
Expressive and Flexible Access to Web-Extracted Data:
A Keyword-based Structured Query Language

Jeffrey Pound
University of Waterloo

Waterloo, Canada
jpound@cs.uwaterloo.ca

Ihab F. Ilyas
University of Waterloo

Waterloo, Canada
ilyas@cs.uwaterloo.ca

Grant Weddell
University of Waterloo

Waterloo, Canada
gweddell@cs.uwaterloo.ca

ABSTRACT
Automated extraction of structured data from Web sources
often leads to large heterogeneous knowledge bases (KB),
with data and schema items numbering in the hundreds of
thousands or millions. Formulating information needs with
conventional structured query languages is difficult due to
the sheer size of schema information available to the user.
We address this challenge by proposing a new query lan-
guage that blends keyword search with structured query
processing over large information graphs with rich seman-
tics. Our formalism for structured queries based on key-
words combines the flexibility of keyword search with the
expressiveness of structures queries.

We propose a solution to the resulting disambiguation
problem caused by introducing keywords as primitives in a
structured query language. We show how expressions in our
proposed language can be rewritten using the vocabulary of
the web-extracted KB, and how different possible rewritings
can be ranked based on their syntactic relationship to the
keywords in the query as well as their semantic coherence in
the underlying KB.

An extensive experimental study demonstrates the effi-
ciency and effectiveness of our approach. Additionally, we
show how our query language fits into QUICK, an end-to-
end information system that integrates web-extracted data
graphs with full-text search. In this system, the rewritten
query describes an arbitrary topic of interest for which cor-
responding entities, and documents relevant to the entities,
are efficiently retrieved.

Categories and Subject Descriptors
H.2.3 [Information Systems]: Database Management—
Query languages; H.3.3 [Information Systems]: Infor-
mation Search and Retrieval—Query formulation, Retrieval
models

General Terms
Design, Experimentation, Languages, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

1. INTRODUCTION
The World Wide Web hoards massive amounts of unstruc-

tured text data. Recent efforts to extract structured data
sets from unstructured and semi-structured Web documents,
such as ExDB [4], YAGO [24], and WebTables [3], have re-
sulted in the creation of massive knowledge bases: struc-
tured data sets often encoding rich schematic information
over millions of entities. As an example, both ExDB and
YAGO have schema items numbering in the millions, and
fact collections numbering in the hundreds and tens of mil-
lions respectfully. WebTables has over five million unique at-
tribute names in over two million unique relational schemas.
At this scale, writing structured queries can be a daunting
task as the sheer magnitude of the information available to
express the query is overwhelming. We call this the infor-
mation overload problem.

To deal with this problem, and also open a new form of
exploratory search, recent work has brought keyword query
processing to structured data models, such as keyword search
over relational databases. While this alleviates the informa-
tion overload problem caused by massive schemas, it comes
at a loss of expressivity. Users can no longer express desired
structure in the query, and can no longer explicitly take ad-
vantage of schema information.

As an example, consider a user who wants to find all peo-
ple of German nationality who have won a Nobel award. The
user may pose the following conjunctive query to an infor-
mation system.

q(x):- GERMAN_PEOPLE(x), hasWonPrize(x, y), NOBEL_PRIZE(y) (1)

If the user is not familiar with the schema of the underlying
information system (i.e., they do not know the labels of the
relations in order to formulate a well formed query), then
they may alternatively issue the following keyword query.

“german has won nobel award” (2)

This query searches for all data items with a syntactic occur-
rence of the given keywords. There are two important dif-
ferences between the structured query and the keyword vari-
ant. First, the structured query will be processed by making
use of explicit semantics encoded as an internal schema. In
particular, the query will find data items that are German,
rather than those which contain the keyword “german”. Sec-
ond, the keyword query will look for data items with any
syntactic occurrence of “nobel award”, while the structured
query uses this as a selection condition over the qualifying
entities, exploiting the structure of the query to find quali-
fying results.

“german”, “has won” (“nobel award”)8<: German_Language
GERMAN_PEOPLE
German_Alphabet

9=; ,

hasWeight

hasWonPrize

ff „8<: NOBEL_PRIZE
AWARD

Turing_Award

9=;
«

.

Figure 1: An ambiguous conjunctive query and the possible interpretations. The first and third predicates
are an example of matching on keyword occurrence, while the second predicate is an example of matching
on edit distance.

This example illustrates how query languages can vary
in their expressiveness and ease-of-use. On one end of the
spectrum, structured query languages, such as SQL, pro-
vide a mechanism to express complex information needs over
a schema. A user of such a language must have intimate
knowledge of the underlying schema in order to formulate
well formed queries for arbitrary information needs. On the
other end of the spectrum are free form query languages
such as keyword queries. These languages allow users to ex-
press information needs with little to no knowledge of any
schematic constructs in the underlying information system,
giving ease-of-use as well as useful exploratory functionality
to the user.

Consider the design of a query language that falls some-
where in the middle of this spectrum. We would ideally like
to retain the expressive structure of structured queries, while
incorporating the flexibility of keyword queries. One way to
achieve this is to embed ambiguity into the structured query
language by allowing keywords or regular expressions to take
the place of entities or relations. In this setting the query
from the previous example may be written using structure
as in (1), but with keywords as in (2).

“german, has won(nobel award)”

This approach keeps the flexibility of keywords, but allows
structure using conjunctions and nesting with relations. In
this model each keyword phrase will be replaced, by the
query processor, with a set of candidate schema items based
on some metric of syntactic matching, such as keyword oc-
currence or edit distance as depicted in Figure 1. The advan-
tage of this approach is in the flexibility of how queries can
be expressed. Users need not have intimate knowledge of
the underlying schema to formulate queries as is necessary
with traditional structured query languages. At the same
time, the query retains explicit structure that gives greatly
increased expressiveness over flat keyword queries.

The problem with this approach is that the number of pos-
sible (disambiguated) queries is exponential in the size of the
query. This is problematic as many of the possible matchings
may be meaningless with respect to the underlying schema,
or may not represent the users actual intention. Process-
ing every possible match is not only inefficient, as many of
the possible query interpretations may have empty result
sets, it can overload the user with many unwanted results
from unintended interpretations. For example, the query
for all GERMAN_PEOPLE who have won an AWARD (the super
class of all awards) will produce many results that obstruct
the user from finding those of interest (those who have won
a NOBEL_PRIZE). Note that syntactic matching alone could
not possibly be sufficient as a disambiguation solution in all
cases, as the keyword “german” is a natural choice to express
both a nationality and a language. This phenomena, known
as polysemy, is just one of the challenges of disambiguation.
Similar problems arise with synonymy.

In this paper, we investigate a solution to the problem of
querying over rich massive schemas by introducing a struc-
tured query language that builds upon keywords as its most
basic operator, while taking disambiguation steps before
query evaluation in order to avoid the exponential blow-up
caused by keyword ambiguity. Our query language allows
a natural keyword-based description of entity-relationship
queries over large knowledge bases without intimate back-
ground knowledge of the underlying schema.

1.1 Contributions
In this work, we make the following contributions.

• We propose a model for keyword-based structured queries
that allows users to create expressive descriptions of
their information need without having detailed knowl-
edge of the underlying schema.

