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Abstract Large databases with uncertain information arel Introduction
becoming more common in many applications including data
integration, location tracking, and Web search. In these applidncertain data are becoming more common in many applica-
cations, ranking records with uncertain attributes introducetons. Examples include managing sensor data, consolidating
new problems that are fundamentally different from conveninformation sources, and tracking moving objects. Uncer-
tional ranking. Specifically, uncertainty in records’ scorestainty impacts the quality of query answers in these environ-
induces a partial order over records, as opposed to the totalents. Dealing with data uncertainty by removing records
order that is assumed in the conventional ranking settings. Iwith uncertain information is not desirable in many settings.
this paper, we present a new probabilistic model, based oRor example, there could be too many uncertain values in
partial orders, to encapsulate the space of possible rankingise database (e.g., readings of sensing devices that become
originating from score uncertainty. Under this model, we for-frequently unreliable under high temperature). Alternatively,
mulate several ranking query types with different semanticshere could be only few uncertain values in the database but
We describe and analyze a set of ef cient query evaluationthey affect records that closely match query requirements.
algorithms. We show that our techniques can be used to soN@ropping such records leads to inaccurate or incomplete
the problem of rank aggregation in partial orders under twauery results. For these reasons, modeling and processing
widely adopted distance metrics. In addition, we design samancertain data have been the focus of many recent studies
pling techniques based on Markov chains to compute approX1-3].
imate query answers. Our experimental evaluation uses both Top+ (ranking) queries report therecords with the high-
real and synthetic data. The experimental study demonstratest scores in query output, based on a scoring function de ned
the ef ciency and effectiveness of our techniques under varen one or more scoring predicates (e.g., functions de ned on
ious con gurations. one or more database columns). A scoring function induces
atotal order over records with different scores (ties are usu-
Keywords Ranking Top-k- Uncertain dataProbabilistic  ally resolved using a deterministic tie-breaker, such as unique
data- Partial orders Rank aggregationKendall tau record IDs #]). A survey on the subject can be found Bj}.[

In this paper, we study ranking queries for records with
uncertain scores. In contrast to the conventional ranking
settings, score uncertainty inducepatial order over the
underlying records, where multiple rankings are valid. Study-
ing the formulation and processing of tépgueries in this
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Fig. 1 Uncertain data in search o,

results B il
apartments.com..

Holiday Gardens Apartiments
19Panotama DI, gioornians
Wallejo, CA 94589

Hame Price Photos  Floor Plans  Sq. Ft Bath Deposit Availability
1Bedroom
Model 14 $745 - 3795 m 750 1 F500 Contact Mow!

2 Bedrooms
Model 24 $345- 3945 D ¥ 4] 1 $500  Contact Now!

Bay Village Apartiments

1107 Porter St Floorplans
Vallejo, CA 94590 Name Price Photos  Floor Plans  Sq.Ft  Bath  Deposit Availability
1Bedroom
Mode! 14 $950 - $1150 Ed 630 1 Waries Cortact how!
Model 18 $1050 - $1250 e | £l 756 1 Cortact Now!
2 Bedrooms
Model 24 $1225 - $1425 Ed 826 1 Yaries Contact Moww!
Model 26 3] 873 2 Varies Contact Now!
for available apartments to rent. The shown search results [AptiD | Rent | score Linear Extensions |
include several uncertain pieces of information. For example, al |$600 9 I,| (ara4a2:a335
some apartment listings do not explicitly specify the deposit ag 5860500-&100] [75-8] L| (ala2a3a534
isti i a.
amount. Other I|st|ngs mention apartment rent and area as : T 1| (a1,a3,42,a5,34
ranges rather than single values. a4 | negotishle |[0-10] 1| (aLadas.a2a5
. . .. . 4 ,a4,do,ds,
The obscure data in Fig.may originate from different a5 |$1200 4
. . . (a) ls (al,a2,a3,a4,35
sources including the following: (iJata entry errors, for L | (aLazatasss
LA al,a2,a4,a3,
example, an apartment listing is missing the number of rooms al a4 lé
by mistake, (2)ntegrating heterogeneous data sources, for L 7| (al.a3a2:24,95
example, listings are obtained from sources with different ly | (ala3a4,2235
- : az a3 l,| (asalaza33s
schemas, (3privacy concerns, for example, zip codes are 9o | ‘adalazas,
anonymized, (4)narketing policies, for example, areas of lip| (a4ala3,az3s
small-size apartments are expressed as ranges rather than pre- as (c)
cise values, and ()resentation style, for example, search (b)

results are aggregated to group similar apartments.

In a sample of search results we scraped frarart-
ments.com andcarpages. ca, the percentage of apartment
records with uncertain rent was 65%, and the percentage of Figure2b depicts a diagram for the partial order induced
car records with uncertain price was 10%. by apartment scores (we formally de ne partial orders in

Uncertainty introduces new challenges regarding both thgect2.1). Disconnected nodes in the diagram indicate the
semantics and processing of ranking queries. We illustratgcomparability of their corresponding records. Due to the
such challenges by giving the following simple example forintersection of score ranges4 is incomparable to all other
the apartment search scenario in Big. records, and2 is incomparable ta3.

Example 1 Assume an apartment database. Figargives a A simple approach to compute a ranking based on the
snapshot of the results of some user query posed against spPVe Partial order is to reduce it to a total order by replac-
database. Assume that the user would like to rank the resulfd Score ranges with their expected values. The problem
using a function that scores apartments based on rent (tH4th such approach, however., is that for score intervals with
cheaper the apartment, the higher the score). Since the rdf9€ variance, arbitrary rankings that are independent from
of apartment2 is speci ed as a range, and the rent of apart-hOW the ranges intersect may be produced. These rankings
menta4 is unknown, the scoring function assigns a range ofan be unreliable in some cases. For example, assume 3

possible scores ta2, while the full score randeg0—10] is ~ apartmentsal, a2, anda3 with score intervalg0, 100,
assigned ta4. [40, 60], and[30, 70], respectively. Assume that score values

are distributed uniformly within each interval. The expected
score of each apartment is thus 50, and hence all apartment

1 Imputation methodsd, 7] can give better guesses for missing values. permutations are equa”y "k?|y rankings. HOWGV(_?", based
We study the effect of using these methods in Skct. on how the score intervals intersect, we show in Sect.

Fig. 2 Partial order for records with uncertain scores
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that we can compute the probabilities of different rank—
ings of these apartments as follows:(@d, a2, a3)) =
0.25, Pr({al, a3,a2)) = 0.2, Pr{a2,al,al3)) = 0.05,
Pr({a2, a3, al)) 0.2, Pr({a3, al, a2)) 0.05, and
Pr({a3, a2, al)) = 0.25. That is, the rankings have a non-
uniform distribution even though the score intervals are uni—
form with equal expectations. Similar examples exist when
dealing with non-uniform/skewed data.

Another possible ranking query on partial orders is nd-
ing the skyline (i.e., the non-dominated objec8).[ An
object is non-dominated if, in the partial order diagram, the
object’s node has no incoming edges. In Exanmipltfe sky-

Query semantics: conventional ranking semantics assume
that each record has a single score and a distinct rank (by
resolving ties using a deterministic tie breaker). Query
semantics allowing a score range, and hence different pos-
sible ranks per record need to be adopted.

Query processing. adopting a probabilistic partial order
model yields a probability distribution over a huge space
of possible rankings that is exponential in the database
size. Hence, we need ef cient algorithms to process such
space in order to compute query answers.

line objects aréal, a4}. The number of skyline objects can 1.2 Contributions

vary from a small number (e.g., Examplgto the size of

the whole database. Furthermore, skyline objects may not B¥€ present an integrated solution to compute ranking que-
equally good and, similarly, dominated objects may not b&i€s of different semantics under a general score uncertainty
equally bad. A user may want to compare objects’ relativénodel. We tackle the problem through the following key con-

orders in different data exploration scenarios. Current protributions:

posals 9,10] have demonstrated that there is no unique way
to distinguish or rank the skyline objects.

A different approach to rank the objects involved in a par-
tial order is inspecting the space of possible rankings that
conform to the relative order of objects. These rankings (or
permutations) are called th&ear extensions of the partial
order. Figure2c shows all linear extensions of the partial
order in Fig2b. Inspecting the space of linear extensions

allows ranking the objects in a way consistent with the par-
tial order. For exampley1 may be preferred to4 sinceal

appears atrank 1in 8 out of 10 linear extensions, even though

bothal anda4 are skyline objects. A crucial challenge for

We introduce a novel probabilistic ranking model based
on partial orders (Se@.1).

We formulate the problem of ranking under score uncer-
tainty by introducing new semantics of ranking queries
that can be adopted in different application scenarios
(Sect2.2).

We introduce a space pruning algorithm to cut down the
answer space, allowing ef cient query evaluation to be
conducted subsequently (Seg:tl).

We introduce a set of query evaluation techniques:

such approach is that the space of linear extensions grows 1. We show that exact query evaluation is expensive for

exponentially in the number of objectt]].

Furthermore, in many scenarios, uncertainty is quanti-
ed probabilistically. For example, a moving object’s loca-
tion can be described using a probability distribution de ned
on some region based on location histoty][ Similarly,

a missing attribute can be lled in with a probability dis-
tribution of multiple imputations, using machine learning
methods§, 7]. Augmenting uncertain scores with such prob-
abilistic quanti cations generates a (possibly non-uniform)
probability distribution of linear extensions that cannot be
captured using a standard partial order or dominance rela-
tionship.

In this paper, we address the challenges associated with

dealing with uncertain scores and incorporating probabilistic
score quanti cations in both the semantics and processing of
ranking queries. We summarize such challenges as follows:

— Ranking model: the conventional total order model cannot
capture score uncertainty. While partial orders can rep-
resent incomparable objects, incorporating probabilistic
score information in such model requires new probabilis-
tic modeling of partial orders.

some of our proposed queries (SécB).

We give branch-and-bound search algorithms to com-

pute exact query answers based oh #earch. The

search algorithms lazily explore the space of possible

answers, and early-prune partial answers that do not

lead to nal query answers (Seét4.1).

. We propose novel sampling techniques based on a
Markov Chain Monte-Carlo (MCMC) method to com-
pute approximate query answers (Séct.2J.

2.

We study the novel problem of optimal rank aggrega-
tion in partial orders induced by uncertain scores under
both Spearman footrule andKendall tau distance metrics
(Sectb.5):

1. We give a polynomial time algorithm to solve the prob-
lem under Spearman footrule distance (S&é&t.J).

We thoroughly study the problem of rank aggregation
in partial orders induced by uncertain scores under Ken-
dall tau distance. While the problem is NP-Hard in gen-
eral [L3], we identify key properties that de ne different
classes of partial orders in which computing the optimal
rank aggregation has polynomial time cost. We give the

2.
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corresponding query processing algorithms, and profable2 Modeling score uncertainty

vide a detailed complexity analysis (Se&6.2. /D Scoreinterval Score density
— We give new methods to construct probability densityt1 [6,6] f1=1
functions of records’ scores based on uncertain and incon)é [4.8] fa=1/4
plete attribute values. Our methods leverage kernel densit’)é [3'5] Faz 102
estimation and attribute correlations discovery techniquels [2'3 5] fa=203
to compute and aggregate uncertain scores from muItipIé1 e N
. . Is [7,7] f5=1
scoring attributes (Seck).
153 [1,1] fe=1

We also conduct an extensive experimental study using
real and synthetic data to examine the robustness and ef:

: . . . . identical deterministic scores (i.8(t; > t) A (t; > t)] =
ciency of our techniques in various settings (S&kt. G > 1) (i€ > ;) A (tj > t)]
; .

