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ABSTRACT
We study the problem of missing data imputation, a data validation task that machine learning researchers and
practitioners confront regularly. We focus on mixed (discrete and continuous) data and AimNet, an attention-based
learning network for missing data imputation in HoloClean, a state-of-the-art ML-based data cleaning framework.
AimNet utilizes a variation of the dot product attention mechanism to learn structural properties of the mixed
data distribution and relies on the learned structure to perform imputation. We perform an extensive experimental
study over 14 real-world data sets to understand the role of attention and structure on data imputation. We find
that the simple attention-based architecture of AimNet outperforms state-of-the-art baselines, such as ensemble
tree models and deep learning architectures (e.g., generative adversarial networks), by up to 43% in accuracy on
discrete values and up to 26.7% in normalized-RMS error on continuous values. A key finding of our study is
that, by learning the structure of the underlying distribution, the attention mechanism can generalize better on
systematically-missing data where imputation requires reasoning about functional relationships between attributes.

1 INTRODUCTION

Missing data is a common data preparation issues machine
learning researchers and practitioners have to confront. In
many applications and fields, including the sciences (Coun-
cil et al., 2010) and data mining (Jaseena & David, 2014),
missing data is present to various degrees. Missing data can
reduce the statistical power of an analysis and can produce
biased estimates, leading to invalid conclusions. As a result,
it is imperative to handle missing data appropriately.

Many approaches have been proposed for handling miss-
ing data, with most of them focusing on either discrete
or continuous data, and few focusing on mixed data (i.e.,
both discrete and continuous) (Soley-Bori, 2013). In some
cases, simple methods may suffice: when few samples have
missing values and these values are missing completely at
random (MCAR) (Little & Rubin, 2019), omitting these
samples may not increase the sampling error and may not
introduce bias to the downstream analysis. However, these
strict MCAR assumptions may not hold in most real-world
data sets, hence most approaches for handling missing data
focus on data imputation. Missing data imputation meth-
ods range from simple statistical approaches that treat each
data coordinate independently of others, such as replacing
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missing values with the sample mode (for discrete data)
or the sample mean/median (for continuous data), to more
complex methods that learn a model over the input data
and performs imputation by inference. Unfortunately, the
performance of model-based data imputation methods can
vary depending on the missing data mechanism, and they
can yield poor accuracy when the missing data mechanism
is systematic (Saunders et al., 2006; Kang, 2013).

We revisit deep learning architectures for data imputation
and seek to answer the question: what is a simple architec-
ture that is interpretable and can obtain accurate results,
even in the presence of systematically-missing data? We
argue that Attention (Bahdanau et al., 2015) should be a
central component in deep learning architectures for data
imputation. The attention mechanism is increasingly popu-
lar for learning structural properties of the underlying data
distribution. Given a set of inputs and a query value, the
attention mechanism weights the relevance of every input to
the query and uses these weights to generate a query-specific
representation of the inputs.

From learning autoregressive models that achieve state-of-
the-art results in natural language processing (Devlin et al.,
2018; Yang et al., 2019) to facilitating the discovery of
causal interactions in observational time series data (Nauta
et al., 2019), the attention mechanism has been shown
to share commonalities with traditional approaches, such
as Kernel methods, which can successfully model struc-
tural properties of complex data distributions (Tsai et al.,
2019). In addition, attention mechanisms are known to be
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computationally efficient (Vaswani et al., 2017) and inter-
pretable (Gilpin et al., 2018). Motivated by the aforemen-
tioned benefits of Attention, we study its role in missing
data imputation.

Most popular imputation methods rely on discriminative
models such as decision trees (Stekhoven & Bühlmann,
2012; D’Ambrosio et al., 2012), regression models (Sen-
tas & Angelis, 2006; Buuren & Groothuis-Oudshoorn,
2010), and neighborhood-based methods (Troyanskaya
et al., 2001), which are relatively interpretable. Unfortu-
nately, systematically-missing data may yield biased sample
statistics, which causes these methods to generalize poorly
as they are interpolation-based methods (Belkin et al., 2018).
To address this limitation, different imputation methods turn
to generative models to improve imputation accuracy; the
structural assumptions encoded in the models can lead to bet-
ter generalization. Generative methods include algorithms
that rely on mixture-based models (e.g., mixture of Gaus-
sians or Bernoullis) (Garcı́a-Laencina et al., 2010), or deep
learning models such as denoising autoencoders (Gondara &
Wang, 2018) and generative adversarial nets (GANs) (Yoon
et al., 2018). However, current generative methods for im-
putation have various drawbacks. These methods either
make strict structural assumptions and fail to generalize
well to mixed discrete and continuous variables, or suffer
from non-convergence and mode collapse (Salimans et al.,
2016). Moreover, existing deep learning based imputation
methods are complex and hard to interpret.

We propose AimNet, a simple attention-based model for
missing data imputation over mixed data (i.e., discrete and
continuous data). AimNet is built around a new variation
of the dot product attention mechanism that, given a tabular
data set as input, learns (schema-level) structural properties
of the data distribution. To learn flexible representations
over mixed data types (discrete and continuous), AimNet
ingests raw tabular data without any feature pre-processing
(besides mapping discrete values to trainable embeddings
and z-score normalization on continuous values) and is
trained using self-supervised gradient descent-based end-to-
end learning. To model mixed data distributions, AimNet’s
loss corresponds to a multi-task loss over regression and
classification problems (targeting continuous and discrete
data coordinates, respectively). AimNet is part of the Holo-
Clean framework 1 (Rekatsinas et al., 2017), a state-of-the-
art ML-based data cleaning system.

We compare AimNet against a diverse array of discrimina-
tive and generative imputation models and show that Aim-
Net outperforms or is competitive to state-of-the-art data
imputation methods under various missing data mechanisms
(both random and systematic). For evaluation, we consider
14 real-world data sets with both naturally-occurring and

1HoloClean source: http://www.holoclean.io

injected missing values. For completely at random miss-
ing errors (a standard approach for evaluating imputation
models), AimNet beats the next-best baselines by up to 3%
in accuracy on discrete attributes and 26.7% in normalized
root mean squared (NRMS) error on continuous attributes.
More interestingly, AimNet exceeds the next-best baseline
on systematic errors by up to 43% in accuracy on discrete
attributes and 7.4% in NRMS error on continuous attributes.
We find that naturally-occurring errors in a given data set
follow a systematically-missing data mechanism and empir-
ically show that AimNet is better than existing methods at
handling missing data in the presence of functional depen-
dencies between attributes.

We argue that the key module that leads to AimNet’s better
performance is the attention mechanism and perform a thor-
ough experimental study on systematically-missing data,
where the missing values are functionally related to the val-
ues of other attributes (i.e., missing conditionally at random
or MAR). Our results show that by learning the structure of
the underlying data distribution, AimNet’s attention mecha-
nism enables accurate predictions over complex mixed data
domains, where imputing missing data requires extrapo-
lating over functional relationships between attributes. In
addition to producing better imputation results, AimNet
achieves run times 54% (or more) lower than the run times
of other baselines on data sets with large discrete domains.

2 RELATED WORK

Missing data imputation (MDI) methods can be primarily
categorized into two groups:

Discriminative Models There are several discriminative
methods that rely on matrix factorization (Keshavan et al.,
2010), matrix completion (Cai et al., 2010; Mazumder
et al., 2010), structured prediction models (Rekatsinas
et al., 2017), and vanilla autoencoders (Gondara & Wang,
2018). A popular MDI method in Bioinformatics is Mul-
tiple Imputation by Chained Equations (MICE) (Buuren
& Groothuis-Oudshoorn, 2010) which solves a series of
regression problems. Tree-based MDI models include Miss-
Forest (Stekhoven & Bühlmann, 2012) which uses random
forests to learn an imputation model for each data coordi-
nate and XGBoost (Chen & Guestrin, 2016), which has been
shown to also be successful in dealing with missing data.
Tree-based methods can learn non-linear relationships while
having great in-sample and interpolation predictive power.
Unfortunately, tree-based methods are known to suffer in
generalization with systematically-missing data.

Generative Models A different line of work proposes the
use of generative models for MDI. Early methods include
Expectation Maximization algorithms (Garcı́a-Laencina
et al., 2010) while recent methods employ deep learning
such as in Generative Adversarial Imputation Nets (GAIN)
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(Yoon et al., 2018), which is based on conditional GANs
(Goodfellow et al., 2014). Other models such as HI-VAE
(Nazábal et al., 2018) and MIWAE (Mattei & Frellsen,
2019) extend Variational Autoencoders (VAEs) (Kingma &
Welling, 2014) to support mixed data distributions. While
generative models yield state-of-the-art results under MCAR
settings, they are difficult to train. Specifically, GANs suf-
fer from non-convergence and mode collapse problems as
a result of their loss formulation (Salimans et al., 2016).
Furthermore, generative models tend to involve latent vari-
ables used in the sampling and imputation process that often
do not correspond to concrete signals or structures of the
data, making it difficult for a practitioner to interpret the
imputation process for further understanding.