• We analyze the consequences of introducing ambigu-
ity into a structured query language (by means of key-
words as base level constructs), and propose a model
for efficient and effective disambiguation.

• We show how to accommodate incomplete knowledge
in the underlying KB by allowing query terms to be
used as keywords during document retrieval, integrat-
ing full text search in the cases where full disambigua-
tion can not be achieved.

• Lastly, we show how our proposed query processing
model can be integrated into QUICK (Queries Using
Inferred Concepts from Keywords) an end-to-end se-
mantic search system.

We demonstrate the viability of our proposed approach with
an extensive experimental evaluation of both the quality and
performance of a prototype implementation of the complete
system.

1.2 Outline
The remainder of the paper is organized as follows. Sec-

tion 2 reviews relevant background information and gives an
overview of our problem and proposed architecture. Section
3 presents our structured keyword query language, with the
disambiguation problem explored in Section 4. In Section
5 we show experimental results of a prototype implementa-
tion. Section 6 surveys and compares related work with our
approach and Section 7 concludes.

2. BACKGROUND
Entity Search Entity search is a variant of traditional in-

formation retrieval (IR) in which entities (e.g., Albert Ein-
stein, Los Angeles, etc..) form the most basic data-level
construct, as opposed to documents in traditional IR. This
view of the search problem opens up a variety of new query
processing opportunities, in particular the ability to process
more structured types of queries over the entities and their

Figure 2: System architecture.

relations to one another becomes feasible (e.g., [4, 6, 13,
14]). In contrast to traditional IR, query processing in this
model may aggregate data from multiple documents to de-
termine which entities are part of a query result. In these
models, structured or unstructured query languages can be
used to describe entities of interest, and data can reside in a
structured model or in text documents. The common facet
is that entities form the primitives for search.

As an example, consider an entity-based search system
over text documents. Given a query for documents con-
taining the entity Max_Planck, the system would retrieve
all documents mentioning Max_Planck, and not the doc-
uments which mention the Max_Planck_Institute or the
Max_Planck_Medal (an award in physics). Having entities as
primitives reduces ambiguity in the semantics of the search,
which avoids problems common to traditional keyword search
systems. Also, information can be aggregated from different
sources to answer a query, such as a search for all documents
containing entities bornIn(Canada). Documents about qual-
ifying entities will be returned independent of the location
of the information that encodes where they were born.

Semantic Search KB-based semantic search is a similar
problem to entity search in which entities and relations form
the base level data constructs. In these systems, rich se-
mantics defined by KBs are taken into consideration during
query processing (or as a preprocessing phase). However,
semantic search systems generally operate over structured
semantic data, such as RDF or OWL [10, 21], fact triples
[17], or XML [9] (with explicit references to the ontology
concepts). A variant of the semantic search problem is to
support searching over the semantics of entities found in text
documents. Again these models may make use of structured
or unstructured query languages. The common thread in
semantic search systems is the support for inference over a
reference schema graph.

As an example, consider a semantic search system over
text documents. A search for documents containing entities
of type GUITARIST would return documents about B._B._King,
Jimi_Hendrix, and other entities known to be guitarists.
These documents are query results independent of whether
or not they contain a syntactic occurrence of the word “gui-
tarist.” Thus, the search relates to the semantics of the
entities, rather than the surface syntax.

Knowledge Representation The field of knowledge rep-
resentation is concerned with formalisms for encoding knowl-

edge with clear semantics to support inference over the en-
coded information. A collection of schematic information,
which forms general rules about a domain of interest, is
called an ontology. Concrete instance information, or en-
tities, describe explicit information about particular entities
in the domain, such as Albert_Einstein. A knowledge base
is a general term for a domain ontology and instance data,
e.g., the union of a data graph and schema graph in the case
of web-extracted data.

As an example, an ontology might define relationships
among abstract primitive concepts, such as the relationship
PHYSICIST is-a SCIENTIST. Ontologies may also include arbi-
trary relations, such as hasWonPrize, to encode information
like NOBEL_LAUREATE is-a PERSON that has a hasWonPrize
relation to some NOBEL_PRIZE. The encoding of the knowl-
edge base information and the associated semantics rest on
an underlying knowledge representation formalism. More
details on the underlying formalisms used in knowledge rep-
resentation can be found in [1].

2.1 Preliminaries
We assume access to a domain related knowledge base

and document corpus. These data sources are preprocessed
to: (1) extract entities from the text (used for entity search
over documents), (2) compute statistics over the knowledge
base (used in disambiguation), and (3) index the knowledge
base’s content and structure (used in query processing), as
well as the document text (used to integrate full text search).

The schema language for the underlying knowledge bases
assumed in our work includes entities, primitive concepts,
conjunctions, existential relations, and acyclic concept hier-
archies. This is sufficient to capture many real world knowl-
edge bases and ontologies such as YAGO [24], a large knowl-
edge base derived from Wikipedia and WordNet.

The basic knowledge base terminology used in our discus-
sion, as well as our notational conventions, are as follows.

• Entities are written in a typed font with leading cap-
itals. Entities denote constant terms such as peo-
ple, places, and organizations (e.g., Albert_Einstein,
Canada).

• Primitive Concepts are written in a typed font in all
capitals. Primitive concepts are types or classes to
which entities may belong (e.g., SCIENTIST, COUNTRY).

• Relations are written in italic camel caps. Relations
are binary relationships that can exist between enti-

ties and/or primitive concepts (e.g., hasWonPrize or
bornIn). There is also a transitive is-a relation used
to encode hierarchies among concepts.

• A Concept is any number of entities or primitive con-
cepts joined by logical connectives such as conjunctions
and relations (note that relations are implicitly exis-
tentially qualified). We use“,” to denote a conjunction.
(e.g. SCIENTIST, hasWonPrize(Nobel_Prize_in_Physics)).

As a concept describes a specific set of entities, it can
also be viewed as a query which we refer to as a Con-
cept Query.

We also adopt the convention of writing keywords in quoted
italic lower case (e.g., “scientist”).

2.2 System Overview
Our complete system architecture is illustrated in Fig-

ure 2. The solid lined box on top shows the run-time com-
ponents, with data flow represented as solid lined arrows.
The grey dotted lined box shows the preprocessing phase,
with preprocessor data flow represented as dotted lined ar-
rows. The bold typed components in the diagram show the
parts of the system which we focus on in this paper, namely,
the query language, query disambiguation, and integrating
full text search for document ranking. Details of our struc-
tured query processor and KB index, which allow efficient
evaluation of structured KB queries, are beyond the scope of
this paper. We use existing solutions to support the remain-
ing components of the system (knowledge base construction
and information extraction).

The preprocessor consists of two components, the informa-
tion extraction system and the indexing module. These two
components make use of two domain related data sources, a
knowledge base and a document corpus. The preprocessing
phase proceeds as follows. First the information extraction
tool is run over the document corpus to mine structured
information from the text. This information includes ex-
tracted named entities as well as relationships among the
entities. Facts that were previously unknown to the knowl-
edge base can be contributed (note that we omit this learn-
ing phase in our implementation and discussion as the focus
of this paper is not on the extraction component). The
named entities are then sent to the indexer to build an in-
verted index over entities and documents. The full text of
the documents is also indexed to support full text search.

