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ABSTRACT
We introduce HoloClean, a framework for holistic data repairing
driven by probabilistic inference. HoloClean unifies qualitative
data repairing, which relies on integrity constraints or external data
sources, with quantitative data repairing methods, which leverage
statistical properties of the input data. Given an inconsistent dataset
as input, HoloClean automatically generates a probabilistic pro-
gram that performs data repairing. Inspired by recent theoretical
advances in probabilistic inference, we introduce a series of opti-
mizations which ensure that inference over HoloClean’s probabilis-
tic model scales to instances with millions of tuples. We show that
HoloClean finds data repairs with an average precision of ∼ 90%
and an average recall of above ∼ 76% across a diverse array of
datasets exhibiting different types of errors. This yields an average
F1 improvement of more than 2× against state-of-the-art methods.

1. INTRODUCTION
The process of ensuring that data adheres to desirable quality and

integrity constraints (ICs), referred to as data cleaning, is a major
challenge in most data-driven applications. Given the variety and
voluminous information involved in modern analytics, large-scale
data cleaning has re-emerged as the key goal of many academic [11,
29, 31] and industrial efforts (including Tamr [47], Trifacta Wran-
gler [33], and many more). Data cleaning can be separated in two
tasks: (i) error detection, where data inconsistencies such as dupli-
cate data, integrity constraint violations, and incorrect or missing
data values are identified, and (ii) data repairing, which involves
updating the available data to remove any detected errors. Signif-
icant efforts have been made to automate both tasks, and several
surveys summarize these results [23, 31, 42]. For error detection,
many methods rely on violations of integrity constraints [11, 14]
or duplicate [27, 37, 40] and outlier detection [19, 29] methods
to identify errors. For data repairing, state-of-the-art methods use
a variety of signals: (i) integrity constraints [9, 15], (ii) external
information [16, 24], such as dictionaries, knowledge bases, and
annotations by experts, or (iii) quantitative statistics [39, 49].

While automatic error detection methods were shown to achieve
precision and recall greater than 0.6 and 0.8 for multiple real-world
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datasets [4], this is not the case with automatic data repairing [30].
We evaluated state-of-the-art repairing methods [15, 16, 49] on dif-
ferent real-world datasets (Section 6) and found that (i) their av-
erage F1-score (i.e., the harmonic mean of precision and recall)
across datasets is below 0.35, and (ii) in many cases these methods
did not perform any correct repairs. This is because these methods
limit themselves to only one of the aforementioned signals, and ig-
nore additional information that is useful for data repairing. We
show that if we combine these signals in a unified framework, we
obtain data repairs with an average F1-score of more than 0.8. We
use a real-world dataset to demonstrate the limitations of existing
data repairing methods and motivate our approach.

Example 1. We consider a dataset from the City of Chicago [1]
with information on inspections of food establishments. A snippet
is shown in Figure 1(A). The dataset is populated by transcribing
forms filled out by city inspectors, and as such, contains multiple
errors. Records can contain misspelled entries, report contradict-
ing zip codes, and use different names for the same establishment.

In our example we have access to a set of functional dependen-
cies (see Figure 1(B)) and an external dictionary of address listings
in Chicago (Figure 1(D)). Co-occurrence statistics can also be ob-
tained by analyzing the original input dataset in Figure 1(A).

First, we focus on data repairing methods that rely on integrity
constraints [7, 11, 15]. These methods assume the majority of in-
put data to be clean and use the principle of minimality [5, 13, 21]
as an operational principle to perform repairs. The goal is to up-
date the input dataset such that no integrity constraints are violated.
Informally, minimality states that given two candidate sets of re-
pairs, the one with fewer changes with respect to the original data
is preferable. Nevertheless, minimal repairs do not necessarily cor-
respond to correct repairs: An example minimal repair is shown
in Figure 1(E). This repair chooses to update the zip code of tuple
t1 so that all functional dependencies in Figure 1(B) are satisfied.
This particular repair introduces an error as the updated zip code
is wrong. This approach also fails to repair the zip code of tuples
t2 and t3 as well as the “DBAName” and “City” fields of tuple t4
since altering those leads to a non-minimal repair.

Second, methods that rely on external data [16, 24] match records
of the original dataset to records in the external dictionaries or
knowledge bases to detect and repair errors in the former. The
matching process is usually described via a collection of match-
ing dependencies (see Figure 1(C)) between the original dataset
and external information. A repair using such methods is shown
in Figure 1(F). This repair fixes most errors but fails to repair the
“DBAName” field of tuple t4 as no information for this field is
provided in the external data. In general, the quality of repairs per-
formed by methods that use external data can be poor due to the
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Figure 1: A variety of signals can be used for data cleaning: integrity constraints, external dictionaries, and quantitative statistics of
the input dataset. Using each signal in isolation can lead to repairs that do not fix all errors or even introduce new errors.

limited coverage of external resources or these methods may not be
applicable as for many domains a knowledge base may not exist.

Finally, data repairing methods that are based on statistical anal-
ysis [39, 49], leverage quantitative statistics of the input dataset,
e.g., co-occurrences of attribute values, and use those for cleaning.
These techniques overlook integrity constraints. Figure 1(G) shows
such a repair. As shown the “DBAName” and “City” fields of tuple
t4 are updated as their original values correspond to outliers with
respect to other tuples in the dataset. However, this repair does not
have sufficient information to fix the zip code of tuples t2 and t3.

In our example, if we combine repairs that are based on different
signals, we can repair all errors in the input dataset correctly. If
we combine the zip code and city repairs from Figure 1(F) with the
DBAName repair from Figure 1(G) we can repair all inaccuracies
in the input dataset. Nonetheless, combining heterogeneous signals
can be challenging. This is not only because each type of signal is
associated with different operations over the input data (e.g., in-
tegrity constraints require reasoning about the satisfiability of con-
straints while external information requires efficient matching pro-
cedures) but different signals may suggest conflicting repairs. For
instance, if we naively combine the repairs in Figure 1 we end up
with conflicts on the zip code of tuples t2 and t3. The repairs in
Figure 1(E) and (G) assign value “60609” while the repair in Fig-
ure 1(F) assigns value “60608”. This raises the main question we
answer in this paper: How can we combine all aforementioned sig-
nals in a single unified data cleaning framework, and which signals
are useful for repairing different records in an input dataset?

Our Approach. We introduce HoloClean, the first data cleaning
system that unifies integrity constraints, external data, and quanti-
tative statistics, to repair errors in structured data sets. Instead of
considering each signal in isolation, we use all available signals
to suggest data repairs. We consider the input dataset as a noisy
version of a hidden clean dataset and treat each signal as evidence
on the correctness of different records in that dataset. To combine
different signals, we rely on probability theory as it allows us to
reason about inconsistencies across those.

HoloClean automatically generates a probabilistic model [35]
whose random variables capture the uncertainty over records in the
input dataset. Signals are converted to features of the graphical
model and are used to describe the distribution characterizing the
input dataset. To repair errors, HoloClean uses statistical learning
and probabilistic inference over the generated model.

HoloClean exhibits significant improvements over state-of-the-
art data cleaning methods: we show that across multiple datasets

HoloClean finds repairs with an average precision of ∼ 90% and
an average recall of ∼ 76%, obtaining an average F1-score im-
provement of more than 2× against state-of-the-art data repairing
methods. Specifically, we find that combining all signals yields an
F1-score improvement of 2.7× against methods that only use in-
tegrity constraints, an improvement of 2.81× against methods that
only leverage external information, and an improvement of 2.29×
against methods that only use quantitative statistics.

