOOKUP processes the two edges over it and collects the
repair expressions t2[DO] ≤ 4 from c7 and t2[DO] ≥ 6 from
c8. The satisfiability test fails (x ≤ 4 ∧ x ≥ 6) and the
computeSatisfiable function starts removing expressions from
the RC, in order to maximize the set of satisfiable constraints.
In this case, it removes c7 from the RC and sets t2[DO] = 6
to satisfy c8. Violation for c7 is pushed to the outer loop, and,
as in the new MVC there are no new cells involved, the post
processing step updates t2[RNK] to a fresh value. �

2) Function getAssignments: After getting the maximum
number of solvable expressions, the following step aims at
computing an optimal repair according to the cost model at

3We assume all numerical values to be integer for simplicity

hand. We therefore distinguish between string typed expres-
sions and numerical typed expressions for both cost models:
cardinality minimality and distance minimality

String Cardinality Minimality. In this case we want to
minimize the number of cells to change. For string type,
expressions consist only of = and 6=, thus we create a mapping
from each candidate value to the occurrence frequency (VFM).
The value with biggest frequency count will be chosen.

Example 5.8: Consider a schema R(A,B) with 5 tu-
ples t1 = R(a, b), t2 = R(a, b), t3 = R(a, cde), t4 =
R(a, cdf), t5 = R(a, cdg). R has an FD : A → B.
Suppose now we have an RC with set of expressions t1[B] =
t2[B] = t3[B] = t4[B] = t5[B]. VFM is created with
b → 2, cde → 1, cdf → 1, cdg → 1. So value b is chosen.
�

String Distance Minimality. In this case we want to
minimize the string edit distance. Thus we need a different
VFM, which maps from each candidate value to the edit
distance if this value were to be chosen.

Example 5.9: Consider the same database as Example 5.8.
String cardinality minimality is not necessarily string distance
minimality. Now VFM is created as follows: b → 12, cde →
10, cdf → 10, cdg → 10. So any of cde, cdf, cdg can be
chosen. �

Numerical Distance Minimality. In this case we want to
minimize the squared distance. QP is our determination core.
In particular, we need to solve the following objective function:
for each cell with value v involved in a predicate of the DC,
a variable x is added to the function with (x − v)2. The
expressions in the RC are transformed into constraints for the
problem by using the same variable of the function. As the
objective function given as a quadratic has a positive definite
matrix, the quadratic program is efficiently solvable [19].

Example 5.10: Consider a schema R(A,B,C) with a tuple
t1 = R(0, 3, 2) and the two repair expressions: r1 : R[A] <
R[B] and r2 : R[B] < R[C]. To find valid assignments, we
want to minimize the quadratic objective function (x− 0)2 +
(y−3)2+(z−2)2 with two linear constraints x < y and y < z,
where x, y, z will be new values for t1[A], t1[B], t1[C]. We
get solution x = 1, y = 2, z = 3 with the value of objective
function being 3. �

Numerical Cardinality Minimality. In this case we want
(i) to minimize the number of changed cells, and (ii) to
minimize the distance for those changing cells. In order
to achieve cardinality minimality for numerical values, we
gradually increase the number of cells that can be changed
until QP becomes solvable. For those variables we decide
not to change, we add constraint to enforce it to be equal to
original values. It can be seen that this process is exponential
in the number of cells in the RC.

Example 5.11: Consider the same database as in Example
5.10.Numerical distance minimality is not necessary numerical
cardinality minimum. It can be easily spotted that x = 0, y =
1, z = 2 whose squared distance is 4 only has one change,
while x = 1, y = 2, z = 3 whose squared is 3 has three
changes. �

VI. OPTIMIZATIONS AND EXTENSIONS

In this section, we briefly discuss two optimization tech-
niques adopted in our system, followed by two possible exten-
sions that may be of interest to certain application scenarios.