We assume in the next discussion that the score inter-
vals and density functions are given. In S&ctve give gen-
eral techniques to construct these components from uncertain
) } ) _attributes, as well as missing and incomplete attributes.
In this section, we describe the data model we adopt in ap1e2 shows a set of records with uniform score densi-
this paper (Sec2.1), followed by our problem definition yiaq \wheref, = 1/(up; — lo;) (e.9., f» = 1/4). For records
(Sect2_.2). We de ne the notations we use throughout th'swith deterministic scores (e.gs), the densityf; = 1.
paper in Tablé. Our interval-based score representation indugas-aal
order over database records, which extends the following
definition of strict partial orders:

2 Data model and problem definition

2.1 Data model

We adopt a general representation of uncertain scores, whe_lp(.g“n'tlon 1 [Strict Partial O_rder] A strict partial orderP
the score of record; is modeled as a probability density IS a2-tup|e(_R, O_)' whereR ISa nite set of e_:lements, gnd
function f; de ned on a score intervddo;, up;]. The density C R x R is abinary relation with the following properties:
function f; can be obtained directly from uncertain attributes . ) o

(e.g., a uniform distribution on possible apartment's rent val{1) Non-re exivity: VieR: (i) ¢O0.

ues as in Figl). Alternatively, f; can be computed from the (@) Asymmgtry: lf(’j ]? € O then(j. 1) ¢ (9:

predictions of missing/incomplete attribute values that affectd) Transitivity: If{G, /), (. b)} € O, then(j. k) € O.
records’ scoresf], or constructed from histories and value
correlations as in sensor readindd][ A deterministic (cer-
tain) score is modeled as an interval with equal bounds, and
probability of 1. For two records andr; with deterministic
equal scores (i.elp; = up; = lo; = up;), we assume a
tie-breakerr (#;, ¢;) that gives a deterministic records’ rela-
tive order. The tie-breaker is transitive over records with

Strict partial orders allow the relative order of some ele-
pents to be left unde ned. Awidely used depiction of partial
orders is Hasse diagram (e.g., Fap), which is a directed
acyclic graph the nodes of which are the element$Rof
and edges are the binary relationship®ipexcept relation-
ships derived by transitivity. An edge, j) indicates that
is ranked abovg according tdP. Thelinear extensions of a
partial order are all possible topological sorts of the partial

Tablel Frequently used notations order graph (i.e., the relative order of any two elements in

Symbol Description any linear extension does not violate the set of binary rela-
tionshipsO).

D Database with uncertain scores

Typically, a strict partial ordeP induces a uniform dis-

li A record with uncertain score tribution over its linear extensions. For example, For=

[loi, upi] Score interval of; ({a, b, ¢}, {(a, b)}), the 3 possible linear extensiofs b, c),

fi Score density function of (a, ¢, b), and(c, a, b) are assumed to be equally likely.

D Database after pruningdominated records We extend strict partial orders to encode score uncertainty
PPO Probabilistic partial order based on the following definitions.

@ Alinear extension of a PPO Definition 2 [Score Dominance] A record fr; dominates

Uy A linear extension pre x of length another recordj iff lo; > up;.

Sx A set ofx records T .

A (0 Probability ofr appearing at a rank i, /] The deterministic tie-breaker eliminates cycles when

applying Definition2 to records with deterministic equal
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t; root node is a dummy node since there can be multiple ele-
t, t, /O\ ments inR that may be ranked rst. Each occurrence of an
/ts\ th """"" 1 element € R in the tree represents a possible ranking, of
t, t, t1\‘t t¢2 t? """"" 2 and each levalin the tree contains all elements that occur at
t 2 t‘/t """"""" t 3 ranki in any linear extension. We explain how to construct
= tf’ """"" 114 tf 3 4 tf """" t, 4  the linear extensions tree in Seét.
Pr(n,>1,)=05 [ t, £ttt t.  — tl 5 Due to probabilistic dominance, the space of possible lin-
P- ggz :3; i g'zgg ,,,,,, tls ,,,,,,,,, ti tle , ;6 ,,,,,,, ti tle ,,,,,,,, tI: p ear extensions is viewed as a probability space generated by a

Pr(z;t‘;): 025 0.418 002 0.063 024 001024 0.01 probabilistic process that draws, for each reaprd random

wy Wy W3 Wy Ws Wg Wy scores; € [lo;, up;] based on the density;. Ranking the

drawn scores gives a total order on the database records,
where the probability of such order is the joint probability
of the drawn scores. For example, we show in RBgthe

scores. Based on Definitia?y Propertyl immediately fol- ~ probability value associated with each linear extension. We
lows: show how to compute these probabilities in Séct.

Fig. 3 Probabilistic partial order and linear extensions

Property 1 Score Dominance isin-reflexive, asymmetric, 2 2 Problem definition
andrransitive relation.

We assume the independence of score densities of indl?iaseij on It(he data r'noc.jel in S, we consider three clas-
vidual records. Hence, the probability that recerid ranked Ses ofranking quenes.
above record;, denoted Rir; > ¢;), is given by the follow-

ing two-dimensional integral: RECORD- RANK QUERIES. Queries that report records that

appear in a given range of ranks, de ned as follows:

a Definition 4 [Uncertain Top Rank (UTop-Rank)] A UTop-
Pr(t; > 1) = / / fi(x) - fj(ydy dx (1) Rankg, j) query reports the most probable record to appear
loj lo; at any ranki ... j (i.e., fromi to j inclusive) in possible

linear extensions. That is, for a linear extensions spgace
of a PPO, the query UTop-Rank(), for i < j, reports
argmaxt(zweg(”/_) Pr(w)), where2; ; ;) < 2 is the set

When neither; nort; dominates the other recoifdy;, up;]
and[loj, up;] are intersecting intervals, and so(Pr> t;)
belongs to the open intervad, 1), and P(t; > 1) = 1 —

Pr(t; > 1;). On the other hand, if, dominates';, then we of linear extensions with the recordat any rank, ..., j.

have Pt7; > t;) = 1and Rt; > ;) = 0. For example, in Fig3, the query UTop-Rank(R) reports
We say that a record pair;, ;) belongs to @robabilistic  t5 with probability Pw;) + --- + Pr(w7) = 1.0, sincets

dominance relation ift Pr(t; > t;) € (0, 1). appears at all linear extensions at either rank 1 or rank 2.

We next give the formal definition of our ranking model:

o Top- k- QUERIES. Queries that report a group of top-
Definition 3 [Probabilistic Partial Order (PPO)]Let R = [anked records. We give two different semantics Top-
{r1,...,1,) be a set of real intervals, where each intervalk_ QUERIES:

t; = [lo;, up;] is associated with a density functigiisuch o .
that flzp, fi(x)dx = 1. The setR induces a probabilistic Definition 5 [Uncertain Top Prefix (UTop-Preﬁx)].A UTop-
partial order PPQR, O, P), where(R, O) is a strict partial ~ Pre (k) query reports the most probable linear exten-
order with(s;, 1;) € O iff 1; dominates;, andP is theprob- ~ SION pre x of k records. That is, for a linear extensions
abilistic dominance relation of intervals inR. space 2 of a PPO, the query UTop-Prekj reports
o . . argmaxp(zweg(p‘b Pr(w)), where2(, 1y € £2 is the set
Definition 3 states that if; dominates;, then(z;, ;) € O.  of linear extensions having as thek-length pre x.
That is, we can deterministically rank abovet;. On the
other hand, if neither; nor ¢; dominates the other record,
then(y;, t;) € P. Thatis, the uncertainty in the relative order
of 1; andt; is quanti ed by PKt; > t;). Definition 6 [Uncertain Top Set (UTop-Set)] AUTop-Setk)
Figure 3 shows the Hasse diagram and the probabilistiqquery reports the most probable set of foppcords of linear
dominance relation of the PPO of records in Téblé/e also  extensions. That s, for a linear extensions spgacd a PPO,
show the set of linear extensions of the PPO. the query UTop-Sek) reportSargmaxs(Zwegm Pr(w)),
The linear extensions of PR, O, P) can be viewed as wheres2 ) C $2 is the set of linear extensions havings
tree where each root-to-leaf path is one linear extension. Thibe set of tope records.

For example, in Fig3, the query UTop-Pre x(3) reports
(ts, 11, t2) With probability Pw1) + Pr(wz) = 0.438.
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For example, in Fig3, the query UTop-Set(3) reports the 2.2.1 Example applications

set{r1, t2, t5} with probability P(w1) + Pr(w2) + Pr(wa) +

Pr(ws) + Pr(ws) + Pr(w7) = 0.937. Our proposed query types can be adopted in the following
Note that{r1, 72, t5} appears as Pre X5, 11, t2) inwg and  application examples:

w2, appears as Pre ¥s, 12, t1) in w4 andws, and appears as

Pre x (t2, 15, 1) in we andw7. However, unlike the UTop- _ A UTop-Rank(, j) query can be used to nd the most

Pre x query, the UTop-Set query ignores the order of records  probable athlete to end up in a range of ranks in some

within the query answer. This allows nding query answers  competition given a partial order of competitors.

with a relaxed within-answer ranking. — A UTop-Rank(1k) query can be used to nd the most-
The above query definitions can be extended to rank dif-  |ikely location to be in the to- hottest locations based

ferent answers on probability. We de ne the answer of  on uncertain sensor readings represented as intervals.

[-UTop-Rank(, j) query as thé most probable records to _ A UTop-Pre x query can be used in market analysis to

appear at a rank ..., j, the answer of-UTop-Pre x(k) nd the most-likely product ranking based on fuzzy eval-
query as thd most probable linear extension pre xes of  yations in users’ reviews. Similarly, a UTop-Set query
length k, and the answer of-UTop-Setf) query as the can be used to nd a set of products that are most-likely
[ most probable toj- sets. We assume a tie-breaker that  to be ranked above all other products.

deterministically orders answers with equal probabilities. — Rank aggregation query is widely adopted in many

applications related to combining votes from different
RANK- AGGREGATION- QUERIES. ~ Queries that report a voters to rank a given set of candidates in a way that
ranking with the minimum average distance to all linear  minimizes the disagreements of voter’s opinions. A typ-
extensions, formally de ned as follows: ical application of rank aggregation queries is building a
meta-search engine (a search engine that aggregates the
rankings of multiple other engines) as discussed B}, [
and described in more detail in Se&.5. An example
application of a Rank-Agg query in our settings is nd-
ing a consensus ranking for a set of candidates, where
We show in Sec®.5 that this query can be mapped to  each candidate receives a numeric score from each voter,

a UTop-Rank query under a speci ¢ definition of distance  \hich can be compactly encoded as a PPO. We give more
measure. We also derive a correspondence between this query details in Sec.5.

definition and the ranking query that orders records on their

expected scores o o Naive computation of the above queries requires materi-
The answer space of the above queries is a projection al)iing and aggregating the space of linear extensions, which
the linear extensions space. That is, the probability of ar, very expensive. We analyze the cost of such naive aggre-

answer is the summation of the probabilities of linear eXten'gation in Sect5. Our goal is to design ef cient algorithms

sions that contain thatanswer. These semantics are analogqHs overcome such prohibitive computational barrier.
to possible worlds semantics in probabilistic databaBs [

3], where a database is viewed as a set of possible instances,
and the probability of a query answer is the summation of thé Background

probabilities of database instances containing this answer.

UTop-Set and UTop-Pre x query answers are related. Thé" this sectio_n, we g.ive necessary background material on
top+ set probability of a set is the summation of the top- Monte-Carlo integration, which is used to construct our prob-

pre x probabilities of all pre xesp that consist of the same ability space, and Markov chains, which are used in our sam-
records of. Similarly, the UTop-Rank(1k) probability of a  Pling-based techniques.
recordt is the summation of the UTop-Rarik() probabili-
tiesofrfori =1,..., k. 3.1 Monte-Carlo integration

Similar query definitions are used in§-18], under the
membership uncertainty model where records belong to datd-he method of Monte-Carlo integratiobd] computes accu-
base with possibly less than absolute con dence, and scorégte estimate of the integrd}. f (x)dx, wherel” is an arbi-
are single values. However, our score uncertainty modetary volume, by sampling from another volumie2 I" in
(Sect.2.1) is fundamentally different, which entails different which uniform sampling and volume computation are easy.
query processing techniques. Furthermore, to the best of oliihe volumel” is estimated as the proportion of samples from
knowledge, UTop-Set query as well as Rank-Agg query in” that are insidg” multiplied by the volume of . The aver-
partial orders have not been proposed before. agef(x) over such samples is used to compute the integral.