In the second preprocessing phase, the structure of the
knowledge base is indexed to support efficient entity search
within the knowledge base. It is important to note that the
entity search module must be capable of handling the ex-
pressivity of the constructs used in the underlying knowledge
base. The final preprocessing step is to compute statistics
over the knowledge base which will be used during query
disambiguation.

At run time, an arbitrary keyword-based structured query
is taken as input to the system. Because the query is based
on keywords, there is an inherent ambiguity as to the se-
mantics of the query (i.e., the user’s intention). We com-
pute a ranked set of possible query disambiguations based on
the vocabulary of the knowledge base. Each disambiguated
query is thus a general concept over the underlying knowl-
edge base. One or more of these disambiguated queries can
then be evaluated to find potentially relevant entities and
their corresponding documents. The documents are then
returned to the user ranked by some relevance metric.

3. STRUCTURED KEYWORD QUERIES
We now introduce our keyword-based structured query

language.

Definition 1. (Document Query) A document query DQ
is given by the following.

DQ ::= Q

| (Q1), (Q2), ..., (Qn)

where Qi is a structured keyword query.

A document query specifies documents of interest based
on entities that qualify for the structured keyword queries
using “AND” semantics at the document level. A structured
keyword query describes a set of entities as defined below.

Definition 2. (Structured Keyword Query) Let k be
a keyword phrase (one or more keywords), then a structured
keyword query Q is defined by the following grammar.

Q ::= k

| k(Q)

| Q1, Q2, ..., Qn

The first construct allows a primitive concept in a query
to be described by a set of one or more keywords (e.g., “no-
bel prize”). The second construct allows one to describe an
entity in terms of the relationships it has to other entities
or types. (e.g., “born in(Germany)”). The third construct
allows a set of queries to describe a single class of entities
in conjunction (e.g., “harmonica player, songwriter”). The
comma operator is used to explicitly label the conjunctions,
reducing the ambiguity among multi-keyword phrases that
occur in conjunction.

Note that the relation query constructor allows an arbi-
trary query to describe the entity to which the relation ex-
tends, e.g., “born in(country, has official language(spanish))”
could be used to query all entities born in spanish speaking
countries.

More formally, the resulting entity set {e} for a structured
keyword query Q denoting general concept C is given by the
following: {e | e ∈ C}. We use the notation e ∈ Q to say that
entity e is in the result set of query Q. Section 4 discusses
how to find the concept C which is denoted by Q.

To illustrate how structured keyword queries are used in
document queries, consider the following example document
query.

(person, born in(Germany)), (participated(World War II))

The query indicates that qualifying documents should men-
tion both a person born in Germany and some entity that
participated in World War II. More formally, the resulting
document set {D} for a document query DQ = (Q1), (Q2), ...,
(Qn) is given by the following:

{D | ∀Q∈DQ∃e∈Q such that e ∈ D}

where e ∈ D denotes entity e occurring in the text of doc-
ument D. Intuitively, the document retrieval uses “OR” se-
mantics per entity set denoted by a subquery, and “AND”
semantics across subqueries in the document query.

Figure 3: An example query disambiguation graph.

4. DISAMBIGUATING QUERY INTENT
Because our query language is built on keywords as prim-

itives, there is an inherent ambiguity in the semantics of the
query. The user’s intentions are unknown since each key-
word in the query could map to one of many items from the
knowledge base, and there is an exponential number of ways
in which we could select an item for each keyword to create
a general concept.

4.1 The Disambiguation Model
Consider a structured keyword query Q. Each keyword in

Q could have many possible schema item matches based on
some measure of syntactic similarity. Let M(k) denote the
set of possible schema item (entity/concept/relation) map-
pings of keyword k.

The goal is to choose one schema item for each keyword
in the query, such that the resulting disambiguation is a
meaningful representation of the query with respect to the
knowledge base, and is also representative of the user’s in-
tention. There is a tradeoff that must be considered when
choosing concept interpretations for each keyword: we want
mappings that represent the users intentions as best as pos-
sible in terms of syntactic similarity, but which also have a
meaningful interpretation in terms of the underlying knowl-
edge base by means of semantic coherence.

We encode our disambiguation problem as a graph which
represents the space of all possible interpretations that bind
one entity, concept, or relation to each keyword phrase. In
the discussion that follows, we refer to a concept or the sub-
graph that denotes a concept interchangeably.

Definition 3. (Disambiguation Graph) Let Q be a struc-
tured keyword query. Then a disambiguation graph G =
〈V, E〉 with vertex set V and edge set E, and P a set of dis-
joint partitions of the nodes in V , are given by the following.

V =
[

k∈Q

M(k)

P =
[

k∈Q

{M(k)}

E = edges(Q)

where the edge generating function edges(Q) is defined as
follows.

edges(k) = {}

edges(k(Q)) =

0BB@ [
n1∈M(k),

n2∈root(Q)

〈n1, n2〉

1CCA ∪ edges(Q)

edges(Q1, Q2) =

0BB@ [
n1∈root(Q1),
n2∈root(Q2)

〈n1, n2〉

1CCA ∪ edges(Q1)

∪ edges(Q2)

where root(Q) denotes the vertices in the root level query of
Q as follows.

root(k) = M(k)

root(k(Q)) = M(k)

root(Q1, Q2) = root(Q1) ∪ root(Q2)

(Note that we have abstracted n-ary conjunctions as binary
conjunctions for ease of presentation.)

Figure 3 depicts an example of a disambiguation graph for
the query “german, scientists, have won(nobel award)”. The
boxes denote vertices (corresponding to concepts, entities, or
relations in the underlying knowledge base), the dotted cir-
cles denote partitions (the sets M(ki)), the italic font labels
denote the keywords for which the partition was generated
(ki), and the interconnecting lines denote edges which rep-
resent semantic similarity. Observe that each level of any
subquery with t conjuncts is fully connected t-partite, while
edges do not span query nesting boundaries. This is because
nested concepts do not occur in conjunction with concepts
at other nested levels. They are related only through the
vertices that denote the explicit knowledge base relations.

For a disambiguation graph G generated from a structured
keyword query Q, any induced subgraph of G that spans all
partitions in P corresponds to a concept interpretation of
Q. For example, the induced subgraph spanning the nodes

{GERMAN_PEOPLE, SCIENTIST, hasWonPrize, NOBEL_PRIZE}

corresponds to the concept

GERMAN_PEOPLE, SCIENTIST, hasWonPrize(NOBEL_PRIZE).

It is evident that the space of possible query interpreta-
tions is exponential in the size of the query. Finding the
“best” or top-k interpretations will depend on how we com-
pute a score for a candidate subgraph corresponding to a
query interpretation.

4.2 The Scoring Model
Now that we have established a model for generating a

space of candidate query interpretations, we need to define
the notion of a score in order to compute the top-k inter-
pretations. We start by reviewing notions of semantic and
syntactic similarity which will form the basis of our scoring
function.

