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ABSTRACT
Ranking queries report the top-K results according to a
user-defined scoring function. A widely used scoring func-
tion is the weighted summation of multiple scores. Often
times, users cannot precisely specify the weights in such
functions in order to produce the preferred order of results.
Adopting uncertain/incomplete scoring functions (e.g., us-
ing weight ranges and partially-specified weight preferences)
can better capture user’s preferences in this scenario.

In this paper, we study two aspects in uncertain scor-
ing functions. The first aspect is the semantics of ranking
queries, and the second aspect is the sensitivity of computed
results to refinements made by the user. We formalize and
solve multiple problems under both aspects, and present
novel techniques that compute query results efficiently to
comply with the interactive nature of these problems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Uncertainty, Scoring, Top-k, Ranking, Aggregation

1. INTRODUCTION
Scoring (ranking) functions are among the most common

forms of preference specification. A prominent application
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SELECT R.RestName, R.Street, H.HotelName
FROM RestaurantsInParis R, HotelsInParis H
WHERE distance(R.coordinates, H.coordinates) ≤ 500m
RANK BY wR· R.Rating + wH · H.Stars
LIMIT 5

Figure 1: A rank join query

ID rating stars
Rank By  wR.rating+wH.stars
wR+wH=1

wR
0 0.167 0.4 0.571 0.833 1.0

Join Results

Figure 2: Possible orderings of the join results

scenario is joining multiple data sources and ranking join
results according to some score aggregation function. The
class of queries captured by this scenario is usually referred
to as rank join [8], where the objective is to compute the
top-K join results based on a given scoring function.

The order of rank join results depends on the chosen score
aggregation function. In the simplest but very common case,
a linear aggregation function is adopted, which is specified
as a weighted sum of scores. For example, Figure 1 shows
a rank join query, where Restaurant-Hotel join results are
ranked based on a weighted sum of the rating and the num-
ber of stars, while reporting only the top 5 join results.

1.1 Motivation and Challenges
Often times users cannot precisely specify the weights of

the scoring function (e.g., wR and wH in Figure 1) in order
to produce the preferred order of results. This problem is
usually handled either by the user in an interactive trial-
and-error manner, or by the machine through learning from
user’s feedback (e.g., learning weights from user’s prefer-
ence judgment on object pairs [16]). Both approaches have
serious limitations. Trial-and-error is a tedious and a time-
consuming process that can be very challenging especially to
novice users. On the other hand, weight learning requires a
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sufficiently large number of user-provided training examples,
which can be too demanding.

In many scenarios, adopting an uncertain/incomplete
preference specification language can better capture user’s
preferences. For example, it is much easier for users to pro-
vide approximate weights (e.g., ranges) and other hints (e.g.,
relative importance of the weights) than specifying exact
weights. This does not change the goal, which is obtaining
a representative ordering of results satisfying user’s prefer-
ences, but rather provides a flexible and more natural means
of preference specification.

Even when a user provides what are believed to be the
right weights, it is crucial to analyze the sensitivity of the
computed ordering with respect to changes in the given
weights. This can provide significant help in data analy-
sis in interactive and exploratory scenarios. For example,
when fine-tuning the scoring function, a user may be inter-
ested in quantifying the largest change in the weights that
does not introduce perturbations in the computed ordering.

We discuss the previous observations using Figure 2,
which shows 4 join results for the query in Figure 1.

To illustrate the consequences of uncertain weights, as-
sume that the non-negative weights wR and wH are uncer-
tain and normalized to add up to 1. We adopt the convention
that results are sorted in descending order of scores. There
are 5 possible orderings λ1, . . . ,λ5 corresponding to all the
possible weight vectors (we only show wR as wH = 1−wR).
While wR is continuous in [0,1], only a finite number of pos-
sible orderings exists. These orderings depend on the ranges
of wR and wH as well as the scores of the join results. Each
ordering has properties related to how robust the ordering is
wrt. the weight space, and its relationship to other orderings
(we give more details in Section 2.2).

To illustrate the importance of quantifying the sensitivity
of a specific ordering or weight vector, assume that a user
specifies (wR, wH) as (0.16, 0.84). The corresponding top-2
results are thus 〈τ3, τ1〉. By changing the weights slightly to
(0.17, 0.83) (i.e., wR increased by only 6%), the top-2 results
become 〈τ3, τ2〉. Such sensitivity of the computed ordering
to small weight changes may be important to quantify in
interactive data analysis.

We advocate the need to model and manage uncertainty in
scoring functions. We envision uncertain scoring functions
as a means to bridge the gap between imprecise specifica-
tions, which are more natural in describing user’s prefer-
ences, and score-based ranking models, which are based on
precise formulations of scoring functions. We identify two
important problems pertinent to these settings:

• Finding a Representative Ordering. When weights are
uncertain, a set of possible orderings is induced. The
problem is finding a representative ordering λ∗ with
plausible properties that can be given to the user as
an answer. Moreover, when relative preferences among
weights are specified (e.g., in Figure 2, the influence of
rating can be further emphasized by adding the con-
straint wR > wH), finding a representative ordering
satisfying such preferences is imperative.

• Quantifying Sensitivity. When weights are given as
input, a corresponding ordering λ can be computed.
Two sensitivity analysis problems arise. The first prob-
lem is quantifying the largest weights change, in the
neighborhood of the input weight vector, that does
not introduce perturbations in λ. The second problem

is quantifying the likelihood of obtaining an ordering
identical to λ, given a random weight vector.

1.2 Contributions and Paper Organization
Our key contributions are summarized as follows:
• We formulate four novel problems in the context of un-

certain scoring functions. We propose multiple query
semantics to allow users to reason about the reported
answers (Section 2).

• We propose two approaches to compactly represent the
set of possible orderings induced by an uncertain scor-
ing function. We give a bound on the number of possi-
ble orderings, and present several efficient techniques
to compute representative orderings under different se-
mantics (Section 3).

• We introduce a generalization of our methods to han-
dle partially-specified preferences on the scoring func-
tion weights (Section 4).

• We present efficient techniques for quantifying the sen-
sitivity of computed results with respect to changes in
the input weights (Section 5).

We also conduct an extensive experimental study (Sec-
tion 6) on real and synthetic data to evaluate the effective-
ness and scalability of our solution.

2. UNCERTAINTY MODEL AND PROB-
LEM DEFINITION

Let R+ represent the set of non-negative real numbers.
Consider a set of d relations R1, . . . , Rd, where each tuple
ti ∈ Ri includes a score s(ti) ∈ R+. Let τ be an element of
the form t1 � · · · � td taken from the join O = R1 � . . . �
Rd of the d relations; τ is referred to as a join result 1. Let
N denote the number of join results that can be formed, i.e.,
N = |O|. The aggregate score F(τ) of τ is defined as

F(τ) = w1s(t1) + . . .+ wds(td) = wT s(τ) (1)

where w = [w1, . . . , wd]
T is a vector in Rd

+, wi is the weight
assigned to the score obtained from relation Ri, and s(τ) =
[s(t1), . . . , s(td)]

T is the score vector of join result τ .
Given a weight vector w, it is possible to find a total

order λ of join results in O based on the aggregate score
in (1) (score ties are typically resolved using a deterministic
tie-breaker such as tuple IDs). We denote such operation

as O w
� λ. Note that the order does not change if the

weight vector is multiplied by a positive constant. Therefore,
without loss of generality, we assume that

∑d
i=1 wi = 1.

2.1 Uncertainty Model
To model weights uncertainty, let w be a random vari-

able with probability density function p(w) defined over
the standard (d − 1)-simplex Δd−1 given by Δd−1 = {w ∈
Rd

+|
∑d

i=1 wi = 1}. Hence,

∫
Δd−1

p(w)dw = 1 (2)

We assume that p(w) is uniform over Δd−1. Each point
on the simplex represents a possible scoring function.