Definition 7 [Rank Aggregation Query (Rank-Agg)] For a
linear extensions space, a Rank-Agg query reports a rank-
ing w* that minimizesﬁ D wen d(@*, ), whered(.) is a
measure of the distance between two rankings.
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Supporting ranking queries on uncertain and incomplete data 483

Specifically, letv be the volume of”, s be the total number 3. Accept the new samphg with probability

of samples, and . .. x,, be the samples that are inside o = min (”E)ﬂgq—g)‘o})ﬂ; )
7 (x0).q(x1]x0)
Then, 4. If x1 is accepted, then sey = x1.

m 1 5. Repeat from step (2).
[reodes™ v 23 ra @
* i=1 The (M—H) algorithm draws samples biased by their prob-
abilities. At each step, a candidate sampjes generated
The expected value of the above approximation is the trugiven the current sample. The ratiox comparesr (x1) and
integral value with arO (%) approximation error. 7 (xp) to decide on acceptings. The (M—H) algorithm sat-
is es the balance condition (EQ®) with arbitrary proposal
distributions P1]. Hence, the algorithm converges to the tar-
get distributionsz. The number of times a sample is visited

We give a brief description for the theory of Markov chains.iS proportiona} .to its probabili_ty, and h.ence the relative fre-
We refer the reader ta2()] for more detailed coverage of quency of V'_S't'ng_ a sample IS an estimate Ofw_c)' ,The,

the subject. Le be a random variable, where denotes (M=H) a_lgorlthm is typically useq to compute _dlstr|b_ut|on
the value ofX at timer. Let S = {s1.....s,) be the set summaries (e.g., average) or estimate a function of interest
of possibleX values, denoted thgate space of X. We say onzm.

that X follows a Markov process ik moves from the cur-

rent state to a next state based only on its current state. That o

is, P(X141 = /X0 = smo.... X, = 5j) = Pr(X,.q = * Probability space

si|X; = s;). A Markov chain is a state sequence generated ) o

by a Markov process. The transition probability between &{n this section, we formulate and compute the probabilities

pair of states; ands;, denoted Ps; — s;), is the prob- of the linear extensions ofa PPO.
ability that the process at statemoves to state; in one The probability of a linear extension is computed as a
step nested integral over records’ score densities in the order

AMarkov chain may reach a stationary distributioover ~ 9'V€N by the linear extension. Leb= (¢, t2,.... %) be
its state space, where the probability of being at a particuld? Inéar extension. Then, &) =Pr(( > 1), (2 >
state is independent from the initial state of the chain. Thé3): - -+ (l=1>1n)). The individual eventsy; > ;) in the
conditions of reaching a stationary distribution aneduc- prevpusformulatlon are notindependent, since any two con-
ibility (i.e., any state is reachable from any other state), angccUtive events share arecord. HenceqFer (11, 12, ... . ),

aperiodicity (i.e., the chain does not cycle between states irf, (@) 1S given by the following:-dimensional integral with

a deterministic number of steps). A unique stationary distridéPendent limits:

r

3.2 Markov chains

bution is reachable if the following balance equation holds up1 x1 Xn—1

for every pair of states; ands;: Pr(w) = // / Fi(x1), .., falo)dx,, ..., dxy

Pr(s; — s;)7(si) = Pr(s; — si)7(s;) (3) Loy loz 10y @

3.3 Markov chain Monte-Carlo (MCMC) method Monte-Carlo integration (SecR) can be used to compute
complex nested integrals, such as BEgFor example, the

The concepts of Monte-Carlo method and Markov chains argrobabilities of linear extensionsy, ..., w7 in Fig. 3 are

combined in the MCMC metho@[] to simulate a complex computed using Monte-Carlo integration.
distribution using a Markovian sampling process, where each In the next theorem, we prove that the space of linear
sample depends only on the previous sample. extensions of a PPO induces a probability distribution.

A standard MCMC algorithm is the Metropolis—Hastings
(M—=H) sampling algorithm21]. Suppose that we are inter-
ested in drawing samples from a target distributi@m). The
(M-H) algorithm generates a sequence of random draws
samples that followr (x) as follows:

Theorem 1 Let 2 be the set of linear extensions of

PPQR, O, P). Then, (1) 82 is equivalent to the set of all
fossible rankings of R, and (2) Equation 4 defines a proba-
ility distribution on S2.

Proof We prove (1) by contradiction. Assume thate 2

1. Start from an initial sampleg. is an invalid ranking ofR. That is, there exist at least two
2. Generate a candidate samplefrom anarbitrary pro-  recordsy; andt; the relative order of which iw is#; > 1},
posal distributiony (x1|xp). while lo; > up;. However, this contradicts the definition of
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Algorithm 1 Build linear extension tree /O\
BUILD_TREE (PPQR, O, P) : PPO,n : Tree node)

t t
1 for each source e R t/ . t tlz
2 do 1 5
3 child < create a tree node for / \t‘ 12 J
4 Add child ton’s children t2 3 t1 t1
5 PPO<« PPQR, O, P) after removing 0.438 0.063 0.25 0.25
6 BUILD_TREE( PPO,child) Wy Wy Wy Wy, W5  Wg, Wy

Fig. 4 Pre xes of linear extensions at depth 3

O in PPAQR, O, P). Similarly, we can prove that any valid

ranking of R corresponds to only one linear extensioan  more ef ciently as follows. Leiw® = (11,1, ..., %) be a
We prove (2) as follows. First, map each linear extendinear extension pre x of lengtlk. Let 7(w*)) be the set
sionw = (11,...,1,) to its corresponding eveat= ((r1 >  of records not included in™®. Let Pz, > T (w®)) be the

) A---A(ta—1 > 1,)). Equatiord computes Re) or equiv-  probability thatz, is ranked above all records ifi(w®).

alently Pw). Second, lei; andw; be two linear extensions  Let F; (x) = fz); fi (y)dy be the cumulative density function

in £2 the events of which are andez, respectively. By def-  (cpF) of £,. Hence, Plw®) = Pr((t1 > 12), ..., (tr—1 >

inition, w1 andwz must be different in the relative order of , y , - 7(»®))), where

at least one pair of records. It follows that(Br A e2) = 0

(i.e., any two linear extensions map to mutually exclusive ®

events). Third, sinc is equivalent to all possible rankings P > T(@™) = / fico-| [ F@|d (3)

of R (as proved in (1)), the events corresponding to elements Loy HE€T (@®)

of £2 must completely cover a probability space of 1 (i.e.,Hence, we have

Pr(ey vVez--- Ve, = 1, wherem = |£2]). Since alle;’s Yt

are mutually exclusive, it follows that R ves - - - Ve,) = W

Pr(e1) + - - +Pr(en) = > ,co Pr(@) = 1, and hence Edt Prio™) = // e / Jixp)s oo fieCe)
Ok

upk

up1xi

de nes a probability distribution ow2. O Loy lop
H Fi(xp) | dxg...dxg (6)
5 A baseline exact algorithm €T (@®)

Figure4 shows the pre xes of length 3 and their proba-
We describe a baseline algorithm that computes the qudbilities for the linear extensions tree in Fig. We annotate
ries in Sect2.2by materializing the linear extensions space.the leaves with the linear extensions that share each pre x.
Algorithm 1 gives a simple recursive technique to build theUnfortunately, pre x enumeration is still infeasible for all
linear extensions tree (Seétl). The rst call to Procedure but the smallest sets of elements, and, in addition, nding the
BUILD_TREE is passed the parameters RROO, P), anda  probabilities of nodes in the pre x tree requires computing
dummy root node. A record € R is asource if no other an/ dimensional integral, wheres the node’s level.
record/ € R dominates. The children of the tree root will
be the initial sources iR, so we can add a sourcas a child 5.1 AlgorithmBASELINE
of the root, remove it from PP, O, P), and then recurse
by nding new sources in PP@, O, P) after removing. The algorithm computes UTop-Pre x query by scanning the
The space of all linear extensions of PO O, P) grows  nodes in the pre x tree in depth- rst search order, computing
exponentially inf/R|. As a simple example, suppose that integrals only for the nodes at degti{Eq. 6), and reporting
containsm elements, none of which is dominated by anythe pre xes with the highest probabilities. We can use these
other element. A counting argument shows that there arprobabilities to answer UTop-Rank query for ranks .1, k,
Zimzl(mL_‘m nodes in the linear extensions tree. since the probability of a nodeat level/ < k can be found
When we are interested only in records occupying thdy summing the probabilities of its children. Once the nodes
top ranks, we can terminate the recursive construction algan the tree have been labeled with their probabilities, the
rithm at levelk, which means that our space is reduced fromanswer of UTop-Rank( ), Vi, j € [1,k] andi < j, can
complete linear extensions to linear extensions’ pre xes obe constructed by summing up the probabilities of all occur-
lengthk. Under our probability space, the probability of eachrences of a record at levelsi ... j. This is easily done in
pre x is the summation of the probabilities of linear exten- time linear to the number of tree nodes using a breadth- rst
sions sharing that pre x. We can compute pre x probabilitiestraversal of the tree. Here, we Complflﬁlk—)l k-dimensional
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integrals to answer both queries. However, the algorithm stilAlgorithm 2 Removek-dominated records

grows exponentially im. Answering UTop-Set query canbe surink_DB (D: databasek: dominance levell/: score upper-bound
done using the relationship among query answers discusseést)

in Sect.2.2 1 start < 1;end < |D|
2 pos* < |D|+1
3 tx) < therecord with the!" largestlo;
] 4 while (start < end) {binary search}
6 Query evaluation 5 do
6 mid <~ start+end
The BASELINE algorithm described in Sech. exposes two 7 i < record at positiomid in U
. . 8 if (tx) dominates;)
fundamental challenges for ef cient query evaluation: 9 then
10 pos* < mid
1. Database size: the naive algorithm is exponential in datall end < mid —1

base size. How to make use of special indexes and othe}2 8lse {i) does not dominate records above ;
3 start < mid + 1

data structures to access a small proportion of databases return D\ {1: 1 is located at positior pos* in U }
records while computing query answers?
2. Query evaluation cost: computing probabilities by naive

simple aggregation is prohibitive. How to exploit query then all records located at positions pos* in U are also
semantics for faster computation? k-dominated.

In Sect6.1, we answer the rst question by using indexes ¢ ; ; Complexity analysis
to prune records that do not contribute to query answers,

while in Sects6.3and6.4, we answer the second question gjnce Algorithm2 conducts a binary search @ its worst

by exploiting query semantics for faster computation. case complexity is i (log(m)), wherem = |D|. The listU
is constructed by sortin® onup; in O (m log(m)), whilez,
6.1 k-Dominance: shrinking the database is found inO (m log(k)) by scanningD while maintaining a

k-length priority queue for the top+ecords with respect to
Given a databas® conforming to our score uncertainty Jo;’s. The overall complexity is thu® (m log(m)), which is
model, we call a record € D “k-dominated” if at least the same complexity of sorting.
k other records irD dominater. For example in Fig3, the In the remainder of this paper, we udeto refer to the
records, andsg are 3-dominated. Our main insight to shrink databased after removing alk-dominated records.
the databasP used in query evaluation is based on Lermima

6.2 Overview of query processing

Lemmal Any k-dominated record in D can be ignored

while computing UTop-Rank(i, k) and TOP- k queries. There are two main factors impacting query evaluation cost:

the size of answer space, and the cost of answer computation.

Lemmal follows from the fact thak-dominated records The size of the answer spaceRiCORD- RANK QUERIES
do not occupy ranks: k in any linear extension, and so they is bounded by D| (the number of records i®), while for
do not affect the probability of any-length pre x. Hence, UTop-Set and UTop-Pre x queries, it is exponential|ﬂ§|
k-dominated records can be safely pruned frbm (the number of record subsets of skzi D). Hence, materi-

In the following, we describe a simple and ef cient tech- alizing the answer space for UTop-Rank queries is feasible,
nique to shrink the databageby removing allk-dominated  while materializing the answer space of UTop-Set and UTop-
records. Our technique assumes a lisbrdering records Pre x queries is very expensive (in general, itis intractable).
in D in descending score upper-boundpf) order, and that The computation cost of each answer can be heavily
f(), the record with thé’ hlargest score lower-bounttf),is  reduced by replacing the naive probability aggregation algo-
known (e.g., by using an index maintained over score lowerrithm (Sect5) with simpler Monte-Carlo integration exploit-
bounds). Ties among records are resolved using our detdng the query semantics to avoid enumerating the probability
ministic tie-breaker (Sect.2.1). space.

