
Top-k Query Processing in Uncertain Databases

Mohamed A. Soliman Ihab F. Ilyas

School of Computer Science

University of Waterloo

{m2ali,ilyas}@uwaterloo.ca

Kevin Chen-Chuan Chang

Department of Computer Science

University of Illinois at UrbanaChampaign

kcchang@cs.uiuc.edu

Abstract

Top-k processing in uncertain databases is semanti-

cally and computationally different from traditional top-k

processing. The interplay between score and uncertainty

makes traditional techniques inapplicable. We introduce

new probabilistic formulations for top-k queries. Our for-

mulations are based on “marriage” of traditional top-k se-

mantics and possible worlds semantics. In the light of these

formulations, we construct a framework that encapsulates a

state space model and efficient query processing techniques

to tackle the challenges of uncertain data settings. We prove

that our techniques are optimal in terms of the number of

accessed tuples and materialized search states. Our exper-

iments show the efficiency of our techniques under different

data distributions with orders of magnitude improvement

over naı̈ve materialization of possible worlds.

1 Introduction

Efficient processing of uncertain (probabilistic) data is a

crucial requirement in different domains including sensor

networks [21, 8], moving objects tracking [7, 9] and data

cleaning [12, 3]. Several probabilistic data models have

been proposed, e.g., [10, 11, 4, 15, 16, 20, 2], to capture data

uncertainty at different levels. According to most of these

models, tuples have membership probability, e.g., based on

data source reliability [13], or fuzzy query predicates, as ad-

dressed in [18]. Tuple attributes could also contain multiple

values drawn from discrete or continuous domains [20, 6],

e.g., a set of possible customer names in a dirty database, or

an interval of possible sensor readings.

Many uncertain data models, e.g., [15, 2, 20], adopt

possible worlds semantics, where an uncertain relation is

viewed as a set of possible instances (worlds). The struc-

ture of these worlds could be governed by underlying gen-

eration rules, e.g., mutual exclusion of tuples that represent

the same real-world entity. Such rules could arise naturally

with unclean data [13, 3], or could be customized to en-

force application requirements, reflect domain semantics, or

maintain lineage and data inter-dependencies [5, 20]. The

Figure 1. Uncertain Database and Possible
Worlds Space

following is a running example for an uncertain database

that we use in this paper.

Example 1 Consider a radar-controlled traffic, where car

speed readings are stored in a database. Radar units detect

speed automatically, while car identification ,e.g., by plate

number, is usually performed by a human operator. In this

database, multiple sources of errors (uncertainty) exist. For

example, radar readings can be interfered by high voltage

lines, close by cars cannot be precisely distinguished, or

human operators might make identification mistakes. Fig-

ure 1(a) is a snapshot of a radar database in the last hour.

Each reading is associated with a confidence field “conf”

indicating its membership probability. Based on radar lo-

cations, the same car cannot be detected by radars at two

different locations within 1 hour interval. This constraint is

captured by the indicated exclusiveness rules. �

1.1 Uncertain Data Model

The uncertain data model we adopt is based on possi-

ble worlds semantics with two pillars. The first pillar is

membership uncertainty, where each tuple belongs to the

database with a probability, hereafter called confidence.

The second pillar is generation rules, which are arbitrary

logical formulas that determine valid worlds. Tuples that

are correlated with no rules are called independent.

1

Each possible world is a combination of tuples. The

probability of each world is computed by assuming the ex-

istence of all tuples in the world, and the absence of all other

database tuples. The outcome of this computation is deter-

mined based on tuple confidence values and generation

rules. For example in Figure 1(b), the probability of the pos-

sible world PW 5 is computed by assuming the existence of

t2, t6, and t4, and the absence of t1, t3, and t5. Note that

the existence of t2 implies the absence of t3 (and the same

for t4 and t5) based on the indicated exclusiveness rules,

while t1 and t6 are independent of all other tuples. There-

fore, Pr(PW 5) = 0.7 × 1.0 × 0.4 × 0.6 = 0.168, where

0.7, 1.0, 0.4 are the existence probabilities of t2, t6, and t4,

respectively, while 0.6 is the absence probability of t1.

1.2 Motivation and Challenges

Current query processing techniques for uncertain data

[6, 7, 12, 3] focus on Boolean queries. However, uncer-

tainty usually arises in data exploration, decision making,

and data cleaning scenarios which all involve aggregation

and ranking. Top–k queries are dominant type of queries

in such applications. A traditional top–k query returns the

k objects with the maximum scores based on some scor-

ing function. In the uncertain world, such a clean definition

does not exist. Reporting a tuple in a top–k answer does not

depend only on its score, but also on its membership proba-

bility, and the scores and membership probabilities of other

tuples. Tuple scores and uncertainty information interplay

to decide the top–k answers. Consider Example 1. Two

interesting top–k queries are to report:

• The top–k speeding cars in the last hour.

• A ranking over the models of the top–k speeding cars.

While the above queries are semantically clear in determin-

istic databases, their interpretation in uncertain databases is

challenging. For example, it might be desirable that the an-

swer to the first query be a set of cars that appear together in

valid possible world(s), to avoid answers inconsistent with

generation rules and other database constraints. While in

the second query, we might not have this restriction. In

uncertain databases, we are usually after the most proba-

ble query answers. The interaction between the concepts of

“most probable” and “top–k” gives rise to different possible

interpretations of uncertain top–k queries:

• The “top–k” tuples in the “most probable” world.

• The “most probable top–k” tuples that belong to valid

possible world(s).

• The set of “most probable top–ith” tuples across all

possible worlds, where i = 1 . . . k.

While the first interpretation reduces to a top–k query

on a deterministic database, the second and third interpre-

tations are challenging since they involve both ranking and

aggregation across worlds. We formally define and elabo-

rate on the differences between these queries in Section 2.