1Our model is not limited to one score per input relation. We
effectively deal with the output (join) relation which may include
any possible number of scores.
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Let λN denote a possible ordering of the N join results
in O, where λN (τ) indicates the position of τ in λN . The
uncertainty in the weights induces a probability distribution
on a set of possible orderings ΛN , where each λN ∈ ΛN

occurs with probability p(λN ), computed as follows:

p(λN ) =

∫
w∈Δd−1,O w

� λN

p(w)dw (3)

When the number of join results N is large, we might be
interested only in the orderings of K ≤ N join results. We
denote with ΛK the set of possible top-K answers. Note that
each element of ΛK is a prefix of one or more orderings in
ΛN . Whenever the ordering length is clear from the context,
we drop the subscript and write λ.

2.2 Problem Definition
Among the multiple possible ways to construct an order-

ing from a set of possible orderings, we propose two problem
definitions (Problems 2.1 and 2.2) capturing the semantics
of representative orderings.

Problem 2.1. [MPO] Given a depth K, find the most
probable ordering in ΛK , defined as λ∗

MPO = arg. max
λ∈ΛK

p(λ).

�

The ordering λ∗
MPO is the distribution mode of ΛK (i.e.,

the ordering that is most likely to be induced by a random
weight vector). In Figure 2, for K = 2, we have λ∗

MPO =
〈τ2, τ3〉, since it corresponds to the largest range of weights.

The next problem definition is based on measuring dis-
tance between orderings. The most common among such
measures assume orderings with exactly the same elements,
and thus cannot be applied to prefixes of orderings.

Problem 2.2. [ORA] Given a distance function D, find
the optimal rank aggregation of ΛN , defined as λ∗

ORA =

arg.min
λ

∑
λr∈ΛN

D(λ,λr) · p(λr). �

We adopt two widely used definitions of the distance func-
tion D:

• The Kendall tau distance, which counts the number of
pairwise disagreements in the relative order of items in
the two orderings:

D(λr,λs) = |{(τi, τj) ∈ O×O : λr(τi) < λr(τj),λ
s(τi) > λs(τj)}|

(4)

• The Spearman’s footrule distance, which adds up the
distance between the ranks of the same item in the two
orderings:

D(λr,λs) =
∑

τ∈O
|λr(τ)− λs(τ)| (5)

The ordering λ∗
ORA is the ordering with the minimum dis-

tance summation to all orderings in ΛN . In Figure 2, we have
λ∗

ORA = λ3 for either Kendall tau or Spearman’s footrule
distance.

We next propose formulations of two sensitivity measures:
stability of an ordering wrt. weights (Problem 2.3), and
ordering likelihood (Problem 2.4).

Problem d = 2 d = 3 d > 3

MPO (average case) O(N(logN)K+1) O(N(logN)2K+1) O(N�d/2�+1(logN)(d−1)K) [§]

MPO (worst case) O(N2logN) O(N4) O(N2d−1

) [§]

ORA (Kendall tau) O(NlogN) NP-Hard NP-Hard

ORA (Footrule) O(N2.5) O(N4) O(N2d−1

) [§]

STB O(N) O(N) O(dN)

LIK O(N) O(N2) O(N2d−2

) [§]

[§] Approximate solution.

Figure 3: Solutions complexity

Problem 2.3. [STB] Given a depth K and a weight vec-

tor w̄, where O w̄
� λ̄, find the stability score of w̄, defined

as the radius ρK(w̄) of the maximal hypersphere σK(w̄) cen-

tered at w̄, such that for all w ∈ σK(w̄), where O w
� λ,

we have λK = λ̄K . �

In Problem STB, we compute the largest volume in the
weights space, around an input weight vector w̄, in which
changing the weights leaves the computed ordering unaltered
at least up to depth K. In Figure 2, for w̄ = (0.2, 0.8) and
K = 2, we have λ̄ = λ2. The weight vector (0.167, 0.833) is
the furthest vector from w̄ that induces an ordering identical
to λ̄ up to depth 2. Hence, σ2(w̄) is a circle centered at w̄
with ρ2(w̄) = ‖(0.2, 0.8)− (0.167, 0.833)‖ = 0.047.

Problem 2.4. [LIK] Given a depth K and a weight vec-

tor w̄, where O w̄
� λ̄N , find the likelihood of λ̄N up to

depth K, defined as γK(λ̄N ) =
∑

λ∈ΛN ,λK=λ̄K

p(λ). �

In Problem LIK, we compute the probability of obtaining
an ordering identical to λ̄N up to depth K. In Figure 2,
for w̄ = (0.5, 0.5), we have λ̄N = λ3. For K = 2, we have
γ2(λ

3) = p(λ3) + p(λ4), since λ3 and λ4 are identical up to
depth 2.

Figure 3 gives the complexity bounds of our proposed
techniques. Our problem instances are configured by three
main parameters (d, N , and K) influencing the complexity.
We give worst-case complexity bounds for each algorithm.
In addition, for Problem MPO, we also give average-case
bounds under the assumption of uniformly distributed score
vectors. As we show in the next sections, finding ordering
probability requires computing a volume in a d-dimensional
space. For tractability, such volume can only be approxi-
mated when d > 3.

3. REPRESENTATIVE ORDERINGS
One possible approach to compute representative order-

ings is to i) enumerate possible weight vectors, ii) find the
distinct orderings induced by these vectors, and iii) pick
the required representative orderings. In addition to being
very expensive, such approach can be also inaccurate since
it needs to discretize the weights space.

Problem MPO requires processing orderings’ prefixes,
while Problem ORA requires processing full orderings. Mo-
tivated by this observation, we introduce two approaches:

• A Holistic Approach. We propose a succinct repre-
sentation of full orderings as disjoint partitions of the
weights space.

• An Incremental Approach. We propose a tree-based
representation that is incrementally constructed by ex-
tending prefixes of orderings.
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In general, both approaches can be used for both prob-
lems. However, based on our complexity analysis and ex-
periments, we note the superiority of the holistic approach
for computing ORA, and the superiority of the incremen-
tal approach for computing MPO. Moreover, for the case of
d = 2, the holistic approach gives rise to useful properties
that allow exact and efficient algorithms for both problems.

3.1 A Holistic Approach
Our holistic approach leverages the linearity of F to find,

for each pair of join results (τi, τj), a hyper-plane that
divides the weights space into two partitions, such that
F(τi) > F(τj) in one partition, while F(τi) < F(τj) in the
other partition. By finding all such hyper-planes, we parti-
tion the space into disjoint convex polyhedra corresponding
to distinct orderings in ΛN . In Section 3.1.1, we describe
our approach, while in Sections 3.1.2 and 3.1.3, we discuss
efficient computation of the MPO and the ORA problems.

3.1.1 Possible Orderings Representation
We illustrate our approach for d = 2, and then we show

how it can be extended to address higher dimensions.
Let si,n be the n-th entry of the score vector s(τi), where

1 ≤ n ≤ d. For d = 2, let τi and τj be two distinct join
results with score vectors s(τi) = [si,1, si,2]

T and s(τj) =
[sj,1, sj,2]

T , respectively. Let αi,j = p(F(τi) > F(τj)) (i.e.,
αi,j is the probability of having τi ranked before τj). Let
δi,j,n = (si,n − sj,n). Then, αi,j can be expressed as follow:

αi,j = p(w1δi,j,1 + w2δi,j,2 > 0) (6)

Due to linearity of F(τ), we note that when s(τi) domi-
nates s(τj) (i.e., (si,1 > sj,1 and si,2 ≥ sj,2) or (si,1 ≥ sj,1
and si,2 > sj,2)), we have αi,j = 1. That is, F(τi) > F(τj)
regardless of the value of the weight vector w. We thus only
consider in the following the case where s(τi) and s(τj) are
incomparable (i.e., (si,1 > sj,1 and si,2 < sj,2) or (si,1 < sj,1
and si,2 > sj,2)). Lemma 3.1 formulates αi,j in this case:

Lemma 3.1. Let Ci,j = δj,i,1/δi,j,2. Then, αi,j = p(w2 >
Ci,j

1+Ci,j
), or, equivalently, αi,j = p(w1 < 1

1+Ci,j
).