Technical Challenges. Though probabilistic models provide a means
for unifying all signals, it is unclear that inference scales to large,
complex data repairing instances. Probabilistic inference involves
two tasks: (i) grounding, which enumerates all possible interac-
tions between correlated random variables to materialize a factor
graph that represents the joint distribution over all variables, and
(ii) inference where the goal is to compute the marginal probability
for every random variable. These tasks are standard but non-trivial:

(1) Integrity constraints that span multiple attributes can cause com-
binatorial explosion problems. Grounding the interactions due to
integrity constraints requires considering all value combinations
that attributes of erroneous tuples can take. If attributes are al-
lowed to obtain values from large domains, inference can become
intractable. For example, we consider repairing the smallest dataset
in our experiments, which contains 1,000 tuples, and allow attributes
in erroneous tuples to obtain any value from the set of consistent as-
signments present in the dataset. Inference over the resulting proba-
bilistic model does not terminate after an entire day. Thus, we need
mechanisms that limit the possible value assignments for records
that need to be repaired by HoloClean’s probabilistic model.

(2) Integrity constraints introduce correlations between pairs of ran-
dom variables associated with tuples in the input dataset. Enumer-
ating these interactions during grounding results in factor graphs
of quadratic size in the number of tuples. For example, in our ex-
periments we consider a dataset with more than two million tuples.
Enforcing the integrity constraints over all pairs of tuples, yields a
factor graph with more than four trillion interactions across random
variables. Thus, we need to avoid evaluating integrity constraints
for pairs of tuples that cannot result in violations.

(3) Finally, probabilistic inference is #P-complete in the presence
of complex correlations, such as hard constraints. Thus, approxi-
mate inference techniques such as Gibbs sampling are required. In
the presence of complex correlations, Gibbs sampling is known to
require an exponential number of samples in the number of random
variables to mix [45], i.e., reach a stationary distribution. Neverthe-
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Figure 2: An overview of HoloClean. The provided dataset along with a set of denial constraints is compiled into a declarative
program which generates the probabilistic model used to solve data repairing via statistical learning and probabilistic inference.

less, recent theoretical advancements [12, 45] in statistical learning
and inference show that relaxing hard constraints to soft constraints
introduces a tradeoff between the computational efficiency and the
quality of solutions obtained. This raises the technical question,
how to relax hard integrity constraints for scalable inference.

Technical Contributions. Our main technical contributions are:

(1) We design a compiler that generates a probabilistic model which
unifies different signals for repairing a dataset (see Sections 2 and 4).
Our compiler supports different error detection methods, such as
constraint violation detection and outlier detection.

(2) We design an algorithm that uses Bayesian analysis to prune
the domain of the random variables corresponding to noisy cells
in the input dataset (see Section 5.1.1). This algorithm allows
us to systematically tradeoff the scalability of HoloClean and the
quality of repairs obtained by it. We also introduce a scheme that
partitions the input dataset into non-overlapping groups of tuples
and enumerates the correlations introduced by integrity constraints
only for tuples within the same group (see Section 5.1.2). These
two optimizations allow HoloClean to scale to data cleaning in-
stances with millions of tuples. We study the synergistic effect
of these optimizations on HoloClean’s performance and show that,
when random variables have large domains, partitioning can lead to
speedups of up to 2x without a significant deterioration in quality
(an average drop of 0.5% in F1 is observed).

(3) We introduce an approximation scheme that relaxes hard in-
tegrity constraints to priors over independent random variables (see
Section 5.2). This relaxation results in a probabilistic model for
which Gibbs sampling requires only a polynomial number of sam-
ples to mix. We empirically study the tradeoff between the runtime
and quality of repairs obtained when relaxing integrity constraints.
We show that our approximation not only leads to more scalable
data repairing models but also results in repairs of the same quality
as those obtain by non-approximate models (see Section 6).

2. THE HoloClean FRAMEWORK
We formalize the goal of HoloClean and provide an overview of

HoloClean’s solution to data repairing.

2.1 Problem Statement
The goal of HoloClean is to identify and repair erroneous records

in a structured dataset D. We denote A = {A1, A2, . . . , AN} the
attributes that characterize D. We represent D as a set of tuples,
where each tuple t ∈ D is a set of cells denoted as Cells[t] =
{Ai[t]}. Each cell c corresponds to a different attribute in A (e.g.,

the dataset in Figure 1 has attributes, “DBAName”, “AKAName”,
“Address”, “City”, “State”, and “Zip”, and consists of four tuples).
We denote t[An] the n-th cell of tuple t for attribute An ∈ A.

We assume that errors in D occur due to inaccurate cell assign-
ments, and we seek to repair errors by updating the values of cells in
D. This is a typical assumption in many data cleaning systems [15,
16, 39]. For each cell we denote by v∗c its unknown true value and
by vc its initial observed value. We use Ω to denote the initial ob-
served values for all cells in D. We term an error in D to be each
cell c with vc 6= v∗c . The goal of HoloClean is to estimate the latent
true values v∗c for all erroneous cells in D. We use v̂c to denote the
estimated true value of a cell c ∈ D. We say that an inaccurate cell
is correctly repaired when v̂c = v∗c .

2.2 Solution Overview
An overview of HoloClean is shown in Figure 2. HoloClean

takes as input a dirty dataset D, along with a set of available re-
pairing constraints Σ. In the current implementation we limit these
constraints to: (i) denial constraints [13] that specify various busi-
ness logic and integrity constraints, and (ii) matching dependen-
cies [7, 16, 24] to specify lookups to available external dictionaries
or labeled (clean) data. We briefly review denial constraints in Sec-
tion 3.1. HoloClean’s workflow follows three steps:

Error Detection. The first step in the workflow of HoloClean is
to detect cells in D with potentially inaccurate values. This pro-
cess separates D into noisy and clean cells, denoted Dn and Dc,
respectively. HoloClean treats error detection as a black box. Users
have the flexibility to use any method that detects erroneous cells.
The output of such methods is used to form Dn and Dc is set to
Dc = D \ Dn. Our current implementation includes a series
of error detection methods, such as methods that leverage denial
constraints to detect erroneous cells [14], outlier detection mech-
anisms [19, 29], and methods that rely on external and labeled
data [7, 16, 24]. For a detailed study of state-of-the-art error detec-
tion methods we refer the reader to the work of Abedjan et al. [4].

Compilation. Given the initial cell values Ω and the set of repair-
ing constraints Σ, HoloClean follows probabilistic semantics to ex-
press the uncertainty over the value of noisy cells. Specifically, it
associates each cell c ∈ D with a random variable Tc that takes
values form a finite domain dom(c), and compiles a probabilistic
graphical model that describes the distribution of random variables
Tc for cells in D. HoloClean relies on factor graphs [35] to repre-
sent the probability distribution over variables Tc. HoloClean uses
DeepDive [46], a declarative probabilistic inference framework, to
run statistical learning and inference. In Section 3.2, we review fac-
tor graphs and how probabilistic models are defined in DeepDive.



Data Repairing. To repair D, HoloClean runs statistical learning
and inference over the joint distribution of variables T1, T2, . . . to
compute the marginal probability P (Tc = d; Ω,Σ) for all values
d ∈ dom(c). Let T be the set of all variables Tc. HoloClean uses
empirical risk minimization (ERM) over the likelihood logP (T )
to compute the parameters of its probabilistic model. Variables that
correspond to clean cells in Dc are treated as labeled examples to
learn the parameters of the model. Variables for noisy cells in Dn
correspond to query variables whose value needs to be inferred.
Approximate inference via Gibbs sampling [50] is used to estimate
the value v̂c of noisy cells. Variables v̂c are assigned to the maxi-
mum a posteriori (MAP) estimates of variables Tc.