Algorithm 2 gives the details of our technique. The cen- In the following, letD = {t1,10,...,1,}, Wwheren =
tral idea is to conduct a binary search@ro nd the record |D|. Let I be then-dimensional hypercube that consists
t*, such that* is dominated by ), and:* is located at the of all possible combinations of records’ scores. That is,
highest possible position ity. Based on Lemmad, t* is I’ = ([lo1, up1] X [lo2, up2] x - -+ X [lo,, up,]). A vector
k-dominated. Moreover, lgtos* be the position of* in U, y = (x1,x2, -+, x,) Of n real values, wherg; € [lo;, up;],
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represents one pointifi. Let IT (y) = [[/_; fi(x;), where 4. Eventually, if the rank of in y isini... j, accepty.
fi is the score density of record Records with determinis-
tic (single-valued) scores are represented by the same scoreLet 1(; (1) be the probability ofy, to appear at rank
value in all possible/’s. On the other hand, records with j, ... j. The above procedure is formalized by the follow-
uncertain scores can be represented by different score valuigg) integral:
in differenty’s according to the intervals that enclose their
possible scores. A, () = / IT5(y) dy @)

In case of a continuoug, the component; is assumed to
be atiny score intervalifio;, up;], andf; (x;) is the result of
integrating f; overx;. We assume that the components ~ WherelT j.,) < I'is the volume de ned by the points =

i jug

totally ordered based on their values. Eq.7is evaluated as discussed in Sext.
6.3 ComputingRECORD- RANK QUERIES 6.3.1 Complexity analysis
We start by de ning records’ rank intervals. Let s be the total number of samples drawn frarto eval-

uate Eq.7. In order to compute themost probable records
to appear at arank in.... j, we need to apply Ed. to each
record inD the rank interval of which intersects j], and
use a heap of sizkto maintain thé most probable records.
Hence, computing-UTop-Rank(, j) query has a complex-
ity of O(s - nq ) - log(l)), wheren ;) is the number of
Eecords inD the rank intervals of which intersept jl. In
the worst cases;, j = n.

Definition 8 [Rank Interval]l The rank interval of a record
t € D is the range of all possible ranks oin the linear
extensions of the PPO induced by

For a recordt € D, let D(t) € D andD(t) € D be
the record subsets dominatingnd dominated by, respec-
tively. Then, based on the semantics of partial orders, th
rank interval oft is given by[|D(1)| + 1, n — | D(1)|].

For example, in Fig3, for D = {1, 12, 13, 15}, We have

D(ts) = ¢, andD(1s5) = {11, 13}, and thus the rank interval

of 15 is [1, 2] o Letv be alinear extension pre x dfrecords, and be a set of
The shrinking algornhm in Secﬁ-ldoes notaffectrecord ; racords. We denote with Ar) the topk pre x probability

ranks smaller thak, since any-dominated record appears ¢ ,, and, similarly, we denote with ) the topk set prob-

only at ranks> k. ability of s. Similar to our discussion of UTop-Rank queries

Hence, given a range of ranks. .., j, we know that & i Sect.6.3 Pr(v) is computed using Monte-Carlo integra-
recordr has non-zero probability to be in the answer of UTop-tjon on the volumel,, € I" which consists of the points

Rank(, j) query only if its rank interval iqtersects Jl y = (x1, ..., X,) such that the values inthat correspond to

_ We compute UTop-Rank(;) query using Monte-Carlo  yecords iny have the same ranking as the ranking of records
integration. The main insight is transforming the complex;, v, and any other value ip is smaller than the value cor-
space of linear extensions, that have to be aggregated to COMsponding to the last record in On the other hand, BY)
pute query answer, to the simpler space of all pqssible SCOkE computed by integrating on the volunfig,) < I” which
_comblnatlonsl". Such space can be sampled unlform_ly and-onsists of the pointg = (x1, ..., x,) such that any value
independently to nd the probability of query answer without ;, v, that does not correspond to a record,jis smaller than
enumerating the linear extensions. The accuracy of the resyf{e minimum value that corresponds to a recorsl.in
depends only on the number of drawn samplé. Sect.3). The cost of the previous Monte-Carlo integration pro-

We assume that the number of samples is chosen such thalyre can be further improved using the CDF product of
the error (which is in0 (\%)) is tolerated. We experimen- remaining records i, as described in Ed.

tally verify in Sect.8 that we obtain query answers with high  The cost of the above integrals is similar to the cost of the
accuracy and a considerably small cost using such strategyntegral in Eq.7 (mainly proportional to the number of sam-

6.4 ComputindTOP- k- QUERIES

For a recordy, we draw a sample e I" as follows: ples). However, the number of integrals we need to evaluate
here is exponential (one integral per each topre x/set),
1. Generate the valug in y while it is linear for UTop-Rank queries (one integral per
2. Generate — 1 independent values for other componentseach record).
in y one by one. In the following, we describe a branch-and-bound search
3. If at any point there arg values iny greater thany,,  algorithm to compute exact query answers (Séc4.J).
rejecty. We also describe sampling techniques, based on the (M—H)
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algorithm (cf. Sect.3), to compute approximate query Algorithm 3 Branch-and-bound UTop-Pre x query evaluation

answers at a lower computational cost (S6ct.2.
1

6.4.1 A branch-and-bound algorithm g
Our branch-and-bound algorithm employs a systematic ‘5‘
method to enumerate all possible candidate solutions (i.e.,6
possible topk pre xes/sets), while discarding a large subset 7
of these solutions by upper-bounding the probability of unex- 8
plored candidates. We discuss our algorithm by describing;
how candidates are generated, and how candidate pruning is.
conducted. We conclude our discussion by giving the overall12
branch-and-bound algorithm. For clarity of presentation, wel3
focus our discussion on the evaluation of UTop-Pre x que- ;g
ries. We show how to extend the algorithm to evaluate UTop-16

Set queries at the end of this section. 17
18

19
Candidate generation. Based on our discussion in Se@t3,

the rank intervals of different records can be derived from 20
the score dominance relationships in the underlying PPO%%
Using the rank intervals of different records, we can incre- o3
mentally generate candidate toppre xes by selectingadis- 24
tinct recordr;, for each rank = 1...k such that the rank 2>
interval of(; encloses, and the selected records at different gg
ranks form together a valid toppre x (i.e., a pre x of at 28
least one linear extension of the underlying PPO). Akop- 29
pre x v is valid if for each record;, € v, all records dom- 30
inating¢;, appear irv at ranks smaller than For example

BB- UToP- PREFIX (D : database, k : answer size)

{Initialization Phase}
U < score upper-bound list
D <« SHRINK_DB(D, k, U) {cf Sect. 6.1}
fori =1tok
do
Computek; ;) based onD {cf. Sect. 6.3}
L; < sorttuplesim ;) in a descending prob. order
{Searching Phase}
Q <« a priority queue of pre xes ordered on probability
vo < an empty pre x with probability 1
vo . ptr < O {first position in L1}
Insertvg into Q
while (Q is not empty)
do
v} < evict top pre X in Q
if (x =k)
then {reached query answer}
return vy
t* < rsttuple in L, at positionpos* > v}.ptr
s.t.(vf, t*) is a valid pre x
v ptr < pos* +1
Ux+1 < (U:, t*>
Compute R, 41)
if(x+1=k)
then
Prune all pre xes ir@ with prob. < Pr(vy41)
ese
Vy+1.ptr < O {first position in Ly}
if (uF.ptr < |Lysal)
then {v} can be further extended}
PI(v}) < Pr(v}) — Pr(v,41)
Insertv} into Q
Insertv,11 into Q

in Fig. 3, the set of records that appear at ranks 1 and 2 are
{ts, 12} and {1, 12, 15}, respectively. The top-2 pre Xzo, 1)

is invalid since the record, that dominates, is notselected 73, overall search algorithm. The details of the branch-

atrank 1. On the other hand, the top-2 prérx, 1) is valid
sincer; can be ranked afteg.

and-bound search algorithm are given in AlgoritBnirhe
algorithm works in the two following phases:

Candidate pruning. Pruning unexplored candidates is — An initialization phase that builds and populates the data
mainly done based on the following property (Propetty structures necessary for conducting the search.
We use subscripts to denote pre xes’ lengths (evg.is a  — A searching phase that applies greedy search heuristics to
top-x pre x). lazily explore the answer space and prune all candidates
that do not lead to query answers.
Property 2 Letv, be a topx pre x and v, be a topy pre X,
wherev, C v,. Then, Plv,) < Pr(v,). Inthe initialization phase, the algorithm reduces the size of
the input database, based on the parantetey invoking the
The correctness of Proper®/follows from an implica-  shrinking algorithm discussed in Se6étl The techniques
tion of the definition of our probability space: the set of lin- described in Sec6.3 are then used to compute the distri-
ear extensions pre xed by, includes all linear extensions butioni ; fori = 1...k. The algorithm maintaink lists
pre xed by v,. Since the probability of a pre xy; is the  L;...L;suchthatlist; sortstuplesin. ;) inadescending
summation of all linear extensions pre xed by Property2  probability order.
follows. In the searching phase, the algorithm maintains a priority
Hence, given a tog-pre X vg, any topx pre x v, with  queue@ that maintains generated candidates in descending
x < k and P(v,) < Pr(v;) can be safely pruned from the order of probability. The priority queue is initialized with an
candidates set since ®r) upper-bounds the probability of empty pre x vg of length 0 and probability 1. Each main-
any top pre x v wherev, C vy. tained candidate, of lengthx < k keeps a pointev, . ptr
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e A, L s a P 7

PN /
v, p v.ptr 5 B t, x 20 1 ti/ ty
<t>|.75] t, Vx P_v.pir 438063 S, D S.ptr 1 tz/\*
<>|.25 ¢ <t 4> 5|t v, p vpir {ts) S 117 Septr 937 063
<t> |25 b <t t,t,>].438] - o] 1]t | Sy p_s.ptr
<> |25 % <t> |25t {ts by, b} | 937 -
<> 25 | t, {tyt} |.063] t,
<t;, t,> |.063| t5

(a) (b)

Fig. 5 ComputingTop- k- QUERIES using branch-and-bound.Evaluating UTop-Pre x(3) queryb evaluating UTop-Set(3) query

pointing at the position of the next tuple in the lis{; 1 tobe  computed using Monte-Carlo integration as discussed in the

used in extending, into a candidate of length+1. Initially, ~ beginning of Sec6.4) , while Pr(vg) decreases by 0.75. Both

vy . ptris setto the rst position inL,,1. The positions are pre xes are inserted int@ after updating theipzr elds to

assumed to be 0-based. Hence, the value, ofptr ranges  point to the next tuple that can be used to create valid pre-

between O an¢lL, 1] — 1. xes later. After three steps, the search terminates since the
Extending candidates is done slowly (i.e., one candidateop pre x in Q has length 3.

is extended at a time). Following the greedy criteria &f A

search, the algorithm selects the next candidate to extend @smputing UTop-Set queries by branch-and-bound. The

follows. At each iteration, the algorithm evicts the candidatebranch-and-bound pre x search algorithm can be easily

v at the top ofQ (i.e., Pv}) is the highest probability in extended to compute UTop-Set queries. The reason is that

Q). If x = k, the algorithm reports; as the query answer. Property2 also holds on sets. That is, let ands, be two

Otherwise, ifx < k, the algorithm extendsy into a new  record sets with sizesandy, respectively. Then, if, C s,

candidatev, 11 by augmentingyy with the tupler* at the  we have Pgs,) < Pr(s,). Hence, P¢s,) upper-bounds the

rst position > v} . ptrin L,11 such thab,,1 = (v}, *)is  probability of any set that can be created by appending more

avalid pre x. The pointew; . ptr is set to the position right  tuples tos,.

after the position of* in L, 1, while the pointet, 1. ptr The main difference between pre x search and set search

is set to the rst position inL,4» (only if x +1 < k). The is that multiple pre xes map to the same set. For example,

probabilities ofv, 1 andv} are computed (Rp;) isreduced both pre xes(z, 15) and (15, t2) map to the sefr,, ts}. We

to Pr(v})—Pr(v,+1)) and the two candidates are reinserted inthus need to lter out pre xes that map to already instantiated

Q. Furthermore, ikt + 1 = k (line 23), the algorithm prunes sets. This is done by maintaining an additional hash table of

all candidates ir@ the probabilities of which are less than instantiated sets. Each generated candidate is rst looked up

Pr(vy+1) according to Propertg. In addition, ifv. prr >  inthe hashtable, and a new set is instantiated only if the hash

|Ly+1|, thenv? cannot be further extended into candidatestable does contain a corresponding set.

of larger length, and so} is removed fromQ. Figure 5b shows how the branch-and-bound algorithm
The correctness of Algorithi&follows from the correct-  computes for the answer of a UTop-Set(3) query. The search

ness of our systematic candidate generation method, artarts by instantiating an empty sgwith probability 1. The

the correctness of our probability upper bounding methodetsq is extended using (the rsttuple inLj), which results

described in the beginning of this section. in having P({r5}) = 1 (i.e.,rs appearsin all linear extensions
Figure5 gives an example illustrating how AlgorithB  atranks 1, ..., 3), and hence Rsy) is set to 0, and can thus

works. We use the PPO in Fi§.in this example, where the be removed fronQ. After three steps, the search terminates

ordered tuples list.1 = (r5, 2), L2 = (t1, t2, t5) , andL3 = since the top set i@ has size 3.