3 PRELIMINARIES

We now introduce the problem of MDI and necessary back-
ground information.
Problem Consider a data set D with schema R. Each
j-th attribute Aj 2 R can be either continuous or dis-
crete. Let N(R) and C(R) denote the set of continuous
and discrete attributes in R. If Aj 2 N(R) then its do-
main is dom(Aj) = Rdj where dj is the dimension of
Aj , and if Aj 2 C(R) then the index set over dom(Aj)
is I = {1, . . . , |Aj |} where |Aj | is the cardinality of Aj .
A missing cell value in the i-th tuple ti 2 D on the j-th
attribute Aj 2 R is denoted as ti[Aj ] = ?. Let D̃ be an im-
puted version of D where 8i, j with ti[Aj ] 2 D, ti[Aj ] = ?
but for t̃i 2 D̃ we have t̃i[Aj ] 6= ?. We also denote D⇤ the
latent ground truth sampled data set without missing data.

The goal of missing data imputation is: given a data set
D with missing values obtain an imputed data set D̃ such
that for every tuple t̃i 2 D̃ all cell values are the same as
the corresponding tuple t⇤i 2 D⇤. For a given data set D
there may be missing cells in a subset of attributes A ✓ R.
When we focus on the output of a model for an attribute
A 2 A, we refer to A as the target attribute and we refer to
all attributes A0 2 R \ {A} as the context attributes. The
target and context terms are also used to describe cells at
the tuple-level (e.g., target cell and context cells).
Error types There are three types of missing errors in
tabular data (Rubin, 1976):

MCAR: Data is missing completely at random, regardless of
the observed data in the data set. Specifically the probability
that a cell t[Aj ] is missing in a given tuple t is conditionally
independent of t and D:

Pr (t[Aj ] = ? | t[Ai] = vi, 8i;D) = pj (1)

for some value pj independent of t[·].

MAR: Data is missing at random conditioned only on the
observed (non-missing) data. If we assume each tuple t is
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Figure 1: Architecture overview of AimNet

identically and independently distributed (i.i.d) according
to the data generating distribution i.e., t i.i.d⇠ D, then the
probability that cell t[Aj ] is missing only depends on other
observed cells in t:

Pr (t[Aj ] = ? | t[Ai] = vi, 8i;D)

= Pr (t[Aj ] = ? | t[Ai], 8i 6= j) (2)

MNAR: Data is not missing at random but is random condi-
tioned on unobserved or latent variables. A cell value may
also be missing conditioned on its own (missing ground
truth) value. Any mechanism that is neither MCAR nor
MAR is MNAR.

4 ARCHITECTURE

At a high-level, AimNet adopts the architecture of an autoen-
coder model designed to handle mixed data types (discrete
and continuous). An overview of AimNet’s architecture
is shown in Figure 1. To handle mixed data types, Aim-
Net learns a combination of projections for continuous data
and contextual embeddings for discrete data. Subsequently,
AimNet relies on a new variation of the dot product atten-
tion mechanism to learn structural dependencies between
different coordinates of the input data and uses the attention
weights to combine the representations of different coordi-
nate values into a unified context representation for a target
attribute. Finally, the combined context passes through a
non-linear transformation to perform imputation. A mixed
loss function is used during training to handle mixed data
types. We next describe AimNet’s components in turn.

4.1 Context Embeddings

Given a data set tuple, AimNet transforms each attribute
value into a vector embedding with dimension k. For con-
tinuous attributes we learn a projection to a k-dimensional
vector while for discrete attributes we learn a contextual
k-dimensional embedding. We describe each next.
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Representation of Continuous Values For a continuous
value ~x 2 Rni in attribute Ai where ni  k (ni is the di-
mension of values in attribute Ai) we perform a continuous
context projection up to dimension k as shown in Figure 1.
We first standardize each dimension to zero mean and unit
variance (z-score):

~xj = (~xj � ~µij)/~�ij 8j = 1, . . . , ni (3)

where ~µij and ~�ij are the sample mean and sample variance
of the j-th dimension of values in attribute Ai. We then
apply a linear layer followed by a non-linear ReLU layer to
obtain a non-linear transformation of the input:

~z = B�(A~x+ ~c) + ~d (4)

where A,B,~c, ~d are learned parameters and � is a ReLU.

Representation of Discrete Values For each discrete at-
tribute and each value in its domain, we associate a learnable
vector of dimension k. Values that might share the same
raw representation in different attributes are associated with
separate vectors. We learn a lookup table of discrete context
embeddings of the input values as shown in Figure 1.

We add a dropout layer before feeding the learned repre-
sentations into the subsequent attention layer. The use of
the dropout layer in effect transforms AimNet into a hybrid
denoising autoencoder (Vincent et al., 2008). Given the
dropout percentage specified as a hyperparameter to Aim-
Net, each coordinate value may be stochastically dropped
(zeroed out) with probability equal to the dropout percent-
age. To this end, dropout serves not only as a regularization
tool but also as a data augmentation technique, introducing
an exponential number of additional training examples with
various missing patterns.

4.2 AimNet’s Attention Model

AimNet uses an attention mechanism to combine the repre-
sentations of different attributes into a unified context repre-
sentation used for imputation. The key distinction between
AimNet’s attention model and prior attention models is that
given a target attribute, AimNet learns how to attend to dif-
ferent context attributes and not to the values themselves.
An analogy to the Transformer architecture (Vaswani et al.,
2017) would be learning an attention model over positional
encodings alone. By using attention weights that are depen-
dent only on the attributes and not the values themselves,
AimNet can learn structural dependencies between a target
attribute and the remaining context attributes.

We decompose AimNet’s attention layer into its fundamen-
tal components in Figure 2(a). Let N denote the total num-
ber of continuous attributes and M denoting the total num-
ber of discrete attributes. First, each of the N+M attributes

in the input data set is associated with a learnable encod-
ing of dimension N + M . These encodings are used to
form the query Q of the attention mechanism. The position
of each target attribute Aj in Q are specified as a bitmask
K(j) 2 {0, 1}N+M which acts as the key to the attention
mechanism. To learn from the context only, the value of
the encoding in Q selected by K(j) corresponding to the
target attribute Aj is masked out via a leave-one-out bitmask
m 2 {0, 1}N+M . Second, for a given sample (a single tu-
ple in the input data, and where a mini-batch would consist
of multiple tuples), let matrix V be the concatenation of
all attribute-value representation embeddings described in
Section 4.1. Matrix V contains N +M row vectors, each
corresponding to an embedding of dimension k. The vec-
tors in V are normalized by their L2-norm, which improves
learning for discrete targets by fixing the contribution in
magnitude of the constituent vectors. The attention layer for
a target attribute Aj is expressed as:

Att(Q,K(j), V ) = (m� softmax((K(j))TQ))norm(V )

where the resulting output is a context vector of dimension
k. This context vector contains the necessary information
to perform imputation on the target attribute.

4.3 Mixed Target Prediction

We use a dual loss function to support mixed distributions.
We also perform multi-task learning to jointly learn all target
attributes whereby all model parameters are shared.

4.3.1 Continuous Target Attributes

For continuous target attributes, we perform a projection
of the context vector down to dimension dj of attribute Aj

as shown in Figure 2(b). We first feed the context vector
through a fully-connected ReLU layer of dimension k ⇥ k.
We then apply a final linear transformation from dimension
k to the attribute’s dimension dj to obtain the resulting
prediction value for the given cell. The (mean) squared loss
is used as the loss between the predicted continuous value
and the z-scored actual continuous value.

4.3.2 Discrete Target Attributes

To predict the imputation value for a target discrete cell, we
learn similar vector embeddings as the contextual embed-
dings described in Section 4.1 but for the unique, possible
target values. As shown in Figure 2(c), we compute the inner
product between the context vector from the attention layer
and the discrete target’s vector embeddings for the given
cell’s domain values. A softmax is subsequently applied
over the inner products to produce prediction probabilities
for each domain value.

The possible values of a given discrete cell (its domain)
is by default all values in its attribute. For data sets with
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Figure 2: (a) Attention layer used in AimNet that computes attention weights based on the context-target attributes; (b)
module that projects the context vector down to a continuous value for a continuous target; and (c) module that computes
probabilities for the domain values of a discrete target cell.

very large discrete domains (e.g., key-like columns) and
to improve performance, we use co-occurrence statistics
to prune the domain to a specified maximum domain size
D (Rekatsinas et al., 2017). The top D co-occurring values
with the other values in the cell’s tuple are pre-initialized
as the cell’s domain. The Categorical Cross Entropy (CCE)
loss is then computed between the predicted probabilities
and the actual target value as shown in Figure 1.

One subtlety is that the model separates vector embeddings
for target and context values even if they are equivalent.
Since context value embeddings are shared between all
target attributes, their weights are constantly updated when
training on every target attribute. By separating embeddings
of the target values from the context value embeddings we
converge quicker in practice.

5 EXPERIMENTAL EVALUATION

5.1 Evaluation Protocol and Summary

To assess if AimNet is competitive in missing data impu-
tation, we benchmark against competing state-of-the-art
baselines on 14 data sets. We first outline the experimental
setup in Section 5.2 with details of the baselines, data sets
and training hyperparameters we employ. The de facto stan-
dard for evaluating data imputation is to assume missing
values are distributed completely at random (MCAR). In
Section 5.3, we benchmark AimNet against the other base-
lines on MCAR-injected missing values. We observe that
AimNet outperforms or is competitive with all baselines.
We then evaluate the imputation models on a data set with
naturally-occurring missing values for which we have ob-
tained the correct ground truth (see Section 5.4). We find

that AimNet outperforms the next-best baseline by a large
gap of +43% in accuracy. We perform a deep-dive analysis
and observe that the missing values are systematically miss-
ing. We hypothesize it is due to AimNet’s ability to learn
functional relations between attributes of the input data set
and thus counteract biases introduced due to systematically-
missing data. We subsequently validate this hypothesis with
both synthetic and real-world data sets in Section 5.5. We
observe similar performance dominance from AimNet over
competing baselines with gains of up to 11% in accuracy on
discrete attributes on the real-world data sets. Our findings
advocate that by learning the structure of the underlying
data distribution, AimNet’s attention mechanism can gen-
eralize better on systematically-missing data. We further
validate that via an ablation study on AimNet’s architecture.
Finally, we perform micro-benchmark experiments to eval-
uate the sensitivity of AimNet’s performance on different
architectural and hyperparameter choices.