Each repair by HoloClean is associated with a calibrated marginal
probability. For example, if the proposed repair for a record in the
initial dataset has a probability of 0.6 it means that HoloClean is
60% confident about this repair. Intuitively, this means that if Holo-
Clean proposes 100 repairs then only 60 of them will be correct.
As a result, we can use these marginal probabilities to solicit user
feedback. For example, we can ask users to verify repairs with low
marginal probabilities and use those as labeled examples to retrain
the parameters of HoloClean’s model using standard incremental
learning and inference techniques [46].

Finally, similar to existing automatic data repairing approaches,
HoloClean’s recall is limited by the error detection methods used.
Error detection is out of the scope of this paper. However, we exam-
ine its effect on HoloClean’s performance in Section 6.3.4. As part
of future directions (Section 8), we also discuss how state-of-the-art
weak supervision methods can be used to improve error detection.

3. BACKGROUND
We review concepts and terminology used in the next sections.

3.1 Denial Constraints
In HoloClean users specify a set of denial constraints [13] to

ensure the consistency of data entries in D. Denial constraints
subsume several types of integrity constraints such as functional
dependencies, conditional functional dependencies [11], and met-
ric functional dependencies [36]. Recent work has also introduced
methods that automatically discover denial constraints [14].

Given a set of operators B = {=, <,>, 6=,≤,≈}, with ≈ de-
noting similarity, denial constraints are first-order formulas over
cells of tuples in dataset D that take the form σ : ∀ti, tj ∈ D :
¬(P1 ∧ · · · ∧ Pk ∧ · · · ∧ PK) where each predicate Pk is of the
form (ti[An] o tj[Am]) or (ti[An] o α) where An, Am ∈ A, α
denotes a constant and o ∈ B. We illustrate this with an example:

Example 2. Consider the functional dependency Zip→ City, State
from the food inspection dataset in Figure 1. This dependency can
be represented using the following two denial constraints:

∀t1, t2 ∈ D :¬(t1[Zip] = t2[Zip] ∧ t1[City] 6= t2[City])

∀t1, t2 ∈ D :¬(t1[Zip] = t2[Zip] ∧ t1[State] 6= t2[State])

3.2 Factor Graphs
A factor graph is a hypergraph (T, F, θ) in which T is a set of

nodes that correspond to random variables and F is a set of hyper-
edges. Each hyperedge φ ∈ F, where φ ⊆ T , is referred to as a
factor. For ease of exposition only, we assume that all variables T
have a common domain D. Each hyperedge φ is associated with a
factor function and a real-valued weight θφ and takes an assignment
of the random variables in φ and returns a value in {−1, 1} (i.e.,

hφ : D|f | → {−1, 1}). Hyperedges f , functions hφ, and weights
θφ define a factorization of the probability distribution P (T ) as:

P (T ) =
1

Z
exp

∑
φ∈F

θφ · hφ(φ)

 (1)

where Z is called the partition function and corresponds to a con-
stant ensuring we have a valid distribution.

Recently, declarative probabilistic frameworks [2, 6, 46] have
been introduced to facilitate the construction of large scale factor
graphs. In HoloClean, we choose to use DeepDive [46]. In Deep-
Dive, users specify factor graphs via inference rules in DDlog, a
declarative language that is semantically similar to Datalog but ex-
tended to encode probability distributions. A probabilistic model
in DeepDive corresponds to a collection of rules in DDlog.

DDlog rules are specified over relations in a database. For ex-
ample, the following DDlog rule states that the tuples of relation Q
are derived from R and S via an equi-join on attribute “y".

Q(x, y) : −R(x, y), S(y), [x = “a”]

Q(x, y) is the head of the rule, and R(x, y) and S(y) are body
atoms. The body also contains a condition [x = “a”] on the values
that Attribute “x" can take. Predicate [x = “a”] is called the scope
of the rule. Finally, x and y are variables of the rule. We next
describe how such rules can be extended to define a factor graph.

Relations in DDlog can be augmented with a question-mark an-
notation to specify random variables. For example, if Fact(x) is
a relation of facts for which we want to infer if they are True or
False, then IsTrue?(x) is a relation such that each assignment to
x represents a different random variable taking the value True or
False. The next DDlog rule defines this random variable relation:

IsTrue?(x) : −Fact(x)

Grounding relation Fact generates a random variable for each value
of x. These correspond to nodes T in the factor graph. In the re-
mainder of the paper we refer to relations annotated with a question-
mark as random variable relations.

Given relations that define random variables we can extend Dat-
alog rules with weight annotations to encode inference rules, which
express the factors of a factor graph. We continue with the previous
example and let HasFeature(x, f) be a relation that contains infor-
mation about the features f that a fact x can have. We consider the
following inference rule:

IsTrue?(x) : −HasFeature(x, f) weight = w(f)

The head of this rule defines a factor function that takes as input
one random variable—corresponding to an assignment of variable
x—and returns 1.0 when that variable is set to True and−1.0 oth-
erwise. This rule associates the features for each fact x with its
corresponding random variable. The weights are parameterized by
variable f to allow for different confidence levels across features.
To generate the factors from the above rule, we ground its body by
evaluating the corresponding query. Grounding generates a factor
(hyper-edge in the factor graph) for each assignment of variables
x and f . The head of inference rules can be a complex boolean
function that introduces correlations across random variables.

Finally, variables in the generated factor graph are separated in
two types: a set E of evidence variables (those fixed to a specific
value) and a set Q of query variables whose value needs to be in-
ferred. During learning, the values of unknown weights in w are
set to the values that maximize the probability of evidence. Then,
inference proceeds with the values of all weights w being fixed.



4. COMPILATION IN HOLOCLEAN
HoloClean compiles all available repair signals to a DDlog pro-

gram. The generated DDlog program contains: (i) rules that cap-
ture quantitative statistics of D; (ii) rules that encode matching de-
pendencies over external data; (iii) rules that represent dependen-
cies due to integrity constraints; (iv) rules that encode the principle
of minimality. The groundings of these rules construct factors hφ
in Equation 1 as in described Section 3.2.

HoloClean’s compilation involves two steps: (i) first HoloClean
generates relations used to form the body of DDlog rules, and then
(ii) uses those relations to generate inference DDlog rules that de-
fine HoloClean’s probabilistic model. The output DDlog rules de-
fine a probabilistic program, which is then evaluated using the Deep-
Dive framework. We describe each of these steps in detail.

4.1 DDlog Relations in HoloClean
HoloClean generates several relations that are transformations of

DatasetD. The following two variables are used to specify fields of
these relations: (i) t is a variable that ranges over the identifiers of
tuples in D, and (ii) a is a variable that ranges over the attributes of
D. We also denote by t[a] a cell inD that corresponds to attribute a
of tuple t. HoloClean’s compiler generates the following relations:

(1) Tuple(t) contains all identifiers of tuples in D.
(2) InitValue(t, a, v) maps every cell t[a] to its initial value v.
(3) Domain(t, a, d) maps every cell t[a] to the possible values it
can take, where variable d ranges over the domain of t[a].
(4) HasFeature(t, a, f) associates every cell t[a] with a series of
features captured by variable f .

Relations Tuple, InitValue, and Domain are populated directly
from the values in D, and the domain of each attribute in D. In
Section 5.1.1, we show how to prune entries in Relation Domain
for scalable inference. Finally, HasFeature is populated with two
types of features: (i) given a cell c, HoloClean considers as features
the values of other cells in the same tuple as c (e.g., “Zip=60608”).
These features capture distributional properties of D that are mani-
fested in the co-occurrences of attribute values; and (ii) if the prove-
nance and lineage of t[a] is provided (e.g., the source from which t
was obtained) we use this information as additional features. This
allows HoloClean to reason about the trustworthiness of different
sources [44] to obtain more accurate repairs. Users can specify
additional features by adding tuples in Relation HasFeature.