Proof. Since w1 + w2 = 1, then we have
αi,j = p(w2(δi,j,2 − δi,j,1) > −δi,j,1). Without loss
of generality, we assume that (δi,j,2 − δi,j,1) > 0, and hence
dividing by (δi,j,2 − δi,j,1) does not change the inequality
direction (note that if (δi,j,2 − δi,j,1) < 0, we can always
switch which join result we consider τi and which we
consider τj). Then, αi,j = p(w2 > −δi,j,1/(δi,j,2 − δi,j,1)).
Let Ci,j = −δi,j,1/δi,j,2, then, by rewriting, we get

αi,j = p(w2 >
Ci,j

1+Ci,j
).

Based on Lemma 3.1, a geometrical representation for αi,j

for d = 2 is given by Figure 4(a), which illustrates that αi,j

corresponds to the partition of Δ1 above the horizontal line
w2 = Ci,j/(1 + Ci,j)

†, while αj,i = 1 − αi,j corresponds
to the partition of Δ1 below (τi, τj). For example, in Fig-
ure 5(a), we have C1,4 = (s4,1 − s1,1)/(s1,2 − s4,2) = 3/4,

and hence
C1,4

(1+C1,4)
= 3/7 and α1,4 = 4/7.

†We only need to consider αi,j ∈ (0, 1), which implies that Ci,j =

(sj,1 − si,1)/(si,2 − sj,2) > 0, and hence
Ci,j

1+Ci,j
∈ (0, 1).

w2

w1 w1w2

w3

1.0

1.01.0

1.0

1.0

i,j

Ci,j

(1+Ci,j) 

Bi,j Ai,j

i,j

2-Simplex ( 2)1-Simplex ( 1)

(a) (b)

Ci,j = , where i,j,n= si,n – sj,n
i,j,2 

j,i,1 Bi,j =
i,j,3  

i,j,3 – i,j,2

Ai,j =
i,j,3  

i,j,3 – i,j,1

Figure 4: Geometrical representation of
αi,j = p(F(τi) > F(τj)) for (a) d = 2 (b) d = 3

The horizontal line w2 =
Ci,j

(1+Ci,j)
is denoted as the

switching line of (τi, τj), since it separates weights induc-
ing F(τi) > F(τj) from weights inducing F(τj) > F(τi).
When αi,j = 1, the switching line of (τi, τj) passes through
the point (0, 0) (e.g., the switching line of (τ2, τ4) in Fig-
ure 5(a)).

We show how to extend Lemma 3.1 to handle higher di-
mensions. By a similar analysis, we conclude that for d = 3,
the value of αi,j (the shaded area in Figure 4(b)) is the par-
tition of Δ2 in front of the switching plane w1(δi,j,1−δi,j,3)+
w2(δi,j,2 − δi,j,3) + δi,j,3 = 0.
In general, the switching hyper-plane of (τi, τj) in a d-

dimensional space is given by w1(δi,j,1 − δi,j,d) +w2(δi,j,2 −
δi,j,d)+ · · ·+wd−1(δi,j,d−1−δi,j,d)+δi,j,d = 0. Constructing
all switching hyper-planes, for all pairs of join results, divides
the weights space into a set of disjoint convex polyhedra,
where each minimal convex polyhedron (i.e., a polyhedron
that is not enclosed in another polyhedron) corresponds to
a distinct ordering in ΛN . The reason is that the relative
order of any two join results is fixed over all weight vectors
inside a minimal polyhedron, while crossing a polyhedron’s
boundaries changes the relative order of the join results,
since these boundaries are parts of the switching planes.

Based on the constraint
∑d

i=1 wi = 1, we can reduce
the dimensionality of the simplex by eliminating one of the
weight variables. This effectively projects the simplex onto
a plane with dimensionality smaller by one. For example,
for d = 2, Figure 5(a) shows the projection of Δ1 on the
w2 axis. There are 5 possible orderings of the shown 4 join
results, where each partition of the w2 axis enclosed be-
tween two consecutive switching planes (indicated by dot-
ted lines) induces a distinct ordering. Crossing a switching
plane changes the relative order of (at least) one pair of join
results, and hence a new ordering is induced. Figure 5(b)
shows another example for d = 3, where we project Δ2 onto
the w1 −w2 plane, and partition the simplex projection us-
ing 2-dimensional switching planes, inducing 7 possible or-
derings corresponding to 7 minimal convex polygons.

Representing ΛN using switching hyper-planes allows us
to derive a bound on the number of possible orderings in
ΛN , as we formalize in Theorem 3.2.

Theorem 3.2. The number of possible orderings in ΛN

is in O(N2d−1

).

Proof. Given a set of m points in a d-dim space, the
number of minimal convex polyhedra that can be created
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w2
1

1/6

3/7

3/5

5/6

w2

w11

1

.67

.25

(a) (b)

(.86,.14) 

(.6,.4) 

0
(0,0) .11 .25

(.33,.67) 

(.14,.86) 

(.21,.3) 

Figure 5: Switching Planes for (a) d = 2 (b) d = 3

is in O(m). Hence, a bound on |ΛN | is the same as the
bound on the number of points created by the intersec-
tions of O(N2) hyper-planes, corresponding to pairs of join
results, with each other and the simplex. The claim fol-
lows from the fact that O(N2) (d−1)-dim planes determine

O(N2d−1

) intersection points, which we show by induction.
Base case (d = 2). Δ1 can be projected onto the 1-dim

w2 plane. We have O(N2) switching lines, where each line
generates only one intersection point with the projection of
Δ1, leading to O(N2) intersection points.

Inductive step (d = x + 1). Δx can be projected onto a
x-dim plane. We have O(N2) switching x-dim planes. Each
two x-dim planes may intersect at an (x − 1)-dim plane,
thus determining O((N2)2) (x−1)-dim planes. By inductive

hypothesis, O(Y 2) (x − 1)-dim planes determine O(Y 2x−1

)
intersection points, so, by letting Y = N2, the number of
possible intersection points is O(N2x).

3.1.2 Computing MPO
We first consider the case of d = 2. We start with an ini-

tial ordering λN corresponding to weights (1.0, 0), and we
scan the set of switching planes in ascending order of w2.
We merge consecutive partitions of Δ1 that agree on the
ordering of the top-K join results (i.e., we merge any two
consecutive partitions if their boundary switching plane does
not change the rank of any join result in the top-K). We
update ranks in λN at each switching plane. Eventually, the
largest merged partition gives λ∗

MPO. The complexity of the
algorithm is dominated by sorting O(N2) switching planes,
and hence the overall complexity is O(N2logN). We discuss
in Section 3.3 an important optimization to significantly re-
duce N in the previous complexity bound by pruning all
K-dominated join results.

For example, in Figure 5(a), for K = 2 we have λ∗
MPO =

〈τ2, τ3〉, since it corresponds to the partition [1/6, 3/5],
which is the largest partition inducing the same top-2 join re-
sults. Similarly, for K = N we have λ∗

MPO = 〈τ2, τ3, τ4, τ1〉.
For d > 2, sorting the switching planes is not possible

since, in contrast to the case of d = 2, the planes are not 1-
dimensional anymore. Computing λ∗

MPO in this case is done
by progressively partitioning the space using the switching
planes, while maintaining the polyhedra corresponding to
different top-K answers. Thus, λ∗

MPO is given by the poly-
hedron with the largest volume (we elaborate on volume

computation in Section 3.2). Based on Theorem 3.2, the

previous algorithm has complexity O(N2d−1

) .

3.1.3 Computing ORA
We first discuss computing λ∗

ORA for d = 2, and then
present a generalization for d > 2 at the end of this section.

ORA under Kendall tau Distance (d = 2). We start by
defining the property of Weak Stochastic Transitivity [15] in
our settings.

Definition 3.3. [Weak Stochastic Transitivity]
F(τ) is weak stochastic transitive iff ∀ τi, τj , τk ∈ O:
[αi,j ≥ 0.5 and αj,k ≥ 0.5] ⇒ αi,k ≥ 0.5. �

We show in Lemma 3.4 that weak stochastic transitivity
always holds for d = 2.

Lemma 3.4. F(τ) is weak stochastic transitive for d = 2.