A naı̈ve approach to obtain answers to the above queries

is to materialize the whole possible worlds space, find top–

k answer in each world, and aggregate the probabilities of

identical answers. Flattening the database into all its worlds

is prohibitively expensive because of the huge number of

possible worlds and the potential complexity of generation

rules. Processing the “compact” database, i.e. without ma-

terializing its world space, is the main focus of this paper.

1.3 Contributions

Our approach in this paper is to process score and un-

certainty in one framework leveraging current DBMS stor-

age and query processing capabilities. Our contributions are

summarized as follows:

• New Query Definitions: “Top-k processing in uncer-

tain relational databases” is to the best of our knowl-

edge a previously unstudied problem with unclear se-

mantics. We propose new formulations for top–k

queries in uncertain databases.

• Search Space Model: We model uncertain top–k pro-

cessing as a state space search problem, and intro-

duce several space navigation algorithms with optimal-

ity guarantees on the number of accessed tuples and

materialized search states.

• Processing Framework: We construct a framework in-

tegrating space navigation algorithms and data access

methods leveraging existing DBMS technologies.

• Experimental study: We conduct an extensive experi-

mental study to evaluate our techniques under different

data distributions.

2 Problem Definition

Based on the uncertain data model described in Sec-

tion 1.1, and assuming some scoring (ranking) function to

order tuples, the probability of a k-length tuple vector T

to be the top–k is the summation of possible worlds prob-

abilities where T is the top–k. Similarly, the probability

of a tuple t to be at rank i is the summation of possible

worlds probabilities where t is at rank i. We now formally

define uncertain top–k queries based on “marriage” of pos-

sible worlds and traditional top–k semantics.

Definition 1 Uncertain Top–k Query (U-Topk): Let

D be an uncertain database with possible worlds space

PW = {PW 1, . . . , PWn}. Let T = {T 1, . . . , T m}
be a set of k-length tuple vectors, where for each T i ∈

2

T : (1) Tuples of T i are ordered according to scoring

function F , and (2) T i is the top–k answer for a non

empty set of possible worlds PW (T i) ⊆ PW . A U-

Topk query, based on F , returns T ∗ ∈ T , where T ∗ =
argmaxT i∈T (

∑
w∈PW (T i)(Pr(w))). �

U-Topk query answer is a tuple vector with the maxi-

mum aggregated probability of being top–k across all pos-

sible worlds. This type of queries fits in scenarios where

we need to restrict all top–k tuples to belong together to

the same world(s), e.g., for compliance requirements with

model rules. Consider Figure 1 again. U-Top2 query an-

swer is {t1, t2} with probability 0.28, which is the summa-

tion of PW 1 and PW 2 probabilities.

Definition 2 Uncertain k Ranks Query (U-kRanks): Let

D be an uncertain database with possible worlds space

PW = {PW 1, . . . , PWn}. For i = 1 . . . k, let

{x1
i , . . . , x

m
i } be a set of tuples, where each tuple x

j
i ap-

pears at rank i in a non empty set of possible worlds

PW (xj
i) ⊆ PW based on scoring function F . A U-

kRanks query, based on F , returns {x∗
i ; i = 1 . . . k}, where

x∗
i = argmax

x
j

i

(
∑

w∈PW (xj

i
)(Pr(w))). �

U-kRanks query answer is a set of tuples that might not

form together the most probable top–k vector. However,

each tuple is a clear winner at its rank over all worlds. This

type of queries fits in data exploration scenarios, where the

most probable tuples at top ranks are required without re-

stricting them to belong to the same world(s). Consider

Figure 1 again. U-2Ranks query answer is {t2 : 0.42, t6 :
0.324}, since t2 is at rank 1 in PW 5 and PW 6 with aggre-

gated probability 0.42, while t6 is at rank 2 in PW 3, PW 5,

and PW 8 with aggregated probability 0.324.

For clarity, we focus only on the “most probable” top–k

answers. However, the above two definitions could be ex-

tended to represent answers as probability distribution, i.e.,

a set of top–k answers associated with their probabilities,

rather than single answers. This is explained in more de-

tails in our space navigation algorithms in Section 4.

3 Processing Framework

Since uncertain data is likely to be stored in a traditional

database, most of current uncertain database system proto-

types rely on relational DBMSs for efficient retrieval and

query processing, e.g., Trio [5], uses an underlying DBMS

to store and process uncertain data and lineage information.

In this section, we propose a novel processing frame-

work (Figure 2) that leverages RDBMS storage, indexing,

and query processing techniques to compute uncertain top–

k query answers. Our proposed processing framework con-

sists of two main layers:

• Storage Layer: Tuple retrieval, indexing and tradi-

tional query processing (including score-based rank-

ing) are the main functionalities provided by the stor-

age layer. Uncertain data and generation rules are

stored in a relational database and different data ac-

cess methods are provided to allow the upper process-

ing layer to retrieve uncertain tuples.

• Processing Layer: The processing layer retrieves

uncertain tuples from the underlying storage layer,

and efficiently navigates the partial space of possible

worlds to compute the most probable top–k answers.

Problem Space. Before describing the processing layer de-

tails, we formulate our problem as searching the space of

states that represents all possible top–k answers. Defini-

tion 3 gives a formal definition of the search state.

Definition 3 Top-l State: A top–l state sl is a tuple vector

of length l that appears as the top–l answer in one or more

possible worlds based on scoring function F . �

A top–l state sl is complete if l = k. Complete states rep-

resent possible top–k answers. The probability of state sl is

the summation of the probabilities of the possible worlds

where sl is the top–l answer. Our search for uncertain top–

k query answers starts from an empty state (with length 0)

and ends at a goal state that is a complete state with a prob-

ability greater than any other state.