To capture external data, HoloClean assumes an additional rela-
tion that is optionally provided as input by the user:

(5) ExtDict(tk, ak, v, k) stores information from external dictionar-
ies identified by the indicator variable k. Variables tk and ak range
over the tuples and attributes of dictionary k, respectively. Relation
ExtDict maps each tk[ak] to its value v in Dictionary k.

4.2 Translating Signals to Inference Rules
HoloClean’s compiler first generates a DDlog rule to specify the

random variables associated with cells in the input dataset D:

Value?(t, a, d) : − Domain(t, a, d)

This rule defines a random variable relation Value?(t, a, d), which
assigns a categorical random variable to each cell t[a]. Grounding
this rule generates the random variables in HoloClean’s probabilis-
tic model. Next, we show how HoloClean expresses each repair
signal (see Section 1), as an inference DDlog rule over these ran-
dom variables. Grounding these rules populates the factors used
in HoloClean’s probabilistic model, which completes the specifica-
tion of the full factor graph used for inferring the correct repairs.

Algorithm 1: Denial Constraint Compilation to DDlog Rules
Input: Denial constraints in Σ, constant weight w
Output: DDlog Rules for Denial Constraints
rules = [];
for each constraint σ : ∀t1, t2 ∈ D : ¬(P1 ∧ · · · ∧ PK) do

/* Initialize the head and scope of the new DDlog rule*/
H ← ∅, S ← ∅;
for each predicate Pk in σ do

if Pk is of the form (t1[An] o t2[Am]) then
H = H∪{Value?(t1,An, v1k)∧Value?(t2,Am, v2k)};
S = S ∪ {v1k o v2k};

if Pk is of the form (t1[An] o α) then
H = H ∪ {Value?(t1,An, v1k)};
S = S ∪ {v1k o α};

rules += !
∧
h∈H h : −Tuple(t1),Tuple(t2),[S] weight = w;

return rules;

Quantitative Statistics. We use the features stored in Relation
HasFeature(t, a, f), to capture the quantitative statistics of Dataset
D. HoloClean encodes the effect of features on the assignment of
random variables with the DDlog rule:

Value?(t, a, d) : − HasFeature(t, a, f) weight = w(d, f)

Weight w(d, f) is parameterized by d and f to allow for different
confidence levels per feature. Weights are learned using evidence
variables as labeled data (Section 2.2).

External Data. Given Relation ExtDict(tk, ak, v, k), described
in Section 4.1, along with a collection of matching dependencies—
expressed as implications in first-order logic—HoloClean gener-
ates additional DDlog rules that capture the effect of the external
dictionaries on the assignment of random variables. First, Holo-
Clean generates DDlog rules to populate a relation Matched, which
contains all identified matches. We use an example to demonstrate
the form of DDlog rules used to populate Matched:

Example 3. We consider the matching dependency between Zip
and City from Example 1. HoloClean generates the DDlog rule:

Matched(t1,City, c2, k) : −Domain(t1,City, c1),

InitValue(t1,Zip, z1),ExtDict(t2,Ext_Zip, z1, k),

ExtDict(t2,Ext_City, c2, k) , [c1 ≈ c2]

where ≈ is a similarity operator and k is the indicator of the ex-
ternal dictionary used. The rule dictates that for a tuple t1 in D
if the zip code matches the zip code of a tuple t2 in the external
dictionary k, then the city of t1 has to match the city of t2. The
DDlog formula populates Matched with the tuple 〈t1, City, c2〉,
where c2 is the lookup value of t1[City] in Dictionary k.

HoloClean’s compiler generates the following inference rule to
capture the dependencies between external dictionaries and random
variables using Relation Matched:

Value?(t, a, d) : −Matched(t, a, d, k) weight = w(k)

Weight w(k) is parameterized by the identifier of the dictionary, k,
to encode different reliability levels per dictionary.

Dependencies From Denial Constraints. HoloClean uses
Algorithm 1 to convert denial constraints to DDlog rules. In Algo-
rithm 1, the quantifier ∀t1, t2 of a denial constraint σ is converted
to a self-join Tuple(t1), Tuple(t2) over Relation Tuple in DDlog.
We apply standard ordering strategies to avoid grounding duplicate



factors. The details are omitted from the pseudocode for clarity.
We illustrate Algorithm 1 with an example:

Example 4. Consider the following denial constraint:

∀t1, t2 ∈ D : ¬(t1[Zip] = t2[Zip] ∧ t1[State] 6= t2[State])

This constraint can be expressed as a factor template in DDlog as:

!(Value?(t1,Zip, z1) ∧ Value?(t2,Zip, z2)∧
Value?(t1, State, s1) ∧ Value?(t2,State, s2)) : −
Tuple(t1),Tuple(t2), [z1 = z2, s1 6= s2] weight = w

Setting w =∞ converts these factors to hard constraints. How-
ever, probabilistic inference over hard constraints is in general #-P
complete [20]. HoloClean allows users to relax hard constraints to
soft constraints by assigning w to a constant value. The larger w
the more emphasis is put on satisfying the given denial constraints.

Minimality Priors. Using minimality as an operational princi-
ple might lead to inaccurate repairs [30]. However, minimality can
be viewed as the prior that the input dataset D contains fewer erro-
neous records than clean records. To capture this prior, HoloClean
generates the following DDlog rule:

Value?(t, a, d) : − InitValue(t, a, d) weight = w

Weight w is a positive constant indicating the strength of this prior.
So far we showed how HoloClean maps various signals into DDlog
rules for constructing the factor graph used for data repairing. In
the following section, we show how we manage the complexity of
the generated factor graph to allow for efficient inference.

5. SCALING INFERENCE IN HOLOCLEAN
HoloClean uses the DeepDive framework to ground the DDlog

generated by its compilation module and to run Gibbs sampling [46]
to perform inference. Both grounding and Gibbs sampling intro-
duce significant challenges: (i) grounding is prone to combinato-
rial explosion [35]; and (ii) in the presence of complex correlations,
Gibbs sampling requires an exponential number of iterations in the
number of random variables to mix, i.e., reach a stationary distri-
bution, and accurately estimate the marginal probabilities of query
variables [45]. To address these challenges we introduce: two
optimizations to limit the combinatorial explosion during ground-
ing, and one optimization that guarantees O(n logn) iterations for
Gibbs sampling to mix, where n is the number of random variables.

5.1 Scalable Grounding in HoloClean
Combinatorial explosion during grounding can occur due to ran-

dom variables with large domains which participate in factors that
encode dependencies due to denial constraints (see Section 4). We
consider the DDlog rule in Example 4 to demonstrate this problem:

Example 5. Consider an input instance, such that all random vari-
ables associated with “Zip” take values from a domain Z, all ran-
dom variables for “State” take values from a domain S, and there
are T tuples in D. Given the constraints z1 = z2 and s1 6= s2,
we have that the total number of groundings just for all tuples is
O(|T |2 · |Z| · |S|2). The combinatorial explosion is apparent for
large values of either |S| or |T |.

There are two aspects that affect HoloClean’s scalability: (i) ran-
dom variables with large domains (e.g., |S| in our example), and
(ii) factors that express correlations across all pairs of tuples in D
(e.g., |T | in our example). We introduce two optimizations: (i)
one for pruning the domain of random variables by leveraging co-
occurrence statistics over the cell values inD, and (ii) one for prun-
ing the pairs of tuples over which denial constraints are evaluated.