(t1, t2, t3). Figureba shows how the branch-and-bound algo-

rithm computes for the answer of a UTop-Pre x(3) query. 6.4.2 A sampling-based algorithm

The search starts with an empty prevg with probability 1.

The pre x vo is extended using; (the rsttupleinL;). The In this section we describe a sampling-based algorithm to

algorithm then computes RBrs)) as 0.75 (the probability is  compute approximate answersBdp- k- QUERIES.
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Sampling space. A state in our space is a linear extensionand each chain simulates the space independently of all other
w of the PPO induced by. Let6 and® be the distributions chains. The initial state of each chain is obtained by inde-
of the topx pre x probabilities and tope set probabilities, pendently selecting a random score value from each score
respectively. Letr (w) be the probability of the tog-pre X, interval, and ranking the records based on the drawn scores,
or the topk set inw, depending on whether we simul@&er  resulting in a valid linear extension.

®, respectively. The main intuition of our sample generator A crucial point is determining whether the chains have
is to propose states with high probabilities in a light-weight mixed with the target distribution (i.e., whether the current
fashion. This is done by shuf ing the ranking of records in status of the simulation closely approximates the target distri-
o biased by the weights of pairwise rankings (B}j. This  bution). At mixing time, the Markov chains produce samples
approach guarantees sampling valid linear extensions sintlkeat closely follow the target distribution and hence can be
ranks are shuf ed only when records probabilistically dom-used to infer distribution characteristics. In order to judge

inate each other. chains mixing, we used the Gelman—Rubin diagno&#, [
Given a statep;, a candidate state;;1 is generated as a widely used statistic in evaluating the convergence of mul-
follows: tiple independent Markov chaing3]. The statistic is based
on the idea that if a model has converged, then the behavior
1. Generate a random numhee [1, k]. of all chains simulating the same distribution should be the
2. Forj =1,...,zdo the following: same. This is evaluated by comparing the within-chain distri-

bution variance to the across-chains variance. As the chains
mix with the target distribution, the value of the Gelman-—
Rubin statistic approaches 1.0.
At mixing time, which is determined by the value of
convergence diagnostic, each chain approximates the dis-
tribution’s mode as the most probable visited state (sim-
ilar to simulated annealing). Themost probable visited
mitted with probability P ) = Pr(g) > ton) if states across all chains approximate lthdz‘l?op—l?reg (or
. A J [-UTop-Set) query answers. Such approximation improves

rj > m,orwith probabilityPg,, ,,y = Pr(tum) > 1)) ) . . L
: T J as the simulation runs for longer times. The question is, at
otherwise. Record swapping stops at the rst uncom- . . . . . o

. any point during simulation, how far is the approximation
mitted swap.

from the exact query answer?

We derive an upper-bound on the probability of any pos-
sible topk pre x/set as follows. The tog- pre x proba-
bility of a pre x (¢, ..., %) is equal to the probability
of the evente = ((#1) ranked ¥') A --- A (f4) ranked
k™). Let 1;(r) be the probability of record to be at rank
i. Based on the principles of probability theory, we have

(@) Randomly pick arank; in w;. Lett ) be the record
atrankr; in w;.

(b) If r; € [1, k], movet,;) downward inw;, otherwise
move ;) upward. This is done by swapping )
with lower records inv; if r; € [1, k], or with upper
records ifr; ¢ [1, k]. Swaps are conducted one by
one, where swapping recordg;) and,, is com-

The (M-H) algorithm is proven to converge with arbi-
trary proposal distributions2fl]. Our proposal distribu-
tion ¢ (w;+1|w;) is de ned as follows. In the above sample
generator, at each stejp assume that;, has moved to
arankr <r;. Let Ry ;m = {ri = 1r; —2,...,r} Let

pj= HmeR(rj,r) Pe;.m). Similarly, P; can be de ned for Pr(e) < minf_, 2;(t4)). Hence, the tog-pre x probability
r > rj. Then, the proposal distribution(wi+1l@i) = of anyk-length pre x cannot exceed mlin, (maxi_, 4; (t))).
[Ij=1 Pj, due to independence of steps. Based on th&imijarly, Leta 4 (r) be the probability of record to be at
(M-H) algorithm, w;+1 is accepted with probability = 140k 1. £. It can be shown that the topset probability of
min (%W 1)- anyk-length set cannot exceed thé largestiy ; (r) value.
The values ofx; (r) and i1 x(¢) are computed as discussed
Computing query answers. The (M—H) sampler simulates in Sect.6.3. The approximation error is given by the differ-
the topx pre xes/sets distribution using a Markov chain ence between the tappre x/set probability upper-bound
(a random walk) that visits states biased by probabilityand the probability of the most probable state visited during
Gelman and RubinZ2] argued that it is not generally pos- simulation.
sible to use a single simulation to infer distribution charac- We note that the previous approximation error can over-
teristics. The main problem is that the initial state may trapestimate the actual error, and that chains mixing time varies
the random walk for many iterations in some region in thebased on the uctuations in the target distribution. However,
target distribution. The problem is solved by taking dispersedve show in Sec8that, in practice, using multiple chains can
starting states and running multiple iterative simulations thatlosely approximate the true tdpstates, and that the actual
independently explore the underlying distribution. approximation error diminishes by increasing the number of
We thus run multiple independent Markov chains, wherechains. We also comment in Seéton the applicability of
each chain starts from an independently selected initial stateur techniques to other error estimation methods.
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Caching. Our sample generator mainly uses two-dimen— Extended Condorcet criterion: for two candidate ggts
sionalintegrals (Edl) to bias generating a sample by itsprob-  and(y, if for everyc; € C1 andc; € C, the majority of
ability. Such two-dimensional integrals are shared among input rankings prefer; to c;, then the aggregate ranking
many states. Similarly, since we use multiple chains to simu- must prefelCs to Co.

late the same distribution from different starting points, some

states can be repeatedly visited by different chains. Hence, Unfortunately, rank aggregation under Kendall tau dis-
we cache the computed @r > ¢;) values and state proba- tance is NP-Hard in general. The optimal aggregation under

bilities during simulation to be reused at a small cost. Spearman footrule distance is a 2-approximation of the
Kendall tau aggregatiori,24].
6.5 ComputingRANK- AGGREGATION- QUERIES In the following sections we discuss evaluatiRgNK-

AGGREGATION- QUERIES, based on our probabilistic partial

Rank aggregation is the problem of computing a consensuyder model, under each of the Spearman footrule distance
ranking for a set of candidat&susing input rankings of ~ (Sect.6.5.1) and the Kendall tau distance (Se@t5.2).
coming from different voters. The problem has immediate
app”cations in Web meta-search engn‘ﬂaﬂ[ 6.5.1 RANK- AGGREGATION- QUERIES with Spearman
While our work is mainly concerned with ranking under footrule distance
possible worlds semantics (Se2t2), we note that a strong
resemblance exists between ranking in possible worlds arfdptimal rank aggregation under footrule distance can
the rank aggregation problem. To the best of our knowledgdd® computed in polynomial time by the following algo-
we give the rstidenti ed relation between the two problems. fithm [13]. Given a set of rankingsws,...,wm, the
Measuring the distance between two rankings of the séIbJECt'Ve is to nd the optimal rankingv* that mini-
of candidatesC is central to rank aggregation. Given two Mizes = >y F(o*, w;). The problem is modeled using
rankingsw; andw;, let w;(c) andw;(c) be the positions of @ we|ghted bipartite grapty with two sets of nodes. The
a candidate: € C in »; andw;, respectively. Two widely rst set has a node for each candidate, while the second
used measures of the distance between two rankings are th@t has a node for each rank. Each candidaded rankr
Spearman footrule distance and the Kendall tau distance. are connected with an edge, r) the weight of which is
The Spearman footrule distance is the summation, ovep(c, ) = >/ lwi(c) — r|. Then,»* (the optimal rank-
all candidates, of the distance between the positions of th&9) is given by “the minimum cost perfect matching”Gf

same candidate in the two lists, formally de ned as follows:Where a perfect matching is a subset of graph edges such
that every node is connected to exactly one edge, while the

Flwi, wj) = Z |wi (C) — wj(C)] (8)  matching cost is the summation of the weights of its edges.
ceC Finding such matching can be donednn?°), wheren is

On the other hand, the Kendall tau distance is the numbépe number of graph nodesd.

of pairwise disagreements in the relative order of candidates, N OUr Settings, viewing each linear extension as a voter
in the two lists, formally de ned as follows: gives us an instance of the rank aggregation problem on a

huge number of voters. The objective is to nd the optimal
K(wi, wj) =l{(ca, cp) 1 a < b, wi(ca) < wilcp), linear extension that has the minimum average distance to all
©) linear extensions. We show that we can solve this problem
in polynomial time, under footrule distance, givetir) (the
The optimal rank aggregation is the ranking with the min-probability of record: to appear at each rarkor, equiva-
imum average distance to all input rankings. Itis well-knownjently, the summation of the probabilities of all linear exten-
that optimal rank aggregation under Kendall tau distancgjons having at ranki).

(also known as Kemeny-optimal aggregation) is the onI)LI_heorem 2 Fora PPQR. O. P) defined on n records, the
aggregation that satis es the following intuitive properties
optimal rank aggregation of the linear extensions, under foot-

[13,24] rule distance, can be solved in time polynomial in n using

o ) ) ) - ) the distributions A;(t) fori =1,...,n
— Neutrality: if two candidates switch their positions in all

input rankings, then their positions must be switched inf70of For each linear extensiom; of PPO, assume that
the aggregate ranking. we duplicatew; a number of times proportional to ;).

~ Consistency: if the set of input rankings is split into two L€t 9 = {d1,...,@n) be the set of all linear exten-
andB prefer candidate; to candidate-, then the overall  9raph model, the edge connecting recorhd rankr has
aggregate ranking must also prefgito c». a weightw(s, r) = Zli‘l |&; (t) — r|, which is the same

wj(cqa) > wjcp)}

@ Springer



Supporting ranking queries on uncertain and incomplete data 491

R 3= {t;:08,1,:02} 1. Ifthe PPO is induced by records with non-uniform score
1 t 1, A= {t;:0.2,1,:0.5t;:0.3} . . . .
o, /‘\ [ 7 1t:031507) densities, and the PPO is weak stochastic transitive (see
s t; t,t Definition 9 below), then query computation cost is poly-
éz tg ti nomial inn (the database size).
03 0502 2. Ifthe PPO is induced by records with uniform score den-
Min-costPerfect Matchig= {(t,,1), (t,2), (&,3)} sities, then the PPO is guaranteed to be weak stochastic
transitive, and a polynomial time algorithm to compute
Fig. 6 Bipartite graph matching Kendall tau aggregation exists. Moreover, by exploiting

score uniformity, the complexity can be further reduced

asZ’}zl(nj x |j —rl), wheren; is the number of linear 10 O(nlog(n)).

extensions inf2 hf_\’ingt atrank;. Dividing by |$2], we get We start our discussion by de ning the property of weak
%‘r) =20 (ﬁ x|j— rl) =221 x |j —rD.  stochastic transitivity in the context of probabilistic partial

Hence, using,; (¢)'s, we can compute (z, ) for every edge orders.