The main components of the processing layer are de-

picted in Figure 2. The Rule Engine is responsible for com-

puting the state probabilities. The Rule Engine can be an

intelligent business process or a sophisticated model, e.g.,

Bayesian network [10]. The details of rule engine models

are out of the scope of this paper. The formulation of states

is performed by the State Formulation module. The Space

Navigation module uses navigation algorithms to partially

materialize the possible worlds.

Iterator Interface. We assume an iterator interface, widely

used in RDBMS’s, to retrieve tuples from storage layer se-

quentially and pass them to the processing layer. We fur-

ther prove that sorted score access is the optimal sequential

access method in the number of retrieved tuples to answer

uncertain top–k queries. Efficient rank-aware query pro-

cessing technique [14, 17] could be used in storage layer to

report tuples in score order.

Theorem 1 Among all sequential access methods, sorted

score access is optimal in the number of retrieved tuples to

answer uncertain top–k queries. �

Proof: Assume an algorithm A that retrieves tuples se-

quentially out of score order. A cannot decide whether a

seen tuple t belongs to any possible top–k answer or not.

This is because there could be k unseen tuples indepen-

dent with t, all having higher scores than t, and all having a

confidence value of 1, which means that t does not be-

long to any possible top–k answer. A cannot assert this fact

3

Space Navigation

Physical Data and Rules Store

Rule
Engine

P
ro

c
e

s
s

in
g

 L
a

y
e

r
S

to
ra

g
e
 L

a
y
e
r

Access Methods

Probability

Tuple

Combination

Random
Access

Sorted
Score Access

Prob. Access
...

T
u

p
le

s

T
u

p
le

 R
e

q
u

e
s
ts

Most Probable Top-k Answer

State
Formulation

Figure 2. Processing Framework

Top-k Query

Plan

Database

t1:0.4

t2:0.7

t5:0.6

Space Navigation

t1
t1

t2

t1

t2

t5

t2

t5

t1

t5

t2

t5

t1

t5

State Formulation

t1,t5

¬t2

Rule Engine

?0.072

Figure 3. Components Interaction

unless it sees all database tuples. Then, A cannot answer

uncertain top–k queries while consuming less tuples than a

sorted score access method. �

Retrieving tuples in confidence is also not opti-

mal. Assume an algorithm A that retrieves tuples in

confidence order. In this case A cannot compute the

probability of some seen tuple t to belong to any possible

top–k answer. This is because A cannot guarantee that it

has seen all tuples with higher scores than t.

Processing Overview. We give an overview of frame-

work components interaction in Figure 3, which describes

the processing of an uncertain top–k query for the database

in Example 1. In Figure 3, three tuples are produced by

a top–k query plan and submitted to the Space Navigation

module, which materializes all possible states based on the

three seen tuples. In order to compute state probability, the

State Formulation module formulates each state and com-

putes its probability by contacting the Rule Engine (details

are in Section 4.1). For example, to formulate a state for

the tuple vector < t1, t5 >, the intermediate tuple t2 must

be absent. The number of maintained states is exponential

in the number of seen tuples. Therefore, our primary cost

metric is the number of accessed tuples from the storage

layer. Furthermore, our Space Navigation algorithms avoid

materializing any useless states, i.e., states that do not have

a chance to lead to query answer.

In Section 4, we give optimal search algorithms that par-

tially materialize the space of top–k answers by retrieving

the least possible number of tuple, and materializing the

least possible number of search states.

4 Navigating the Search Space

In this section we describe how to navigate the space to

obtain uncertain top–k query answers. We start by show-

ing how to compute state probabilities in Section 4.1. We

then describe our proposed U-Topk and U-kRanks query

processing algorithms in Sections 4.2 and 4.3, respectively.

4.1 Computing State Probabilities

Each uncertain tuple t is a source of two events: (1) tu-

ple existence, denoted t, with probability t.confidence,

and (2) tuple absence, denoted ¬t, with probability

1 - t.confidence. The probability of any combina-

tion of tuple existence/absence events is the summation of

possible worlds probabilities where this combination is sat-

isfied. For example in Figure 1, the probability of the

combination (t1 and ¬t2) is the same as Pr(PW 3) +
Pr(PW 4) = 0.12. We next explain an important property

that we exploit while navigating the search space.

Property 1 Probability Reduction. Extending a com-

bination of tuple events by adding another tuple exis-

tence/absence event results in a new combination with at

most the same probability �

Property 1 is clear from theoretical set operations, where

a set can never be larger than its intersection with another

set. This property holds in our model since for any two sets

of tuple events En and En+1 (with lengths n and n + 1),

where En ⊂ En+1, the set of possible worlds satisfying

En+1 ⊆ the set of possible worlds satisfying En.

In the following we use the notation (¬X) where X is

a tuple set/vector to refer to the conjunction of negation

events of tuples in X .

State Probability. Assume an uncertain database D, and

an arbitrary scoring function F . After d accesses to D in

F order, let sl be some search state, and I(sl, d) be the

current set of retrieved tuples from D that are not in sl. The

4

probability of state sl, denoted P(sl), can be computed as:

P(sl) = Pr(sl ∩ ¬I(sl, d))

For example in Figure 1, if the current set of retrieved

tuples are {t1, t2, t5}, then for a state s2 =< t1, t5 >, we

have P(s2) = Pr({t1, t5} ∩ ¬{t2}) = 0.072. This result

can be verified from the possible world PW 4.

State Extension. Assume a state sl. After retrieving a new

tuple t from D, we extend sl into two possible states: (1) a

modified version of sl with the same tuple vector, assuming

the event ¬t, and (2) a state sl+1 with the tuple vector of

sl appended by {t}, assuming the event t. Notice that the

summation of the probabilities of the modified sl and sl+1

is the same as the probability of the old sl state.