Proof. Let τi, τj , τk be three join results, where αi,j ≥
0.5 and αj,k ≥ 0.5. We show that we must also have αi,k ≥
0.5. Based on Lemma 3.1, we have αi,j = p(w2 >

Ci,j

1+Ci,j
) ≥

0.5. As shown in Figure 4(a), the previous inequality holds if

and only if
Ci,j

1+Ci,j
≤ 0.5, or equivalently, Ci,j ≤ 0.5+0.5Ci,j ,

which yields Ci,j ≤ 1.0. By expanding Ci,j , we get the
following expression:

si,2 − sj,2 ≥ sj,1 − si,1 (7)

It is easy to show that the opposite also holds. That is,
(7) is a necessary and sufficient condition for αi,j ≥ 0.5.
Specifically, given si,2 − sj,2 ≥ sj,1 − si,1, we get Ci,j ≤ 1.0,

which yields
Ci,j

1+Ci,j
≤ 0.5, and hence αi,j ≥ 0.5.

Similar to (7), using the given αj,k ≥ 0.5, we get the
following expression:

sj,2 − sk,2 ≥ sk,1 − sj,1 (8)

Adding up (7) and (8) gives si,2−sk,2 ≥ sk,1−si,1, which
implies that αi,k ≥ 0.5, and hence weak stochastic transi-
tivity holds.

As was argued in the proof of Lemma 3.4, (9) is a neces-
sary and sufficient condition for αi,j ≥ 0.5:

[αi,j ≥ 0.5] ⇔ [si,1 + si,2 ≥ sj,1 + sj,2] (9)

That is, if τi precedes τj , in the order of scores’ summa-
tion, it is guaranteed that αi,j ≥ 0.5.

Assume that we would like to compute the total Kendall
tau distance between an ordering λ̄ and all orderings in
ΛN . Based on Problem ORA, an ordering λ ∈ ΛN con-
tributes to the aggregated distance between λ̄ and ΛN , with
a value of p(λ), for each pair of join results with disagree-
ing relative orders in λ̄ and λ. Let Λi,j

N ⊆ ΛN be the set
of possible orderings where τi is ranked before τj . Then,
αi,j =

∑
λ∈Λ

i,j
N

p(λ), and it follows that the objective of

Problem ORA under Kendall tau distance can be restated as
finding an ordering that minimizes the total disagreements
given by the following penalty function:
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pen(λ̄) =
∑

(τi,τj):λ̄(τj)<λ̄(τi)

αi,j (10)

Construction Algorithm. Assume an ordering λ̄ con-
structed as follows: For two distinct join results τi and τj ,
let λ̄(τi) < λ̄(τj) if αi,j ≥ 0.5 while breaking probability
ties deterministically. Based on weak stochastic transitivity,
such construction procedure does not introduce cycles in λ̄.
Moreover, we show that such construction procedure indeed
minimizes pen(.). Our result is the same as Theorem 3 in
[13], and we include it here for completeness: ‡

Theorem 3.5. If weak stochastic transitivity holds, then
an ordering λ̄, with λ̄(τi) < λ̄(τj) if αi,j ≥ 0.5, is λ∗

ORA

under Kendall tau distance. �

It follows that λ∗
ORA is given by sorting join results using

(αi,j ≥ 0.5) as the sort comparator. Based on (9), the
sorting is achieved by ordering join results on (s.,1 + s.,2).
The total complexity is O(NlogN), which is the complexity
of conducting a regular sort.

ORA under Footrule Distance (d = 2). Given an or-
derings space ΛN , finding λ∗

ORA under footrule distance is
studied in [4], where a weighted bipartite graph G is used to
connect each item τ with each rank r using an edge weighted
as

∑
λ∈ΛN

|λ(τ) − r|, or equivalently (as shown in [13]), as∑N
i=1 pτ,i × |i− r|, where pτ,i is the probability summation

of orderings in ΛN with τ at rank i. Then, λ∗
ORA is given

by the minimum cost perfect matching of G, which can be
found in O(N2.5) [4].

We show how to construct the graph G using our repre-
sentation of ΛN . We maintain for each τ a set {pτ,i} of N
variables such that each variable pτ,i represents the current
probability of having τ at rank i. Starting from the initial
ordering λN corresponding to weights (1.0, 0), we scan the
set of sorted switching planes in ascending order of w2, while
updating ranks in λN at each switching plane. Whenever we
access a partition of Δ1 with τ at rank i, we add the length
of that partition to the current pτ,i value. The final {pτ,i}
values give the weights of edges incident to τ inG. For exam-
ple in Figure 5(a), for τ3 we have pτ3,1 = 0.4, pτ3,2 = 0.433,
pτ3,3 = 0.167, and pτ3,4 = 0. Since the number of switch-
ing planes is in O(N2), the complexity of constructing G
is O(N2logN), and hence the overall complexity of finding
λ∗

ORA is dominated by the cost of perfect matching of G,
which is O(N2.5) based on [4].

Computing ORA in Higher Dimensions. Finding
λ∗

ORA under Kendall tau distance is in general NP-Hard [4].
For d = 2, weak stochastic transitivity allows us to give an
O(NlogN) algorithm. However, weak stochastic transitiv-
ity does not hold for d > 2 †, and hence, λ∗

ORA can only
be approximated in polynomial time using, for example, the
Markov chain sampling method given in [4]. We leave out
the details in the interest of space.

‡The scoring model of [13] is different from ours. We prove that
weak stochastic transitivity also holds under our scoring model,
and hence λ∗

ORA can be computed efficiently.
†A counterexample: For s(τ1) = [42, 0, 0], s(τ2) = [0, 40, 0],
s(τ3) = [0, 28, 10], we have α1,2 = .51, α2,3 = .54, α1,3 = .48.

Figure 6: Possible orderings tree.

Computing λ∗
ORA under footrule distance for d > 2 can

be done by computing the minimum cost perfect matching
of the graph G, as discussed for the case of d = 2. However,
the difference is that for d > 2, the cost of constructing G
dominates the cost of solving the matching problem (which
is O(N2.5)), since G is given by materializing the orderings
space. Based on Theorem 3.2, the overall complexity of

computing λ∗
ORA is thus O(N2d−1

). It is also known that
λ∗

ORA under footrule distance is a 2-approximation of λ∗
ORA

under Kendall tau distance [4].

3.2 An Incremental Approach
We represent possible orderings as a tree, where each node

at depth k encodes a possible ordering prefix of size k, given
by the path from the tree root to that node. A probability
value is assigned to each node. We describe the details of tree
construction in Section 3.2.1, while we discuss computing
MPO in Section 3.2.2.

3.2.1 Possible Orderings Representation
For the sake of clarity, consider the problem of deter-

mining the possible top-1 answers and the 3-dimensional
score vectors space depicted in Figure 6, where N = 8. By
linearity of the aggregation function, we base our method
on computing the convex hull of the score vectors s(τi),
i = 1, . . . , N . The term “convex hull” usually refers to the
boundary of the minimal convex set containing a set of vec-
tors. In the following, when referring to the convex hull of
the score vectors, we shall only retain those score vectors
belonging to facets whose normal is directed towards the
first orthant. This constraint stems from the fact that the
weights are nonnegative, i.e., wi ≥ 0, i = 1, . . . , d.
Intuitively, out of the

(
N
1

)
1! = N join results (i.e., sets of

cardinality equal to 1), only the M1 join results whose score
vector belongs to the convex hull can be selected as top-1
answers, i.e., λ1

1 = 〈τ1〉, λ2
1 = 〈τ3〉 and λ3

1 = 〈τ5〉. These join
results are shown as nodes at depth k = 1 in the tree de-
picted in Figure 6. All the others are dominated by at least
one score vector on the convex hull, regardless of the specific
linear aggregation function. This observation has been pre-
viously made in [2], where onion indexes were designed with
the goal of efficiently pre-computing the answers of top-K
queries. Note that, for uniformly distributed score vectors
in [0, 1]3, the number M1 of score vectors on the convex hull
increases asymptotically according to O((logN)2) [5], thus
it is typically much smaller than N .