Semantic Similarity The first factor of our scoring model
is semantic similarity, which we denote generically using
semanticSim(A, B) for the similarity between concepts A
and B. The problem of computing the similarity between
two concepts has a long history in the computational linguis-
tics and artificial intelligence fields. Early works focused on

Figure 4: An example of a query disambiguation
graph. Each edge represents complete bipartite con-
nectivity between all vertices in the partitions.

similarities over taxonomies, often including the graph dis-
tance of concepts [16, 18, 25], and probabilistic notions of
information content of classes in the taxonomy [16, 19, 22].
More recent works have looked at generalizing semantic sim-
ilarity metrics from taxonomies to general ontologies (i.e.,
from trees to graphs) [7, 20, 23]. As an example, Lin defines
semantic similarity between two concepts as the following
[19].

SimLin(A, B) =
2 · log(P (LCS(A, B))

log(P (A)) + log(P (B)))

where LCS(A, B) denotes the least common subsumer of A
and B, i.e., the first common ancestor in an“is-a”graph, and
P (A) denotes the probability of a randomly drawn entity
belonging to concept A.

Lastly, there are the traditional notions of set similarity
which can be applied, since concepts in a taxonomy or on-
tology denote sets of entities. Two commonly used metrics
are the Dice coefficient and the Jaccard index, the latter
illustrated below.

SimJaccard(A, B) =
|A ∩B|
|A ∪B|

One common trait to all of these similarity measures is that
they are binary; they express similarity over pairs of con-
cepts. We will see that efficiently accommodating n-ary
similarities using preprocessed statistics poses challenges,
though our model allows a natural approximation based on
aggregates of binary metrics.

We now introduce the notion of knowledge base support,
which characterizes the semantic coherence of an arbitrary
concept. In the definition of knowledge base support, we
appeal to n-ary similarity, with our approximation technique
to be introduced in Section 4.3.

Definition 4. (Knowledge Base Support) Let C be a
general concept expressed using the primitive concepts, re-
lations, and entities in the knowledge base KB. Then the
support of C by KB is given by the following.

support(C, KB) =

(0 if C is primitive,

semanticSim(C1, C2, · · · , Cn) +P
i support(Ci, KB) otherwise.

where each Ci is the ith concept expression in a conjunction
or relation occurring in C.

Intuitively, this is the similarity according to the structure of
the disambiguation graph (which corresponds to the struc-
ture of the query).

Figure 4 illustrates a disambiguation graph for a more
complex query with multiple nesting branches and multiple
levels of nesting. For this example, consider the following
concept C as a possible disambiguation.

GERMAN_PEOPLE, SCIENTIST, hasWonPrize(NOBEL_PRIZE),
livesIn(COUNTRY, hasOfficialLanguage(English_Language))

Let C1, C2, and C3 be defined as follows:

C1 = hasWonPrize(NOBEL_PRIZE)
C2 = livesIn(COUNTRY, C3)
C3 = hasOfficialLanguage(English_Language)

Now C can be expressed as the following.

GERMAN_PEOPLE, SCIENTIST, C1, C2

The support of C corresponds to the following expression.

support(C, KB) = semanticSim(GERMAN_PEOPLE, SCIENTIST, C1, C2)
+ semanticSim(hasWonPrize, NOBEL_PRIZE)
+ semanticSim(livesIn, COUNTRY, C3)
+ semanticSim(hasOfficialLanguage, English_Language)

Syntactic Similarity The second component to our scor-
ing model is the syntactic matching of the concept label (or
one of its synonyms) to the keyword. Indeed, the user en-
tering queries has an idea of the entities they are trying to
describe. It is simply the terminology of the user and the
knowledge base that may differ, and the massive scale of the
knowledge base impedes learning on the user’s part. The
closer we can match a query syntactically while maximiz-
ing semantic similarity, the better our query interpretation
will be with respect to both the user’s intentions and the
knowledge encoded in our knowledge base. We use the func-
tion label syntaxSim(a, b) to denote a measure of syntactic
similarity. This could be simple keyword occurrence in the
knowledge base item’s label, or a more relaxed measure such
as edit distance or q-gram distance.

Score Aggregation Our final scoring model is thus some
combination of knowledge base support, which quantifies
semantic coherence for the candidate disambiguation, and
syntactic similarity, which reflects how closely the candidate
concept interpretation matches the user’s initial description
of their query intention. We can tune how important each
factor is by how we combine and weight the two similarity
metrics. In general, we allow any aggregation function to be
plugged into our system. However, as we will see in later
sections, we can improve efficiency if the aggregation func-
tion is monotonic by making use of a rank-join algorithm for
top-k search. We denote such an aggregation function as ⊕.

Definition 5. (Concept Score) Let Q be a structured
keyword query, C a concept, ⊕ a binary aggregation func-
tion, and KB a knowledge base. Then the score of concept
C, with respect to Q, KB, and ⊕ is given by the following.

score(C, Q, KB) = support(C, KB)⊕ syntaxSim(C, Q)

Given a disambiguation graph G with partition set P and
a parameter integer k, the goal of disambiguation is to find
the top-k maximum scoring subgraphs of G that span all
partitions in P . Intuitively, we want to find the best k in-
terpretations of the query in terms of some balance between
knowledge base support and syntactic similarity.

The difficulty in solving the disambiguation problem lies
in the nature of the scoring function. Looking back to our
disambiguation graph model, the score of a general concept
representing a candidate query interpretation depends on
all components of the concept (all conjunctions of primitive
concepts and relations). From the disambiguation graph
point of view, this means that the score (or weight) of each
edge changes depending on which other edges are part of
the subgraph forming the candidate concept interpretation.
The volume of statistics that must be (pre)computed in or-
der to support queries with n terms would be very large.
One would need to have access to the semantic similarity of
all n-way compositions of entities, primitive concepts, and
relations occurring in the knowledge base.

4.3 Approximating the Scoring Model
In most cases, having access to n-way semantic similarity

would require pre-computing an infeasible number of statis-
tics, or incurring the expensive cost of computing similarity
at query time. Because the number of candidate query in-
terpretations is exponential in the length of the query, com-
puting similarity at query time could add unacceptable costs
to performance. Thus, we move to an approximation model
for any binary metric of semantic similarity.

We approximate the score of a candidate query interpreta-
tion by aggregating the pairwise support of all components
of the candidate concept. In terms of the disambiguation
graph, this means that each edge weight in the graph can
represent the support of having the two primitive concepts
or relations denoted by the edge’s vertices in conjunction.

We extend a disambiguation graph G to include a weight
function w that assigns weights to the vertices (v) and edges
(〈v1, v2〉) of G as follows. The weights are computed with
respect to some knowledge base KB and the keywords k
from a structured keyword query Q.

w(v) = syntaxSim(label(v), k), where v ∈M(k)

w(〈v1, v2〉) = support((item(v1), item(v2)), KB)

where item(v) denotes the knowledge base schema item (prim-
itive concept, relation, or entity) represented by vertex v and
label(v) denotes the string representation of the schema item
represented by v.1

The approximate score of an induced subgraph denoting
a candidate concept interpretation is given by the following.