(t’_ ) diVide_d by a X_Ed ConStanmL and thus the polyno-  pefinition 9 [Weak Stochastic Transitivity] A PPO induced
mial matching algorithm applies. o by a databas® is weak stochastic transitive iff records
x,y,z € D :[Prix > y) > 05and Pty > z) > 0.5] =

The intuition of Theoren? is thati;’s provide compact Pr(x > 2) > 0.5.

summaries of voter’s opinions, which allows us to ef ciently
compute the weights of graph edge without expanding the The property of weak stochastic transitivity is formulated
space of linear extensions. The distributiagis are obtained ~and used in many probabilistic preference models. We refer
by applying Eq.7 at each rank separately, yielding a qua- thereadertadS] foradetailed discussion. We brie y contrast
dratic cost in the number of records our interpretation of probabilistic preference against current
Figure6 shows an example illustrating our technique. Theinterpretations in the following.
probabilities of the depicted linear extensions are summa- In many probabilistic preference mode5{27], for a
rized ask;’s without expanding the space (Se6t3). The pair of alternativess andy, Pr(x > y) is interpreted as the
2;’s are used to compute the weights in the bipartite graplprobability thatr is chosen ovey. The origin of such prob-

yielding (11, 12, 13) as the optimal linear extension. abilistic preferences can be related to changes in the internal
state of the selecting agent (e.g., as a result of learning), to
6.5.2 RANK- AGGREGATION- QUERIES with Kendall tau noise in the preferences obtained from users, or to the process

of condensing users’ votes into pairwise comparisons among
candidates. In our settings, however, the origin of probabi-
Optimal rank aggregation under Kendall tau distance idistic preferences is the uncertainty in attribute values in the
known to be NP-Hard in general by reduction to the prob_database,which inturninduces uncertainty in records’ scores
lem of minimum feedback arc se24]: construct a com- that we use for comparison and ranking. Our underlying prob-
plete weighted directed graph the nodes of which are th@bility space gives a concrete interpretation ofPs y) as
candidates, such that an edge connecting nodasdc; is the summatiqn of the probabilities of linear extgnsions (pos-
weighted by the proportion of voters who rankbeforec; . sible ranked instances of the database), whei® ranked
The problem is to nd the set of edges with the minimum @oovey.

weight summation the removal of which converts the input  Given an input PPO, the property of weak stochastic tran-
graphto a DAG. Since the input graph is complete, the resulsitivity can be decided i (n3), wheren is the database size,
ing DAG de nes a total order on the set of candidates, whictsince the property needs to be checked on record triples.

is the optimal rank aggregation.

The hardness of the rank aggregation problem gives rise tRANK- AGGREGATION- QUERIES on a PPO with non-uniform
approximation methods similar to the Markov chains-basedcore densities.  Let$2 = {w, ..., wn} be the set of linear
methods in13] to nd the optimal rank aggregation. Spear- extensions of a PPO. The memberssafrepresent voters
man footrule aggregation is also known to be a z-approxiassociated with probabilistic weights. Hence, our objective
mation of Kendall tau aggregatio4]. is to nd the optimal rank aggregation* that minimizes

However, under our settings, we identify key propertiesi: >ie1 PT@i) - K(@*, o).
that in uence the hardness of computing optimal Kendall L€t < 2 be the set of linear extensions, where
tau rank aggregation. We show that optimal rank aggregd$ ranked above;. Then, Pt; > ;) = Zweﬂ(,l.>,j) Pr(w).
tion can be computed in polynomial time depending on theHence w™ is the ranking that minimizes the probability sum-
properties of the underlying PPO, summarized as follows: mation of pairwise preferences violating the order given by

distance
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w*. That is,0* is the ranking that minimizes the following a priori known if the property of weak stochastic transitiv-

penalty function: ity holds on the PPO, then the overall complexity becomes
P 10 0 (n3) since the PPO needs to be checked for being weak
penw) = Z i > 1)) (10)  stochastic transitive rst.

ti,IjEDZi<j,(l)(lj)<w(ti)

If the property of weak stochastic transitivity holds on theRANK- AGGREGATION- QUERIES on a PPO with uniform
underlying PPO, thew* can be ef ciently computed based score densities.  If the records in the database that induces
on Theoren8: the PPO have uniform score densities, the cost of comput-
ing RANK- AGGREGATION- QUERIES drops considerably. We
rst prove in Theorem4 below an important property that
holds on the PPO induced by uniform score densities. In the
following, we denote with Ef;] the expected value of the
score densityf;.

Theorem 3 Given a weak stochastic transitive PPO induced
by a database D, the optimal rank aggregation w™ under
Kendall tau distance is defined as: ¥ records x,y € D
[w*(x) < o*(y)] & [Pr(x > y) > 0.5] while breaking
probability ties deterministically.

Theorem 4 Given a PPO induced by records with uniform

Proof Since the underlying PPO is weak stochastic transi
score densities in a database D, then N records t;, tj € D :

tive, thenw* is a valid ranking ofD, since the definition of
»* does not introduce cycles in the relative order of record$EL/il = ELfjD < (Pt > 1;) = 0.5).
inD. .
Assume arank aggregatiarthat is identical te* except Proof First, we prove thatELfi] > E.[ff]) = (P >

. . t;) = 0.5). We rst compute the integral that de nes

for the relative order of two recordsandy. We consider the 1
} . ) Pr(z; > t;) as follows. P(#; > t;)

following three possible cases:

. = Tupi—Topx(up;—Toj)
up; f,’;j dydx. By solving the integral we get Bf > ;) =

lo,-

1. [Pr(x > y) = p > 0.5] In this case we have*(x) < ’p-ll % (um;lo; —loj) = p;[ x (E(f;) —loj). We
* ; . . *\ . upj—toj upj—toj
@p = 1. wheree > 0. Then, P(;; > t;) = WX((E(]“]‘)—IO]')"‘

2. [Pr(x > y) = p < 0.5] In this case we have*(y) < 1 . )
w*(x) while &(y) > @(x). Hence, pew®) = pend) — € =53+ wp—lo; which means that Rg; > ¢;) > 0.5.
1-2p). Second, we prove thaPr(s; > t;) > 0.5 = (E[fi] >

3. [Prx > y) = p = 0.5] In this case assume that the EL/jD- As;yme that.Eﬁ] —Elfjl=e, V\(heree is an arbi-
deterministic tie-breaker(x, y) states thatx > y). Then, ~ trary (positive/negative) real number. Since we haug, Pr

1 .
w*(x) < w*(y) while &(x) > @ (y). Hence, pefw*) = 1) =5+ —upjf_lgj, and based on the give®r(s; > t;) >
pen). The same result also holds1fx, y) states that 0.5), we get% + £ > % which means that > 0. It
J J
(y > x). follows that B f;] > E[ f;1, which concludes the proof. o
Moreover, for any other rank aggregatiénhat is differ- Based on Theorem, for records;, ¢, #; € D, if Pr(t; >

ent frome* in the relative order of more than two records, ;) > 0.5and Ptz; > ;) > 0.5, thenwe have ;] > E[ f;]

we have pew) > penw) > penw®). It follows thatew* is  and B f;] > E[ fi]. Itfollows that § f;] > E[ fi], which also

the optimal rank aggregation. o  meansthat Rr; > 1) > 0.5. Hence, a PPO that is induced
by uniform score densities is weak stochastic transitive.

Query evaluation and complexity analysis. The result given

by TheorenB allows for an ef cient evaluation procedure to Query evaluation and complexity analysis. Since the PPO

nd the optimal rank aggregation in a weak stochastic tranis weak stochastic transitive, we do not need to conduct

sitive PPO. The procedure computesPs y) for each pair  the transitivity checking step. We can compwRaNK-

of records(x, y), and uses the computed probabilities to SOrtAGGREGATION- QUERIES using the polynomial algorithm we

the database. That is, starting from an arbitrary ranking oflescribed previously for weak stochastic transitive PPQO’s.

records ofD, the positions of any two recordsandy need  However, based on Theorefnwe can further optimize the

to be swapped iff Riv > y) > 0.5 andx is ranked below computation cost. Specifically, for any two recorgdandt;,

y. Based on the weak stochastic transitivity of the PPO, thisve have(E[ f;] > E[ f;]) & (Pr(s; > t;) > 0.5).Hence, we

procedure yields a valid ranking @&f since transitivity does can avoid computing R > ¢;) for all record pairgz;, ¢;),

not introduce cycles in the relative order of records. Henceand sort the database based on the expected records’ scores,

the overall complexity of the query evaluation procedure isvhich results in the same sorting based ot;P¢ ¢;) val-

0 n?), wheren = |D|, which is the complexity of com- ues. Computing Ef;] for every record; requires a linear

puting Pix > y) on each pair of records:, ). If itis not ~ scan overD, which has a complexity oD (n), while the
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subsequent sorting step has a complexitahilog(n)). It  added toS (e.g., a Car table usually involves the correla-
follows that the query evaluation procedure has an overation (make, model)). Moreover, by evaluating dependencies
complexity of O (nlog(n)). among value distributions in attribute pairs (e.g., using the
chi-square test of independence2al]), correlations inS can

be merged together capturing their dependence. For exam-
ple, if attributes:; anda, are dependent, we can replace the
correlations(a;, a;) and (a;, ax) in S with one correlation

Inthis section, we give a method to construct uncertain score(éli - la; ’.a"}) that captures the joint dlstnbutlpn @), ac}.
from probabilistic scoring attributes, i.e., attributes de ned Forclar!ty ofdlscusglon,yve fOCl,JS on correlations of the form
as random variables with associated probability distributions(.a"l’_af ) mbthe foIIovyLng d'SfC,u ssion. . . |
We start by describing how to model attributes with missing -t ¢ P& an attribute of interest containing missing val-

values as probabilistic attributes (Se¢tl), which widens ues. We_use the correla_t@zg, aj)to cons.tructatwo-d!men-
the scope of our methods to databases with incomplete dat%\'.onal histogram materializing the relative frequencies of all
value combinations aof; anda; based on known (non-miss-

We then show how, given a scoring function de ned on one | in both attrib F dwith missi

or more probabilistic attributes, we compute a score interva'f]g) values in bot a.ttrl- utes. For a recat It missing

and a score density for each record (Sec). a; value, and non-missing; value, we estimate.q; using
the values in the histogram bin associated with). We thus

obtain anumber afa; estimates along with their relative fre-
7.1 Estimating missing values quencies. For every other correlati@n, ax), we obtain sim-
ilar estimates for.q;. We derive overall estimates of;; by

We describe a simple technique to construct a probability disaveraging the frequencies of identical values obtained from
tribution for the estimates of miSSing attribute values (eg|nd|v|dua| histogramS, We|ghted by the Strength of the cor-
the rent of apartment4 in Fig. 2a), based on attribute cor- responding correlations.
relations. We emphasize, however, that other methods, e.g., we illustrate our technique using the following example.
machine learning method$,[], can also t our purposes. Assume an apartment record= (rooms = 2,area =
We contrast our method against other techniques in 8ect. 1000 zip = 94123 renr =?). Assume the correla-