4.2 Processing U-Topk Queries

We now describe OPTU-Topk, an optimal algorithm in

the numbers of accessed tuples and visited search states to

answer a U-Topk query. OPTU-Topk buffers the ranked

tuples retrieved from D, and adopts a lazy materialization

scheme to extend the state space. Hence, a state might not

be extended by all seen tuples. At each step, the algorithm

extends only the state with the highest probability. The ex-

tension is performed using the next tuple drawn either from

the buffer or from D.

We overload the definition of a search state sl to be

sl,i, where i is the position of the last seen tuple by sl,i

in the score-ranked tuple stream. Note that i can point to a

buffered tuple or to the next tuple to be retrieved from D.

Furthermore, we define e as an empty state of length 0. Al-

gorithm OPTU-Topk starts by initializing e with state s0,0,

where P(s0,0) = 1. The empty state e is used to upper-

bound the probability of any non-materialized state, since

any non-materialized state must be driven from e.

Let Q be a priority queue of states ordered on their prob-

abilities, where ties are broken by state length. We initialize

Q with e. Let d be the number of seen tuples from D at

any point. Algorithm OPTU-Topk iteratively retrieves the

top state of Q, say sl,i, extends it into the two next possible

state (Section 4.1), and inserts the resulting two states back

to Q based on their probabilities. Extending sl,i will lead to

consuming a new tuple from D only if i = d, otherwise sl,i

is extended with the buffered tuple pointed to by i + 1.

The termination condition of OPTU-Topk is when the

top state of Q is a complete state. If a complete state c is on

top of Q, i.e., all materialized and non-materialized states

have smaller probabilities than c, then there is no way to

generate another complete state to beat c, based on Prop-

erty 1. Algorithm 1 describes the details of OPTU-Topk.

We next prove the optimality guarantees of OPTU-Topk.

Theorem 2 Among all algorithms that access tuples or-

dered on score, OptU-Topk is optimal in the number of

accessed tuples.�

Algorithm 1 OptU-Topk(source,k)

Require:

source: Score-ranked tuple stream

k: Answer length

Ensure: U-Topk query answer

1: Q← empty priority queue for states ordered on probabilities

2: e← s0,0 where P(e) = 1 {init empty state}
3: d← 0 {scan depth in source}
4: Insert e into Q

5: while (source is not exhausted AND Q is not empty) do

6: sl,i ← dequeue (Q)

7: if (l = k) then

8: return sl,i

9: else

10: if (i = d) then

11: t← next tuple from source

12: d← d + 1
13: else

14: t← tuple at pos i + 1 from seen tuples

15: end if

16: Extend sl,i using t into sl,i+1, sl+1,i+1 {Section 4.1}
17: Insert sl,i+1, sl+1,i+1 into Q

18: end if

19: end while

20: return dequeue(Q)

Proof: OptU-Topk consumes score-ranked tuples until

no state has a higher probability than the current complete

state. Assume another algorithm, A, that also consumes

tuples in score order but reports U-Topk answer while con-

suming d ≥ k tuples, where d is strictly less than the num-

ber of tuples consumed by OptU-Topk. Assume x is the

complete state reported by A. Based the seen d tuples, Al-

gorithm OptU-Topk would have a state sl,i where l < k

and P(s) > P(x), since otherwise OptU-Topk would

have terminated. Assume that there exist k − l tuples with

confidence 1, not yet seen by A, and independent of

tuples in s. We can augment s with these k− l tuples to cre-

ate another complete state s̀, where P(s̀) = P(s) > P(x).
Then x, the answer reported by A, is incorrect. �

Theorem 3 Let x be the reported answer by OptU-Topk.

Among all algorithms that access tuples ordered on score,

there is no algorithm that can skip a state visited by

OptU-Topk and reports x as the U-Topk query answer.�

Proof: Assume an algorithm A, that consumes tuples

ordered on score and concludes x as the U-Topk answer,

where x is also the answer reported by OptU-Topk. Let

sl be a state skipped by A, and visited by OptU-Topk,

where P(s) = p. By definition sl has the highest probabil-

ity among all states that can be accessed by OptU-Topk

and A. Assume there exist k − l tuples independent with

sl, and all with confidence 1. The state sl could there-

fore be extended to a complete state sk with probability p.

Hence, OptU-Topk reports x = sk as its final answer.

5

Since A did not visit sl, the final answer reported by A can-

not be any extension of sl, which contradicts the original

assumption that both algorithms returned the same answer.

Moreover, A cannot report an answer with a higher proba-

bility than p. �

Note that under the assumption that all states probabil-

ities are distinct (e.g., by assuming a unified tie-breaker

mechanism), no other algorithm can reach a correct solu-

tion without visiting all the states visited by OptU-Topk.

This observation can be easily derived from the above proof

since in this case, x is the only correct answer.

Algorithm 1 can be extended to return the n most prob-

able U-Topk answers by keeping a priority queue of size n,

and inserting any complete state with a probability above

the queue probability lower bound. The termination con-

dition will be changed to “the probability of any state is

strictly less than the queue probability lower bound”.

4.3 Processing U-kRanks Queries

In this section, we describe OPTU-kRanks, an optimal

algorithm in the number of accessed tuples to answer U-

kRanks queries. Algorithm OPTU-kRanks extends main-

tained states based on each seen tuple. When a new tuple is

retrieved, it is used to extend all states causing all possible

ranks of this tuple to be recognized. Let t be a tuple seen

after retrieving d tuples from the score-ranked stream. Let

Pt,i be the probability that tuple t appears at rank i, based

on scoring function F , across all possible worlds. It follows

from our state definition that Pt,i is the summation of the

probabilities of all states with length i whose tuple vectors

end with t, provided that t is the last retrieved tuple from

D. In other words, we can compute Pt,i, for i = 1 . . . k, as

soon as we retrieve t from the database.