5.2 Experimental Setup

Baselines We compare our results against several state-
of-the-art imputation methods (see Section 2). For dis-
criminative models, we use XGBoost (XGB) (Chen &
Guestrin, 2016), MIDAS (Gondara & Wang, 2018), Miss-
Forest (MF) (Stekhoven & Bühlmann, 2012), HoloClean
(HC) (Rekatsinas et al., 2017), and MICE (Buuren &
Groothuis-Oudshoorn, 2010) as representative approaches.
For generative models, we focus on GAIN (Yoon et al.,
2018) as it corresponds to the state-of-the-art model. For all
five methods we use their open-source implementations.

Since the current open-source version of HoloClean sup-
ports only discrete data, we introduce an extension by per-
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forming quantization on continuous attributes to discretize
their values and permit co-occurrence statistics to be com-
puted across mixed attributes. We call this extended version
HoloClean with Quantization (HCQ). HCQ uses k-means
clustering on each continuous attribute based on a hyperpa-
rameter for the number of clusters. If a data set contains
only discrete attributes then HCQ and HC are equivalent, so
we report results on HCQ in place of HC for all data sets.

Data Sets We use 14 data sets, where 10 come from the
UCI repository and 4 are from public and private institu-
tions. Data sets sizes range from ⇠ 470 to ⇠ 0.5M tuples
and at least a baseline accuracy of 50% (amongst discrete
attributes) under a 20% MCAR injection scheme with XG-
Boost. This ensures repairs are not unreasonable and can be
feasibly accomplished with just the observed data. The data
sets containing varying proportions of discrete to continuous
attributes. A detailed description of the data sets is given in
Appendix A.1.

Hyperparameter Tuning and Cross-Validation We per-
form grid search cross-validation with a training-validation-
test set split of 80-10-10 (under a 20% injection scheme
such that the missing set is split evenly amongst the valida-
tion and test sets). Details on the hyperparameters tuned for
each model are deferred to Appendix A.2.

Training For all experiments we employ a default set
of hyperparameters for all runs with AimNet. The Adam
(Kingma & Ba, 2015) optimizer is used with a default learn-
ing rate of 0.05 in conjunction with cosine annealing with
warm restarts every epoch (Loshchilov & Hutter, 2017). A
detailed description can be found in Appendix A.3.

Evaluation Metrics We use the following two metrics:

Accuracy: For discrete attributes, the accuracy is reported
as the proportion of missing cells there were correctly im-
puted. The accuracy for a given attribute is computed and
normalized by the number of missing cells in the attribute,
whereas the accuracy for a data set is normalized by the
number of missing cells across all attributes.

NRMS: For continuous attributes, the normalized Root Mean
Square error by the variance of each attribute. For a given
attribute Aj with nj missing cells, ground truth values
~y 2 Rnj , and predictions ~̂y 2 Rnj , the NRMS for Aj

is NRMSj = (
Pnj

i ((yi � ŷi)2)/(nj · �(~y)2))�1/2 where
�(~y)2 is the sample variance. We compute the NRMS for
an entire data set as (

P
j((NRMSj)2 · nj)/

P
j nj))�1/2.

We choose to normalize RMS since continuous attributes
can have different ranges.

5.3 Missing Completely at Random Data

For each data set, except Chicago which has natural errors
(see Appendix A.1), we inject missing values into each at-
tribute completely at random with pj = p = 0.2. The

accuracy and NRMS are reported in Table 1. As shown,
AimNet outperforms all competing methods, on both dis-
crete and continuous attributes, on almost all the data sets.
AimNet does perform worse than the next-best baseline on
the Eye EEG and the NYPD data sets for both discrete and
continuous attributes, and CASP on continuous attributes.
We draw our attention to the fact that Eye EEG consists
of all continuous attributes except one binary categorical
attribute and CASP consists entirely of continuous attributes.
This suggests that AimNet may fall short to tree-based meth-
ods, specifically MissForest, on purely continuous data sets.
The four continuous attributes in NYPD are all related to the
the coordinate location where the crime occurs. After ex-
amining the NYPD data set, while there are other attributes
that describe the larger regions where each crime occurs,
we as human curators find it difficult to impute reasonable
coordinates from the other attributes alone.

5.4 Naturally-Occurring Missing Data

To test the performance of AimNet on more com-
plex and realistic missing cases, we benchmark Aim-
Net and the baselines using the Chicago data set with
naturally-occurring missing values. This is a data set
released by the City of Chicago on taxi trips and
used as a benchmark in data validation methods such
as Tensorflow’s TFX suite. The four attributes with
missing values are Pickup Census Tract, Pickup
Community Area, Dropoff Census Tract, and
Dropoff Community Area. We present the imputa-
tion results and run time of each method on the Chicago
data set in Table 2. For fairness, the run time for all epoch-
based methods is calculated at the end of the epoch where
cross-validation loss did not improve performance. We find
that AimNet yields an overall accuracy 43% higher than
the next-best method MissForest. Moreover, AimNet ex-
hibits practical run time, finishing in just under one hour
compared to several days for XGB and MF. Poor run time
performance is an artifact of the one-hot encoding require-
ment of baseline methods for supporting discrete data types.

Deep-Dive Analysis We examine the Chicago data set
more closely to determine why AimNet outperforms the
baselines by such a huge margin. We find that the attributes
with missing values in Chicago are strongly dependent on
their corresponding Latitude and Longitude values.
Based on the data set description, we know that there is a
functional relationship between these attributes:

f(Latitude,Longitude) = Census Tract

g(Latitude,Longitude) = Community Area (5)

Furthermore, we look into the Pickup Census Tract

attribute and inspect the ground truth census tracts. Ground
truth was obtained by querying an external census API
(see Appendix A.1 for details). We find that for certain
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Table 1: Imputation accuracy and NRMS error on the test set under MCAR injections with p = 0.2 missingness across
AimNet and the other baselines. The means of 10 trials per data set-method with different pseudo-random seeds are reported.
Results for each method are after cross-validation on a holdout set. The best results for each data set are bolded as well as
any results that overlap within the confidence interval (± 1 standard deviation).

data set Accuracy on discrete attributes (ACC ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Tic-Tac-Toe 0.61± 0.01 0.53± 0.01 0.57± 0.02 0.46± 0.01 0.32± 0.01 0.52± 0.01 0.58± 0.02
Hospital 0.99± 0.0 0.99± 0.0 0.97± 0.01 0.24± 0.0 0.13± 0.01 0.99± 0.0 0.82± 0.01
Mammogram 0.75± 0.01 0.74± 0.02 0.74± 0.02 0.74± 0.01 0.35± 0.02 0.68± 0.02 0.64± 0.02
Thoracic 0.86± 0.01 0.84± 0.01 0.85± 0.01 0.84± 0.01 0.59± 0.09 0.86± 0.01 0.38± 0.4
Contraceptive 0.65± 0.01 0.64± 0.01 0.63± 0.01 0.63± 0.01 0.42± 0.01 0.63± 0.02 0.57± 0.01
Solar Flare 0.78± 0.02 0.77± 0.02 0.76± 0.01 0.65± 0.01 0.48± 0.02 0.76± 0.02 0.67± 0.02
NYPD 0.92± 0.0 0.89± 0.0 0.93± 0.0 0.79± 0.01 0.14± 0.01 0.92± 0.0 0.72± 0.0
Credit 0.76± 0.01 0.73± 0.02 0.75± 0.01 0.61± 0.02 0.4± 0.01 0.76± 0.01 0.68± 0.01
Australian 0.72± 0.02 0.69± 0.02 0.71± 0.02 0.61± 0.03 0.45± 0.01 0.73± 0.01 0.63± 0.02
Balance 0.79± 0.04 0.78± 0.04 0.75± 0.05 0.68± 0.08 0.5± 0.05 0.69± 0.05 0.72± 0.05
Eye EEG 0.71± 0.01 0.63± 0.01 0.81± 0.01 0.55± 0.01 0.54± 0.01 0.87± 0.01 0.54± 0.01

data set NRMS on continuous attributes (NRMS ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Hospital 0.72± 0.06 1.4± 0.36 0.87± 0.07 611.12± 129.15 1.19± 0.02 0.86± 0.07 1.13± 0.13
Mammogram 0.91± 0.04 1.03± 0.08 0.96± 0.06 1.12± 0.05 1.0± 0.11 0.99± 0.05 1.27± 0.11
Thoracic 1.1± 0.41 1.78± 2.33 1.76± 2.45 1.71± 1.17 1.5± 0.95 1.66± 1.61 3.62± 4.82
Contraceptive 0.84± 0.02 1.06± 0.05 0.87± 0.04 1.09± 0.03 1.13± 0.05 0.88± 0.04 1.14± 0.06
Solar Flare 0.94± 0.15 0.94± 0.13 1.21± 0.53 17698.23± 8959.74 0.96± 0.16 0.96± 0.2 1.22± 0.34
NYPD 0.15± 0.01 1.28± 0.53 0.14± 0.0 0.62± 0.04 3.19± 0.41 0.1± 0.0 0.37± 0.01
Credit 0.94± 0.03 1.84± 0.83 1.09± 0.15 1.29± 0.24 1.18± 0.09 1.04± 0.13 1.84± 0.83
Australian 0.94± 0.03 2.47± 2.0 1.09± 0.12 1.22± 0.13 1.24± 0.18 1.07± 0.24 1.58± 0.28
Balance 0.92± 0.02 1.37± 0.08 1.0± 0.03 1.02± 0.02 1.03± 0.03 1.08± 0.05 1.26± 0.07
Eye EEG 0.4± 0.0 0.94± 0.34 0.39± 0.0 0.84± 0.01 0.65± 0.04 0.35± 0.0 0.62± 0.0
Phase 0.45± 0.01 0.54± 0.03 0.45± 0.01 0.95± 0.01 0.76± 0.14 0.5± 0.01 0.63± 0.01
CASP 0.45± 0.02 1.45± 0.14 0.43± 0.02 0.82± 0.01 0.72± 0.04 0.41± 0.02 0.64± 0.03

Table 2: Imputation accuracy and run time on the Chicago
data set. Results that could not finish are denoted as —.