Detection Optimization. Violation detection for DCs
checks every possible grounding of predicates in denial con-
straints. Thus improving the execution times for violation
detection implies reducing the number of groundings to be
checked. We face the issue by verifying predicates in a order
based on their selectivity. Before enumerating all grounding
combinations, predicates with constants are applied first to rule
out impossible groundings. Then, if there is an equality pred-
icate without constants, the database is partitioned according
to two attributes in the equality predicate, so that grounding
from two different partitions need not to be checked. Consider
for example c3. The predicate (r∗ 6= ‘M ′) is applied first to
rule out grounding with attribute r∗ equals M . Then predicate
(l = m′) is chosen to partition the database, so groundings
with values of attributes l and m′ not being in the same
partition will not be checked.

Hypergraph Compression. The conflict hypergraph pro-
vides a violation representation mechanism, such that all
information necessary for repairing can be collected by the
LOOKUP module. Thus, the size of the hypergraph has an
impact on the execution time of the algorithm. We therefore
reduce the number of hyperedges without compromising the
repair context by removing redundant edges. Consider for
example a table T (A,B) with 3 tuples t1 = (a1, b1), t2 =
(a1, b2), t3 = (a1, b3) and an FD: A → B; it has three
hyperedges and three expressions in the repair context, i.e.,
t1[B] = t2[B], t1[B] = t3[B], t2[B] = t3[B]. However, only
two of them are necessary, because the expression for the third
hyperedge can be deduced from the first two.

Custom Repair Strategy. The default repair strategy can
easily be personalized with a user interface for the LOOKUP
module. For example, if a user wants to enforce the increase
of the salary for the NYC employee in rule c2, she just
needs to select the s variable in the rule. An alternative
representation of the rule can be provided by sampling
the rule with an instance on the actual data, for example
¬(G(386,Mark, Lee,E,NY C, 552, AZ, 75), G(Mark,
White, E, SJ, 639, CA, 80), (80 > 75)), and the user high-
lights the value to be changed in order to repair the violation.

We have shown how repair expressions can be obtained
automatically for DCs. In general, the Repair function can be
provided for any new kind of constraints that is plugged to
the system. In case the function is not provided, the system
would only detect violating cells with the Detect module. The
iterative algorithm will try to fix the violation with repair
expressions from other interacting constraints or, if it is not
possible, it will delay its repair until the post-processing step.

Manual Determination. In certain applications, users may
want to manually assign values to dirty cells. In general, if a
user wants to verify the value proposed by the system for a
repair, and eventually change it, she needs to analyze what are

the cells involved in a violation. In this scenario, the RC can
expose exactly the cells that need to be evaluated by the user
in the manual determination. Even more importantly, the RC
contains all the information (such as constants assignments
and expressions over variables) that lead to the repair. In the
same fashion, fresh values added in the post processing step
can be exposed to the user with their RC for examination and
manual determination.

VII. EXPERIMENTAL STUDY

The techniques have been implemented as part of the
NADEEF data cleaning project at QCRI4 and we now present
experiments to show their performance. We used real-world
and synthetic data to evaluate our solution compared to
state-of-the-art approaches in terms of both effectiveness and
scalability.

A. Experimental Settings

Datasets. In order to compare our solution to other ap-
proaches we selected three datasets.

The first one, HOSP, is from US Department of Health &
Human Services [1]. HOSP has 100K tuples with 19 attributes
and we designed 9 FDs for it. The second one, CLIENT [4],
has 100K tuples, 6 attributes over 2 relations, and 2 DCs
involving numerical values. The third one, EMP, contains
synthetic data and follows the structure of the running example
depicted in Figure 1. We generated up to 100K tuples for
the 17 attributes over 2 relations. The DCs are c1, . . . , c6 as
presented in the paper.