For each rank i, we need to remember only the most

probable answer obtained so far, since any unseen tuple u

cannot change Pt,i of a seen tuple t because u can never

appear before t in any possible world. The remaining ques-

tion is when can we conclude an answer at each rank i? We

need to take unseen tuples into account to answer this ques-

tion. An unseen tuple u will appear at rank i only if we

extend states with length i − 1 by appending u to their tu-

ple vectors. Therefore, the summation of the probabilities

of states with length i − 1 is an upper-bound over Pu,i for

any unseen tuple u. We now can state our stopping condi-

tion. Let ti be the current U-kRanks answer for rank i, let

Si−1 be the set of all maintained states with length i − 1.

The termination condition of OPTU-kRanks algorithm, at

rank i, is Pti,i >
∑

s∈Si−1
P(s). Algorithm 2 formally de-

scribes OPTU-kRanks. The next Theorem formalizes the

optimality of OPTU-kRanks.

Theorem 4 Among all algorithms that access tuples or-

dered on score, OptU-kRanks is optimal in number of

accessed tuples.�

Algorithm 2 OptU-kRanks(source,k)

Require:

source: Score-ranked tuple stream

k: Answer length

Ensure: U-kRanks query answer

1: answer[]← empty vector of length k

2: ubounds[] ← vector of length k initialized with 1’s {prob.

upper bound of any unseen tuple at each rank 1 . . . k}
3: reported← 0 {No. of reported answers}
4: depth← 1
5: space← φ {current set of states}
6: while (source is not exhausted AND reported < k) do

7: t← next tuple from source

8: for i=1 to min(k, depth) do

9: Extend space states with length i− 1 using t

10: Compute Pt,i

11: Update ubounds[i] based on states of length i− 1
12: if (answer[i] was previously reported) then

13: continue

14: end if

15: if (Pt,i > answer[i].prob) then

16: answer[i]← t

17: answer[i].prob← Pt,i

18: if (answer[i].prob > ubounds[i]) then

19: Report answer[i]
20: reported← reported + 1
21: end if

22: end if

23: end for

24: depth← depth + 1
25: end while

Proof: Assume another algorithm, A, that also consumes

tuples ordered on score but reports ti as the U-kRanks an-

swer for rank i while Pti,i <
∑

s∈Si−1
P(s). Assume an

unseen tuple u with confidence 1, and u is independent

of all seen tuples. The tuple u can be appended to all states

in Si−1 to create a new set of sates Si with exactly the same

probabilities, where in every s ∈ Si, u is at rank i. Then,

Pu,i =
∑

s∈Si
P(s) =

∑
s∈Si−1

P(s) > Pti,i. Hence ti,

the answer reported by A, is incorrect. �

5 Cutting Down the Computation

In this section, we introduce other algorithms that make

use of tuple independence to cut down the state material-

ization significantly. Under arbitrary generation rules, the

states materialized by OPTU-Topk and OPTU-kRanks al-

gorithm are generally incomparable even if they have the

same length. This is because each state could be extended

in a different manner to a complete state. For example, the

tuples in one state might imply all other unseen tuples.

The materialized states by OPTU-Topk and

OPTU-kRanks algorithms could be reduced signifi-

cantly if we have an ability to prune looser states from our

search space early. In general, an incomplete state s can be

6

pruned if there exists a complete state c with P(c) > P(s).
Hence, if we can compute the maximum probability of a

complete state generated from s, denoted pmax(s), we can

safely prune all states with probability less than pmax(s).
The Rule Engine might be able to compute pmax(s) of

a given state s, however, this operation is sensitive to

the complexity of generation rules, and the Rule Engine

design. Alternatively, we show in the next sections how

to make use of tuple independence to do much efficient

space pruning while keeping the optimality in the number

of accessed tuples.

5.1 U-Topk Queries with Tuple Indepen-
dence

With tuple independence, state space can be aggressively

pruned to keep only the states that could lead to the answer.

We describe Algorithm IndepU-Topk, which prunes the

space based on the following criterion.

Lemma 1 Comparable States. Under tuple indepen-

dence, a state xn is probability-comparable to any state ym,

where xn and ym are maintained after seeing the same set

of score-ranked tuples, and n ≥ m. �

Lemma 1 states that under tuple independence, each state

can be compared, based on probability, to other states of the

same or smaller length if all states are maintained after see-

ing the same tuples. This is because for comparable states

xn and ym, the most probable complete states derived from

each of them would be obtained using the same set of exis-

tence/absence events of unseen tuples. That is, xn and ym

would follow the same path to reach a complete state. How-

ever, xn will reach a complete state at most at the same time

as ym, since n ≥ m. Based on the above and according to

Property 1, we have guarantees that if P(xn) > P(ym), the

complete state derived from xn would have a higher prob-

ability than the one derived from ym, and therefore we can

safely prune ym from our search space.

IndepU-Topk exploits Lemma 1 by grouping

states into equivalence classes based on their lengths.

IndepU-Topk keeps at most one state for each

length value 0 . . . k in a candidate set. The candidate

set is extended on receiving each new tuple from D.

IndepU-Topk terminates when at least k tuples have

been retrieved, and the probability of any current state is

not above the probability of the current complete candidate.

Consider for example the score-ranked stream of in-

dependent tuples shown in Figure 4 (fractions indicate

confidence, and scores are omitted for brevity), where

we are interested in U-Top3 answer. We represent each state

sl with its tuple vector, and distinguish tuples seen but not

included by sl with the ¬ symbol. In step (a), after retriev-

ing the first tuple t1, we construct two states < ¬t1 > and

< t1 > with length values 0 and 1, respectively. In step

(b), the candidate set is updated based on the new tuple t2,

where two possible candidates with length 1, < t1,¬t2 >

and < ¬t1, t2 >, are generated. However, we keep only the

candidate with the highest probability since both candidates

are probability comparable.