Accuracy on discrete attributes for the Chicago data set
AimNet HCQ XGB MIDAS GAIN MF MICE

0.73± 0.01 0.07± 0.0 0.27± 0.0 0.09± 0.01 0.01± 0.01 0.3± 0.0 —
Run time (minutes) for the Chicago data set

AimNet HCQ XGB MIDAS GAIN MF MICE

53 124 5350 176 186 7439 —

census tract values, there is a significant difference be-
tween the latitude-longitude coordinates between (1) tu-
ples with observed census tract values and (2) tuples with
missing census tract values CTi. This large margin also
appears for Dropoff Census Tract and {Pickup,
Dropoff} Community Area. Upon further inspec-
tion, the systematic separation between observed and miss-
ing samples arise from different taxi companies utilizing
different centroid coordinates for census tracts while hav-
ing inconsistent census tract reporting standards. More
details on this analysis are reported in Appendix A.4. We
hypothesis that AimNet is able to impute the aforemen-
tioned systematic errors correctly (in contrast to competing
methods) because it learns the aforementioned functional
relationships for the Chicago data set. Figure 3 shows the
heatmap corresponding to the learned attention weights. We
next perform a detailed experimental analysis to validate
this hypothesis.

Figure 3: AimNet’s learned attention weights for the cencus
tract and community area attributes in the Chicago dataset.

5.5 Missing Values and Functional Relationships

Based on our findings from the Chicago dataset, we hy-
pothesize that AimNet’s attention mechanism enables our
imputation solution to learn functional relationships over
the attributes of the input data. We further hypothesize that
this learned structure helps counteract sample biases due to
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systematic noise. To validate this hypothesis, we conduct a
series of experiments on both synthetic data sets (where we
can control the data generation and functional relationships)
and real-world data sets (where we inject systematic error).
A Model for Chicago’s Noise We describe a missing data
mechanism that imitates how missing values were intro-
duced in the Chicago data set. For a given target attribute
Y (a random variable) and a subset of context attribute(s)
XY ✓ X (random variables corresponding to each context
attribute), there are three conditions that characterize the
observed systematic missing values: (1) XY correspond to
continuous attribute(s) and (2) there exist some function
f(XY ) ⇡ Y (we refer to the attributes corresponding to XY

as the dependent attributes of Y ), and (3) there exist a non-
trivial subset of target values Y with x̂Y,test ✓ xY,test such
that x̂Y,test\xY,train = ? (i.e., for a subset of target values
we never observe the values of their dependent attributes in
the training data). We use this model to construct a series of
experiments to the above hypothesis.
Validation with synthetic data We first generate a se-
ries of synthetic data sets where the functional relationship
F (XY ) = Y is known. We generate synthetic data sets
Dsynth with attributes Y = {Yi}Ni=1 and X = {Xi}Mi=1

such that Yi = f(XYi) where XYi ✓ X . Yi may be con-
tinuous or discrete. If Yi is discrete, let C(Yi) denote the
cardinality of attribute Yi (i.e. the number of unique values
or classes). For simplicity, let C(Yi) = c and |XYi | = k
for all i: that is the cardinality and number of dependent
attributes are constant for all target attributes Y for a given
Dsynth. We describe the functions f(XY ) = Y for both
continuous and discrete Yi’s:

Poly(n) (continuous) For a specified degree n and when
k = 1 (XY = {X}), f 2 poly(n) is defined as Y =
Qn

i=1(Ai � X) where X ⇠ Unif(�1, 1) and Ai
i.i.d⇠

Unif(�1, 1). Restricting X and the roots Ai ensures
that we have a reasonably complex functions with domain
[�1, 1] without extreme outliers had |X| > 1.

Interact (continuous) For k � 2, f 2 interact is de-
fined as Y =

Pk
i=1 AiXi +

Pk
i,j=1,i 6=j Bi,jXiXj where

Xi, Ai, Bi,j
i.i.d⇠ N(0, 1).

Linear (continuous) This is equivalent to Interact where
Bi,j = 0 8i, j.

Kernel (discrete) Given k dependent attributes and c classes,
we generate c class centroids {pj}cj=1 where pj,i ⇠
Unif(minXi,maxXi) for i 2 {1, . . . , k}. For a given
tuple t we assign Y (t) it the class centroid closest to the
k-d point in XY (t) under the L2-norm, that is Y (t) =

argminj
Pk

i=1(pj,i �X(t)
i )2 where Xi

i.i.d⇠ N(0, 1). Note
that when k = 2, this generates the Voronoi diagram where
{pj}cj=1 are the points defining the c Voronoi cells which
each correspond to one of the c classes.

We show the imputation performance as we vary properties
of Dsynth for continuous target attributes Y in Table 3. We
observe the following:

1. As the data set size |Dsynth| increases, the NRMS error
of most methods tends to decrease, but the NRMS error
of AimNet decreases at a higher rate.

2. As the number of dependent attributes (k) increases
AimNet’s imputation accuracy increases and we ob-
serve an increasing NRMS error gap between AimNet
and other methods. The attention mechanism is able to
identify the context attributes (i.e. XY ) for each target
attribute Y as observed in Figure 4.

3. We find that AimNet always outperforms other meth-
ods on univariate functions (k = 1). Interestingly, as
the univariate function becomes more complex and
non-linear (see poly(1) vs poly(5)) AimNet’s perfor-
mance advantage diminishes and AimNet requires
more samples to obtain performance that is similar to
that of tree-based methods. This is expected as learning
complex polynomial functions requires more samples.
However, when the attribute relations follow simpler
multivariate functions linear and interact (non-linear)
AimNet is always able to perform better.

Figure 4: Attention weights of AimNet on synthetic data
with |Dsynth| = 5000, linear(k = 2), |Y | = 5.

We also plot the results for discrete Y using the kernel func-
tion in Figure 5. We keep the data set size |Dsynth| = 5000
but vary the cardinality between c = 5, 50, 200 in the three
plots. As the number of dependent attributes XY increase,
the performance of the baseline methods decreases. For
large cardinalities, AimNet fares slightly worse than XGB
when k = 1 (most likely due to the fact that a high-capacity
tree learner is capable of learning the desired 1-D half-
spaces) but as k increases beyond 1, AimNet is more capa-
ble of learning reasonable Voronoi boundaries in k-D space.
The fact that AimNet can learn k-D spaces and develop rea-
sonable bounding regions for discrete classification explains
why AimNet outperforms baseline methods on Chicago (see
Section 5.4): census tracts and community areas are both
functions of 2-D latitude-longitude coordinates.

Validation with real-world data We apply a similar
study to real-world data sets. Since it is difficult to re-
trieve error-free ground truth in a systematic way for many
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Table 3: NRMS cross-validated results on synthetic data sets for continuous target attributes Y across 3 generation seeds and
3 injection seeds each (9 trials per method and setting in total). We vary 1) |Dsynth|: the size of the data set to see how each
method performs given fewer and more samples; 2) |Y|: the number of other (most probably) un-correlated attributes for to
see how each method adapts to noise; 3) k: number of dependent attributes XY per target Y to see how each method learns
the correct function from multiple inputs; 4) f(XY ): the function to see how each method learns simpler, linear functions
and more complex, non-linear functions.

|Dsynth| |Y| k f(XY) AimNet HCQ XGB MIDAS GAIN MF MICE

100

1

1
poly(1) 0.3± 0.18 1.56± 0.37 0.9± 0.27 10.27± 4.05 2.0± 1.67 0.96± 0.35 6.89± 3.51
poly(2) 2.95± 2.74 1.57± 1.12 1.33± 0.56 2.6± 2.14 24.71± 29.02 1.42± 0.56 4.35± 2.87
poly(5) 1.64± 1.06 2.23± 2.56 0.84± 0.34 138.56± 174.05 38.27± 23.34 0.89± 0.32 1.83± 0.96

2 linear 0.68± 0.4 1.51± 0.73 1.1± 0.65 1.73± 1.04 1.91± 0.98 1.08± 0.56 0.71± 0.51
interact 0.73± 0.12 1.06± 0.25 0.88± 0.34 1.12± 0.14 1.54± 0.65 0.86± 0.26 1.26± 0.31