Errors in the datasets have been produced by introducing
noise with a certain rate, that is, the ratio of the number of
dirty cells to the total number of cells in the dataset. An error
rate e% indicates that for each cell, there is a e% probability
we are going to change that cell. In particular, we update the
cells containing strings by randomly picking a character in the
string, and change it to “X”, while cells with numerical values
are updated with randomly changing a value from an interval.5

Algorithms. The techniques presented in the paper have
been implemented in Java. As our holistic Algorithm 1 is
modular with respect to the cost function that the user wants
to minimize, we implemented the two semantics discussed
in Section V-D. In particular we tested the getAssigment
function both for cardinality minimality (RC-C) and for the
minimization of the distance (RC-D).

We implemented also the following algorithms in Java: the
FD repair algorithms from [5] (Sample), [6] (Greedy), [18]
(VC) for HOSP; and the DC repair algorithm from [4] (MWSC)
for CLIENT. As there is no available algorithm able to repair
all the DCs in EMP, we compare our approach against a
sequence of applications of other algorithms (Sequence). In
particular, we ran a combination of three algorithms: Greedy
for DCs c1, MWSC for c2, c4, c5, c6, and a simple, ad-hoc
algorithm to repair c3 as it is not supported by any of the
existing algorithms. In particular, for c3 we implemented a

4http://da.qcri.org/NADEEF/
5Datasets can be downloaded at http://da.qcri.org/hc/data.zip

simplified version of our Algorithm 1, without MVC and
with violations fixed one after the other without looking at
their interactions. As there are six alternative orderings, we
executed all of them for each test and picked the results from
the combination with the best performance. For ≈t we used
string edit distance with t = 3: two strings were considered
similar if the minimum number of single-character insertions,
deletions and substitutions needed to convert a string into the
other was smaller than 4.

Metrics. We measure performance with different metrics,
depending on the constraints involved in the scenario and on
the cost model at hand. The number of changes in the repair is
the most natural measure for cardinality minimality, while we
use the cost function in Section III-B to measure the distance
between the original instance and its repair. Moreover, as the
ground truth for these datasets is available, to get a better
insight about repair quality we measured also precision (P ,
corrected changes in the repair), recall (R, coverage of the
errors introduced with e%), and F-measure (F = 2 × (P ×
R) (P +R)). Finally, we measure the execution times needed
to obtain a repair.

As in [5], we count as correct changes the values in the
repair that coincide with the values in the ground truth, but
we count as a fraction (0.5) the number of partially correct
changes: changes in the repair which fix dirty values, but their
updates do not reflect the values in the ground truth. It is
evident that fresh values will always be part of the partially
correct changes.

All experiments were conducted on a Win7 machine with a
3.4GHz Intel CPU and 4GB of RAM. Gurobi Optimizer 5.0
has been used as the external QP tool [16] and all computations
were executed in memory. Each experiment was run 6 times,
and the results for the best execution are reported. We decided
to pick the best results instead of the average in order to favor
Sample, which is based on a sampling of the possible repairs
and has no guarantee that the best repair is computed first.

B. Experimental Results

We start by discussing repair quality and scalability for each
dataset. Depending on the constraints in the dataset, we were
able to use at least two alternative approaches. We then show
how the algorithms can handle a large number of constraints
holistically. Finally, we show the impact of the MVC on our
repairs.

Exp-1: FDs only. In the first set of experiments we show
that the holistic approach has benefits even when the con-
straints are all of the same kind, in this case FDs. As in this
example all the alternative approaches consider some kind of
cardinality minimality as a goal, we ran our algorithm with the
getAssigment function set for cardinality minimality (RC-C).

Figures 4(a-c) report results on the quality of the repairs
generated for the HOSP data with four systems. Our system
clearly outperforms all alternatives in every quality measure.
This verifies that holistic repairs are more accurate than alter-
native fixes. The low values for the F-measure are expected:
even if the precision is very high (about 0.9 for our approach

(a) HOSP # of changes (b) HOSP F-measure (c) HOSP % errors (d) HOSP Exec. time

(e) CLIENT # of changes (f) CLIENT Distance (g) CLIENT % errors (h) CLIENT Exec. time

(i) EMP # of changes (j) EMP Distance (k) EMP % errors (l) EMP Exec. time

Fig. 4: Experimental results for the data cleaning problem.

on 5% error rate), recall is always low because many randomly
introduced error cannot be detected. Consider for example
R(A,B), with an FD: A → B, and two tuples R(1,2), R(1,3).
An error introduced for a value in A does not trigger a
violation, as there is not match in the left hand side of the
FD, thus the erroneous value cannot be repaired.