In order to compute p(λr
1) we are interested in partition-

ing Δ2 in M1 polygons π(λr
1), r = 1, . . . ,M1, where each

polygon corresponds to the set of weights for which a join
result τj is selected as top-1, i.e., λr

1 = 〈τj〉. To this end, we
consider the score vectors connected to s(τj) on the convex
hull, i.e., those score vectors s(τje), e = 1, . . . , E, delimiting
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Figure 7: (a) Convex hull for top-1 (b) Convex hull
for top-2 when τ5 is top-1
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Figure 8: Partitioning of Δ2 (a) at depth K = 1 (b)
at depth K = 2

edges departing from s(τj), and impose that their aggregate
score does not exceed that of τj by writing

wT s(τj) ≥ wT s(τj1 )

· · · (11)

wT s(τj) ≥ wT s(τjE )

together with the implicit constraint that w belongs to the
simplex, i.e., w ∈ Δ2. Thus, we can express π(λr

1) = π(〈τj〉)
as the set {w ∈ Δ2|Aw ≤ b,A = A(λr

1),b = b(λr
1)},

which defines a convex polygon. For instance, Figure 7(a)
depicts the convex hull created using the possible top-1 join
results. There are 3 join results on the hull surface, while
other join results are inside the hull. Figure 8(a) illustrates
the partitioning of Δ2 corresponding to the score vectors
depicted in Figure 7(a).

In order to find the M2 top-2 possible answers we pro-
ceed as follows. For each of the possible top-1 orderings
λr

1, r = 1, . . . ,M1, we recompute the convex hull after
removing the score vector associated to the join result in
λr

1. Let τj denote such a join result, i.e., λr
1 = 〈τj〉,

and τj,l, l = 1, . . . ,M1,j , denote the join results whose
score vectors are on the updated convex hull. For instance,
Figure 7(b) depicts the modified convex hull obtained af-
ter removing s(τ5), which includes s(τ1), s(τ2), s(τ3) and
s(τ7). The candidate top-2 answers λr

2 can be expressed
as 〈τj , τj,l〉, j ∈ {i|∃r.λr

1 = 〈τi〉}, l = 1, . . . ,M1,j . For
each candidate, we are interested in determining the poly-
gon π(λr

2) = π(〈τj , τj,l〉), which can be expressed by means
of a set of linear constraints

wT s(τj) ≥ wT s(τj,l)

wT s(τj,l) ≥ wT s(τj,l1 )

· · · (12)

wT s(τj,l) ≥ wT s(τj,lE )

Algorithm 1: buildTree(K, MPO, [s(τ1), . . . , s(τN )])

// Input: result size K, boolean MPO, score vectors matrix [s(τ1), . . . , s(τN )]
// Output: top-K tree
S := pruneDominatedObjects([s(τ1), . . . , s(τN )],K);
if (MPO) then Tree := addNodesMPO(empty tree, S, K, 1, ∅, 0);
else Tree := addNodes(empty tree, S, K, 1, ∅);
return Tree;

Algorithm 2: addNodes(Tree, S, K, k, λ)

// Input: current tree Tree, score vectors matrix S, result size K,
// current depth k, current prefix λ
// Output: top-K tree
if (k ≤ K) then

Remove from S all score vectors in λ;
Compute convex hull H of remaining vectors;

for each (τj ∈ H)
Find objects connected to τj ;
Compute linear constraints and π(λ ◦ τj);
if (π(λ ◦ τj) is not empty) then

Add τj to branch λ in Tree;
Tree := addNodes(Tree, S, K, k + 1, λ ◦ τj);

return Tree;

together with the implicit constraint w ∈ Δ2, where s(τj,le),
e = 1, . . . , E, denotes the score vectors that belong to the
convex hull obtained after removing s(τj), which are con-
nected to s(τj,l). For example, when 〈τ5〉 is top-1, the follow-
ing candidate top-2 answers can be obtained: λ1

2 = 〈τ5, τ1〉,
λ2

2 = 〈τ5, τ2〉, λ3
2 = 〈τ5, τ3〉 and λ4

2 = 〈τ5, τ7〉. After
that, computing, say, π(〈τ5, τ3〉) requires to consider s(τ1)
and s(τ7), since they are directly connected to s(τ3). Note
that, for some candidate top-2 answers, the linear system
of equations in (12) might not have a feasible solution and
π(〈τj , τj,l〉) = ∅. This is due to the fact that there is no linear
aggregation function for which the corresponding candidate
answers can be selected as top-2. Thus, such candidates are
pruned from the set of possible orderings.

In the example given in Figure 6, the number of possible
top-2 answers equals the number of leaves in the tree. Note
that, out of

(
N
K

)
K! =

(
8
2

)
2! = 56 orderings, only 8 of them

are identified as possible top-2 answers.
The determination of top-K possible answers proceeds

similarly, by recursively applying the same step individually
to each leaf node of the top-(K − 1) tree.

Algorithm 1 illustrates the procedure for constructing the
tree of possible top-K answers in detail. Tree represents
the tree topology, whereas λ indicates the current branch
of the tree, i.e., an input ordering for which the first k − 1
elements have been computed. We also call depth the length
of the prefix of λ computed by the algorithm. After an initial
pruning of all dominated objects (discussed in Section 3.3),
the algorithm recursively calls addNodes (or addNodesMPO,
if the tree is used to compute MPO) in a depth-first fashion,
until the desired depth K is reached. In the addNodes and
addNodesMPO functions, reported in Algorithms 2 and 3,
resp., we indicate as ◦ the concatenation of an element to a
sequence (namely, of a join result to a prefix of an ordering).

The average time complexity of constructing the top-K
tree can be derived for the case of uniformly distributed
score vectors. For K � N , each node has O((logN)2) chil-
dren. Therefore, there are O((logN)2K) non-leaf nodes for
which the convex hull needs to be computed. For d = 3, spe-
cialized algorithms exist that compute the convex hull with
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Algorithm 3: addNodesMPO(Tree, S, K, k, λ, pmax)

// Input: current tree Tree, score vectors matrix S, result size K,
// current depth k, current prefix λ, current MPO probability pmax

// Output: (partial) top-K tree
if (k ≤ K) then

Remove from S all score vectors in λ;
Compute convex hull H of remaining vectors;

for each (τj ∈ H)
Find objects connected to τj ;
Compute linear constraints and π(λ ◦ τj);
Compute p(λ ◦ τj);

for each (τj ∈ H in descending order of p(λ ◦ τj))
if (p(λ ◦ τj) > pmax) then

Add τj to branch λ in Tree;
if (k = K) then pmax := p(λ ◦ τj);
else Tree := addNodesMPO(Tree, S, K, k + 1, λ ◦ τj , pmax);

return Tree;

complexity O(N log(N)) [3]. Hence, the overall asymptotic
complexity is O(N(logN)2K+1).
We discuss in Section 3.3 how to significantly reduce N in

the previous bound by pruning all K-dominated join results.

Computing Nodes Probabilities. When the weight vec-
tor w is uniformly distributed on Δ2, evaluating p(λ) re-
quires computing the area of the polygon π(λ). This can be
done in three steps: i) Compute the coordinates of the ver-
tices of the polygon on Δ2, i.e., [wv

1 , w
v
2 ]

T , v = 1, . . . , V . The
vertex enumeration problem can be solved in O(CV ) time
[1], where C denotes the number of linear constraints and V
the number of vertices. The resulting asymptotic complex-
ity is dominated by the top-K tree construction, since the
number of constraints is O((log(N))2) and there might be up
to O((log(N))4) intersections (candidate vertices). ii) Com-
pute the area by means of the Shoelace formula

A =
1

2

∣∣∣∣∣
V∑

v=1

wv
1w

v+1
2 −

V∑
v=1

wv+1
1 wv

2

∣∣∣∣∣ (13)

where wV +1
i = w1

i . iii) p(λ) = 2A.
For example, Figure 6 illustrates, for each set of possible

orderings Λ1 and Λ2, the corresponding probabilities.