5 linear 0.59± 0.36 1.37± 0.87 0.85± 0.67 2.75± 1.62 1.9± 1.55 0.93± 0.69 0.47± 0.45
interact 0.63± 0.19 1.1± 0.09 1.03± 0.42 2.5± 0.94 1.38± 0.59 0.97± 0.21 1.35± 0.39

5

1
poly(1) 0.53± 0.16 6.83± 0.92 1.04± 0.18 11.63± 1.89 9.78± 2.01 1.21± 0.17 7.79± 1.04
poly(2) 2.37± 1.38 6.7± 4.67 1.44± 0.31 3.12± 0.87 17.11± 9.33 1.65± 0.43 9.29± 8.0
poly(5) 115.1± 263.89 30.82± 23.45 3.13± 3.79 1982.04± 2880.58 1510.47± 2531.43 4.17± 5.01 24.88± 34.39

2 linear 0.88± 0.17 2.06± 0.29 1.22± 0.26 3.7± 1.25 3.08± 0.86 1.25± 0.23 0.88± 0.22
interact 1.02± 0.33 1.41± 0.26 1.29± 0.48 2.98± 1.38 1.76± 0.55 1.34± 0.52 1.45± 0.45

5 linear 0.78± 0.19 1.49± 0.2 1.03± 0.18 3.05± 0.77 1.69± 0.31 1.05± 0.2 0.37± 0.15
interact 0.97± 0.1 1.16± 0.09 1.21± 0.16 3.0± 0.71 1.15± 0.1 1.13± 0.09 1.69± 0.22

5000

1

1
poly(1) 0.13± 0.08 1.2± 0.2 0.98± 0.06 2.86± 1.21 1.5± 0.77 1.01± 0.05 5.85± 1.05
poly(2) 0.88± 1.02 1.61± 0.64 1.38± 0.65 4.18± 4.13 14.63± 14.62 1.44± 0.58 1.48± 0.56
poly(5) 2.38± 2.95 1.46± 0.59 1.22± 0.6 26.69± 44.08 19.73± 29.46 1.5± 0.84 1.5± 0.9

2 linear 0.17± 0.23 1.46± 1.0 0.67± 0.53 1.54± 1.02 1.99± 1.26 0.68± 0.53 0.27± 0.49
interact 0.45± 0.3 1.2± 0.39 0.65± 0.35 1.33± 0.81 1.25± 0.4 0.65± 0.35 1.34± 0.54

5 linear 0.05± 0.03 1.16± 0.12 0.38± 0.14 1.11± 0.25 0.89± 0.19 0.45± 0.15 0.04± 0.03
interact 0.18± 0.05 1.04± 0.06 0.56± 0.09 1.08± 0.11 1.15± 0.21 0.59± 0.09 1.34± 0.22

5

1
poly(1) 0.1± 0.04 3.68± 1.27 0.98± 0.04 2.88± 1.06 7.3± 1.46 1.0± 0.03 6.28± 0.61
poly(2) 0.71± 0.52 5.47± 8.25 1.26± 0.31 6.02± 3.73 18.83± 16.09 1.29± 0.27 1.99± 0.97
poly(5) 2.03± 1.01 2.44± 0.89 1.35± 0.38 42.16± 48.01 169.58± 135.82 1.57± 0.5 2.45± 1.3

2 linear 0.4± 0.23 1.89± 0.36 0.85± 0.22 2.0± 0.45 2.57± 0.56 0.88± 0.21 0.87± 0.67
interact 0.45± 0.15 1.35± 0.28 0.74± 0.17 1.48± 0.4 1.67± 0.55 0.76± 0.17 1.32± 0.27

5 linear 0.08± 0.05 1.23± 0.14 0.45± 0.12 1.34± 0.19 1.34± 0.14 0.55± 0.11 0.17± 0.11
interact 0.16± 0.03 1.06± 0.05 0.6± 0.05 1.09± 0.07 1.09± 0.06 0.67± 0.06 1.29± 0.12

20000

1

1
poly(1) 0.11± 0.08 1.54± 0.41 1.01± 0.02 3.48± 1.01 0.57± 0.4 1.02± 0.02 5.84± 1.39
poly(2) 0.7± 0.97 1.89± 0.68 1.34± 0.61 4.49± 5.48 4.63± 5.05 1.38± 0.58 1.37± 0.58
poly(5) 0.86± 0.37 1.81± 0.96 1.27± 0.5 86.03± 194.59 49.72± 129.01 1.32± 0.5 1.3± 0.49

2 linear 0.22± 0.31 1.73± 0.9 0.76± 0.52 1.73± 0.67 1.18± 0.84 0.76± 0.52 0.29± 0.42
interact 0.29± 0.17 1.22± 0.39 0.64± 0.25 1.18± 0.24 1.28± 0.46 0.64± 0.25 1.3± 0.44

5 linear 0.03± 0.04 1.29± 0.37 0.4± 0.32 1.17± 0.36 0.87± 0.41 0.44± 0.32 0.04± 0.06
interact 0.1± 0.03 1.08± 0.08 0.46± 0.09 1.05± 0.08 0.96± 0.17 0.49± 0.09 1.14± 0.13

5

1
poly(1) 0.19± 0.07 6.31± 1.41 0.99± 0.01 4.43± 0.53 8.43± 0.98 1.0± 0.01 7.26± 0.31
poly(2) 0.52± 0.4 2.91± 0.75 1.15± 0.25 4.57± 3.08 11.74± 9.24 1.18± 0.24 1.57± 0.42
poly(5) 1.98± 1.58 2.88± 1.49 1.51± 0.31 128.15± 223.35 172.29± 256.97 1.63± 0.37 2.34± 0.91

2 linear 0.28± 0.16 1.97± 0.36 0.89± 0.22 1.99± 0.44 2.53± 0.48 0.9± 0.22 1.07± 0.83
interact 0.47± 0.11 1.65± 0.41 0.87± 0.29 1.82± 0.52 2.08± 0.49 0.88± 0.29 1.39± 0.41

5 linear 0.06± 0.04 1.35± 0.2 0.5± 0.16 1.36± 0.19 1.44± 0.19 0.59± 0.15 0.44± 0.38
interact 0.11± 0.07 1.04± 0.03 0.5± 0.03 1.06± 0.04 1.07± 0.04 0.56± 0.03 1.26± 0.07

naturally-occurring errors, we turn to missing injection via
MAR and MNAR (Section 3). We identify (by inspection)
functional relationships with real-valued domains between
attributes that satisfy conditions (1) and (2) of the hypothesis
in our benchmark data sets, including those with few to no
naturally-occurring errors. These relationships are outlined
in Appendix A.1. Most of them in fact correspond to one of
the configurations in the synthetic experiments. To simulate
the conditions of our hypothesis, we inject two types of
systematic errors depending on the target attribute type with
20% missing percentage (missingness). The details on how
we inject systematic errors are provided in Appendix A.5.

Table 4 shows the imputation results of all models on the
target attributes with MAR and MNAR injected errors. We
see that AimNet achieves the best or tied-for-the-best results
on every functional relationship within noise. We observe
similar performance characteristics for the k = 2 discrete
targets amongst the NYPD functional relationships as the
results we observe in the Chicago data set. Even for simple

linear real-valued relationships in the Phase and Chicago
data sets, AimNet performs slightly better than XGB, except
for Trip Total. Upon inspection, we find that AimNet’s
attention weights place a large weight on Extras, a mostly
0-valued attribute, and a small weight on Fare. Intuitively,
there should be a large weight on Fare since for most cases
Trip total ⇡ Fare. XGB correctly identifies Fare
as the most important feature for Trip Total.

5.6 Micro-Benchmark Experiments

We perform micro-benchmark experiments on AimNet,
specifically (1) an ablation study on the attention layer (2) a
sensitivity analysis on the hyperparameters of AimNet and
(3) a comparison with multi-task learning versus learning a
single model per attribute.
Effects of the attention layer We perform an ablation
study by removing the attention layer while imputing on
both synthetic and MAR and MNAR injected data sets.
Here, we summarize our findings from the ablation study
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Figure 5: Accuracy on synthetic data sets with |Dsynth| = 5000, |Y| = 5 varying number of dependent attributes |XY | over
different class sizes c = 5, 50, 200.

Table 4: Imputation accuracy and NRMS error on the test set under MAR/MNAR error injections with p = 0.2 missingness
across our AimNet model and the other baselines. Results that did not finish after 3 days are denoted with —.

data set Attribute Accuracy on discrete attributes (ACC ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Balance class 0.83± 0.07 0.4± 0.37 0.48± 0.32 0.7± 0.16 0.5± 0.12 0.46± 0.34 0.78± 0.15

NYPD
ADDR PCT CD 0.67± 0.03 0.19± 0.05 0.41± 0.05 0.13± 0.01 0.04± 0.04 0.59± 0.03 0.23± 0.01

BORO NM 0.92± 0.07 0.85± 0.09 0.58± 0.18 0.78± 0.04 0.23± 0.03 0.84± 0.09 0.58± 0.09
PATROL BORO 0.83± 0.07 0.69± 0.03 0.57± 0.17 0.6± 0.06 0.13± 0.02 0.72± 0.1 0.58± 0.07

data set Attribute NRMS on continuous attributes (NRMS ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Phase

A 0.75± 0.13 1.26± 0.46 0.81± 0.18 1.45± 0.5 2.04± 1.73 0.94± 0.18 1.41± 0.66
B 0.77± 0.07 0.99± 0.27 0.83± 0.16 1.18± 0.33 1.54± 0.54 0.98± 0.13 1.32± 0.4
C 0.79± 0.11 1.25± 0.26 0.81± 0.13 1.44± 0.25 1.33± 0.34 1.09± 0.23 1.29± 0.1
D 0.62± 0.09 1.1± 0.24 0.65± 0.09 1.47± 0.56 1.57± 0.63 0.85± 0.17 1.03± 0.13

Chicago
Trip Total 0.82± 0.21 2.38± 1.16 0.48± 0.32 3.84± 0.7 1.87± 0.7 0.71± 0.57 —

Fare 1.35± 0.76 5.18± 1.94 1.16± 0.73 12.73± 7.93 58.09± 36.03 2.78± 3.0 —
Tips 0.52± 0.01 1.29± 0.09 0.5± 0.12 1.59± 0.49 11.64± 6.76 0.8± 0.28 —

here and present all detailed figures in Appendix A.6.