5.1.1 Pruning the Domain of Random Variables
Each cell c in D corresponds to a random variable Tc. These

random variables are separated in evidence variables whose value
is fixed—these correspond to clean cells in Dc—and query vari-
ables whose value needs to be inferred—these correspond to noisy
cells in Dn (see Section 2). HoloClean needs to determine the do-
main of query random variables. In the absence of external domain
knowledge, data repairing algorithms usually allow a cell to obtain
any value from the active domain of its corresponding attribute,
namely, the values that have appeared in the attribute associated
with that cell [10, 15].

In HoloClean, we use a different strategy to determine the do-
main of random variables Tc: Consider a cell c ∈ Dn and let t
denote its tuple. We consider the values that other cells in tuple t
take. Let c′ be a cell in t different than c, vc′ its value, and Ac′ its
corresponding attribute. We consider candidate repairs for c to be
all values in the domain of c’s attribute, denoted Ac, that co-occur
with value vc′ . To limit the set of candidate repairs we only con-
sider values that co-occur with a certain probability that exceeds
a pre-defined threshold τ . Following a Bayesian analysis we have:
Given a threshold τ and values v forAc and vc′ forAc′ , we require
that the two values co-occur if Pr[v|vc′ ] ≥ τ . We define this as:

Pr[v|vc′ ] =
#(v, vc′) appear together in D

#vc′ appears in D

The overall algorithm is shown in Algorithm 2.

Algorithm 2: Domain Pruning of Random Variables
Input: Set of Noisy Data Cells Dn, Dataset D, Threshold τ
Output: Repair Candidates for Each Cell in Dn
for each cell c in Dn do

/* Initialize repair candidates for cell c */
Rc ← ∅;
for each cell c in Dn do

Ac ← the attribute of cell c;
for each cell c′ 6= c in c’s tuple do

UAc ← the domain of attribute Ac;
vc′ ← the value of cell c′;
for each value v ∈ UAc do

if Pr[v|vc′ ] ≥ τ then
Rc ← Rc ∪ {v};

return repair candidates Rc for each c ∈ Dn;

Discussion. Varying threshold τ allows users to tradeoff the scala-
bility of HoloClean and the quality of repairs obtained by it. Higher
values of τ imply smaller domains for random variables, thus, smaller
size factor graphs and more efficient inference. At the same time,
τ introduces a tradeoff between the precision and recall of repairs
output by HoloClean. We study the effect of τ on the performance
of HoloClean in Section 6. Setting the value for τ is application-
dependent and is closely tied to the requirements that users have on
the performance (both with respect to quality and runtime) of data
cleaning. Many existing data cleaning solutions, including tools for
entity resolution [47], expose similar knobs to users.

5.1.2 Tuple Partitioning Before Grounding
Grounding the DDlog rules output by Algorithm 1 requires it-

erating over all pairs of tuples in D and evaluating if the body of
each DDlog rule is satisfied for the random variables correspond-
ing to their cells. However, in practice, there are many tuples that
will never participate in a constraint violation (e.g., the domains of
their cells may never overlap). To avoid evaluating DDlog rules for



such tuples, we introduce a scheme that partitions D in groups of
tuples such that tuples in the same group have a high probability
of participating in a constraint violation. DDlog rules are evaluated
only over these groups, thus, limiting the quadratic complexity of
grounding the rules generated by Algorithm 1.

To generate these groups we leverage conflict hypergraphs [34]
which encode constraint violations in the original datasetD. Nodes
in conflict hypergraph H correspond to cells that participate in de-
tected violations and hyperedges link together cells involved in the
same violation. Hyperedges are also annotated with the constraint
that generated the violation. For each constraint σ ∈ Σ we con-
sider the subgraph of H containing only hyperedges for violations
of σ. Let Hσ be the induced subgraph. We let each connected
component inHσ define a group of tuples over which the factor for
constraint σ will be materialized.

Algorithm 3: Generating Tuple Groups
Input: Dataset D, Constraints Σ, Conflict Hypergraph H
Output: Groups of Tuples
/* Initialize set of tuple groups */
G← ∅ ;
for each constraint σ in Σ do

Hσ ← subgraph of H with violations of σ;
for each connected component cc in Hσ do

G← G ∪ {(σ, tuples from D present in cc}) ;

return set of tuple groups G;

We use Algorithm 3 to restrict the groundings of rules generated
by Algorithm 1 only over tuples in the same connected component
with respect to each denial constraint σ ∈ Σ. Our partitioning
scheme limits the number of factors generated due to denial con-
straints to O(

∑
g∈G |g|

2) as opposed to O(|Σ||D|2). In the worst
case the two quantities can be the same. In our experiments, we
observe that, when random variables have large domains, our par-
titioning optimization leads to more scalable models—we observe
speed-ups up to 2×—that output accurate repairs; compared to in-
ference without partitioning, we find an F1-score decrease of 6%
in the worst case and less than 0.5% on average.

5.2 Rapid Mixing of Gibbs Sampling
Gibbs sampling requires that we iterate over the random vari-

ables in the factor graph and, at every step, sample a single variable
from its conditional distribution (i.e., keep all other variables fixed).
If a factor graph has only independent random variables then Gibbs
sampling requires O(n logn) steps to mix [28, 45].

Motivated by this result, we introduce an optimization that re-
laxes the DDlog rules generated by Algorithm 1 to obtain a model
with independent random variables. Instead of enforcing denial
constraints for any assignment of the random variables correspond-
ing to noisy cells in D, we generate features that provide evidence
on random variable assignments that lead to constraint violations.
To this end, we introduce an approximation of our original proba-
bilistic model that builds upon two assumptions: (i) erroneous cells
inD are fewer than correct cells, i.e., there is sufficient redundancy
to fix errors in D, and (ii) each integrity constraint violation can be
fixed by updating a single cell in the participating tuples.

We relax the DDlog rules: For each rule generated by Algo-
rithm 1, iterate over each Value?() predicate and generate a new
DDlog rule whose head contains only that predicate, while all re-
maining Value?() predicates are converted to InitValue() predi-
cates in the body of the rule. Also the weights of the original rules
are relaxed to learnable parameters of the new model. The above
procedure decomposes each initial DDlog rule into a series of new

Table 1: Parameters of the data used for evaluation. Noisy cells
do not necessarily correspond to erroneous cells.

Parameter Hospital Flights Food Physicians
Tuples 1,000 2,377 339,908 2,071,849

Attributes 19 6 17 18
Violations 6,604 84,413 39,322 5,427,322

Noisy Cells 6,140 11,180 41,254 174,557
ICs 9 DCs 4 DCs 7 DCs 9 DCs

rules whose head contains a single random variable. We use an
example to demonstrate the output of this procedure.

Example 6. We revisit Example 4. Our approximation procedure
decomposes the initial DDlog rule into the following rules:

!Value?(t1,Zip, z1) : −InitValue(t2,Zip, z2),

InitValue(t1, State, s1), InitValue(t2, State, s2)),

Tuple(t1),Tuple(t2), [t1! = t2, z1 = z2, s1 6= s2] weight = w

and

!Value?(t1, State, s1) : −InitValue(t1,Zip, z1),

InitValue(t2,Zip, z2), InitValue(t2, State, s2)),

Tuple(t1),Tuple(t2), [t1! = t2, z1 = z2, s1 6= s2] weight = w

where in contrast to the fixed weight of the original rule, w for the
two rules above is a weight to be estimated during learning.

Our relaxed model comes with two desired properties: (i) the
factor graph generated by relaxing the original DDlog rules con-
tains only independent random variables, hence, Gibbs sampling is
guaranteed to mix in o(n logn) steps, and (ii) since random vari-
ables are independent learning the parameters of Equation 1 corre-
sponds to a convex optimization problem. In Section 6.3, we show
that this model not only leads to more scalable data repairing meth-
ods but achieves the same quality repairs as the non-relaxed model.