Step (c) continues in the same manner by updating the

candidate set based on tuple t3, and pruning the less prob-

able candidate from each equivalence class. Note that the

candidate < ¬t1,¬t2,¬t3 > is pruned because there is

another candidate < ¬t1,¬t2, t3 > with a larger length

and higher probability. In step (c) we have constructed the

first complete candidate, < t1, t2, t3 >, and the first ter-

mination condition is met. In step (d) we update the can-

didate set based on t4. Notice that we cannot stop after

step (d) because the second termination condition is not

met yet – there are candidates with higher probabilities than

the current complete candidate – and so, there is a chance

that < t1, t2, t3 > will be beaten. Space reduction by ex-

ploiting state comparability property results in huge perfor-

mance improvements for large values of k. We illustrate the

scalability of IndepU-Topk in our experimental section.

5.2 U-kRanks Queries with Tuple Inde-
pendence

When tuples are independent, a U-kRanks query exhibits

the optimal substructure property, i.e. the optimal solu-

tion of the larger problem is constructed from solutions of

smaller problems. This allows using a dynamic program-

ming algorithm. We next describe IndepU-kRanks, a

dynamic programming algorithm with optimality guaran-

tees in the number of accessed tuples.

Consider the example depicted by Figure 5, where we are

interested in U-3Ranks query answer. In the shown table, a

cell at row i and column x indicates the value of Px,i. The

value of Px,1 is computed as Pr(x) ×
∏

z:F(x)<F(z)(1 −

Pr(z)), which is the probability that x exists and all tuples

with higher scores do not exist. The values of Px,i, where

i > 1, are computed based on the following property:

Property 2 For independent tuples and i > 1, Px,i =
Pr(x)×

∑
y:F(y)>F(x)(

∏
z:F(x)<F(z)<F(y)(1−Pr(z))×

Py,i−1. �

The rationale behind Property 2 is that with independent

tuples, for a tuple x to appear at rank i, we need only to

consider the probability that x is consecutive to every other

tuple y at rank i−1. This probability is computed using the

probability that x exists, each intermediate tuple z between

x and y does not exist, and y appears at rank i − 1.

For example, in Figure 5, Pt2,2 = 0.9 × 0.3 = 0.27,

while Pt3,2 = (0.6 × 0.63) + (0.6 × 0.1 × 0.3) = 0.396.

The shaded cells indicate the U-3Ranks query answers at

each rank. Notice that the summation of the probabilities

of each row will be 1 if we completely exhaust the tuple

7

t4:0.2t3:0.8t2:0.3t1:0.2 …Score-ranked stream

(a) (b) (c) (d)

probcandid.len.

0.8¬t10

0.2t11

0.56¬t1, ¬t20

0.24¬t1, t21

0.14t1, ¬t21

0.06t1,t22

probcandid.len.

0.112¬t1,¬t2,¬t30

0.048¬t1,t2,¬t31

0.448¬t1,¬t2,t31

0.192¬t1,t2,t32

0.012t1,t2,¬t32

probcandid.len.

0.358¬t1,¬t2,t3,¬t41

0.15¬t1,t2,t3, ¬t42

0.09¬t1,¬t2,t3, t42

probcandid.len.

0.048t1,t2,t33

0.04¬t1,t2,t3, t43

0.048t1,t2,t33

Figure 4. IndepU-Topk Processing

t5:0.8t4:0.25t3:0.6t2:0.9t1:0.3 …Score-ranked stream

0.126

0.0765

0.007

0.36360.16200

0.18920.3960.270

0.01680.0420.630.3Rank 1

t1

Rank 2

Rank 3

t2 t3 t4 t5

Figure 5. IndepU-kRanks Processing

stream. This is because each row actually represents a hor-

izontal slice in all the possible worlds. This means that we

can report an answer from any row whenever the maximum

probability in that row is greater than the row probability

remainder. Notice also that the computation in each row

depends solely on the row above.

The above description gives rise to the following dy-

namic programming formulation. We construct a matrix

M with k rows, and a new column is added to M when-

ever we retrieve a new tuple from the score-ranked stream.

Upon retrieving a new tuple t, the column of t in M is filled

downwards based on the following equation:

M [i, t] =

8

>

>

<

>

>

:

i = 1 : Pr(t)×
Q

z:F(t)<F(z)(1− Pr(z))

i > 1 : Pr(t)×
P

y:F(y)>F(t)((
Q

z:F(t)<F(z)<F(y)

(1− Pr(z)))×M [i− 1, y])
(1)

For example in Figure 5, M [2, 3] = Pr(t3)×(M [1, 2]+
(1 − Pr(t2)) × M [1, 1]). Algorithm IndepU-kRanks

returns a set of k tuples {t1 . . . tk}, where ti =
argmaxx M [i, x].

6 Experiments

We built our framework on top of RankSQL [17]. All ex-

periments were run on a 3GHz Pentium IV PC with 1 GB of

main memory, running Debian GNU/Linux3.1. Space nav-

igation algorithms, and a rule engine prototype were imple-

mented in C, and they interact with database through cur-

sor operations. We conducted extensive experiments eval-

uating the efficiency of our techniques in different settings.

We used synthesized datasets of different data distributions

generated by the R-statistical computing package [1]. Our

primary performance metrics are: (1) query execution time,

and (2) tuple scan depth in D. In all experiments we used

rank-aware plans as the source of score-ranked tuple stream.

We emphasize, however, that our techniques are transparent

from the underlying top–k algorithm.

6.1 The Näıve Approach

We illustrate the infeasibility of applying the naı̈ve ap-

proach of materializing possible worlds space, sorting each

world individually, and merging identical top–k answers.