Figure 4(c) shows the number of cells changed to repair
input instances (of size 10K tuples) with increasing amounts of
errors. The number of errors increases when e% increases for
all approaches; however, RC-C benefits of the holism among
the violations and is less sensitive to this parameter.

Execution times are reported in Figure 4(d), we set a timeout
of 10 minutes and do not report executions over this limit. We
can notice that our solution competes with the fastest algorithm
and scales nicely up to large databases. We can also notice that
VC does not scale to large instances due to the large size of
their hypergraph, while our optimizations effectively reduces
the number of hyperedges in RC-C.

Exp-2: DCs with numerical values. In the experiment for
CLIENT data, we compare our solution against the state-of-the-
art for the repair of DCs with numerical values (MWSC) [4].
As MWSC aims at minimizing the distance in the repair, we
ran the two versions of our algorithm (RC-C and RC-D).

Figures 4(e-f) show that RC-C and RC-D provide more
precise repairs, both in terms of number of changes and

distance, respectively. As in Exp-1, the holistic approach
shows significant improvements over the state-of-the-art even
with constraints of the same kind only, especially in terms
of cardinality minimality. This can be observed also with
data with increasing amount of errors in Figures 4(g). Notice
that RC-C and RC-D have very similar performances for this
example. This is due to the fact that the dataset was designed
for MWSC, which supports only local DCs. For this special
class the cardinality minimization heuristic is not needed in
order to obtain minimality. However, Figure 4(g) shows that
the overhead in execution time for RC-C is really small and the
execution times for our algorithms is comparable to MWSC.

Exp-3: Heterogeneous DCs. In the experiments for the
EMP dataset, we compare RC-C and RC-D against Sequence.
In this dataset we have more complex DCs and, as expected,
Figures 4(i) and 4(k) show that RC-C performs best in terms
of cardinality minimality. Figure 4(j) reports that both RC-
C and RC-D perform significantly better than Sequence in
terms of Distance cost. We observe that all approaches had low
precision in this experiment: this is expected when numerical
values are involved, as it is very difficult for an algorithm
to repair a violation with exactly the correct value. Imagine
an example with value x violating x > 200 and an original,
correct value equals to 250; in order to minimize the distance
from the input, value x is assigned 201 and there is a

significant distance w.r.t. the true value.
Execution times in Figure 4(l) show that the three algorithms

have the same time performances. This is not surprising, as
they share the detection of the violations which is by far the
most expensive operation due to the presence of a constraint
with three atoms (c3). The cubic complexity for the detection
of the violations clearly dominates the computation. Tech-
niques to improve the performances for the detection problem
are out of the scope of this work and are currently under
study in the context of parallel computation on distributed
infrastructures [17].

(a) HOSP # of DCs (b) MVC vs Order (log. scale)

Fig. 5: Results varying the number of constraints and the
ordering criteria in Algorithm 1.

Exp-4: Number of Rules. In order to test the scalability
of our approach w.r.t. the number of constraints, we generated
DCs for the HOSP dataset and tested the performance of the
system. New rules have been generated as follows: randomly
take one FD c from the original constraints for HOSP, one
of its tuples t from the ground truth, and create a CFD c′,
such that all the attributes in c must coincide with the values
in t (e.g., c′ : Hosp[Provider#=10018] → Hosp[Hospital=“C.
E. FOUNDATION”]). We then generated an instance of 5k
tuples with 5% error rate and computed a repair for every
new set of DCs. For each execution, we increased the number
of constraints as input. The results in Figure 5a verifies that
the execution times increase linearly with the number of
constraints.