The strength of the correlation between two attributes tjons (rent, area) and (rent, zip) have strengthes of 0.9
anda;, denotedc(a;, a;) is expressed a%%, where|.| and 0.8, respectively. Assume the bin of the histogram
refers to the number of distinct values (which can be obtainedrent, area) atarea = 1, 000 has the following (value, fre-
from system catalog). Similar definition is used 28[to  quency) pairs{(700, 0.5), (800, 0.25), (850, 0.25)}. Simi-
quantify the dependence among attributes in attribute pairgarly, assume the bin of the histograient, zip) atzip =
The valuec(a;, a;) expresses the con dence that every dis-94123 has the following pairg700, 0.5), (800, 0.5)}. We
tinct value ina; is associated with a unique valuedn Our  combine both histogram bins into an overallent histo-
strategy is to predict missing attribute values, in an off-linegram {(700, 0.85), (800, 0.625), (850, 0.225)}, where, for
stage, by identifying a s&f of strong attribute correlations example, the overall weight of the pai800, 0.625) is a
that are used, under independence assumption, to imputeeighted average of the frequencies of the p@go0, 0.25)
missing attribute values. and(800, 0.5), withweights 0.9 and 0.8, respectively. Hence,

Some strong correlations may not be useful predictorsive boost the weight of an estimate if multiple correlations
Specifically, if |a;| is close to the cardinality of the whole agree on such estimate. We demonstrate, in 8gitte effec-
relation, then; is (approximate) key. Insuch casg,istriv-  tiveness of such prediction method using real-world data.
ially correlated with every other attribut6,p8]. An approx- The nal step is normalizing the resulting histogram to
imate keya; has, with a high probability, a distinct value in generate a corresponding probability distribution on the pos-
each record. Hence, for a recardith missinga; value and  sible llers of the missing attribute value. We t a probability
non-missing:; value, the value of.a; is most likely differ-  distribution on the histograf(x, y1), ..., (xXu, ¥m)} USiNg
ent from all other records. Therefore, the set of records thkernel density estimation method, a widely used non-para-
a; value of which is the same as:; is most likely empty, ~metric regression technique to compute a density function
and thug(a;, a;) is not a useful predictor for the missing; from observations, de ned as follows:

value.
N x) (11)

7 Uncertain scores construction

Similar to [28], for a relation R, we include in the set px) = 1 iy p (
of attribute correlationsS each correlation(a;, a;), with h. > vi e " h
c(a;,a;) > ex and(ez < |a;|/IR| < €3), whereey, €2, and
€3 are input parameters in [0,1]. If there are already knowrwherex (.) is a standard Gaussian kernel with mean 0 and
correlations (functional dependencies), they can be directlgtandard deviation 1. The intuition of Ebjlis to average the
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observations close to weighted by their distances from For a multi-attribute scoring functia(p1, ..., pn), we
The normalization constat’/_ ; y; guarantees valid com- need to combine the densities of different attributes to com-
puted probabilities (i.e., the area unget) curve is 1). In  pute the overall score densify. For each record, we use

our experiments, we set the bandwidth paramaterhich  the probability distributions of. p1, ..., . p, to samplen
determines the span of the kernel, to 1% of the histogram’pointsxy, ..., x! fromthe distribution of each attribute p; .
span. The score density of recordis computed as a joint den-

sity over the densities of individual attributes using a multi-
dimensional kernel density estimator, de ned as follows:

) (12)

7.2 Aggregating uncertain scores

. . . . j
Given a query-speci ed scoring functioh, we show howto (. ) = 1 i ﬁ N ity
. LA n -

construct for each recong a score interval; = [lo;, up;] m hj hj

; . . ) i=1j=1"
enclosing;’s possible scores, and a probability density func-

tion f; de ned onv;. Equation12 assumes the independence of scoring attri-
butes (through multiplying the individual kernel estimators).
7.2.1 Computing score intervals Similar to Eq.11, we set each bandwidth parameligrto 1%

of the width of its corresponding attribute interval.

Let 7 be a query-speci ed scoring function of the attri-

butesps, ..., p,. In many practical use cases, users adopt

simple ranking functions re ecting their preferences. Mono-g Experiments
tone and bounded scoring functions are assumed in many

recent topk query processing proposak 29,30]. We call A experiments are conducted on a SunFire X4100 server

Z(p1, ... pn) @ monotone function it (x1,.... %) = yjth two Dual Core 2.2 GHz processors, and 2 GB of RAM.

F(x1, ..., xy) whenevery; =< x; for everyi, while we g ,56d hoth real and synthetic data to evaluate our meth-

_caII Fpa, ... ,_pn) a bounded function if the range of 4 under different con gurations. We experiment with two

is bounded using the boundary valuepgb. _ real datasets: (1) Apts: 33,000 apartment listings obtained
Given a monotone or bounded scoring function, we derlv%y scraping the search results @fartments . con, and (2)

vi based on the boundary valuesafs. If Z(p1.....Pn)  cars: 10,000 car ads scraped frafrpages . ca. The rent

IS monotone, tﬂen vi = [F(p1. .-, P F(PL, - Pl atribute in Apts is used as the scoring function (65% of

Where& a”P'_Pi a.re t.he .m|n|r'num'and mammym yalueg n scraped apartment listings have uncertain rent values), and

pi's probability distribution (if p; is a deterministic attri-  gimjjarly, theprice attribute in Cars is used as the scoring

bute, we use its va_lue for both bounds). For example, assumgion (10% of scraped car ads have uncertain price).

a monotone functiotFy () = . py + 1. p2. For records, The synthetic datasets have different distributions of score

assume; . py ands; . pz are de ned as probability distribu-  jtery 415 bounds: (1) Syn-w: bounds are uniformly distrib-

tions over the intervalg8, 10] and[2, 5], respectively. Then, a4 (2) Syn-gp: bounds are drawn from Gaussian distri-

vi = [10,15]. Similarly, if F(p1, ..., pa) is bounded, then  p ion and (3) Syn-g» bounds are drawn from exponential

vi is computed based on the.boundary valuep . Fozr distribution. The parametes represents the proportion of

example, for a bounded functighe () = (. p1—1. p2) records with uncertain scores in each dataset is (default is

(note that> is non-monotone), the score intenval = g gy The size of each datasetis 100,000 records. In all experi-

9, 64]. ) ) ) _ ments, unless otherwise is speci ed, the score densifjés (
Relaxing our assumptions, regarding the class of scoringq taken as uniform.

functions we support, requires employing multi-dimensional ., synthetic data, the bounds of the score interval of

optimization techniques, e.g., gradient methods, to search fay, -, record; is generated by drawing a random interval

global minima and maxima of a multi-dimensional function g4 ing pointio; from the dataset corresponding distribu-
in order to derivey;’s. We do not address such generalization; (uniform, Gaussiai = 0.5, 0 = 0.05), or exponen-

in this paper. tial(u = 0.1)) de ned on the score range [0,1]. The width

of the interval is uniform in [0,1]. The main intuition is to
7.2.2 Computing score densities create different patterns of lling the score range with uncer-

tain scores of different records. For example, while uniform
For asimple scoring function de ned on a single scoring attri-distribution distributes the uncertain scores uniformly over
butep;, the score density functiof; is the same ag. p;’s  the score range, exponential distribution creates a skewed
probability distribution. I¥; . p; is a deterministic value, then pattern in which a few records have high scores, while the
f;i is equal to such value with probability 1. majority of records have low scores.
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We evaluate the performance of the database shrinking algt /
rithm (Algorithm 2). Figure7 shows the database size reduc- 1000 \//\/
tion due tok-dominance (Lemma) with differentk values. ’g 100
The maximum reduction, around 98%, is obtained with the2
Syn-e-05 dataset. The reason is that the skewed distribu g 10
tion of score bounds results in a few records dominating thé~
majority of other database records.

We also evaluate the number of record accesses used
nd the pruning positionpos* in the listU (Sect.6.1). The
logarithmic complexity of the algorithm guarantees a small
number of record accesses of under 20 accesses in all daf
sets. The time consumed to construct thelliss under 1s,
while the time consumed by Algorithéhis under 0.2s, inall  Fig. 9 Comparison witlBASELINE
datasets.

Space size (No. of Prefixes)

while for the same sample size, the relative error only dou-
bled when the space size increased by 100 times.

We evaluate the accuracy and ef ciency of Monte-Carlointe-  Figure9 compares (in log-scale) the ef ciency of Monte-
gration in computing UTop-Rankgqueries. The probabilitiesc_:arlo integration against tHRASELINE algorithm. While the

computed by thBASELINE algorithm are taken as the ground time consumed by Monte-Carlo integration is xed with the
truth in accuracy evaluation. For each rank 1, ..., 10 same number of samples regardless the space size, the time

we compute the relative difference between the probabiligfPnsumed by th@ASELINE algorithm increases exponen-

of recordr to be at rank, computed as in Sed.3, and the tially whenincreasing the space size. For example, for a space
same probability as computed by tBasELINE algorithm. of 2.5million pre xes, Monte-Carlo integration consumes
We average this relative error across all records, and theP!ly 0-025% of the time consumed by tB&SELINE algo-
across all ranks to get the total average error. Figsfeows ~ Nthm.

the relative error with different space sizes (different num-

ber of linear extensions’ pre xes processed BySELINE). 8.3 Scalability with respect tb

The different space sizes are obtained by experimenting with

different subsets from the Apts dataset. The relative error i8Ve evaluate the ef ciency of our query evaluation for UTop-
more sensitive to the number of samples than to the spadgank(Z k) queries with differenk values. FigurelO shows
size. For example, increasing the number of samples frorthe query evaluation time, based on 10,000 samples. On the
2,000 to 30,000 diminishes the relative error by almost halfaverage, query evaluation time doubled wheéncreased by

8.2 Accuracy and ef ciency of Monte-Carlo integration
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Fig. 12 Chains convergence
Fig. 10 UTop-Rank query evaluation time

8.4 Markov chains convergence
-¢- Apts ® Cars -+ Syn-u-0.5 ¢ Syn-g-0.5 - Syn-e-0.5

We evaluate the Markov chains mixing time (Sext). For
10 chains and = 10, Fig.12illustrates the Markov chains
convergence based on the value of Gelman—Rubin statistic as
time increases. While convergence consumes less than one
minute in all real datasets, and most of the synthetic datasets,
40 the convergence is notably slower for the Syn-u-0.5 data-
set. The interpretation is that the uniform distribution of the
20 score intervals in Syn-u-0.5 increases the size of the pre xes
space, and hence the Markov chains consume more time to
0 — ey cover the space and mix with the target distribution. In real

5 10 20 50 100 datasets, however, we note that the score intervals are mostly

K clustered, since many records have similar or the same attri-

bute values. Hence, such delay in covering the space does
not occur.

