DataXFormer: An Interactive Data Transformation Tool

John Morcos!
Mourad Ouzzani?
! University of Waterloo

Ziawasch Abedjan?
Paolo Papotti?
2 MIT CSAIL

lhab F. llyas!
Michael Stonebraker?
3 Qatar Computing Research Institute

{imorcos,ilyas}@uwaterloo.ca {abedjan,stonebraker}@csail.mit.edu {mouzzani,ppapotti}@qf.org.qa

ABSTRACT

While syntactic transformations require the application of
a formula on the input values, such as unit conversion or
date format conversions, semantic transformations, such as
zip code to city, require a look-up in some reference data.
We recently presented DataXFormer, a system that leverages
Web tables, Web forms, and expert sourcing to cover a wide
range of transformations. In this demonstration, we present
the user-interaction with DataXFormer and show scenarios
on how it can be used to transform data and explore the
effectiveness and efficiency of several approaches for trans-
formation discovery, leveraging about 112 million tables and
online sources.

Categories and Subject Descriptors

H.2.5 [Database
Databases

Management|: Heterogeneous

Keywords

data integration, data enrichment, data transformation, web
tables, web forms, wrapper, deep web

1. INTRODUCTION

Several data analytics tasks require integrating various
heterogeneous data sources, where the same or highly re-
lated information might be expressed in different forms.
While there has been a considerable amount of research on
schema matching and schema mapping, the related task of
transforming the actual values from one representation to
the target representation has been neglected. Examples of
data transformation tasks include mapping stock symbols
to company names, changing date format from MM-DD to
DD-MM and replacing cities by their countries. While some
transformations such as liters to gallons can be performed
by applying a formula or a program on the input values, oth-
ers, such as company name to stock symbol and event to date,
require finding the mappings between the input and output

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGMOD’15, May 31-June 4, 2015, Melbourne, Victoria, Australia.

Copyright © 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735366.

883

values in a repository of reference data. We refer to the for-
mer type of transformations as “syntactic transformations”
and to the latter as “semantic transformations”.

Syntactic transformations are supported by many tools,
including the popular MS-Excel, Google Spreadsheets and
the more recent Wrangler [7]. However, to the best of our
knowledge, no automatic system or tool is available that
significantly covers the class of semantic transformations,
Semantic transformations are prevalent in many real-world
integration tasks, as witnessed in workloads of the data cu-
ration tool Tamr [9] and other data vendor companies.

When companies need to explore or aggregate their data,
they create dynamic views that join multiple databases.
Here, it is desirable to dynamically discover the desired
transformations that allows them to join multiple sources
on a unified attribute. Furthermore, useful mappings, such
as US Dollars to EUR, genome to coordinates, location to
temperature, change over time and requires users to look-
up in a continuously updated repository, making previously
acquired reference datasets obsolete.

The main reason of why semantic transformations have
been neglected so far is that they cannot be computed by
solely considering the input values and applying a formula or
a string operation on them. Rather, the required transfor-
mations can often be found in a mapping table that is either
explicitly available to the application (e.g., as a dimension
table in a data warehouse) or hidden behind a transforma-
tion service or a Web form.

While collecting the adequate reference data for one spe-
cific transformation task is doable, it requires tedious crawl-
ing and curation exercises. This process cannot easily scale
for a large number of transformation tasks covering the long
tail of domains and topics. Usually, the subject matter ex-
pert in a company who is interested in converting its data
does not have the skills to obtain the reference data or to
code the transformation formula. Considering that the Web
provides a large repository of resources, it is useful to have
a service that can leverage these resources for on-demand
transformation tasks.

At CIDR 2015, we presented DataXFormer [l], a sys-
tem that leverages Web tables and Web forms to perform
syntactic and semantic transformations. DataXFormer ex-
pects a transformation task specified as a variable-sized col-
lection of examples, giving the entire input X and some
examples of the desired output Y. The following are
examples for the airport code to city name transforma-
tion: {(LHR, London),(ORD, Chicago), (CDG, Paris)}.
In most cases, the user provides the column labels of the

Query:
(Input values X, Examples E)

Web Forms Web Tables

The Web
+8%

S
&

Candidate II

Tables

==
==
==

uonenjeAs

Solution Integration ‘

v

Result: F={(x;,y1), (X2,¥2), - (XnYn)}

Figure 1: DataXFormer architecture

input and output values for the desired transformation,
which we denote by Ix and Iy, e.g., Ix = airportcode and
Iy = city.