Handling Higher Dimensions. The method proposed
for d = 3 continues to be applicable for larger values of d,
as far as the enumeration of possible orderings is concerned,
although the asymptotic complexity of computing the con-
vex hull is O(N�d/2�+1) instead of O(N log(N)) [3]. Unfor-
tunately, determining the probabilities p(λ) requires com-
puting the volume of convex polyhedra embedded in Δd−1,
which is NP-hard. It is still possible to determine a lower
and upper bound on p(λ) in polynomial time, by comput-
ing, respectively, the maximum volume inscribed ellipsoid
and the minimum volume enclosing ellipsoid.

In order to find an approximation of p(λ), we propose
a Monte-Carlo sampling method. For a space of orderings
ΛK = {λ1

K , . . . ,λm
K}, we maintain a counter cr for each

ordering λr
K ∈ ΛK . We sample the space of weights uni-

formly at random. For each sample weight vector w̄, where

O w̄
� λr

K , we increment the counter of λr
K by 1. Let the

number of drawn samples be s. The value of p(λr
K) is ap-

proximated as cr/s. The approximation error is in O(1/
√
s),

which is the error of Monte-Carlo sampling.

3.2.2 Computing MPO
A näıve method to compute λ∗

MPO consists of the follow-
ing steps: i) construct the (full) top-K tree; ii) compute
the probability of each leaf node p(λK); iii) select the node
associated with the largest probability. We notice that, in
order to speed up the computation of λ∗

MPO, some of the
branches of the top-K tree can be safely pruned without the
need of reaching all leaf nodes. To this end, we interleave
the tree construction with the computation of the proba-
bilities of visited nodes (both intermediate and leaf nodes)
and keep track of the current MPO candidate among the
visited leaf nodes. We observe that each node is assigned
a probability which cannot be greater than the probability
of its parent. Therefore, it is possible to safely prune those
branches rooted at a node whose probability is less than that
of the current MPO candidate.

The amount of pruning depends on the order followed to
traverse the tree. Ideally, the algorithm should reach the leaf
node corresponding to λ∗

MPO as early as possible in such a
way that most of the nodes can be pruned. Therefore, at
each level of the tree, nodes are explored in descending order
of probability. This behavior is implemented in Algorithm 3.

3.3 Pruning K-Dominated Join Results
When computing MPO at depth K, an important opti-

mization is to start by pruning all K-dominated join results.
A join result τi is K-dominated if there exists a set of ≥ K
join results whose score vectors dominate the score vector of
τi. A K-dominated join result does not appear in any possi-
ble top-K answer, and hence it can be safely pruned without
affecting the correctness of the computed MPO. Since K is
typically a small number, the effect of K-dominance on re-
ducing the number of join results is substantial.

A näıve algorithm to prune K-dominated join results is to
count, for each join result τi, the number of other join results
dominating τi, and prune τi as soon as such count is K. The
complexity of this algorithm is O(N2). We show that we can
achieve the same goal with more optimized algorithms.

For d = 2, we adopt the DominatingSet algorithm in [14],
which has complexity O(NlogN). Extending this algorithm
to handle d > 2 requires maintaining intersections of sets
of join results, which reduces to O(N2) complexity. We
thus adopt a different algorithm, based on Fagin’s Algo-
rithm (FA) [6], which, in practice, prunes the majority of
K-dominated join results when d > 2.

First, each join result τ is assigned a unique identifier.
Then, we create d sorted lists L1, . . . , Ld, where each Li

maintains join results’ identifiers in the order of s.,i. The

cost of this step is O(dN logN). Let τ
(x)
i denote the iden-

tifier of the join result at position x in Li. The sorted lists
L1 . . . , Ld are scanned in parallel until a depth x̄ is reached
such that at least K common identifiers are found among

the d lists of seen identifiers. That is, |{τ (1)
1 , . . . , τ

(x̄)
1 }∩ . . .∩

{τ (1)
d , . . . , τ

(x̄)
d }| ≥ K. Let U denote the union of the seen

identifiers, i.e., U = {τ (1)
1 , . . . , τ

(x̄)
1 } ∪ . . . ∪ {τ (1)

d , . . . , τ
(x̄)
d }.

The top-K join results are guaranteed to be among those
whose identifiers are in the set U , for any monotonic aggre-
gation function. Therefore, those join results whose iden-
tifiers are not contained in U can be safely pruned. It is
shown in [6] that, if the rankings are independent and over
the same set of N items, the cost for finding the top-K an-
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swer is O(N
d−1
d K

1
d ), which is sub-linear in N . Hence, the

cost of pruning is dominated by the initial sort operation.

4. WEIGHT PREFERENCES
We discuss handling user’s preferences specified in the

form of a strict partial order on the weights. A strict
partial order on the weights is a binary preference rela-
tion �P that is irreflexive (i.e., (wi �P wi)), asymmetric
(i.e., (wi �P wj) ⇒ (wj �P wi)), and transitive (i.e.,
[(wi �P wj), (wj �P wk)] ⇒ (wi �P wk)). For the ex-
ample in Figure 2, a user interested in join results with
highly-rated restaurants, may express such preference using
a partial order (wR �P wH). Note that for d = 2, a par-
tial order on the weights is effectively a total order, while
for d > 2, a partial order can be a non-total order (e.g.,
(w1 �P w2), (w1 �P w3)).

Each preference (wi �P wj) implies a constraint
(wi > wj) on the weights space. Let WP = {w ∈
Δd−1|(wi > wj) whenever (wi �P wj)}. Based on the
properties of strict partial orders, WP is expressed in terms
of linear constraints, and hence WP is a convex polyhedron
embedded in Δd−1. We define a uniform probability density
function over WP as follows:

p(w) =

{
β if w ∈ WP
0 otherwise

(14)

where β is a normalizing constant such that the integral
of p(w) over WP is equal to one.

The techniques presented in Sections 3.1 and 3.2 remain
applicable to this scenario. To illustrate, assume that d = 2.
Weight preferences give a total order on {w1, w2}, which
implies that one of the two weights is greater than 0.5 (since
w1 + w2 = 1). Hence, WP is given by either the upper half
of Δ1 (if w2 > w1), or the lower half of Δ1 (if w1 > w2).
Probabilities are thus given based on partitions of only one
half of Δ1. For example, in Figure 5(a), α3,2 = 0 if w1 > w2,
since in this case only the lower half of Δ1 is considered.

5. SENSITIVITY MEASURES
When a user provides an explicit weight vector, a corre-

sponding ordering is immediately obtained. The user may
be interested in receiving additional feedback indicating the
largest perturbation in the input weights that does not affect
the ordering (Problem STB) as well as the likelihood of the
ordering (Problem LIK). Such feedback can be important in
interactive data analysis, and guiding scoring function tun-
ing to capture user’s preferences. We discuss our proposed
solutions to these problems next.

5.1 Stability of the Ordering wrt. the Weights
Let w̄ be a weight vector, where O w̄

� λ̄N . Let π(λ̄K)
be the polyhedron defining the set of weights inducing λ̄K .
We show how to solve Problem STB, where we find the
radius ρK(w̄) of the maximum volume hypersphere σK(w̄)
centered at w̄, and enclosed in π(λ̄K).

Computing ρK(w̄) requires determining the distances be-
tween w̄ and each of the hyperplanes delimiting the poly-
hedron π(λ̄K). There are up to N − 1 such hyperplanes,
defined as follows:

wT s(τ(1)) ≥ wT s(τ(2))

wT s(τ(2)) ≥ wT s(τ(3))

· · · ≥ · · ·
wT s(τ(K−1)) ≥ wT s(τ(K))

wT s(τ(K)) ≥ wT s(τ(K+1))

· · · ≥ · · ·
wT s(τ(K)) ≥ wT s(τ(N)) (15)

where τ(i) is the i-th combination in λ̄N .
Since there are O(N) hyperplanes, and computing the dis-

tance between a point and a plan in a d-dimensional space
can be done in O(d), the worst case time complexity for
computing ρK(w̄) is O(dN). The cost can be significantly
reduced to be sublinear in N if the score vectors have been
pre-indexed, e.g., removing dominated vectors or computing
the tree of possible orderings, as illustrated in Section 3.2.1.