Definition 6. (Approximate Score) Let Q be a struc-
tured keyword query, KB a knowledge base, ⊕ a binary ag-
gregation function, and G a subgraph of the disambiguation
graph of Q representing a concept C. Then the approximate
score of C represented by G with respect to Q, KB, and ⊕
is given by the following.

ˆscore(G, Q, KB) =

0@ X
〈v1,v2〉∈E

w(〈v1, v2〉) ⊕
X
v∈V

w(v)

1A
4.4 Solving the Disambiguation Problem

The goal of the disambiguation problem is to find the
top-k maximally scoring subgraphs (corresponding to con-
cept interpretations of the original query) which are single

1In practice, it would be beneficial to consider the syntactic simi-
larity of the keyword to the closest synonym of the concept label.

Figure 5: Encoding disambiguation as a rank-join
with random access to edges. The join conditions
are on the existence of edges in the disambiguation
graph for each subquery, and on the equality of re-
lation bindings to join across all subqueries.

connected components. Note that simply taking the maxi-
mum scoring subgraph for each subquery will not necessarily
result in a connected graph, and thus does not map to a con-
cept interpretation of the query. If our scoring function is
monotonic, we can implement a rank-join algorithm [12] to
efficiently find the top scoring subgraphs, so long as we have
access to vertices and edges in sorted order. A global or-
dering over all edges can be precomputed, and vertices can
be sorted on the fly since these sets fit in memory and can
be kept relatively small in practice. Alternatively, we can
implement a rank-join if we have access to only the vertices
in sorted order and allow random access to edges.

With this view of the problem, our disambiguation graph
is a join graph, with each keyword in the query providing
an input to a rank-join operation based on the partition
corresponding to the keyword. Each partition is ordered by
syntactic similarity which corresponds to vertex weight in
the disambiguation graph.

Consider each possible schema item match for a keyword
phrase (partition M(k)), ordered by syntactic similarity, as
an input. We “join” two concepts if they have knowledge
base support, and rank the join based on the value of the
approximate score. Simultaneously, we join across nested
subqueries based on equivalence of the vertex representing
the relation keyword. This ensures the resulting joins form
connected graphs in terms of the underlying disambiguation
graph.

As an example, consider the disambiguation graph from
Figure 3, we illustrate a rank-join approach to disambigua-
tion of the query in Figure 5. The illustration shows each
partition as an input to the rank join. Conjunctive compo-
nents are joined based on the existence of non-zero weight
edges in the disambiguation graph, while the entire nested
queries are joined based on equality of the binding of the
relation keyword to a schema relation.

For brevity, we omit a review of the rank-join algorithm.
The challenge here is in the modeling of the problem as a
rank-join as we have presented. With this model in mind,
the actual execution does not differ from that of a traditional
rank-join. We refer the reader to [12] for an overview of the
algorithm.

While solving the disambiguation problem involves possi-
bly exploring an exponential search space in the worst case,
our experiments show that we can still find meaningful so-
lutions quickly in practice (see Section 5).

4.5 Integrating Full Text Search
As a final consideration, it may be the case that no sub-

graph can be found that spans all partitions in a disambigua-
tion graph for some query. This happens when we can not
find a meaningful interpretation for one or more keywords.
This may be due to a failure to generate good candidate par-
titions, or due to a lack of coverage in the underlying KB.
In this case we proceed as follows:

• We relax the problem definition to not require span-
ning all partitions when finding a subgraph of the dis-
ambiguation graph. This allows us to build partial
interpretations.

• We include all keywords that are unmapped as part
of the document retrieval process. In this setting, we
will retrieve documents that contain one or more en-
tities from the concept interpretation of the query (as
before), and favor those which contain the additional
keywords in the ranking by re-ranking the document
results.

For example, a partial interpretation for the query “ger-
man, scientists, have won (nobel award)” could be the con-
cept SCIENTIST, hasWonPrize(NOBEL_PRIZE). All qualify-
ing documents are then retrieved, and those which mention
the keyword “german” have their score boosted by a some
factor. The boosting factor could be either a constant fac-
tor, or a factor proportional to the relevance of the residual
keyword to the document. We use the latter in our imple-
mentation by adding the document scores. The qualifying
documents are then re-ordered based on the new scores. We
can achieve this efficiently using the document index by do-
ing a look-up of the residual keywords and then boosting
documents from the entity search that occur in this set.
Note that in the worst case (in terms of disambiguation),
our system degrades to a regular keyword search.

4.6 On Query Results and Ranking
There are a number of ways one could envision presenting

and ranking results in our system. One approach could have
entities as results, each with a list of associated documents.
The entities could be ranked by their relationships to the
query in the KB, or based on statistics over the document
corpus. Alternatively, one may want a document list as the
result, ranked by the relevance of the corresponding entities
to the document. A third option could combine these two
approaches, ranking groups of documents per entity, and
ranking the groups based on an overall ranking of entities.

While ranking is not the focus of this paper, it is a nec-
essary component to a deployable system. We take the
simple approach of ranking the resulting document set as
a whole. Ranking is based on the tf-idf score of the cor-
responding entities that qualified the document as a result,
with a re-ranking of documents based on residual keywords
as described in Section 4.5.

5. EXPERIMENTAL EVALUATION
We have implemented the entire QUICK system as de-

picted in Figure 2, with the exception of the feedback mech-

anism for learning new facts from text. We treat the in-
formation extraction tool as a black box system, and only
extract the named entities for indexing.

We have designed a number of tasks to evaluate the ef-
fectiveness and efficiency of our disambiguation procedure,
and of our system as a whole. We directly evaluate the dis-
ambiguations produced by our algorithm against the ideal
structured concept query which is constructed manually. We
use an entity search task to evaluate the precision and recall
of entities returned by our system as the number of query
interpretations is varied. We also evaluate quality from an
end-to-end system point of view using a document retrieval
task. Lastly, we give an overview of the performance of both
the disambiguation procedure and the system as a whole.

We compare our system to three baseline approaches, one
involving hand-coded (i.e., disambiguated) concept queries,
one using syntax-only disambiguations, and the last being
adaptations of a traditional IR engine for the given tasks.

5.1 System Descriptions
QUICK is built on a variety of open-source software.

For the information extraction component, we built a sim-
ple text processor using the OpenNLP library.2 This tool
will parse and annotate person, location, and organization
named entities. We built a simple text and named entity
indexer using the Lucene library.3 Our document index sup-
ports entity-based retrieval by indexing entities separately
from keywords. We also create a text index over all KB
items and any synonyms encoded in YAGO. We use this
index to generate the partitions of candidate items based
on keyword occurrence. The concept query processor was
written in Java and uses Berkeley DB4 as a back-end data
store. Our query disambiguation system was also written
in Java and uses a separate Berkeley DB store to maintain
the knowledge base semantic similarity measures. The pair-
wise semantic similarity values used for disambiguation are
pre-computed. We experiment with three types of syntactic
similarity measures. The first is keyword occurrence, where
the syntactic similarity is the number of query keywords oc-
curring in the label of the schema item. While this measure
is simplistic, it is very efficient since it is computed as part of
generating the candidate sets. The second measure is Lev-
enshtein edit-distance. The last measure is q-gram distance
for varying values of q. We use the Jaccard measure for
semantic similarity.