In this demonstration, we show the various features of
DataXFormer and how it finds transformation answers in
Web tables and Web forms. We also show how DataX-
Former interacts with the user to enrich its corpora, pro-
vide better answers and unlock previously unusable Web
forms. In particular, we trace the intermediate steps of
DataXFormer to find and wrap Web forms in an interac-
tive manner. An initial version of DataXFormer is already
available at http://dataxformer.org.

2. DataXFormer OVERVIEW

DataXFormer (see Figure 1) consists of two complementary
transformation engines: one based on locally-stored static
Web tables and another based on dynamically discovered
Web forms. The user starts by submitting a query, such
as the query that transforms airport codes to city names.
DataXFormer converts the user query into the corresponding
internal forms for each of the retrieval components, which
in turn return candidate Web tables and Web forms.

DataXFormer dispatches the transformation query simul-
taneously to both transformation engines. While the two
engines differ in their retrieval interface, response time and
coverage, we are currently taking the straightforward ap-
proach of engaging both systems simultaneously. In a final
step, the solution integration component presents the best
effort results from both sources for a given query. Here,
the user can intervene to choose among different transfor-
mation discovery approaches and results. We present and
rank the results of each subsystem separately because of the
significant difference in response time. Note that the Web
forms subsystem has a higher response time than the local
Web tables subsystem because it has to submit a request to
a remote server to transform each value. Having an auto-
matic mechanism for merging the results of both sources is
a future effort, considering that they are good at different
transformation tasks.

2.1 Web tables subsystem

The task of the tables subsystem is to identify all the ta-
bles that contain a minimum number of the user examples

884

in one of their column projections. We refer to this mini-
mum threshold as 7. Our experiments showed that 7 = 2
is a reasonable threshold for filtering irrelevant tables while
maintaining very high recall [1].

A major challenge is to maintain the interactivity of the
system through fast response times while being able to sift
through 112 million tables in the corpus to find matches for
the given examples. Thus, we maintain an inverted index
that points to the columns and tables that contain the X or
Y values. Since Web tables are heterogeneous and differ in
schema and size and some even lack column labels, we store
the tables within a universal main table (relation Cells as
in Figure 2); every cell of a Web table is represented by a
tuple that records the table, column and row IDs, along with
the tokenized, stemmed form of its value (tokenized). Using
this schema, we can simulate an inverted index by having
an index on the tokenized column. The relation is ordered
by tableid, columnid, rowid, simultaneously achieving two
advantages: (i) every column from a web table is stored con-
tiguously, and (ii) the space requirement of this schema is
alleviated by compression, which is provided by most mod-
ern column-stores.

Tables | tableid | url | title | context | initial_score |
Columns | tableid | colid | header | header_tokenized |
Cells | tableid | colid | rowid | term | term_tokenized |

Figure 2: Schema for storing Web tables in a column-store

In the current prototype, we store the Web tables in a
multi-node Vertica instance. Vertica employs projections on
tables in place of an inverted index. A projection is a spe-
cialized materialized view that is efficient to maintain and
load. We use a projection on Clells that is sorted on the
tokenized values. Additionally, DataXFormer includes a sim-
ilarity index to retrieve all existing similar representations of
given X and Y values within a given edit distance threshold.
Using a projection, the table retrieval component retrieves
a set of relevant candidate tables for the given user query
and verifies the coverage of the candidate tables with re-
spect to the query examples. If the coverage is above the
user-defined threshold, DataXFormer extracts the rest of the
required transformation values.

We now proceed to describe the transformation discovery
approaches that use DataXFormer’s Web table repository.

Direct matching The fastest and simplest way to find the
required transformation in the tables is to find tables that
contain the required minimum number of given examples,
as evidence for the two columns that encode the transfor-
mation. While the look-up operation is very fast, it is very
sensitive to the choice of the initial examples. In Figure 3,
we refer to the direct matching as iteration 1 of the look-up
operation, which matches Tables 1 and 2, with transforma-
tions for the airport codes FRA, LAX, and BOS.