First, we focus on synthetic and MAR and MNAR injected
data sets. For data sets with |Y | = 1 (each synthetic data
set consists of only one set of Y and X ) we find that the
attention mechanism contributes nothing to the performance.
However, once we introduce |Y | = 5 sets of X , Y we
observe that as the number of classes increases, the attention
mechanism eventually accounts for > 50% of the prediction
accuracy. For sufficiently difficult imputation problems
where the number of classes is large, and where there are
other irrelevant attributes to the functional relationship in the
data set, the attention mechanism helps identify the correct
inputs XY for a given Y attribute.

We perform the same ablation study on the real-world MAR
and MNAR injected data sets. We find that for discrete at-
tributes, the attention mechanism accounts for 5�10% of the
imputation accuracy on the NYPD and Chicago attributes,
all of which exhibit the kernel functional relationship for
k = 2. Interestingly for the class attribute in the Balance
data set the attention layer has a non-trivial negative impact
on imputation accuracy. In fact, without the attention layer
AimNet would outperform all other baselines on Balance in
Table 4 after accounting for noise. For continuous attributes,
the attention layer has no effect except on the Chicago at-
tributes with the functional relationships in Equation 5.
Hyperparameter sensitivity analysis We vary the hyper-
parameters of AimNet to assess its sensitivity to hyperpa-

rameter perturbations. We focus on the dropout rate, max
domain size, and the embedding dimension k. We summa-
rize our findings while detailed results are presented in Ap-
pendix A.7. We find that AimNet is robust to a wide range
of values for max domain size and the embedding dimension
on both discrete and continuous evaluation. Dropout rate,
on the other hand, can impact performance on continuous
variable and should be tuned with cross-validation.
Multi-task or single-task We compare multi-task Aim-
Net, where context parameters are shared across target at-
tributes, with independently-trained models for each target
attribute. Detailed results are shown in Appendix A.10.
While there are cases where the multi-task models are more
accurate we find that, on average, independently-trained
models obtain results of comparable quality. That being
said, independent models can trained in parallel with sub-
linear speedup (usually 2-10 times faster).

6 CONCLUSION

We introduced AimNet a simple attention-based autoen-
coder network for missing data imputation for mixed con-
tinuous and discrete data. We showed that AimNet outper-
forms current state-of-the-art especially in the presence of
systematic noise. The key component that enables AimNet
to counteract sample biases due to systematic noise is a new
variation of a dot product attention mechanism that can learn
structural properties of the underlying data distribution.
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A APPENDIX

A.1 Detailed Data Set Descriptions

A summary of the characteristics of each data set is provided
in Table 5. In detail, we use the following data sets:

• Hospital is a benchmark data set used in the data clean-
ing literature (Rekatsinas et al., 2017). In our experi-
ments, we inject missing errors instead.

• NYPD 2 contains violation crimes reported to the New
York City Police Department (NYPD). We focus on
the latest snapshot of the data set (June 2019) and
remove some of the attributes relating only to time.
In addition, since we cannot obtain ground truth in a
semi-automated fashion for existing missing values, we
simply remove all the rows containing missing values
and later inject missing errors.

• Chicago 3 consists of data on Chicago taxi rides.
Chicago contains naturally-occurring missing values.
As far as we know, no continuous errors exist beyond
the case where the entire tuple is missing. The primary
attributes with missing values are the “Census Tracts”
and “Community Area” columns which denote the US
census tracts and the Chicago-defined community areas
the taxi ride took place, respectively. In order to judge
the performance of MDI methods on the naturally-
occurring errors, ground truth for census tracts may
be queried by latitude-longitude from an FCC API4

and community areas can be subsequently matched via
the census tract with a join table for community areas
5. Since this data set is the tens of gigabytes in size
we sample 40000 rows from each of the top 10 taxi
companies by number of rides.

• Phase is a data set on three-phase current traces col-
lected by a third-party company. Due to privacy poli-
cies we cannot share the source in this paper.

• We use 10 data sets from the UCI repository 6 (Dua
& Graff, 2017). All of them are used as-is in the ex-
periments except the Eye EEG data set which contains
outlier values we subsequently dropped (if they are
beyond three standard deviations from the mean).

2
https://data.cityofnewyork.us/Public-

Safety/NYPD-Complaint-Data-Current-Year-To-

Date-/5uac-w243

3
https://data.cityofchicago.org/

Transportation/Taxi-Trips/wrvz-psewurl/

4
https://www.fcc.gov/census-block-

conversions-api

5
http://robparal.blogspot.com/2012/04/

census-tracts-in-chicago-community.html

6
http://archive.ics.uci.edu/ml/datasets/

Table 5: Data sets used in experiments sorted by the propor-
tion of discrete to continuous attributes.

Data Set |r | # Continuous Attributes # Discrete Attributes

Tic-Tac-Toe 958 0 10
Hospital 1000 2 14
Mammogram 831 1 5
Thoracic 470 3 14
Contraceptive 1473 2 8
Solar Flare 1066 3 10
NYPD 32399 4 13
Credit 653 6 10
Australian 691 6 9
Chicago 400k 11 7
Balance 625 4 1
Eye EEG 14976 14 1
Phase 9628 4 0
CASP 45730 10 0

We present functional relationships in the above data sets in
Table 7. The functional relationships fall on the spectrum of
the synthetic experiments (see Section 5.5): Trip Total

from Chicago and D from Phase both correspond to k = 4
and k = 3 for f(XY ) 2 linear, respectively; class from
Balance corresponds to k = 4 for f(XY ) 2 interact; all
other functional relationships where XY is some variant of
2-D coordinates correspond to k = 2 and f(XY ) 2 kernel.

A.2 Hyperparameter Tuning

Table 6: Set of hyperparameters for each model over which
we perform grid search cross-validation.

Method Hyperparameter Search Space

AimNet dropout % [0, 0.25, 0.5]

HCQ weight decay [0, 0.01, 0.1]

XGB gamma [0, 0.1, 1]

MIDAS keep % [0.8, 0.65, 0.5]

GAIN alpha [0.1, 1, 10]

MF # trees [50, 100, 300]

MICE # iterations [1, 3, 5]

Given the large number of hyperparameters in each of the
baseline methods and the numerous data sets we wish to
benchmark against, it is intractable to perform a thorough
hyperparameter search for every baseline method. For all
baselines, we begin with their default parameters as de-
scribed in their corresponding papers or specified in their
open-source implementations. We choose the most influen-
tial hyperparameter for each method, as shown in Table 6,
to perform grid search cross-validation across.
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Table 7: Functional relationships with real-valued domains for each data set where Y = f(XY ). ⇤: since Y and XY are
both continuous and f is linear, all permutations are also valid functional relationships.

Data Set Y XY (continuous)

Chicago

Pickup Census Tract {Pickup Centroid Latitude,Pickup Centroid Longitude}
Dropoff Census Tract {Dropoff Centroid Latitude,Dropoff Centroid Longitude}
Pickup Community Area {Pickup Centroid Latitude,Pickup Centroid Longitude}
Dropoff Community Area {Dropoff Centroid Latitude,Dropoff Centroid Longitude}

Trip Total
⇤

Fare+ Tips+ Tolls+ Extras

NYPD

ADDR PCT CD
{Latitude,Longitude}
{X COORD CD,Y COORD CD}

PATROL BORO
{Latitude,Longitude}
{X COORD CD,Y COORD CD}

BORO NM
{Latitude,Longitude}
{X COORD CD,Y COORD CD}

Phase D
⇤

A+ B+ C

Balance class left distance⇥ left weight� right distance⇥ right weight

A.3 Training

For all experiments a default embedding size k = 64 is
used with a maximum pruned domain size of D = 50 for
AimNet. We always train AimNet with 20 epochs (although
we observe in almost all data sets AimNet converges in
fewer than 3), and each mini-batch consists of 1 sample if
|D|  2000 or 32 samples if |D| > 2000. Since AimNet
uses a mini-batch approach, samples that have a smaller
domain than D have negative values randomly sampled into
its softmax loss since the softmax arguments are padded
anyways to size D for mini-batch training.