IR-AND is an information retrieval based system that
uses only the keywords in the query for search, and is thus
unable to exploit the structure encoded in the query. The
keywords are encoded using AND semantics, such that qual-
ifying documents must contain all of the given keywords in
the query. For the entity retrieval task (see Section 5.3.2)
we search over the Wikipedia text describing each of the
entities.

IR-OR is the same IR approach described above but with
OR semantics for the keywords. Because the information
needs can be quite large (by IR keyword query standards)
the AND semantics can often produce empty results. Thus
the more broad IR-OR system allows a more relaxed, but
less precise, variation of the IR retrieval approach.

2http://opennlp.sourceforge.net/
3http://lucene.apache.org/
4http://www.oracle.com/technology/products/berkeley-
db/je/index.html

TREC Target 216: “Paul Krugman”
Question / Answers For which newspaper does Krugman write? new york times

At which university does Krugman teach? princeton university
From which university did he receive his doctorate? MIT
What prize originating in Spain has Krugman won? john bates clark medal
...

Structured Keyword Query “writes for (new york times), teaches at (princeton university), received doctorate (MIT),
won prize(john bates clark medal)”

Concept Query worksAt (The_New_York_Times), worksAt(Princeton_University),
graduatedFrom (Massachusetts_Institute_of_Technology), hasWonPrize(John_Bates_Clark_Medal)

Figure 6: An example entry from TREC QA task and its translations.

Syntax-Only is a simple disambiguation approach that
uses only syntactic similarity to perform disambiguations.
The closest syntactic match occurring in the structured data
source for each relation and entity/concept are chosen for
disambiguation to a formal query, and semantic similarities
are unused.

Concept-Query is a variant of the QUICK system that
uses hand-coded (i.e., manually disambiguated) structured
concept queries. This system skips the disambiguation phase
and begins processing with correct structured concept queries
as constructed by the experimenters.

For the entity task, our IR systems use a commercial
web search engine for document retrieval over Wikipedia
by building on Yahoo BOSS5. For the document retrieval
task, we build a simple IR engine using Lucene since our
document collection is not available online.

5.2 Data and Workload
Data Set We use the 2008 version of YAGO [24] as our

knowledge base (note that this is approximately three times
larger than the initial instance reported in [24]). YAGO
consists of about 6 GB of raw ontology and entity data.
It contains over 2 million entities, about 250,000 primitive
concepts, 100 relations, and over 20 million facts about these
entities, concepts, and relations.

In order to measure the disambiguation quality of our
system in various situations, we also created an extended
version of YAGO. In the extended version, any information
used in any of the benchmark queries that was missing in
the original YAGO is added. This allows us to evaluate
disambiguations in the case where the knowledge base is in-
complete as well as the case when full disambiguations are
possible. The extended information is encoded using the
existing entities and relations in YAGO where possible, or
by using the Wikipedia identifier of the entities if they do
not exist in YAGO. This means that the extended YAGO
contains all of the information used by the queries, but the
specific keywords used in the queries may not necessarily
correspond to the labels in YAGO.

We use the AQUAINT2 news collection as our corpus,
consisting of over 900,000 english news articles from various
sources, collected between 2004 and 2006.

Effectiveness Workload For the quality evaluation, we
needed a set of information needs which form non-trivial
queries when expressed as structured keyword queries. It
was important when designing this benchmark that the key-
words in the queries were chosen without bias, as this could
greatly simplify disambiguation. We constructed a bench-
mark from the TREC 2007 Question Answering task [8].

5http://developer.yahoo.com/search/boss/

While the individual TREC questions where too simple to
form challenging disambiguation problems (i.e., they are too
short), we were able to use the benchmark to design more
complex queries in the following way. Each TREC task con-
sists of a target entity and a set of questions about the tar-
get. Answers to questions (along with relevant documents
producing the answers) are also provided. We inverted the
benchmark, taking question and answer pairs in conjunction
to form a query which has the target entity as the desired
answer. Figure 6 shows an example of how this translation
was done. In all cases, we use only keywords appearing in
the TREC benchmark (or morphological variants to preserve
the semantics of the questions) to ensure there is no bias in
how keywords are chosen. We then structured the queries
to represent the query intent. This coincides with the intent
of our query language, in which users are able to express
structure as desired, while the specific keywords needed to
describe concepts, entities, and relations are unknown. We
encoded a total of 22 queries.

Efficiency Workload Because our TREC derived work-
load produces a set of queries with very similar shape and
size, we designed a synthetic workload to exercise a wide
range of query shapes and sizes. These queries vary in length
from one to eight terms, and vary in generality of the terms.
We characterize the overall generality of a query by the to-
tal number of entities that are processed at intermediate
stages in order for our system to evaluate the query. Our
workload varies in generality from 1 to 100,000 intermediate
entity results. Queries also vary in their shape. Our work-
load includes flat queries (conjunctions with no relations),
chain queries (a nesting of relations), and star queries (a
conjunction of relations) of each length and generality.

5.3 Experimental Results
5.3.1 Disambiguation Task

In the disambiguation task, we isolate the disambiguation
algorithm from the rest of the system and explore its be-
haviour on our TREC derived workload for both the raw
and extended versions of the YAGO KB.

We consider the following question for each query. Was
the computed (partial) disambiguation correct, or if no dis-
ambiguation is possible due to KB incompleteness, was no
disambiguation computed? This property allows us to see
the proportion of queries for which we obtain a correct for-
malization of some part of the information need. We con-
sider a“failed”(or“empty”) disambiguation to be the correct
behaviour in the case where no disambiguation is possible
due to a lack of coverage in the underlying KB.

Figure 7 shows the results of running our disambiguation
algorithm with the raw (incomplete) and extended KB. This

Figure 8: Average precision (a), recall (b), and F1-score (c) vs. the number of query disambiguations (k)
considered for the entity retrieval task.

demonstrates disambiguation behaviour in the case of an
incomplete KB and a complete KB. We take the top rank-
ing disambiguation and use our systems default of q-gram
distance and the Jaccard index for semantic similarity.

Mapped Empty
Correct 0.455 0.500 0.955
Incorrect 0.045 0.000 0.045

0.500 0.500

(a) Raw KB
Mapped Empty

Correct 0.909 0.000 0.909
Incorrect 0.091 0.000 0.091

1.000 0.000

(b) Extended KB

Figure 7: Proportion of queries that get disam-
biguated (Mapped) or do not get disambiguated
(Empty) vs. whether the disambiguation is correct.

The results demonstrate that even in the presence of incom-
plete knowledge (table (a)), our system can still compute a
correct disambiguation around 95% of the time. Interest-
ingly, our approach proves to be very accurate in determin-
ing when a disambiguation does not exist, and returning no
disambiguation rather than an incorrect one. This is par-
ticularly promising since in the document retrieval scenario,
this situation corresponds to falling back to keyword search.
Correctly identifying when to fall back to keyword search
means we do not process incorrect disambiguations which
would produce irrelevant results. When a complete KB is
introduced (table (b)), the task becomes more difficult since
there exists a correct disambiguation for every query. Our
algorithm sees a slight drop in overall correct disambigua-
tions, but still stays around 90% correct. It is important
to note that all of the correct runs come from correct dis-
ambiguations rather than identifying situations in which no
disambiguation exists as in the raw KB situation.