Due to space explosion, we applied this approach to small

databases of sizes less than 30 tuples with different sets of

generation rules. The materialization phase was the bottle-

neck in this approach consuming, on average, an order of

magnitude longer times than the merging phase. For exam-

ple, processing a database of 28 tuples with exclusiveness

rules yielded 524,288 possible worlds, and top–k query an-

swer was returned after 1940 seconds of which 1895 sec-

onds were used to materialize the world space.

6.2 Effect of Confidence Distribution

We evaluate here the effect of confidence distri-

bution on execution time and scan depth. We used

datasets with the following (score,confidence) distribu-

tion pairs: (1)uu: score and confidence are uniformly

distributed, (2)un (mean x): score is uniformly distributed,

and confidence is normally distributed with mean x,

where x = 0.5, 0.9, and standard deviation 0.2, and (3)uexp

(x): score is uniformly distributed, and confidence is

exponentially distributed with mean x, where x = 0.2, 0.5.

Figures 6 and 7 show the time and scan depth of

IndepU-Topk, respectively, while Figures 8, 9 show the

time and scan depth of IndepU-kRanks, respectively

with k values up to 1000. The best case for both algorithms

is to find highly probable tuples frequently in the score-

ranked stream. This allows obtaining strong candidates to

prune other candidates aggressively, and thus terminate the

search quickly. This scenario applies to un(mean 0.9) dis-

tribution pair where a considerable number of tuples are

highly probable. The counter scenario applies to uexp(0.2)

whose mean value forces confidence to decay relatively

fast leading to small number of highly probable tuples.

IndepU-Topk execution time is under 10 seconds for all

data distributions, and it consumes a maximum of 15,000

tuples for k=1000 under exponentially-skewed distribution.

The maximum scan depth of IndepU-kRanks is 4800 tu-

ple, however the execution time is generally larger (a max-

imum of 2 minutes). This can be attributed to the design of

both algorithms where bookkeeping and candidate mainte-

nance operations are more extensive in IndepU-kRanks.

8

0.01

0.1

1

10

1 10 100 1000
k

T
im

e
 (

s
e
c
)

uu

un(mean 0.5)

un(mean 0.9)

uexp(0.2)

uexp(0.5)

Figure 6. IndepU-Topk time

(different distributions)

1

10

100

1000

10000

100000

1 10 100 1000
k

S
c

a
n

 D
e

p
th

uu
un(mean 0.5)
un(mean 0.9)
uexp(0.2)
uexp(0.5)

Figure 7. IndepU-Topk

depth (different distributions)

0.1

1

10

100

1000

1 10 100 1000
k

T
im

e
 (

s
e
c
)

uu

un(mean 0.5)

un(mean 0.9)

uexp(0.2)

uexp(0.5)

Figure 8. IndepU-kRanks

time (different distributions)

1

10

100

1000

10000

1 10 100 1000
k

S
c
a
n

 D
e
p

th

uu
un(mean 0.5)
un(mean 0.9)
uexp(0.2)
uexp(0.5)

Figure 9. IndepU-kRanks

depth (different distributions)

1

10

100

1000

10000

1 10 100 1000k

S
c

a
n

 D
e

p
th

cor=0.1 cor=0.5
cor=0.8 cor= - 1
cor= - 0.5

Figure 10. IndepU-Topk

(correlations)

1

10

100

1000

10000

1 10 100 1000
k

S
c
a
n

 D
e
p

th

cor=0.1 cor=0.5
cor=0.8 cor= - 1
cor= - 0.5

Figure 11. IndepU-kRanks

(correlations)

1

10

100

5 10 20 30k

S
c

a
n

 D
e

p
th

OPTU-Topk (no cor)

OPTU-Topk (+ cor)

OPTU-Topk (- cor)

Figure 12. OPTU-Topk

(depth)

0.01

0.1

1

10

100

1000

5 10 20 30k

T
im

e
 (

s
e

c
)

OPTU-Topk (no cor)

OPTU-Topk (+ cor)

OPTU-Topk (- cor)

Figure 13. OPTU-Topk

(time)

0.01

0.1

1

10

100

1000

10000

1 5 10 15 20 30k

T
im

e
(s

e
c

)

OPTU-Topk (XOR=2) OPTU-Topk (XOR=4)

OPTU-Topk (XOR=8) OPTU-kRanks (XOR=2)

OPTU-kRanks (XOR=8) OPTU-kRanks (XOR=8)

Figure 14. Rule set complexity

6.3 Score-Confidence Correlations

We evaluate here the effect of score-confidence cor-

relation. We generated bivariate gaussian data over score

and confidence, and controlled correlation coefficient

by adjusting bivariate covariance matrix. Positive correla-

tions result in large savings since in this case high scored

tuples are attributed with high confidence, which allows

reducing the number of needed-to-see tuples to answer un-

certain top–k queries. Figures 10 and 11 show the effect of

correlation coefficient on the scan depth of IndepU-Topk

and IndepU-kRanks, respectively. Increasing the corre-

lation coefficient from 0.1 to 0.8 reduced the scan depth of

IndepU-Topk and IndepU-kRanks by an average of

20% and 26%, respectively. On the other hand, reversed

correlation has negative effects on the performance since it

leads to consuming more tuples to report answers. Decreas-

ing the correlation coefficient from -0.5 to -1 resulted in an

average of 1.5 order of magnitude increase in scan depth

for IndepU-Topk, and 1 order of magnitude increase for

IndepU-kRanks. The effect on execution time is similar.

6.4 Evaluating Space Navigation Tech-
niques

In this experiment, we evaluate the efficiency of

OPTU-Topk algorithm. We used databases of exclusive tu-

ples with uncorrelated, positively correlated, and negatively

correlated score and confidence values. Figures 12 and

13 show scan depth and execution time of OPTU-Topk.