Alternatively, one can measure stability of w̄ by aggregat-
ing all the radii ρk(w̄) for k = 1, . . . ,K into a single value:

ρ̃K(w̄) =
1

Kρmax

K∑
k=1

ρk(w̄)D(k) (16)

where i) ρmax is the radius of the maximum volume hyper-
sphere enclosed in Δd−1, and ii) D(k) is a discount function
adopted to emphasize changes that affect the top elements
in the ordering, e.g., D(k) = 1/ log(2 + k).

5.2 Ordering Likelihood
Given a weight vector w̄, where O w̄

� λ̄N , let λ̄N =
〈τ(1), τ(2), . . . τ(N)〉. Let π(λ̄K) be the polyhedron defining
the set of weights inducing λ̄K . Then, γK(λ̄N ) is given by
the ratio of the volume of π(λ̄K) and the volume of Δd−1.
We define π(λ̄K) similar to Section 5.1: We compute the
switching planes of (τ(i), τ(i+1)) for i = 1 . . .K − 1, and
(τ(K), τ(j)) for K < j ≤ N . The number of these switch-
ing planes is in O(N), and π(λ̄K) is the minimal convex
polyhedron, created by the intersections of these switching
planes, enclosing w̄.
For d = 2, π(λ̄K) is given by a partition of the w2 axis.

This allows computing γK(λ̄N ) in O(N) by finding the clos-
est switching plane above w̄, and the closest switching plane
below w̄, on the w2 axis. π(λ̄K) is the partition enclosed be-
tween these two closest planes. For example, in Figure 5(a),
for w̄ = (0.6, 0.4), we have λ̄4 = 〈τ2, τ3, τ4, τ1〉. Then, if
K = 2, we need to compute the switching planes of (τ2, τ3),
(τ3, τ4), and (τ3, τ1). The closest top and bottom planes wrt.
w̄ = (0.6, 0.4) are the planes of (τ2, τ3) and (τ3, τ4), respec-
tively. Hence, π(λ̄K) is given by the partition [1/6,3/5],
which leads to γ2(λ̄4) = 0.43.

For d = 3, the number of intersection points of O(N)
switching planes is in O(N2). The vertices of π(λ̄K)
are among these intersection points. Hence, π(λ̄K) can
be found in O(N2) by inspecting all possible polygons to
find the minimal convex polygon enclosing w̄. For ex-
ample, in Figure 5(a), for w̄ = (0.5, 0.4), we have λ̄4 =
〈τ1, τ2, τ3, τ4〉. Then, if K = 2, π(λ̄K) is given by the poly-
gon [(0.21,0.3)-(0.6,0.4)-(0.14,0.86)] whose area can
be computed as shown in (13), giving γ2(λ̄4) = 0.2254.

In general, for d dimensions, the complexity of computing

Problem LIK is O(N2d−2

), which is the bound on the num-
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Table 1: CPU time to compute MPO on synthetics
data sets, Zipfian distribution

d = 2 d = 3 d = 4
N K = 1 K = 5 K = 10 K = 1 K = 5 K = 10 K = 1 K = 5 K = 10

100 1.3·10−4 9.8·10−4 8.8·10−3 1.1·10−5 6.2·10−5 2.0·10−4 2.0·10−3 1.6·10−2 2.5·10−1

1000 1.6·10−4 1.6·10−3 9.2·10−3 1.6·10−5 1.6·10−4 1.1·10−3 1.7·10−2 3.2·10−2 2.0·10−1

10000 4.6·10−4 4.6·10−3 2.8·10−2 6.2·10−5 5.9·10−4 5.9·10−3 1.0·10−1 1.5·10−1 3.3·10−1

100000 3.3·10−3 2.9·10−2 1.5·10−1 6.4·10−4 1.7·10−3 2.1·10−2 7.1·10−1 1.2·100 1.6·100

Table 2: CPU time to compute MPO on synthetics
data sets, exponential distribution

d = 2 d = 3 d = 4
N K = 1 K = 5 K = 10 K = 1 K = 5 K = 10 K = 1 K = 5 K = 10

100 1.6·10−4 3.3·10−3 2.2·10−2 1.1·10−5 4.7·10−5 2.2·10−4 2.3·10−3 3.4·10−2 3.8·10−1

1000 2.6·10−4 4.9·10−3 3.3·10−2 1.1·10−5 2.2·10−4 1.3·10−3 1.8·10−2 6.1·10−2 4.4·10−1

10000 7.1·10−4 1.1·10−2 7.0·10−2 3.1·10−5 9.8·10−4 9.3·10−3 1.2·10−1 2.0·10−1 5.8·10−1

100000 3.9·10−3 6.8·10−2 4.2·10−1 6.2·10−4 2.9·10−3 2.2·10−2 7.1·10−1 1.0·100 1.6·100

ber of minimal convex polyhedra created by the intersections
of O(N) switching planes. However, for d > 3, computing
a polyhedron’s volume is NP-Hard, and hence we need to
approximate γK(λ̄N ) as discussed in Section 3.2.1.

We conclude this section with one last result on the like-
lihood of λ∗

ORA under Kendall tau distance and d = 2.
Let w+

2 be the first intersection point, between a switch-
ing plane and the w2 axis, above 0.5. When there is no such
point, let w+

2 = 1.0. Similarly, let w−
2 be the first intersec-

tion point, between a switching plane and the w2 axis, below
0.5. When there is no such point, let w−

2 = 0. Then, λ∗
ORA

is represented by the Δ1 partition defined in Theorem 5.1:

Theorem 5.1. When there is no αi,j = 0.5, λ∗
ORA un-

der Kendall tau distance is given by the partition [w−
2 , w+

2 ].
Otherwise, λ∗

ORA is given by either the partition [0.5, w+
2 ],

or the partition [w−
2 , 0.5].

Proof. When there is no αi,j = 0.5, then for all
αi,j < 0.5, the switching plane of (τi, τj) is located above
(or at) w+

2 , while for all αi,j > 0.5, the switching plane of
(τi, τj) is located below (or at) w−

2 . Hence, for all (τi, τj),
with αi,j > 0.5, the ordering induced by the partition
[w−

2 , w+
2 ] positions τi above τj . This means that [w−

2 , w+
2 ]

induces λ∗
ORA according to Theorem 3.5.

Similarly, when there is at least one αi,j = 0.5, any one of
the two partitions [0.5, w+

2 ], or [w
−
2 , 0.5] induces an ordering

that positions τi above τj iff αi,j ≥ 0.5, which means that
either partition induces λ∗

ORA.

For the example in Figure 5(a), λ∗
ORA = 〈τ2, τ3, τ1, τ4〉

and γ4(λ
∗
ORA) = 0.17, which is the length of the partition

[3/7,3/5].

6. EXPERIMENTS
In this section we experimentally evaluate the algorithms

described in this paper and study the impact of various pa-
rameters on execution: number of desired results, number
of relations, number of join results, and data distribution.

6.1 Methodology
Data sets. First, we conduct our analysis on synthetic

data sets. We generated d independent relations of tuples
with scores sampled from a selected distribution among uni-
form, Zipfian, and exponential, such that their join produces
N join results, with 2 ≤ d ≤ 4 and 102 ≤ N ≤ 105. While
the number of join results can be large, our study involves
a parameter K whose value is typically small. This leads
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Figure 12: Relative approximation error (d = 4)

Data set d = 2 d = 3 d = 4
New York 3871 41907 209599

San Francisco 9016 56200 591952
Boston 4712 9740 39030
Dallas 1424 1806 15196

Table 3: Number N of join results for real data sets

to aggressive pruning of the join results (cf. Section 3.3).
Hence, the subset of join results we need to process is usu-
ally small, even though the number of all join results is large.

Then, we consider real data sets with relations containing
hotels, restaurants, theaters, and cars for rent in four differ-
ent American cities (New York, San Francisco, Boston, and
Dallas). Each data set is obtained by retrieving customer
ratings, latitude and longitude of each such place by means
of the YQL console1. For each city, the relations are joined
in such a way that only the join results in which the mutual
distance between the objects is below a certain threshold
are retained. Table 3 shows the number of join results N
computed for each data set when d relations are joined.