5.3.2 Entity Search Task
In the entity search task, we used our TREC-based work-

load to evaluate the accuracy of retrieving entities described
by the queries. The results are compared against the base-
line Concept-Query system which returns correct results by
definition. For this task, QUICK does not make use of
the residual keywords left over from partial disambiguations
since there is no text retrieval component for entity search.
Thus evaluation in the raw KB scenario is not well defined
for this task, and we consider only the extended KB.

Figure 8 shows the precision, recall, and F1-score of enti-
ties retrieved as a function of k, the number of query disam-
biguations considered by the QUICK systems. In all cases,
we take the union of the top-k disambiguations. The three
variants of QUICK correspond to the configurations of syn-
tactic similarity (keyword occurrence (KW), edit distance
(ED), and q-gram distance with q = 3 (QD3)). We see for
QUICK-ED and QUICK-QD3 that precision degrades as k
increases. This is expected as more results are added from
different interpretations, causing more irrelevant entities in
the result. QUICK-KW on the other hand, generally does
not find relevant entities until k = 5, causing the spike in
precision. In the recall graph, we see that QUICK-QD3
generally finds all of the relevant entities it is capable of
finding with the top (k = 1) disambiguation, while QUICK-
ED peaks at k = 3 and QUICK-KW at k = 5. Overall, we
get maximum precision and F1-score using q-gram distance
at k = 1, while recall is best with edit distance at k = 3.

Figure 9 shows the results for all systems, including three
variations of QUICK with fixed k values. The IR-OR result
proves to be too general in using the “OR” retrieval seman-
tics and produces no relevant results for any query in the
workload. The IR-AND and Syntax-Only disambiguation
approach do similarly, scoring around 0.1 for precision, re-
call, and F1-score. All three variations of QUICK produce
substantially better results, even when considering the poor-
est performing configurations which can be seen in Figure 8.

We also varied the size of candidate sets from 10 to 100,
but found this had little to no impact on result quality. This
means that the correct schema items generally appear within
the first 10 candidates, or not at all within the first 100.
We also varied the value of q from 1 to 5 for the q-gram
approach, and found no difference in quality. The simple
position invariant property of q-gram distance seems to be
what contributes to its high quality.

We find that all of the configurations of QUICK greatly
outperform the simple IR and Syntax-Only baselines. This
is because QUICK is able to exploit the structure expressed
in the query, while the IR systems can not. The poor perfor-
mance of the Syntax-Only system emphasizes the need for
disambiguations that consider the semantic coherence of the
mapping of the query into the underlying structured data.

5.3.3 Document Retrieval Task
The goal of the document retrieval task is to find docu-

ments relevant to the entities described by the query. Note
that this is slightly different from the traditional IR setting,
in which documents relevant to the query keywords are the

System Precision Recall F-Score

QUICK-QD3-K1 0.80 0.86 0.80
QUICK-ED-K3 0.67 0.91 0.72
QUICK-KW-K5 0.71 0.77 0.72
IR-AND 0.07 0.11 0.08
IR-OR 0.00 0.00 0.00
Syntax-Only 0.09 0.09 0.09

Figure 9: Average precision, recall, and F1-score for
the entity retrieval task.

target. This difference emphasizes the schema based query-
ing enabled by semantic search systems.

We pooled the top-10 results from each system and man-
ually assessed relevance. Relevance scores were assigned on
a five point 0 to 4 scale, with scores of 0 to 2 counting as
irrelevant and scores of 3 and 4 counting as relevant for pre-
cision measures. For each assessment, the judge was shown
only the document and query, with no information as to
which system produced the result. This ensures there was
no bias in relevance judgements. We computed normalized
discounted cumulative gain (NDCG) [15] normalized against
an ideal ranking using the human valuations, mean average
precision (MAP), and precision at 10 (P@10).

Figure 10 shows the results for the document retrieval
task, with the default q-gram distance using the top disam-
biguation for QUICK. There is a clear relationship between
the amount of reference knowledge used and the quality of
retrieval. The IR systems use no background knowledge and

System NDCG MAP P@10

QUICK-EXT 0.61 0.61 0.53
QUICK-RAW 0.46 0.44 0.40
Concept-Query 0.40 0.54 0.42
IR-OR 0.48 0.44 0.37
Syntax-Only 0.05 0.09 0.06
IR-AND 0.0 0.0 0.0

Figure 10: Results for the document retrieval task.

are unable to make use of the structure in the query result-
ing in moderate relevance scores for the IR-OR system. The
IR-AND system proves to be too selective for news articles
and returns empty results in all cases. QUICK with the raw
KB is able to use background knowledge on roughly half
of the queries (see Section 5.3.2), giving an increase in qual-
ity. Finally, QUICK with the extended KB improves quality
even further. Interestingly, the Concept-Query system us-
ing the explicit structured concept queries does not perform
quite as well as the QUICK systems. This shows that the
integration of context keywords in ranking can produce an
observable difference in quality.

Note that all systems use a common implementation for
the actual document retrieval, a Lucene index. Improve-
ments made to this component of the system would likely
benefit all systems.

5.3.4 System Performance
The performance of the disambiguation procedure was

measured across all queries in both workloads. We found
that disambiguations took under one second in all cases,
with an average of 0.2 seconds.

The full system performance on our TREC derived work-
load averaged 0.81 seconds due to the relative simplicity
in the structure and generality of the queries. The syn-
thetic workload on the other hand exercises a much broader

Figure 11: Full system run times for all queries in
the synthetic workload.

class of query shapes and generalities. Figure 11 shows the
breakdown of performance over the synthetic workload for
the three phases of query processing (query disambiguation,
KB search, and document retrieval). KB search is gener-
ally the most expensive task, while document retrieval occa-
sionally dominates. This corresponds to situations in which
there are a large number of qualifying entities for the query,
and thus the document retrieval must make a large number
index look-ups. In general the disambiguation component
accounts for only a small fraction of the total run-time.

6. RELATED WORK
The problem of mapping keywords into structured data

graphs has been studied in the context of keyword search
over relational databases. In this problem, candidate net-
work graphs are generated based on the location of keyword
matches [11]. The challenge in this work is in efficiently
generating and ranking the candidate networks, in contrast
to our work, where the shape of the disambiguation graph
is fixed by the structure of the query. Our approach also
considers mapping against schema constructs, which is not
considered in candidate networks. This difference is impor-
tant as it allows users to create abstract descriptions of in-
formation needs at the schematic level, as opposed to simply
expressing keywords that may appear in the text of desired
results. Finally, our approach composes complex queries by
considering how keyword expressions can be mapped into
conjunctions of and relations between schema items, giving
much greater expressivity than flat keyword queries.

The WebTables project [3] also processes keyword queries
over large web-extracted data sets. While structured queries
are not considered, their notion of probabilistic schema co-
occurrence could be seen as a semantic similarity metric and
used to support a disambiguation model like ours.