Discussion. HoloClean’s initial probabilistic model enforces de-
nial constraints globally, i.e., for each possible assignment of the
random variables corresponding to noisy cells in D. On the other
hand, the approximate model can be viewed as a model that en-
forces local consistency with respect to the initially observed val-
ues in D. In Section 6, we empirically find that when there is suffi-
cient redundancy in observing the correct value of cells in a dataset,
our approximate model obtains more accurate repairs and is more
robust to misspecifications of the domain of random variables in
HoloClean’s probabilistic model (i.e., less sensitive to the value
that parameter τ takes). We are actively working on theoretically
analyzing the connections between the above model and involved
notions of minimality, such as cardinality-set-minimality [8].

6. EXPERIMENTS
We compare HoloClean against state-of-the-art data repairing

methods on a variety of synthetic and real-world datasets.The main
points we seek to validate are: (i) how accurately can HoloClean
repair real-world datasets containing a variety of errors, (ii) what is
the impact of different signals on data repairing, and (iii) what is
the impact of our pruning methods on the scalability and accuracy
of HoloClean. Finally, we study the impact of error detection on
HoloClean’s performance.

6.1 Experimental Setup
We describe the datasets, metrics, and experimental settings used

to validate HoloClean against competing data repairing methods.



Datasets. We use four real data sets. For all datasets we seek
to repair cells that participate in violations of integrity constraints.
Table 1 shows statistics for these datasets. As shown, the datasets
span different sizes and exhibit various amounts of errors:

Hospital. This is a benchmark dataset used in the literature [15,
18]. Errors amount to ∼ 5% of the total data. Ground truth in-
formation is available for all cells. This dataset exhibits significant
duplication across cells. We use it to evaluate how effective Holo-
Clean is at leveraging duplicate information during cleaning.

Flights. This dataset [38] contains data on the departure and ar-
rival time of flights from different data sources. We use four denial
constraints that ensure a unique scheduled and actual departure and
arrival time for each flight. Errors arise due to conflicts across data
sources. Ground truth information is available for all cells. The
majority of cells in Flights are noisy and the lineage of each tuple
is know. We use this dataset to examine how robust HoloClean is
in the presence of many errors, and to evaluate if HoloClean can
exploit conflicts across data sources to identify correct data repairs.

Food. This is the dataset from Example 1. Errors correspond to
conflicting zip codes for the same establishment, conflicting in-
spection results for the same establishment on the same day, con-
flicting facility types for the same establishment and many more.
These errors are captured by seven denial constraints. The majority
of errors are introduced in non-systematic ways. The dataset also
contains many duplicates as records span different years. We use
this dataset to evaluate HoloClean against real data with duplicate
information and non-systematic errors.

Physicians. This is the Physician Compare National dataset pub-
lished in Medicare.gov [3]. We used nine denial constraints to iden-
tify errors in the dataset. The majority of errors correspond to sys-
tematic errors. For example, the location field for medical orga-
nizations is misspelled, thus, introducing systematic errors across
entries of different professionals. For instance, “Sacramento, CA”
is reported as “Scaramento, CA” in 321 distinct entries. Other er-
rors include zip code to state inconsistencies. We use this dataset
to evaluate HoloClean against datasets with systematic errors.

Competing Methods. For the results in this section, denial
constraints in HoloClean are relaxed to features (see Section 5.2).
No partitioning is used. We evaluate HoloClean against:
• Holistic [15]: This method leverages denial constraints to

repair errors. Holistic is shown to outperform other meth-
ods based on logical constraints, thus, we choose to compare
HoloClean against this method alone.
• KATARA [16]: This is a knowledge base (KB) powered data

cleaning system that, given a dataset and a KB, interprets
table semantics to align it with the KB, identifies correct and
incorrect data, and generates repairs for incorrect data. We
use an external dataset containing a list of States, Zip Codes,
and Location information as external information.
• SCARE [49]: This is a method that uses machine learning to

clean dirty databases by value modification. This approach
does not make use of integrity or matching constraints.

Features, Error Detection, and External Signals. The
probabilistic models generated by HoloClean capture all features
described in Section 4. Source-related features are only available
for Flights. To detect erroneous cells in HoloClean, we used the
same mechanism as Holistic [15]. Finally, for micro-benchmarking
purposes we use the dictionary used for KATARA on Hospital,

Food, and Physicians. Unless explicitly specified HoloClean does
not make use of this external information.

Evaluation Methodology. To measure the quality of repairs
by different methods we use the following metrics:
• Precision (Prec.): the fraction of correct repairs, i.e., repairs

that match the ground truth, over the total number of repairs
performed for cells in the labeled data.
• Recall (Rec.): correct repairs over the total number of errors.

The total number of errors is computed over the available
labeled data for each dataset.
• F1-score (F1): the harmonic mean of precision and recall

computed as 2× (Prec.×Rec.)/(Prec.+Rec.).
For Hospital and Flights we have full ground truth information.
For Food and Physicians we manually labeled a subset of the data
as described below. For each method we also measure the overall
wall-clock runtime. For HoloClean this is: (i) the time for detecting
violations, (ii) the time for compilation, and (iii) the time needed
to run learning and inference. Finally, we vary the threshold τ of
our pruning optimization for determining the domain of cell-related
random variables (see Algorithm 2) in {0.3, 0.5, 0.7, 0.9}.

Obtaining Groundtruth Data. To evaluate data repairing on
Food and Physicians, we manually labeled 2,000 and 2,500 cells,
respectively: We focused on tuples identified as erroneous by the
error detection mechanisms of Holistic, KATARA, and SCARE.
From this set of cells we randomly labeled 2,000 cells for Food and
2,500 cells for Physician. Not all cells were indeed noisy. This pro-
cess leads to unbiased estimates for the precision of each method.
However, recall measurements might be biased.

Implementation Details. HoloClean’s compiler is implemented
in Python while the inference routines are executed in DeepDive
v0.9 using Postgres 9.6 for backend storage. Holistic is imple-
mented in Java and uses the Gurobi Optimizer 7.0 as its external
QP tool. KATARA and Scare are also implemented in Java. All
experiments were executed on a machine with four CPUs (each
CPU is a 12-core 2.40 GHz Xeon E5-4657L), 1TB RAM, running
Ubuntu 12.04. While all methods run in memory, their footprint is
significantly smaller than the available resources.

6.2 Experimental Results
We compare HoloClean with competing data repairing approaches

on the quality of the proposed repairs. We find that in all cases
HoloClean outperforms all state-of-the-art data repairing methods
and yields an average F1-score improvement of more than 2×.

6.2.1 Identifying Correct Data Repairs
We report the precision, recall, and F1-score obtained by Holo-

Clean and competing approaches. The results are shown in Table 2.
For each dataset, we report the threshold τ used for pruning the do-
main of random variables. The effect of τ on the performance of
HoloClean is studied in Section 6.3.1. As shown in Table 2 Holo-
Clean outperforms other data repairing methods significantly with
relative F1-score improvements of more than 40% in all cases. This
verifies our hypothesis that unifying multiple signals leads to more
accurate automatic data cleaning techniques.

We focus on HoloClean’s performance for the different datasets.
For Hospital, HoloClean leverages the low number of errors and
the presence of duplicate information to correctly repair the major-
ity of errors, achieving a precision of 100% and a recall of 71.3%.
HoloClean also achieves high precision for Flights (88.8%), as it



Table 2: Precision, Recall and F1-score for different datasets.
For each dataset, the threshold used for pruning the domain of
random variables is reported in parenthesis.