80+ — —e ¢ ————=

60

Sampling Time (Sec)

Fig. 11 UTop-Rank sampling time (10,000 samples)

Q

20 times. Figurd .1 shows the time consumed in drawing the 8.5 Markov chains accuracy

samples.
The difference in sampling and ranking times for differentWe evaluate the ability of Markov chains to discover states
datasets is attributed to two main factors: the probabilities of which are close to the most probable

states. We compare the most probable states discovered by
the Markov chains to the true envelop of the target distribu-

— The variance in the reduced sizes of the datasets basg@n (taken as the 30 most probable states). After mixing, the
on thek-dominance criterion. For example, the majority chains produce representative samples from the space, and
of records in Syn-e-0.5 dataset are pruned ustdgmi-  hence states with high probabilities are frequently reached.
nance, while amuch smaller number of records are pruneghis behavior is illustrated by Figl3 for UTop-Pre x(5)
in Syn-u-0.5 dataset. This happens due to the different digguery on a space of 2.5 million pre xes drawn from the Apts
tributions of the bounds of score intervals. In general, thgjataset. We compare the probabilities of the actual 30 most
dataset size is inversely proportional to processing timeprobable states and the 30 most probable states discovered

— The percentage of records with uncertain scores. Fafy a number of independent chains after convergence, where
example, the percentage of records with uncertain scorefie number of chains range from 20 to 80 chains.
in Apts is 65%, while itis only 10%in Cars. Recordswith  The relative difference between the actual distribution
uncertain score results in longer processing times sincgnvelop and the envelop induced by the chains decreases
space size (number of possible rankings) increases withs the number of chains increase. The relative difference
score uncertainty. goes from 39% with 20 chains to 7% with 80 chains. The
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largest number of drawn samples is 70,000 (around 3% of

. . : . 1
the space size), and is produced using 80 chains. The con- /
vergence time increased from 10s to 400 s when the number 0.1
of chains increased from 20 to 80. A 'Iz ®
8.6 Branch-and-bound search Fig. 17 Evaluation time (Apts, UTop-Set)

In this experiment, we evaluate the branch-and-bound tech-

nigues we propose in Seét4.1to evaluate UTop-Pre xand error decreases as the number of MCMC chains increases as

UTop-Setqueries. Figurek4 and 15 compare the process- we show in Sect8.5. Figuresl6 and17 show similar result

ing time of branch-and-bound pre x search (Algoriti3h  for Apts dataset.

and the MCMC sampling method (using 5 chains) for the Next we evaluate the effectiveness of the greedy crite-

datasets Syn-u-0.5 and Syn-g-0.5, respectively. The brancha adopted by branch-and-bound search. FigliBesnd19

and-bound search shows smaller running times with sknall compare the processing times of branch-and-bound search

values, as it does not have the overhead of proposing statagainst theBASELINE algorithm using Apts dataset for

as in the MCMC method. As the value bfincreases, the UTop-Pre xand UTop-Setqueries, respectively. TBieSE-

number of materialized candidates by the branch-and-bourndne algorithm shows an exponential increase in running

search increases, which negatively impacts the running timeime as space size (number of pre xes) increases (we omit
The MCMC method is, on the average, one order of magrunning times that are significantly large). On the other

nitude faster than the branch-and-bound search. The savingand, branch-and-bound search locates query answer in

in processing time in MCMC method comes with the price oftimes below 30s for both query types. Figu2® com-

giving approximate answers. The average absolute error ipares the memory requirements (computed as the number

the probability of the answer reported by the MCMC method of materialized candidates) of branch-and-boundBwsk-

with respect to the branch-and-bound exact search, is 0.0012E algorithms. TheéBASELINE algorithm has, on the aver-

and 0.0007 for Syn-u-0.5 and Syn-g-0.5, respectively. Thage, 3 orders of magnitude larger number of materialized
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candidates, which illustrates the effectiveness of the pruning

techniques adopted by branch-and-bound search. Fig. 23 Effect of score interval width (UTop-Pre x(5))

8.7 Score uncertainty
effect of pruning by score dominance, and hence increasing

(the overall running times. Figu&3 shows linear increase in
the running times of MCMC and branch-and-bound search
h asthe score interval width increases.

In this experiment, we evaluate the effect of score unce
tainty on algorithms performance. Figurds and22 show
the effect of the parameter (the proportion of records wit
uncertain scores) on the running times of MCMC and branch-
and-bound search in different datasets. Increagingsults 8.8 Score imputation
in linear increase in the running times of both algorithms.
On the average, gsdoubled by 3.5times, the running time In this experiment, we evaluate the techniques proposed in
of the MCMC method doubled by 5times, while the running Sect.7 to impute score intervals, and score densities based
time of the branch-and-bound search doubled by 2.5timeson attribute correlations. In order to evaluate the accuracy
We next evaluate the effect of the width of score intervalof imputed scores, we select a subset of records with single-
on algorithms performance. We create synthetic data withalued (deterministic) scores, and hide these scores before
different score interval width, where the interval width is applying our score imputation method. We thus introduce
represented as a percentage of the whole score range. As tinéssing data for which we have the ground truth. We then
score interval width increases, the number of records witltompute an uncertain score (i.e., a score interval and a score
incomparable scores increases. This results in limiting theensity) for each record with a hidden score. Finally, we
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_ |+ Correlations-based Imputation & kNN Imputation | Probabilistic ranking.  Several recentworks have addressed
5 ! query processing in probabilistic databases. The TRIO pro-
g8 08 ject [1,2] introduced different models to capture data uncer-
gﬁ 0.6 @/% tainty on different levels focusing on relating uncertainty
% S o4 with lineage. The ORION projectlp], handles constantly
g 2 o2 evolving data using ef cient query processing and indexing
z 0 ° /‘//”/4 techniques designed to manage uncertain data in the form of
N N P o continuous intervals. The problems of score-based ranking
K and topk processing have not been addressed in these works.
Fig. 24 Accuracy of score imputation (Apts) Probabilistic topk queries have been rst proposed in
[16], while [17,18] proposed other query semantics and ef -

[+ Correlations-based Imputation < kNN Imputation | cient processing algorithms. The uncertainty model in all
= 1 of these works assume that records have deterministic sin-
g 8 o0s S I gle-valued scores, and they are associated with membership
§§ 06 probabilities. The proposed techniques assume that uncer-
X g tainty in ranking stems only from the existence/non-existence
= 0.4 . .
g3 of records in possible worlds. Hence, these methods cannot
‘g =02 - e, be used when scores are in the form of ranges that induce a

0 ‘ ‘ ‘ partial order on database records.
S o D B

To the best of our knowledge, de ning a probability space
on the set of linear extensions of a partial order to quantify
Fig. 25 Accuracy of score imputation (Cars) the likelihood of possible rankings has not been addressed

before. Dealing with the linear extensions of a partial order

has been addressed in other contexts (€14, 3p]). These
evaluate the ranking generated by the MCMC method againgichnigues mainly focus on the theoretical aspects of uniform
the true ranking (given by the true values of the hiddersampling from the space of linear extensions for purposes like
scores). Ranking accuracy is measured using the normalizedtimating the count of possible linear extensions. Using lin-
Kendall tau distance (cf. Sed.5), which is a measure in  gar extensions to model uncertainty in score-based ranking
[0,1] of disagreements between two rankings. is not addressed in these works.

To assess the effectiveness of our imputation techniques ponte-Carlo methods are used B3] to compute topk
with respect to simple imputation methods, we repeat thgueries, where the objective is to nd the tapprobable
above procedure using the following k-NN missing valuerecords in the answer of conjunctive queries that do not
estimation technique, implemented in the R systéfftfor  have the score-based ranking aspect discussed in this paper.
each record with a missing score, we nd theearestneigh- Hence, the data model, problem definition, and processing
bor records based on Euclidean distance metric. We impUtt%chniques are quite different in both papers. For example,
the missing scores by averaging the non-missing scores @he proposed Monte-Carlo multi-simulation method 3]
the neighbors. If the scores of all neighbors are missing, Wgs mainly used to estimate the satis ability ratios of DNF
use the overall score mean as an estimator. Figi#asd25  formulae corresponding to the membership probabilities of
show the accuracy comparison of our correlation-based scofgdividual records, while our focus is estimating and aggre-
imputation method and the k-NN imputation method for Aptsgating the probabilities of individual rankings of multiple
and Cars datasets, respectively. Our score imputation meth@geords.
shows high ranking accuracy with a normalized Kendall tau - The techniques irg4] draw i.i.d. samples from the under-
distance below 0.1in both datasets, whichillustrates the valuging distribution to compute statistical bounds on how far is
of exploiting uncertain scores to acompute areliable rankinghe sample-based topestimate from the true topvalues in

the distribution. This is done by tting a gamma distribution

encoding the relationship between the distribution tail (where
9 Related work the true topk values are located), and its bulk (where sam-

ples are frequently drawn). The gamma distribution gives
The techniques we propose in this paper are mainly related the probability that a value that is better than the sample-
two large research aregsobabilistic ranking, andhandling ~ based tope values exists in the underlying distribution. In
incomplete data. We summarize some of the recent propos-our TOP- k- QUERIES, it is not straightforward to draw i.i.d.
als in both areas, and highlight the major differences betweesamples from the top-pre x/set distribution. Our MCMC
these proposals and our proposal. method produces such samples using independent Markov
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chains after mixing time. This allows using methods similar
to [34] to estimate the approximation error.

The method proposed irBf] use the notion ofgener-
ating functions to construct a uni ed ranking function that
can be instantiated to multiple ranking functions proposed
in the current literature. The given algorithms use an and—or
tree model in which leaf nodes are tuple instances that can
be possibly exclusive. The model i8] is based on tuple-
level uncertainty, where each tuple belongs to the database
with some con dence. Hence, tuples may exist/not existin a
given possible world of the database. The model we assume
in this paper captures uncertainty in tuple scores in the form
of score ranges; a representation that is adopted by multiple
real data sources particularly on the Web (cf. SBctHence,
in contrast to 5], our model enforces all tuples to belong to
any possible world (linear extension). Moreover, singg [
assumes a xed score per tuple, the relative order of tuples is
xed over all possible worlds. On the other hand, our model
encodes different relative orders of tuples with intersecting
score intervals.

The problem of computing consensus answers in probabi-
listic databases has been recently addressegbjritirough
adopting the and—or tree model 8g. And—or trees cannot

and use these models to derive probabilistic estimates
for missing values. One example B iwhere naive Ba-
yes classi ers, trained with functional dependencies, are
used to derive probabilistic predictions of missing values.
Another example isq], where missing values are learned
from summary information derived from the raw data.
The correlations-based estimation method we describe in
Sect.7.1falls in this category.

Database-oriented techniques: database proposals deal-
ing with missing values focused mainly on modeling
alternatives and their effect on query processing, rather
than the physical learning and estimation aspects. One
example is 9], where missing values are represented
using intervals derived from attribute domain. Each
incomplete tuple is represented as a set of different
instances (duplicates), where each instance corresponds
to one possible value inthe interval. Applying this method
when predictions are in the from of continuous intervals
requires discretizing the intervals, which can have neg-
ative impact on storage cost and accuracy of reported
results.

be used to encode tuples with uncertain scores in the forrIb Conclusion

of score ranges without losing information. The reason is
that each tuple in this case has effectively an in nite numberI
of instances. The algorithms given i8¢ for computing a
consensus ranking return a consensuskt@mswer, while
the methods we propose in Se@tsreturn a consensus full
ranking. In addition, while36] gives an approximate algo-

n this paper, we introduced a novel probabilistic model
that extends partial orders to represent the uncertainty in
the scores of database records. The model encapsulates a
probability distribution on all possible rankings of database

) . _ records. We formulated several types of ranking queries on
_rlthm_ for _rank aggregation under _Kend_all tau distance, W&uch model. We designed novel query processing techniques
identify different classes of PPO’s in which an exact polyno-inCIuding sampling methods based on Markov chains to com-
mial time algorithm for rank aggregation under Kendall taupute approximate query answers. We also gave polynomial
distance exists. time algorithms to solve the rank aggregation problem in
probabilistic partial orders. Our experimental study on both
real and synthetic datasets demonstrates the scalability and

. . N . . accuracy of our techniques.
We categorize missing value estimation techniques into three

main groups:

9.1 Handing incomplete data

— Statistical techniques: these techniques adopt statisticEieferences
approaches to estimate missing values. Examples include ) ] . _
estimation using mean values, regression methods, expecs SaMa A.D., Benjelloun, O,, Halevy, A., Widom, J.: Working mod-
. L2 . . . els for uncertain data. In: ICDE (2006)
tation maximization, and multiple imputatior37,38]. 2. Benjelloun, O., Sarma, A.D., Halevy, A., Widom, J.: Uldbs: dat-
The goal of these methods is usually preserving the over- abases with uncertainty and lineage. In: VLDB (2006)
all data distribution (e.g., avoiding bias in the distribution 3. Dalvi, N., Suciu, D.: Ef cient query evaluation on probabilistic
" . . databases. In: VLDB (2004)
mean as a result of missing values estimation). The com- S o .
. . . . 4. Chang, K.C.-C., Hwang, S.: Minimal probing: supporting expen-
puted estimates are thus not primarily meant to give accu-  gjve predicates for top-k queries. In: SIGMOD (2002)
rate predictions for the missing values individually, and 5. llyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query
hence they may be unsuitable when computing a ranking Processing techniques in relational database systems. ACM Com-
- o put. Surv.40(4) (2008)
based, on the Pfsumated_ valugs of mssmg S_Cores' 6. Wolf, G., Khatri, H., Chokshi, B., Fan, J., Chen, Y., Kambhampati,
Machine learning techniques: methods in this group learn s . Query processing over incomplete autonomous databases. In:
prediction models trained with complete data instances, VLDB (2007)
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