Que Table 1

BER | Berlin M | LAX | Los Angeles

JFK | New York M1 JFK | New York

ORD | Chicago H+> ORD | Chicago

HBE |? BOS | Boston

ST |2 Table 2 Table 3

FRA |? airport _city

B0OS | 2 FRA Frankfurt DFW | Dallas

DFW | 2 DFW Dallas HBE | Alexandria
> JFK New York IST | Istanbul
> BER Berlin FRA | Frankfurt

Iteration 1 Iteration 2

Figure 3: Iterations for transformation discovery for 7 = 2

Iterative matching The direct matching approach is fast
and simple. However, the transformation entries may some-
times be fragmented over several tables (Figure 3). Most
Web tables were designed for human consumption, and thus,
large tables are usually fragmented over separate tables on
different Web pages in a given Web site. Since the input
examples are very few, only a small fraction of all the tables
that encode the transformation might match the transfor-
mation query. In Figure 3, our query examples only match
tables that focus on airports in the USA, and cannot find
the transformation for IST and HBE in those tables.

To increase the recall, the iterative matching looks for
indirect matches by using newly found results as examples
for the next iteration. As illustrated in Figure 3, the new
iteration uses the transformation results for FRA and DFW
in Table 2 as new examples, which enables DataXFormer to
reach Table 3 and find the transformations for HBE and
IST. Tterative matching increases the recall at the cost of a
longer execution time. There might also be a reduction in
precision as non-evaluated transformation results are used
as examples. We solve this issue in the reconciliation phase
where different results are ranked based on their redundancy
and the authoritativeness of their sources.

Fuzzy matching To further increase recall, the user might
decide to relax the matching of values, accounting for typos
and slight changes in representation. Our basic approach
already tolerates some fuzziness by considering tokenization
and stemming of transformation values. However, variations
such as typos or abbreviations of a term cannot be captured
by stemming and tokenization. For example, “Washington
DC” and “Washington D.C.” can only be matched by toler-
ating a certain degree of edit distance, since most tokeniza-
tion techniques would assume that “DC” is a token by itself,
while “D.C.” consists of two tokens. We apply the popu-
lar Levenshtein similarity measure to capture some of these
fuzzy matches. Fuzzy matching takes a step further towards
increasing recall, at the expense of the execution time.

Reconciling different transformation results Our
transformation results may stem from multiple different ta-
bles. Hence, for some X values, multiple Y may be retrieved.
To reconcile these contradicting results, DataXFormer ap-

885

plies an expectation-maximization approach [5] that assigns
scores to transformation results, which in turn affect the per-
ceived authoritativeness of the tables providing them. Ini-
tially, the model takes into account the prevalence of the
number of correct examples in a table. Furthermore, the
model takes into account how authoritative a table is, based
on its initial score. The initial score of a table changes based
on user-feedback. Over time, we capture whether users ac-
cept or reject transformation results and use their evaluation
to enhance or decrease initial scores of the corresponding ta-
bles. Also it is possible to manually add authoritative tables
to the repository. More details on the reconciliation process
of DataXFormer and how it converges can be found in our
previous paper [1].

2.2 Web forms subsystem

A Web form allows user-interaction through different
fields and buttons. The input values given by a user
are either processed directly on the client side through
JavaScript or are sent as an HT'TP request (GET or POST)
to a back-end server for further processing. Figure 4a illus-
trates a Web form for discovering location attributes of a
given airport code. Putting ORD into the search field on
Web page (a) retrieves the result Web page (b) that con-
tains the corresponding city name Chicago.

As with Web tables, we assume a Web form is relevant if
it covers at least 7 of the example transformations. There
are two main challenges in using Web forms: (1) as there
is no common repository of Web forms, we have to look for
them through crawling billions of Web pages; and (2) a new
Web form appears as a black box. This means that an in-
vocation strategy (i.e., wrapper) has to be developed to use
the form for producing the desired transformations. It has
been shown [4] that both tasks are very hard, even with hu-
man intervention. DataXFormer tackles both challenges us-
ing search engines and a Web browser simulator that allows
to analyze the HTML code of a Web form. Additionally, the
user is involved whenever any of the tasks fail.