A.4 Chicago Deep-Dive

In Figure 6 we plot the latitude-longitude coordinates for a
region of Chicago from the Chicago data set and all sam-
ples in that region. We label each point on the plane with
its Pickup Census Tract label. Note that since these
are centroid Latitudes and Longitudes there are mul-
tiple samples per coordinate point. We display both the
coordinates of the observed samples (which a model can
train on) and the missing samples (which have coordinates
but have missing census tracts). There is an apparent gap
between missing and observed samples for a particular cen-
sus tract. We demarcate the true boundaries of the census
tracts in Figure 7 and notice that the observed and missing
samples do indeed within their corresponding census tract
boundaries. Upon further inspection, the systematic sepa-
ration between observed and missing samples arise from
different taxi companies utilizing different centroid coor-
dinates for census tracts while having inconsistent census
tract reporting standards.

A.5 MAR/MNAR Injection on Real Data Sets

Suppose the error percentage is x and e.g. x = 20%. In
either cases, let A be the target attribute in which we inject
missing values. We uniform-randomly choose one if its
continuous dependent attribute B. We then inject missing
values into A according to its type:

Continuous Target (MAR injection)

1. Sort all tuples in ascending or descending order (ran-
domly chosen) with respect to values of t[B].

2. Uniform-randomly choose a contiguous interval IA|B
in t[B] equivalent to x of all tuples. IA|B cannot start
nor end at the endpoints of t[B].

3. Inject missing into all t[A] cells whose co-occurring
values in t[B] is within IA|B .

Discrete Target (MNAR injection)

1. Group tuples by the values of t[A]

2. For a given group gi (for some value vi 2 dom(A)),
randomly choose a cut-off value c. c will either be the
x-th largest or smallest (randomly chosen) among all
the co-occurring values in B (i.e. gi[B]).

3. Inject missing into all gi[A] = vi cells whose co-
occurring values in attribute B is beyon the cut-off
c. That is if c is the x-th largest then inject missing if
gi[B] > c or if c is the x-th smallest then inject missing
if gi[B] < c.

A.6 Detailed Ablation Study Results

We perform an ablation study by removing the attention
layer while imputing on both synthetic and MAR and
MNAR injected data sets. We plot the results of removing
the attention layer on the kernel data sets from Section 5.5
in Figure 8. For |Y | = 1 (each synthetic data set consists of
only one set of Y and X ) in the top row the attention mecha-
nism contributes nothing to the performance. However, once
we introduce |Y | = 5 sets of X , Y we observe that as the
number of classes increases, the attention mechanism even-
tually accounts for > 50% of the prediction accuracy. For
sufficiently difficult imputation problems where the num-
ber of classes is large, and where there are other irrelevant
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Figure 6: Observed vs missing Pickup Census Tract samples in
the Chicago data set.

Figure 7: Approximate bounding polygons of attribute Pickup Census

Tract for the Chicago data set.



Attention-based Learning for Missing Data Imputation in HoloClean

Figure 8: Accuracy on synthetic data sets of AimNet with/without attention layer with |Dsynth| = 5000, |Y| = 1, 5 varying
number of dependent attributes |XY | over different class sizes c = 5, 50, 200.

Figure 9: Imputation Accuracy and NRMS error on real data sets under MNAR/MAR injections of AimNet with and without
attention layer.

attributes to the functional relationship in the data set, the
attention mechanism helps identify the correct inputs XY

for a given Y attribute.

We perform the same ablation study on the real-world MAR
and MNAR injected data sets and plot the results in Figure 9.
We find that for discrete attributes, the attention mechanism
accounts for 5 � 10% of the imputation accuracy on the
NYPD and Chicago attributes, all of which exhibit the kernel
functional relationship for k = 2. Interestingly for the
class attribute in the Balance data set the attention layer
has a non-trivial negative impact on imputation accuracy. In
fact, without the attention layer AimNet would outperform
all other baselines on Balance in Table 4 after accounting for
noise. For continuous attributes, the attention layer has no
effect except on the Chicago attributes with the functional

relationships in Equation 5.

A.7 Sensitivity Analysis

We vary the hyperparameters of AimNet to assess the sensi-
tivity of the model to hyperparameter perturbations, specifi-
cally dropout rate, max domain size and the embedding size
k. The sensitivity analysis is performed on the NYPD data
set with MCAR-injected missing values where p = 0.2 and
the results are shown in Table 8. We observe that for discrete
predictions and the corresponding imputation accuracy, the
model can perform about the same regardless of the dropout
rate, max domain size, and embedding size. In fact a smaller
domain size and embedding size would improve run time
and make AimNet even more competitive in a practical set-
ting. We do observe that for continuous target attributes,
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Table 8: Sensitivity analysis of AimNet’s hyperparameters.

Accuracy on discrete attributes for the NYPD data set

dropout max domain size embedding size AimNet

base 0.25 50 64 0.921

(dropout rate) 0.0 0.918
0.5 0.920

(max domain size) 10 0.917
100 0.921

(embedding size) 16 0.920
32 0.921
128 0.922
256 0.920

NRMS on continuous attributes for the NYPD data set

dropout rate max domain size embedding size AimNet

base 0.0 50 64 0.150

(dropout rate) 0.25 0.281
0.5 0.509

(embedding size)
16 0.159
32 0.150
128 0.153
256 0.144

Run time (seconds) for the NYPD data set

base 0.0 50 64 378

(embedding size)
16 290
32 316
128 434
256 636

dropout has a negative impact on NRMS. On the other hand,
the embedding size has a negligible effect. It is therefore
recommended to not use dropout for imputing continuous
attributes: one may choose to train a separate AimNet with
just the continuous target attributes. In addition, we can see
that the Accuracy and NRMS have no significant change
considering that the larger the embedding size is the more
running time is required, albeit a sub-linear increase.

A.8 Scaling to Datasets with Large Number of
Features

We run a experiments on three synthetically generated
datasets with 20,000 rows each, 20% MCAR values, and
20, 50, and 100 features, respectively, for comparing run-
time statistics and accuracy. Since the number of categor-
ical features and their cardinalities are non-trivial factors
in runtime we make half of them categorical and generate
values such that their cardinalities are each approximately
log(20, 000) = 14. We train each dataset for 5 epochs
(which is more than sufficient in our primary experiments
for a dataset of this characteristic to achieve a minimal cross-
validation loss). As shown in Table 9, the wall-times are
19, 32, and 54 minutes, respectively. As for accuracy on
discrete attributes, the performance is even better than the
results shown in Figure 8 due to the larger data set size
(|Dsynth| = 20000 > 5000).

Table 9: Imputation accuracy (for discrete attributes) and
run time on synthetic datasets with large number of features
under MCAR error injections with p = 0.2 missingness
on our AimNet model. The means of 10 trials per data
set/method with different pseudo-random seeds are reported.
Results are after cross-validation on a holdout set.

# of attributes Accuracy (ACC ± std) Run time (minutes)

20 0.86± 0.0 19
50 0.85± 0.0 32
100 0.86± 0.0 54

A.9 Error Percentage Analysis

We additionally vary the percentage of missing values for
p = 0.4, 0.6 for MCAR-injected errors (in addition to
p = 0.2 in the main experiments). The results for p = 0.4
and p = 0.6 are tabulated in Table 10 and Table 11, re-
spectively. Unsurprisingly the accuracy and NRMS of all
methods deteriorate with more missing values. We observe
however that AimNet maintains its lead compared to the
other baselines and in fact marginally outperforms XGB
and MF on continuous imputation on the CASP data set
when p = 0.6. This suggests that not only is AimNet com-
petitive regardless of the missingness proportion but it in
fact outpaces the baselines empirically when missingness
increases.

A.10 Multi-task v.s. Single Model

We run an experiment to examine the multi-task aspect. We
compare multi-task learning (parameters are shared across
imputation tasks) against independently learned imputation
models where results are shown in Table 12. While there
are cases where multi-task models are more accurate, we
find that, on average, independent models obtain results of
comparable quality. That being said, independent models
can be faster (2 - 10 times faster) if trained in parallel. Thus
in practice we recommend running the proposed model with
single target attributes in parallel if resources permit.



Attention-based Learning for Missing Data Imputation in HoloClean

Table 10: Imputation accuracy and NRMS error on the test set under MCAR error injections with p = 0.4 missingness
across our AimNet model and the other baselines.The means of 10 trials per data set/method with different pseudo-random
seeds are reported. Results for each method are after cross-validation on a holdout set. The best results for each data set are
bolded as well as any results that overlap within the confidence interval (± 1 standard deviation).