Our proposal differs from structured query languages over
web-extracted data, such as [5, 6, 14, 17], in the integra-
tion of ambiguous terms into the structured part of queries.
NAGA [17] does support some ambiguity in queries via reg-
ular expression and keyword matching against strings in a
special “means” relation that is part of YAGO. Query pro-
cessing is done by finding all matches and evaluating the
constraints in the query against candidates. This is in con-
trast to our heuristic-based disambiguation as a preprocess-
ing step to query evaluation. The EntityRank system [6] in-
corporates keywords into structured queries as so called con-
text keywords. Our approach of including parts of queries
which can not be disambiguated as residual keywords for

ranking is similar. However, EntityRank does not attempt
to construct complex queries from the input query, and en-
tity types are explicitly given by the user with no ambiguity.

With respect to the semantic search side of our system,
our approach differs from current works in a number of ways.
First, semantic search systems generally assume documents
are annotated with structured semantic data, such as RDF
or OWL [10, 21], or XML [9] (with explicit references to
the ontology concepts) and often assume a structured query
language. Our system uses a mix of extracted structure
from text, like the fact triples in NAGA, and the free text
itself, like the text-based semantic search engine ESTER [2].
Retrieval based on entities occurring in text is also done by
[5] using a structured query language with no ambiguity.

A few works have considered KB-based semantic search
over text databases making use of keyword search interfaces,
the most successful of which is ESTER [2], an ontology-
assisted Wikipedia search engine. In ESTER the keyword
query is matched against known primitive concepts and en-
tities, and a dynamic user interface allows users to disam-
biguate among possible matches. However, keyword map-
pings are based solely on primitive concepts and entities,
and no attempts to compose complex concepts from sets of
keywords are made.

7. CONCLUSIONS AND FUTURE WORK
We have proposed a keyword-based structured query lan-

guage that trades off expressivity and flexibility in utiliz-
ing web-based structured data extractions. We have ex-
plored ambiguity issues with basing a structured query lan-
guage on keywords and proposed a solution for disambigua-
tion. Our experiments demonstrate that our proposed dis-
ambiguation model can quickly achieve high quality disam-
biguations, even in the case where only partial knowledge
is available. We have also shown how our query processing
framework fits in to an end-to-end semantic search system.

An interesting problem for future work is ranking. There
is an abundance of information available at ranking time:
the qualifying entities, the qualifying documents, statisti-
cal metrics of entities to documents (e.g., tf-idf scores), the
terms mentioned in the query, and so on. More sophisti-
cated approaches may exploit this information to improve
ranking. Another avenue for future work is in applying our
disambiguation model to flat keyword queries. In this sce-
nario we lose the expressiveness of the query structure, but
can still attempt to exploit the semantics of the structured
data by mapping keywords into the structured data graph.

8. REFERENCES
[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and

P. F. Patel-Schneider. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[2] H. Bast, A. Chitea, F. Suchanek, and I. Weber. ESTER:
efficient search on text, entities, and relations. In SIGIR
’07: Proc. of the 30th intl. conf. on information retrieval,
pages 671–678. ACM, 2007.

[3] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. WebTables: exploring the power of tables on the
web. Proc. VLDB Endow., 1(1):538–549, 2008.

[4] M. J. Cafarella, C. Re, D. Suciu, and O. Etzioni.
Structured Querying of Web Text Data: A Technical
Challenge. In CIDR, pages 225–234, 2007.

[5] P. Castells, M. Fernandez, and D. Vallet. An adaptation of
the vector-space model for ontology-based information

retrieval. In IEEE Transactions on Knowledge and Data
Enginering 19(02), pages 261–272, 2007.

[6] T. Cheng, X. Yan, and K. C.-C. Chang. EntityRank:
Searching Entities Directly and Holistically. In VLDB,
pages 387–398, 2007.

[7] F. M. Couto, M. J. Silva, and P. M. Coutinho. Measuring
semantic similarity between Gene Ontology terms. Data &
Knowledge Engineering, 61(1):137 – 152, 2007.

[8] H. T. Dang, D. Kelly, and J. J. Lin. Overview of the trec
2007 question answering track. In TREC, 2007.

[9] F. Farfan, V. Hristidis, A. Ranganathan, and M. Weiner.
XOntoRank: Ontology-Aware Search of Electronic Medical
Records. In To appear in 25th Intl. Conf. on Data
Engineering (ICDE 2009), 2009.

[10] R. Guha, R. McCool, and E. Miller. Semantic search. In
WWW ’03: Proc. of the 12th Intl. Conf. on World Wide
Web, pages 700–709. ACM, 2003.

[11] V. Hristidis and Y. Papakonstantinou. Discover: keyword
search in relational databases. In VLDB ’02: Proceedings of
the 28th international conference on Very Large Data
Bases, pages 670–681. VLDB Endowment, 2002.

[12] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. The VLDB
Journal, 13(3):207–221, 2004.

[13] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano.
Towards a query optimizer for text-centric tasks. ACM
Trans. Database Syst., 32(4):21, 2007.

[14] A. Jain, A. H. Doan, and L. Gravano. Optimizing SQL
Queries over Text Databases. Data Engineering, 2008.
ICDE 2008. IEEE 24th intl. conf. on, pages 636–645, 2008.

[15] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[16] J. J. Jiang and D. W. Conrath. Semantic similarity based
on corpus statistics and lexical taxonomy. In Intl. Conf. on
Computational Linguistics, 1997.

[17] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and
G. Weikum. NAGA: Searching and Ranking Knowledge. In
24th Intl. Conf. on Data Engineering (ICDE 2008), 2008.

[18] C. Leacock and M. Chodorow. Combining local context
with wordnet similarity for word sense identification. In
WordNet: A Lexical Reference System and its Application,
1998.

[19] D. Lin. An information-theoretic definition of similarity. In
ICML ’98: Proc. of the Fifteenth Intl. Conf. on Machine
Learning, pages 296–304. Morgan Kaufmann Publishers
Inc., 1998.

[20] A. G. Maguitman, F. Menczer, H. Roinestad, and
A. Vespignani. Algorithmic detection of semantic similarity.
In WWW ’05: Proc. of the 14th Intl. Conf. on World
Wide Web, pages 107–116. ACM, 2005.

[21] J. Mayfield and T. Finin. Information retrieval on the
Semantic Web: Integrating inference and retrieval. In
Workshop on the Semantic Web at the 26th International
SIGIR Conference on Research and Development in
Information Retrieval, 2003.

[22] P. Resnik. Semantic Similarity in a Taxonomy: An
Information-Based Measure and its Application to
Problems of Ambiguity in Natural Language. Journal of
Artificial Intelligence Research, 11:95–130, 1999.

[23] M. A. Rodŕıguez and M. J. Egenhofer. Determining
Semantic Similarity among Entity Classes from Different
Ontologies. IEEE Trans. on Knowledge and Data
Engineering., 15(2):442–456, 2003.

[24] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
Core of Semantic Knowledge - Unifying WordNet and
Wikipedia. In 16th Intl. World Wide Web Conference
(WWW 2007), pages 697–706, 2007.

[25] Z. Wu and M. Palmer. Verb semantics and lexical selection.
In 32nd. Annual Meeting of the Association for
Computational Linguistics, pages 133 –138, 1994.