Methods and evaluation metrics. We test the dif-
ferent algorithms described in this paper to compute MPO.
For d = 2, 3 the result is exact, in the sense that the output
of the algorithm is the correct ordering λ∗

MPO together with
its probability p(λ∗

MPO). For d = 4 we resort to sampling to
determine the possible orderings and their probabilities. As
such, the result is an approximation of the correct MPO.

Total CPU time, in seconds, is the metric we adopt for
evaluating our results. The total CPU time also includes the
time needed to prune dominated join results, as described
in Section 3.3. For fairness, in every experiment we run our
tests over ten different data sets and report the average.

Relative approximation error is the metric we adopt
for evaluating the accuracy of the solution produced by
sampling. The relative approximation error is given by

|p̂( ˆλ∗
MPO) − p(λ∗

MPO)|/p(λ∗
MPO), where p̂( ˆλ∗

MPO) is the ap-
proximated value obtained by sampling.

Number of children is the metric we adopt for characteriz-
ing the structure of the tree constructed in the incremental
approach, which gives an indication of the number of possi-
ble orderings of length K.

We do not run experiments to test ORA for the following
reasons. For d = 2 (under Kendall tau distance) the solution
amounts to sorting, so testing would uninterestingly evaluate
the efficiency of a sorting algorithm. For d > 2, ORA is
NP-hard; approximations of the Kendall tau distance are
possible, and they are described in other works [4].

Determining the largest perturbation that can be toler-
ated without affecting the ordering, as described in Section
5.1, is at most linear in the number of join results. Hence,
the total CPU time needed is negligible when compared to
the other problems addressed in this paper.

Computing ordering likelihood has polynomial time com-

1Available at http://developer.yahoo.com/yql/console/
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(a) Uniform distribution, d = 2
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(b) Uniform distribution, d = 3
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(c) Uniform distribution, d = 4

Figure 9: CPU time to compute MPO vs. number of top results on synthetics data sets
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(a) d = 2 relations
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(b) d = 3 relations
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(c) d = 4 relations

Figure 10: Number of children per child node vs. number of top results

plexity in N , as shown in Section 5.2. We do not include
corresponding experimental results due to space constraints.

Testing environment All the tests have been run on a
PC with the Windows 7 operating system, an Intel� Core2-
Duo processor at 2.4GHz and 4Gb RAM. We measured the
wall clock execution time needed to compute MPO for a
given K, assuming that the join results are available locally.
Thus, we did not consider the time needed for fetching the
tuples when data come from remote sources.

6.2 Results
The results obtained on the synthetic data sets are sum-

marized in Figure 9, Table 1 and Table 2. The bars in
the charts represent the total CPU time needed to compute
MPO for a given K (between 1 and 10), and include the
time needed for the initial pruning. The average total CPU
time in our experiments is always less than 10 seconds, and
exceeding 1 second only for very large values of N (100000),
which is perfectly reasonable for the scenarios at stake.

All our experiments include dominance-based pruning of
join results, since we have observed that this determines
remarkable improvements in terms of total CPU time.

We now comment on the individual parameters.
Number of relations - d: For d = 2, Figure 9(a) reports

the time required to compute MPO after using an exact
pruning for the case of a uniform distribution. The reported
times are in the worst case around .02 seconds.

For d = 3, Figure 9(b) reports the time required to com-
pute MPO after using an approximate pruning step that dis-
cards most of the K-dominated join results (cf. Section 3.3).
Here, we adopted Algorithm 3, which partially constructs
the possible orderings tree, pruning those branches that can-
not contain the MPO. For comparison, Figure 13 shows the
total CPU time needed to compute the full tree according
to Algorithm 2, comprising all possible orderings, with the
same score distribution. The two algorithms are identical
for K = 1, whereas for larger values of K the speed up due
to Algorithm 3 can be as large as three orders of magnitude.

For d = 4, we compute MPO by sampling possible or-
derings and count how many times they occur. The total
CPU time depends linearly on the number of samples s; the
dependency on K is only due to pruning, while the depen-
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Figure 13: CPU time vs. number of top results on
synthetics data sets for d = 3 (full tree construction)

dency on N is due to both pruning and sorting. We also
assess the relative approximation error introduced by sam-
pling in Figure 12, by averaging over values of N . With
s = 1000 samples, the error grows by a factor of

√
10, while

the total CPU time would scale down by a factor of 10.
Number of join results - N : Increasing N determines

visibly higher total CPU times in all experiments, as N af-
fects all algorithms (for any d). Yet, even when N is large,
the total CPU time is always within an acceptable range.

Score distribution - We tested three different score dis-
tributions: uniform, Zipfian and exponential. There is a
remarkable difference between different score distributions
when computing the trees of possible orderings if no prun-
ing is applied: the fan-out is of the order of O((logN)d−1)
if a uniform distribution is adopted, while it is much smaller
with the other distributions. However, after pruning, this
gap is smoothed out, and no significant difference is visible
in the results, as reported in Tables 1 and 2.

For the incremental approach, we also evaluated the struc-
ture of the tree in terms of the average number of children
per node (a.k.a. fan-out) at different depths, as illustrated
in Figure 10 for the case of uniformly distributed scores. We
observe that the fan-out decreases with depth, approaching
the asymptotic value of 1 child per node. At a given depth
K, the fan-out increases with d. For example, at K = 1, the
average fan-out is O((log(N))d−1). Note that the average
number of possible orderings of length K is readily obtained
by multiplying the values of fan-out between 1 and K.
Finally, Figure 11 shows our results for real data sets.

In San Francisco we found the largest number of join results
(nearly 600000 for d = 4), thus with a total CPU time higher
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Figure 11: CPU time to compute MPO vs. number of top results on real data sets

than in other cities. Approximate pruning is still beneficial
(the number drops down to 200000 for K = 10), whereas
exact pruning would be too costly and has been avoided.

7. RELATED WORK
The problem of rank join has been addressed in many

studies [7, 8, 11]. The central idea in most proposals is to
compute the top-K join results while limiting data access
and join operations based on scoring function monotonicity
and sorted access of joined relations. This paper extends
rank join methods by handling uncertain scoring functions
with partially-specified weight preferences.

The methods in [10, 12, 13] assume uncertain continu-
ous scores defined as independent random variables. With
uncertain scoring functions, tuples’ scores become correlated
with scoring function instances, and hence models and rank-
ing techniques assuming independence do not apply.

The closest proposals to our study are top-K indexing
techniques [2, 14]. In general, indexing top-K answers, for a
family of scoring functions, assumes pre-defined joined rela-
tions/scoring attributes and no selection conditions, which
may limit index usability in interactive data analysis. Our
techniques do not make such assumptions, since answers are
efficiently computed on the fly. We elaborate on other dif-
ferences with these proposals in the following.

Onion Indices [2] are used to index a set of d-dimensional
objects, where each dimension is a scoring attribute. The
boundary of the smallest convex hull that encloses all ob-
jects is guaranteed to include the top-1 object (assuming a
linear scoring function). Onion Indices extend this observa-
tion by constructing layered convex hulls to index objects for
efficient top-K processing. We build on similar observations
for building the possible orderings tree (cf. Section 3.2.1).

Ranked Join Indices [14] materialize possible top-K an-
swers based on weighted summation of two scoring at-
tributes. The proposed methods in [14] only handle d = 2,
while our methods handle d ≥ 2. Moreover, while the sce-
nario in [14] involves equally-likely orderings, we offer a novel
probabilistic interpretation of possible orderings (originating
from score distributions and weight preferences) to handle
the scenario where a user formulates preferences as uncer-
tain scoring functions. The notions of MPO and ORA (cf.
Section 2.2) have not been addressed before in this scenario.

Rank aggregation of uncertain data has been addressed
in [9] under a model that decouples data uncertainty from
scoring measures. Under our model, however, uncertainty is
induced by a user-defined scoring measure.

8. CONCLUSIONS
We study the semantics and sensitivity of ranking query

answers for scoring functions with uncertain weights. In
particular, we focus on formulating representative orderings
and computing sensitivity measures that can be given to the
user as a feedback under weights uncertainty. We present
efficient algorithms to solve these problems, and show that
we handle a larger number of scoring dimensions compared
to current proposals.
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