Execution time is less than 100 seconds for k reaching 30.

Most of this time is spent in maintaining materialized states

in the priority queue. For positively correlated data, the

time is only under 1 second for all k values. The scan

depth of OPTU-Topk increased by an average of 1 order

of magnitude between positively and negatively correlated

datasets. This is explained based on the fact that highly

probable states are obtained quickly by retrieving a small

number of tuples from positively correlated data. Algorithm

OPTU-kRanks shows similar results which we omit due to

space constraints.

9

6.5 Rule Set Complexity

We evaluate here the impact of model rules complexity

on system performance. We implemented a rule engine pro-

totype to compute state probabilities with tuple exclusive-

ness. We experimented with different rule sets of different

XOR degrees; which is defined as the number of tuples that

are exclusive with some given tuple. Figure 14 shows the

execution times of OPTU-Topk and OPTU-kRanks for

different XOR degrees. Increasing the XOR degree leads to

increasing the execution time with an average of one order

of magnitude between XOR=2 and XOR=4, and between

XOR=4 and XOR=8 at the same k values. Increasing XOR

degrees raises the cost of each request to the rule engine

since it increases the possibility that each tuple is exclu-

sive with other tuples in the currently processed state, which

leads to larger computational overhead.

7 Related Work

Uncertain data management [15, 4, 16, 18] has received

an increasing importance with the emergence of practical

applications in domains like sensor networks, data cleaning,

and location tracking. The TRIO system [22, 20, 5] intro-

duced different working models to capture data uncertainty

at different levels, with an elegant perspective of relating

uncertainty with lineage with an emphasis on uncertain data

modeling. The ORION project [6, 7], deals with constantly

evolving data as continuous intervals and presents query

processing and indexing techniques to manage uncertainty

over continuous intervals. However, it does not address pos-

sible worlds semantics under membership uncertainty and

generation rules. The ConQuer project [12, 3] introduced

query rewriting algorithms for queries on uncertain data to

generate consistent answers under possible worlds seman-

tics, and proposed methods to derive probabilities of un-

certain data items. The difficulties of top–k processing in

sensor networks was addressed in [21] by introducing sam-

pling techniques to guide data acquisition from promising

sensors, while illustrating the infeasibility of applying tra-

ditional top–k techniques in this setting.

In parallel to this work, the problem of finding the k

most probable query answers in probabilistic databases was

addressed in [19]. An approach was presented to generate

the top–k probable query answers using Monte-Carlo sim-

ulation, where computing the exact probability of an an-

swer is relaxed in favor of computing the correct answers

efficiently. However, this approach does not address top–

k queries with a scoring dimension, where each uncertain

data object has both score and probability.

8 Conclusions

To the best of our knowledge, this is the first paper to

address top–k query processing under possible worlds se-

mantics. We introduced new formulations interpreting the

semantics of top–k queries under uncertainty. We formu-

lated the problem as a state space search, and introduced

several query processing algorithms with optimality guar-

antees on the number of accessed tuples and materialized

search states. Our processing framework leverages existing

storage and query processing techniques and can be easily

integrated with existing DBMSs. Our experimental study

shows the efficiency and scalability of our algorithms.

References

[1] The r project for statistical computing: www.r-project.org.
[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the represen-

tation and querying of sets of possible worlds. In SIGMOD,

1987.
[3] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers

over dirty databases: A probabilistic approach. In ICDE,

2006.
[4] D. Barbara, H. Garcia-Molina, and D. Porter. The manage-

ment of probabilistic data. IEEE Transactions on Knowledge

and Data Engineering, 4(5):487–502, 1992.
[5] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom.

Uldbs: Databases with uncertainty and lineage. In VLDB,

2006.
[6] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating

probabilistic queries over imprecise data. In SIGMOD, 2003.
[7] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying

imprecise data in moving object environments. IEEE Trans.

on Knowledge and Data Eng., 16(9):1112–1127, 2004.
[8] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate

aggregation techniques for sensor databases. In ICDE, 2004.
[9] V. de Almeida and R. Hartmut. Supporting uncertainty in

moving objects in network databases. In GIS, 2005.
[10] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning

probabilistic relational models. In IJCAI, 1999.
[11] N. Fuhr. A probabilistic framework for vague queries and

imprecise information in databases. In VLDB, 1990.
[12] A. Fuxman, E. Fazli, , and R. J. Miller. Conquer: Efficient

management of inconsistent databases. In SIGMOD, 2005.
[13] M. A. Hernandez and S. J. Stolfo. Real-world data is dirty:

Data cleansing and the merge/purge problem. Data Min.

Knowl. Discov., 2(1), 1998.
[14] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting

top-k join queries in relational databases. In VLDB, 2003.
[15] T. Imielinski and J. Witold Lipski. Incomplete information

in relational databases. J. ACM, 31(4):761–791, 1984.
[16] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrah-

manian. Probview: A flexible probabilistic database system.

ACM Trans. Database Syst., 22(3):419–469, 1997.
[17] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql:

query algebra and optimization for relational top-k queries.

In SIGMOD, 2005.
[18] D. S. Nilesh N. Dalvi. Efficient query evaluation on proba-

bilistic databases. In VLDB, 2004.
[19] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evalua-

tion on probabilistic data. In ICDE, 2007.
[20] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom.

Working models for uncertain data. In ICDE, 2006.
[21] A. Silberstein, R. Braynard, C. Ellis, K. Munagala, and

J. Yang. A sampling-based approach to optimizing top-k

queries in sensor networks. In ICDE, 2006.
[22] J. Widom. Trio: A system for integrated management of

data, accuracy, and lineage. In CIDR, 2005.

10