Dataset (τ ) Metric HoloClean Holistic KATARA SCARE

Hospital (0.5)
Prec. 1.0 0.517 0.983 0.667
Rec. 0.713 0.376 0.235 0.534
F1 0.832 0.435 0.379 0.593

Flights (0.3)
Prec. 0.887 0.0 n/a 0.569
Rec. 0.669 0.0 n/a 0.057
F1 0.763 0.0* n/a 0.104

Food (0.5)
Prec. 0.769 0.142 1.0 0.0
Rec. 0.798 0.679 0.310 0.0
F1 0.783 0.235 0.473 0.0+

Physicians (0.7)
Prec. 0.927 0.521 0.0 0.0
Rec. 0.878 0.504 0.0 0.0
F1 0.897 0.512 0.0# 0.0+

* Holistic did not perform any correct repairs.
+ SCARE did not terminate after three days.
# KATARA performs no repairs due to format mismatch for zip code.

Table 3: Runtime analysis of different data cleaning methods.
A dash indicates that the system failed to terminate after a
three day runtime threshold.

Dataset HoloClean Holistic KATARA SCARE

Hospital 147.97 sec 5.67 sec 2.01 sec 24.67 sec
Flights 70.6 sec 80.4 sec n/a 13.97 sec
Food 32.8 min 7.6 min 1.7 min -
Physicians 6.5 hours 2.03 hours 15.5 min -

uses the information on which source provided which tuple to es-
timate the reliability of different sources [44] and leverages that to
propose repairs. Nonetheless, we see that recall is limited (66.9%)
since most of the cells contains errors. Finally, for Food and Physi-
cian HoloClean obtains F1-scores of 0.783 and 0.897, respectively.

We now turn our attention to competing methods. Holistic yields
repairs of fair quality (around 50% F1) for datasets with a large
number of duplicate information (e.g., Hospital) or a large num-
ber of systematic errors (e.g., Physicians). When datasets contain
mostly noisy cells (as in Flights) or errors that follow random pat-
terns (as in Food) using logical constraints and minimality yields
very poor results—the precision of performed repairs is 0.0 for
Flights and 0.14 for Foods.

In contrast, KATARA obtains repairs of very high precision but
limited recall. This is expected as the coverage of external knowl-
edge bases can be limited. Finally, SCARE performs reasonably
well in datasets such as Hospital, where a large number of duplicate
records is available and qualitative statistics can help repair errors.
Similar to HoloClean it is able to leverage existing correct tuples to
perform repairs. However, for Flights, where the number of dupli-
cates is limited, SCARE has limited recall. Also SCARE failed to
terminate after running for three days on Food and Physicians.

Takeaways. HoloClean’s holistic approach obtains data repairs
that are significantly more accurate—we find an F1-score improve-
ment of more than 2× on average—than existing state-of-the-art
approaches that consider isolated signals for data repairing.

6.2.2 Runtime Overview
We measure the total wall-clock runtime of each data repairing

method for all datasets. The results are shown in Table 3. Re-
ported runtimes correspond to end-to-end execution with data pre-
processing and loading. For Holistic, pre-processing corresponds
to loading input data from raw files and running violation detection.
SCARE operates directly on the input database, while KATARA
loads data in memory and performs matching and repairing.
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Figure 3: Effect of pruning on Precision and Recall. Missing
values correspond to time-outs with a threshold of one day.

As shown HoloClean can scale to large real-world data repairing
scenarios. For small datasets, i.e., Hospital and Flights, the total
execution time of HoloClean is within one order of magnitude of
Holistic’s runtime but still only a few minutes in total. For Food,
HoloClean exhibits a higher runtime but for Physicians both sys-
tems are within the same magnitude. KATARA is faster as it only
performs matching operations. Finally, while SCARE is very fast
for the small datasets, it fails to terminate for the larger ones. While
HoloClean’s runtime is higher than that of competing methods, the
accuracy improvements obtained justify the overhead.

6.3 Micro-benchmark Results
We evaluate the tradeoff between the runtime of HoloClean and

the quality of repairs obtained by it due to the optimizations in Sec-
tion 5. We also evaluate the quality of data repairs performed by
HoloClean when external dictionaries are incorporated and the im-
pact of error detection on HoloClean’s performance.

6.3.1 Tradeoffs Between Scalability and Quality
We evaluate the runtime-quality tradeoffs for: (i) pruning the do-

main of random variables, which restricts the domain of the random
variables in HoloClean’s model, (ii) partitioning, and (iii) relaxing
the denial constraints to features that encode priors. Domain prun-
ing can be applied together with the other two optimizations, thus,
is applicable to all variations of HoloClean listed next:
• DC Factors: Denial constraints are encoded as factors (see

Section 4). No other optimization is used.
• DC Factors + partitioning: Same as the above variation

with partitioning (see Section 5.1.2).
• DC Feats: Denial constraints are used to extract features that

encode priors over independent random variables (see Sec-
tion 5.2). This version of HoloClean was used for the exper-
iments in Section 6.2.
• DC Feats + DC Factors: We use denial constraints to extract

features that consider only the initial values of the values in
D and also add factors that enforce denial constraints for any
assignment of the cell random variables.
• DC Feats + DC Factors + partitioning: Same as the above

variation with partitioning.

The Effect of Domain Pruning. First, we consider the DC Feats
variation of HoloClean and vary threshold τ . We examine how
the precision and recall of HoloClean’s repairs change. The results
are shown in Figure 3. Increasing threshold τ in Algorithm 2 in-
troduces a tradeoff between the precision and recall achieved by
HoloClean. Lower values of threshold τ provide HoloClean with
an increased search space of possible repairs, thus, allowing the
recall of HoloClean to be higher.

As we increase threshold τ the recall of HoloClean’s output drops
significantly. For example, in Food increasing the pruning thresh-
old from 0.5 to 0.7 has a dramatic effect on recall, which drops
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Figure 4: Effect of pruning on Compilation and Repairing run-
times. Runtimes are reported in log-scale. Missing values cor-
respond to time-outs with a threshold of one day.

from 0.77 to 0.36. On the other hand, we see that precision in-
creases. One exception is the Flights dataset where a large number
of the pruning threshold has a negative impact on precision. This
result is expected since Flights contains a small number of dupli-
cates: Setting τ = 0.9 requires that a candidate value for a cell
has high co-occurrence probability with the values that other cells
in the same tuple obtain. In the absence of noisy duplicates, severe
pruning can lead to a set of candidate assignments that may not
contain the truly correct value for an erroneous cell.

The effect of the pruning threshold τ on the runtime of Holo-
Clean is shown in Figure 4. Violation detection is not affected by
this threshold, thus, we focus on the compile and repair phase. The
corresponding runtimes are in log-scale due to account for dataset
differences. As shown the effect of τ is not that significant on the
runtime of HoloClean. Compilation runtime is similar as τ varies.
However, the time required for repairing decreases as threshold τ
increases and this allows HoloClean to perform accurate repairs to
large datasets such as Physicians (containing 37M cells).

Takeaways. Our domain pruning strategy plays a key role in
achieving highly accurate repairs and allows HoloClean to scale
to large datasets with millions of rows.