Data Set Accuracy on discrete attributes (ACC ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Tic-Tac-Toc 0.53± 0.01 0.5± 0.01 0.52± 0.01 0.44± 0.02 0.35± 0.01 0.5± 0.01 0.46± 0.01
Hospital 0.95± 0.0 0.95± 0.0 0.91± 0.01 0.24± 0.01 0.14± 0.02 0.94± 0.01 0.7± 0.01
Mammogram 0.73± 0.02 0.72± 0.01 0.72± 0.02 0.71± 0.02 0.35± 0.01 0.66± 0.02 0.63± 0.02
Thoracic 0.85± 0.01 0.84± 0.01 0.84± 0.01 0.83± 0.02 0.52± 0.15 0.85± 0.01 0.75± 0.03
Contraceptive 0.63± 0.01 0.63± 0.01 0.62± 0.01 0.62± 0.01 0.43± 0.01 0.62± 0.01 0.55± 0.01
Solar Flare 0.76± 0.01 0.75± 0.01 0.75± 0.01 0.66± 0.01 0.46± 0.02 0.74± 0.01 0.65± 0.01
NYPD 0.87± 0.0 0.85± 0.0 0.88± 0.0 0.75± 0.0 0.15± 0.01 0.88± 0.0 0.58± 0.0
Credit 0.73± 0.01 0.7± 0.01 0.73± 0.01 0.6± 0.01 0.39± 0.01 0.73± 0.01 0.63± 0.01
Australian 0.7± 0.01 0.66± 0.01 0.68± 0.01 0.6± 0.01 0.46± 0.01 0.69± 0.01 0.59± 0.01
Balance 0.73± 0.03 0.72± 0.03 0.71± 0.03 0.64± 0.03 0.45± 0.05 0.63± 0.05 0.64± 0.04
Eye EEG 0.67± 0.01 0.62± 0.01 0.73± 0.01 0.55± 0.01 0.52± 0.03 0.78± 0.01 0.53± 0.01

Data Set NRMS on continuous attributes (NRMS ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Hospital 0.81± 0.04 1.1± 0.08 0.92± 0.07 440.63± 61.35 2.26± 1.18 0.89± 0.04 1.23± 0.09
Mammogram 0.92± 0.02 1.02± 0.04 0.98± 0.05 1.12± 0.08 1.05± 0.06 1.01± 0.03 1.25± 0.07
Thoracic 0.94± 0.01 1.09± 0.05 1.03± 0.11 5.64± 7.16 1.23± 0.22 0.99± 0.06 1.32± 0.12
Contraceptive 0.9± 0.02 1.12± 0.04 0.94± 0.02 1.11± 0.02 1.17± 0.05 0.99± 0.02 1.23± 0.06
Solar Flare 0.93± 0.09 0.98± 0.09 1.0± 0.1 10772.7± 4057.37 1.0± 0.09 1.04± 0.11 1.16± 0.07
NYPD 0.32± 0.01 0.44± 0.13 0.28± 0.0 0.69± 0.03 3.63± 0.17 0.22± 0.01 0.62± 0.01
Credit 0.97± 0.03 1.24± 0.03 1.26± 0.41 1.15± 0.07 1.2± 0.08 1.12± 0.18 1.34± 0.11
Australian 0.96± 0.02 1.23± 0.03 1.19± 0.2 1.14± 0.12 1.27± 0.16 1.07± 0.13 1.6± 0.7
Eye EEG 0.48± 0.0 0.71± 0.03 0.47± 0.0 0.91± 0.01 1.0± 0.28 0.44± 0.0 0.67± 0.01
Phase 0.52± 0.01 0.58± 0.0 0.53± 0.01 0.97± 0.01 1.14± 0.26 0.58± 0.01 0.73± 0.01
CASP 0.5± 0.01 1.5± 0.26 0.49± 0.01 0.88± 0.01 0.83± 0.09 0.48± 0.01 0.73± 0.03

Table 11: Imputation accuracy and NRMS error on the test set under MCAR error injections with p = 0.6 missingness
across our AimNet model and the other baselines. The means of 10 trials per data set/method with different pseudo-random
seeds are reported. Results for each method are after cross-validation on a holdout set. The best results for each data set are
bolded as well as any results that overlap within the confidence interval (± 1 standard deviation).

Data Set Accuracy on discrete attributes (ACC ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Tic-Tac-Toc 0.48± 0.01 0.48± 0.0 0.47± 0.01 0.43± 0.01 0.39± 0.01 0.44± 0.01 0.4± 0.01
Hospital 0.86± 0.01 0.86± 0.01 0.68± 0.01 0.24± 0.0 0.11± 0.01 0.79± 0.01 0.37± 0.01
Mammogram 0.69± 0.01 0.69± 0.01 0.68± 0.01 0.68± 0.01 0.34± 0.02 0.62± 0.02 0.58± 0.02
Thoracic 0.85± 0.01 0.84± 0.01 0.83± 0.0 0.84± 0.01 0.51± 0.13 0.84± 0.01 0.72± 0.04
Contraceptive 0.62± 0.01 0.62± 0.01 0.61± 0.01 0.61± 0.01 0.42± 0.02 0.6± 0.01 0.53± 0.01
Solar Flare 0.72± 0.01 0.72± 0.01 0.71± 0.01 0.66± 0.01 0.45± 0.03 0.7± 0.01 0.61± 0.01
NYPD 0.77± 0.0 0.76± 0.0 0.79± 0.0 0.67± 0.0 0.15± 0.0 0.78± 0.0 0.45± 0.0
Credit 0.69± 0.01 0.66± 0.01 0.68± 0.01 0.6± 0.01 0.38± 0.02 0.68± 0.01 0.57± 0.01
Australian 0.67± 0.01 0.65± 0.01 0.65± 0.01 0.59± 0.01 0.45± 0.02 0.65± 0.01 0.54± 0.02
Balance 0.67± 0.03 0.64± 0.04 0.63± 0.03 0.51± 0.06 0.46± 0.04 0.54± 0.03 0.55± 0.04
Eye EEG 0.63± 0.01 0.6± 0.01 0.66± 0.01 0.54± 0.01 0.52± 0.03 0.67± 0.01 0.52± 0.01

Data Set NRMS on continuous attributes (NRMS ± std)
AimNet HCQ XGB MIDAS GAIN MF MICE

Hospital 0.9± 0.04 1.16± 0.12 1.01± 0.08 139.97± 24.15 3.79± 0.36 0.95± 0.05 1.27± 0.09
Mammogram 0.94± 0.02 1.05± 0.06 1.0± 0.05 1.13± 0.06 1.1± 0.11 1.01± 0.04 1.28± 0.08
Thoracic 0.99± 0.02 1.13± 0.05 1.17± 0.11 3.54± 5.28 1.18± 0.09 1.07± 0.04 1.43± 0.2
Contraceptive 0.94± 0.01 1.15± 0.04 1.01± 0.02 1.12± 0.02 1.31± 0.14 1.14± 0.04 1.29± 0.05
Solar Flare 0.98± 0.06 1.01± 0.06 1.05± 0.09 4454.64± 1610.59 1.07± 0.17 1.13± 0.14 1.24± 0.19
NYPD 0.56± 0.0 0.58± 0.04 0.45± 0.0 0.8± 0.01 3.51± 0.14 0.42± 0.01 0.98± 0.0
Credit 0.99± 0.01 1.33± 0.19 1.23± 0.25 1.14± 0.11 1.24± 0.11 1.13± 0.13 1.43± 0.26
Australian 0.98± 0.01 1.37± 0.26 1.29± 0.42 1.1± 0.04 1.25± 0.12 1.13± 0.19 1.38± 0.09
Eye EEG 0.59± 0.0 0.82± 0.04 0.57± 0.0 0.97± 0.01 1.61± 0.24 0.57± 0.0 0.79± 0.0
Phase 0.64± 0.0 0.71± 0.01 0.65± 0.0 1.0± 0.0 1.45± 0.51 0.71± 0.01 0.91± 0.01
CASP 0.58± 0.01 2.06± 0.51 0.59± 0.01 0.94± 0.01 1.2± 0.22 0.62± 0.0 0.88± 0.03



Attention-based Learning for Missing Data Imputation in HoloClean

Table 12: Imputation accuracy and NRMS error on the
test set under MCAR injections with p = 0.2 missingness
with individually-trained AimNet models for each target
attribute(Single) and shared context parameters across tar-
get attributes (Multi-Task). The means of 10 trials per data
set-method with different pseudo-random seeds are reported.
Results for each method are after cross-validation on a hold-
out set. The best results for each data set are bolded as well
as any results that overlap within the confidence interval (±
1 standard deviation).

Data Set Accuracy on discrete attributes (ACC ± std)
Single Multi-Task

Tic-Tac-Toc 0.61± 0.01 0.61± 0.01
Hospital 0.99± 0.0 0.99± 0.0
Mammogram 0.75± 0.01 0.75± 0.01
Thoracic 0.86± 0.01 0.86± 0.01
Contraceptive 0.65± 0.01 0.65± 0.01
Solar Flare 0.78± 0.02 0.78± 0.01
NYPD 0.92± 0.0 0.92± 0.0
Credit 0.76± 0.01 0.76± 0.01
Australian 0.72± 0.02 0.72± 0.01
Chicago 0.73± 0.01 0.7± 0.03
Balance 0.79± 0.04 0.79± 0.04
Eye EEG 0.71± 0.01 0.69± 0.01

Data Set NRMS on continuous attributes (NRMS ± std)
Single Multi-Task

Hospital 0.72± 0.06 0.77± 0.06
Mammogram 0.91± 0.04 0.93± 0.03
Thoracic 1.1± 0.41 1.3± 0.83
Contraceptive 0.84± 0.02 0.84± 0.02
Solar Flare 0.94± 0.15 0.87± 0.16
NYPD 0.15± 0.01 0.15± 0.01
Credit 0.94± 0.03 0.94± 0.03
Australian 0.94± 0.03 0.93± 0.02
Eye EEG 0.4± 0.0 0.44± 0.0
Phase 0.45± 0.01 0.45± 0.01
CASP 0.45± 0.02 0.48± 0.01

Data Set Run time (seconds)
Single Multi-Task

Tic-Tac-Toc 9 38
Hospital 18 148
Mammogram 9 39
Thoracic 11 69
Contraceptive 15 102
Solar Flare 15 131
NYPD 378 6320
Credit 15 198
Australian 16 145
Chicago 3180 462756
Balance 11 12
Eye EEG 188 5306
Phase 66 250
CASP 648 5800