Exp-5: MVC contribution. In order to show the benefits of
MVC on the quality of repair, we compared the use of MVC
to identify conflicting cells versus a simple ordering based
on the number of violations a cell is involved (Order). For
the experiment we used datasets with 10k tuples, 5% error
rate and RC-C. Results are reported in Figure 5b. For the
hospital dataset the number of changes is almost the double
with the simple ordering (3382 vs 1833), while the difference
is smaller for the other two experiments because they show
fewer interactions between violations.

VIII. CONCLUSIONS AND FUTURE WORK

Existing systems for data quality handle several formalisms
for quality rules, but do not combine heterogeneous rules
neither in the detection nor in their repair process. In this work
we have shown that our approach to holistic repair improves
the quality of the cleaned database w.r.t. the same database
treated with a combination of existing techniques.

Datasets used in the experimental evaluation fit in the main
memory, but, in case of larger databases, it may be needed
to put the hypergraph in secondary memory and revise the
algorithms to make scale in the new setting. This is a technical
extension of our work that will be subject of future studies.
Another subject worth of future study is how to automatically
derive denial constraints from data, similarly to what has been
done for other quality rules [7], [15], since experts designed
constraints are not always readily available.

Finally, Repair Context can encode any constraint defined
over constants and variables, thus opening a prospective be-
yond binary predicates. We believe that by enabling mathe-
matical expressions and aggregates in the constraints we can
make a step forward the goal of bridging the gap between the
procedural business rules, used in the enterprise settings, and
the declarative constraints studied in the research community.

REFERENCES

[1] http://www.hospitalcompare.hhs.gov/, 2012.
[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules

between sets of items in large databases. SIGMOD Rec., 22(2), 1993.
[3] C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies

and Techniques. Springer, 2006.
[4] L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. Complexity and

approximation of fixing numerical attributes in databases under integrity
constraints. In DBPL, 2005.

[5] G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs of functional
dependency violations under hard constraints. PVLDB, 3(1), 2010.

[6] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model
and effective heuristic for repairing constraints by value modification.
In SIGMOD, 2005.

[7] F. Chiang and R. J. Miller. Discovering data quality rules. PVLDB,
1(1), 2008.

[8] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality:
Consistency and accuracy. In VLDB, 2007.

[9] W. W. Eckerson. Data quality and the bottom line: Achieving business
success through a commitment to high quality data. The Data Ware-
housing Institute, 2002.

[10] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. TKDE, 19(1), 2007.

[11] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional
dependencies for capturing data inconsistencies. TODS, 33(2), 2008.

[12] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching
rules. PVLDB, 2(1), 2009.

[13] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record
matching and data repairing. In SIGMOD Conference, 2011.

[14] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with
editing rules and master data. VLDB J., 21(2), 2012.

[15] L. Golab, H. J. Karloff, F. Korn, D. Srivastava, and B. Yu. On generating
near-optimal tableaux for conditional functional dependencies. PVLDB,
1(1), 2008.

[16] Gurobi. Gurobi optimizer reference manual, 2012.
[17] T. Kirsten, L. Kolb, M. Hartung, A. Gross, H. Köpcke, and E. Rahm.

Data partitioning for parallel entity matching. In QDB, 2010.
[18] S. Kolahi and L. V. S. Lakshmanan. On approximating optimum repairs

for functional dependency violations. In ICDT, 2009.
[19] M. Kozlov, S. Tarasov, and L. Khachiyan. Polynomial solvability of

convex quadratic programming. USSR Computational Mathematics and
Mathematical Physics, 20(5), 1980.

[20] A. Lopatenko and L. Bravo. Efficient approximation algorithms for
repairing inconsistent databases. In ICDE, pages 216–225, 2007.

[21] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas.
Guided data repair. PVLDB, 4(5), 2011.