Runtime versus Quality Tradeoff. We now evaluate the runtime,
precision, and recall for all variations of HoloClean listed above.
Figure 5 reports the results for Food. The same findings hold for
all datasets. We make the following observations:

(1) Runtime: When random variables are allowed to have large
domains (i.e., for small values of τ ) using partitioning or relax-
ing denial constraints to features (DC Feats) lead to runtime im-
provements of up to 2x. When the domain of random variables is
heavily pruned, all variants of HoloClean exhibit comparable run-
times. This is expected as the underlying inference engine relies on
database optimizations, such as indexing, to perform grounding.
Not surprisingly, encoding denial constraints as factors (DC Fac-
tors) instead of features (DC Feats) exhibits a better runtime. This
is because the model for DC Factors contains fewer factors—recall
that relaxing denial constraints to features introduces a separate fac-
tor for each attribute predicate in a constraint. While one would ex-
pect partitioning to have a significant impact on the time required
to perform grounding, we find that limiting the number of possi-
ble repairs per records is more effective at speeding-up grounding.
The reason is that modern inference engines leverage database op-
timizations such as indexing during grounding.

(2) Quality of Repairs: Pruning the domain of random variables
leads to an increase in the precision and a decrease in the recall
of repairs obtained for the different variants of HoloClean. An in-

teresting observation is that relaxing denial constraints (e..g, when
DC Feats is used), allows HoloClean to obtain higher quality re-
pairs. We conjecture that this is due to two reasons: (i) the fact that
the input noisy datasets are statistically close to their true clean ver-
sions, i.e., the noise is limited, and (ii) when the domain of random
variables is misspecified (e.g., too large) using a complex model
that enforces denial constraints leads to harder, ill-posed inference
problems. A theoretical study of when encoding denial constraints
as features is sufficient to obtain high quality repairs is an exciting
future direction of research.

Takeaways. Relaxing denial constraints leads to more scalable
models and models that obtain higher quality repairs when the do-
mains of random variables are misspecified.

6.3.2 External Dictionaries in HoloClean
We evaluate the performance of HoloClean when incorporating

external dictionaries and use matching dependencies. We use the
same dictionary used for KATARA. The dictionary contains a list
of Zip codes, cities, and states in the US. We find that using ex-
ternal dictionaries can improve the quality of repairs obtained by
HoloClean but the benefits are limited: for all datasets we observed
F1-score improvements of less than 1%. This restricted gain is not
a limitation of HoloClean, which can natively support external data,
but is due to the limited coverage of the external data used.

6.3.3 Qualitative Analysis on Real-Data
We perform a qualitative analysis to highlight how the marginal

probabilities output by HoloClean allow users to reason about the
validity of different repairs obtained by HoloClean, thus, obviating
the need for exploration strategies based on active learning. We
conduct the following experiment: we consider repairs suggested
by HoloClean and measure the error-rate (i.e., the rate of correct
versus total repairs) for repairs in different buckets of marginal
probabilities. We use the same setup as in Section 6.2.1.

As shown in Figure 6, the error-rate rate decreases as the marginal
probabilities increase. For example, repairs whose marginals be-
long in the [0.5 − 0.6) probability bucket exhibit an average error
rate of 0.58 across all datasets, while marginals in [0.7−0.8) bucket
have an average error rate of 0.24. These marginal probabilities can
be used to control the quality of repairs by HoloClean.

6.3.4 Impact of Error Detection on HoloClean
Finally, we study the impact of error detection on the quality of

HoloClean’s output. To evaluate the quality of repairs performed
by HoloClean we use the precision and recall metrics introduced in
Section 6.1. Recall, as defined previously, is computed with respect
to all errors in the dataset. Nonetheless, HoloClean is restricted to
perform repairs only for cells that are identified as potentially er-
roneous by the error detection mechanism used before HoloClean
is applied for data repairing. Naturally, recall is sensitive to error
detection, since an undetected error will never be fixed by Holo-
Clean. To better understand the performance of HoloClean we also
evaluate a new recall metric that we refer to as repairing recall. We
define repairing recall as the fraction of correct repairs over the total
number of correctly erroneous cells identified by error detection.

We focus on the Hospital dataset for which all errors are known.
We use HoloClean with DC Feats and a value of τ = 0.3 and eval-
uate the quality of repairs as we vary the true positive rate (which
relates to the false negatives of the detection tool, i.e., the missed
errors) and false positive rate (i.e., cells that are declared errors but
they are correct) of error detection. The results are shown in Fig-
ure 7. To study the effect of arbitrary error detection mechanisms,
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we emulate error detection as follows: For our first experiment (see
Figure 7(a)), we start with the set of all, truly erroneous cells and
vary the percentage of those revealed to HoloClean—this corre-
sponds to varying the true positive rate of error detection. For the
second experiment (see Figure 7(b)), we start with the set of all,
truly erroneous cells and extend it by adding correct cells as errors.
For the latter, we iterate over each correct cell in the dataset and
randomly add it to the set of erroneous cells with a fixed probabil-
ity that is equal to the false positive rate of error detection.

As shown in Figure 7(a), when we vary only the true rate of
error detection while keeping its false positive rate to zero only
the recall of HoloClean is affected. This is because HoloClean is
limited to repairing cells that are only detected as erroneous. On
the other hand, the precision of repairs performed by HoloClean
remains close to one. Finally, as expected, the repairing recall of
HoloClean remains fairly stable and is always significantly higher
than the overall recall. This verifies that HoloClean’s performance
is restricted by the quality of the error detection algorithm used.

When we vary the false positive rate of error detection while
the true positive rate is set to one both the precision and recall of
HoloClean are affected (see Figure 7(b)). This is because impre-
cise error detection affects the quality of training data available to
HoloClean for learning the parameters of its underlying probabilis-
tic model. Nonetheless, we find that the quality of repairs output
by HoloClean is quite robust. In particular, the drop in precision
and recall is around 7% even when cells are incorrectly reported as

erroneous 20% of the time. Finally, as expected, repairing recall
and the overall recall have exactly the same value.

7. RELATED WORK
Data Cleaning. There has been a significant amount of work on
methods for data cleaning, including approaches that rely on in-
tegrity constraints [15, 17, 22, 26], methods that leverage external
information, such as data obtained by experts [25, 47] or data in
existing knowledge bases or dictionaries [16, 25, 32, 48], and tech-
niques that focus on outlier detection [29]. All these methods rely
on isolated signals to repair erroneous cells. On the other hand,
HoloClean builds upon probabilistic graphical models to combine
domain knowledge, such as qualitative constraints, with evidence—
either in the form of external data or statistical properties of the
dataset to be cleaned—to retrieve more accurate data cleaning so-
lutions. Hence, HoloClean introduces an extensible approach for
combining heterogeneous data cleaning methods.

Scalable Probabilistic Inference. Recent works have introduced
general-purpose systems for specifying probabilistic models and
running probabilistic inference [6, 41, 46]. In these engines, users
can declaratively define probabilistic models that not only capture
the uncertainly of their data but also model relevant domain-specific
constraints. To scale up inference these engines rely on approxi-
mate inference methods, such as Gibbs sampling [50]. HoloClean
is a compiler that automatically generates probabilistic programs
for data cleaning. HoloClean guarantees the scalability of inference
by optimizing the structure of the generated program for cleaning.

8. CONCLUSIONS
We introduced HoloClean, a data cleaning system that relies on

statistical learning and inference to unify a range of data repairing
methods under a common framework. We introduced several opti-
mization to scale inference for data repairing, and studied the trade-
offs between the quality of repairs and runtime of HoloClean. We
showed that HoloClean obtains repairs that are significantly more
accurate than state-of-the-art data cleaning methods.

Our study introduces several future research directions. Under-
standing when integrity constraints need to be enforced versus when
it is sufficient to encode them as features has the potential to gener-
ate a new family of data repairing tools that not only scale to large
instances but also come with theoretical guarantees. Additionally,
data cleaning is limited by the error detection methods used be-
fore. Recently, the paradigm of data programming [43] has been
introduced to allow users to encode domain knowledge in inference
tasks. Exploring how data programming and data cleaning can be
unified under a common probabilistic framework to perform better
detection and repairing is a promising future direction.
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