‘Web form retrieval DataXFormer maintains a local repos-
itory of previously used Web forms. The repository is orga-
nized as a document store where each document represents
one wrapper. Using the document store is suitable for this
task because we also store and index the textual content
of Websites that contain the specific Web form. If DataX-
Former fails to find a relevant form in the repository, it uses a
search engine to find forms online. In our preliminary exper-
imental results [1], we noticed that the keyword query “Ix
to Iy” has a high success rate for finding a page contain-
ing a transformation form in its top results. By examining
the search engine results, DataXFormer identifies candidate
forms. Then, for each candidate form, we generate a “wrap-
per” to be able to query the form and to obtain the trans-
formation values. In case DataXFormer fails to generate a
wrapper or to find a relevant Web form, the user is asked
for help. The wrapped forms are invoked using the input
examples and are evaluated based on their coverage in the
evaluation step. Candidate Web forms are then queried us-
ing the examples from the user query.

Wrapping Web forms To wrap Web forms, we have to
simulate a Web browser and probe the forms using the given
examples to identify the relevant input field to fill in the X
values, the output field that contains the desired transfor-
mation result Y, and the request method for invoking the

€)| @ wwwworld-airport-codes.com ¢ | (8- Google Q

Search for an airport

Welcome to World Airport Codes, the place to fiiid over 47,000
airport codes, abbreviations, runway lengths and other airport
information.

7\ oy

Search

in cheaper parking at UK airports? Visit our partner sito Alrport Parking Shop

¢ (8- coogle.

Y Il SIE SIE SIS SIS IS SN S g
@ www.world-airport-codes.com/search/?s=ORD

World Airport Codes

(b)s Results for "ORD"

Name

Mobile App Werld Top 30 Airports | US Top|

?s

IATA ICAO

1
Chicago O'Hare KORD Il

Evelyn Sharp Field KODX rd

Comodoro Pierrestegui

o BT e Gl s

< heric divbox-main > arfilebox > tableairport-routes-table > thody > 1t
_— e s s e

coc SAAC oncordia

<td></td>
- <td>
chicago
<t

(a) Web form components that need to be stored

Website content

GET request URL:

http://www.world-airport-
codes.com/search/?s=0ORD |

Input parameter:

Output field:
/html/body/div/div/article/
table/tbody/tr/

=

Tokenized and
-
indexed

URL http://www.world-airport-codes.com/
Form URL http://www.world-airport-codes.com/search/
Form type GET

Input Param | s

Output field | /html/body/div/div/article/table/tbody/...

Options

Input label | Air port code

Output label | City

Website World Airport Codes place find 47,000 airport r

content codes abbreviations runway lengths airport /I
information......

X values ORD LAX SFX SHA JFK FRA ...

Y values

Chicago Berlin Shanghai Los Angeles Frankfurt

b) Web form wrapper as a document in the
repository

Figure 4: Web form wrapper components

form. Current wrapper generation approaches [4, 8] invoke
the form using all possible combinations of input fields, se-
lect fields, and radio buttons, and use the results to identify
the semantics of the various components of the form. In the
current prototype, we apply some heuristics to reduce the
number of combinations; for example, we only consider text
and text area fields as input fields for our X values, and we
choose radio button options that resemble our attribute la-
bels or denote the transformation direction. In Figure 4a, we
highlight the visible relevant components such as the Web-
site content, the GET request URL, the input parameter s,
and the XPath for the output value.

Once the XPath to our given example is discovered on the
output result page, DataXFormer invokes the wrapped form
using the remaining input examples and evaluates its cover-
age in the evaluation step. If the user is satisfied with the
Web form results, she can trigger the Augment component
to store the Web form results as a new table in the table
repository. Finally, DataXFormer stores all components of a
successfully wrapped Web form as illustrated in Figure 4b.

Some of the stored fields (framed red in Figure 4b) contain
meta-data that is indexed to effectively retrieve the wrap-
per for a given transformation query. For example, Website
content and example X values are tokenized and indexed.
Other fields that are framed in blue in Figure 4b store the
configuration parameters of the wrapper, such as the Form
URL and Input Param.

2.3 Datasets and Implementation Setup

DataXFormer uses a Vertica column-store to store the Web
tables and a Lucene index that indexes successfully wrapped
Web forms. Initially, the Web tables corpus was filled with
the Dresden Web Table Corpus !, a collection of about 112
million data tables extracted from the Common Crawl 2. We

"https://wwwdb.inf .tu-dresden.de/misc/dwtc/
’http://commoncrawl . org/

886

further cleaned the dataset by removing cells that contained
comments or other long text content which does not serve
our purpose. The disk usage of the Vertica storage comprises
about 350 GB on 4 nodes.

The Web forms are stored as documents, where each doc-
ument contains the URI of a Web form and all its relevant
fields, to allow reconstructing the generated wrapper of the
Web form. Furthermore, we store some meta-data, such as
the textual content of the Website that provides the Web
form, as well as a limited set of previously performed exam-
ple transformations. Some of the wrappers refer to the same
Web form with a different configuration, e.g., both directions
for km to/from miles.

3. DEMONSTRATION

An initial version of DataXFormer, which is already at
http://dataxformer.org, answers transformation queries
through direct and iterative matching on Web tables and
through indexed Web forms.

The demonstration’s audience can come up with its own
transformation queries for DataXFormer. For example a user
might be interested in discovering transformations of her
favourite athlete to associated club. Additionally, we will
provide and describe some prepared transformation queries
from our previous benchmark [1], such as airport code to
city, company ticker to company name, and EUR to USD.

3.1 Using DataXFormer

A user can submit a query either by uploading a CSV file
containing the two columns X and Y or by filling in the
examples through a simple table form (see Figure 5).

Then, the user can start the transformation engine, which
will initiate the selected transformation discovery algorithm
(direct, indirect, or fuzzy matching) over the Web tables
and the Web form retrieval. DataXFormer dispatches both
subsystems in parallel. Figure 6 presents the retrieved indi-
rect match results for the query. The selected values in the

Iterations: W Multiple

Input the transformation directly
Headers:
[airport code
Entries:

[ber

[ord

[ifk

[hbe

fist

[fra

(ihr

I
(
(

©

Figure 5: Our transformation query aims at transforming
airport code to the city location. Here, we provided the
corresponding cities for three of the airport codes.

[city

[Berlin
[Chicago
[New York

e e s e

city column are the transformation results with the highest
scores, which are displayed in brackets. At the same time,
DataXFormer also presents the results that were produced
by a Web form (Figure 7).

If the user is not satisfied with the results, she might
use the drop down boxes to choose from alternative trans-
formations, if available (see Figure 8). Note that the re-
sults are ranked according to their confidence score assigned
by DataXFormer’s expectation-maximization approach [1].
Upon choosing an option, pop-up widgets provide further
background information, such as the number of tables that
agreed on this specific transformation. Furthermore, the
user can display the actual content of a table to understand
the provenance of a transformation result (see Figure 9).

Alternatively, the user can resend the transformation
query with a subset of successfully performed transforma-
tions. Depending on the initial matching algorithm, the
user can also choose to enhance the transformation results
by changing the matching algorithm on the Web tables.

If the user is satisfied, she can save the complete result
set or a subset of the results by checking the corresponding
check boxes and add it to the corpus. A table that is stored
by a user has a higher initial score. We will demonstrate
the evolution of the corpus by resubmitting the initial query
and showing that the results and scores have been changed.

3.2 Tracing Web form discovery and user-
based wrapper induction

Our demonstration also includes a walkthrough of the
Web form subsystem by showing the intermediate steps and
results. We will show how DataXFormer leverages the search
engine, and which aspects of a Website matter for the auto-
matic wrapper induction. Furthermore, we show a scenario
where the user can intervene in the wrapper induction with-

887

ber

Berlin (1.00) hd I«
Frankfurt (1.00) A
Alexandria (0.88) ¥

fra

hbe

- smrbul(082) 7 o
i (e york 200 ' ¥]
Ihr | London (1.00) v

ord [chicago (1.00) v @

Figure 6: Tranformation results of the iterative matching
approach

airport i I’
I
ber

http://www.world-airport-codes.com

Berlin search

Frankfurt-
am-Main

http://www.world-airport-codes.com

fra [search/

Figure 7: DataXFormer found a Webform that can find the
desired cities.

out having any background in Web programming. DataX-
Former analyzes a given website, extracts its HTML ele-
ments, and simulates its Web forms within DataXFormer’s
own framework. In Figure 10 DataXFormer identifies two
Web forms on http://world-airport-codes.com, and ren-
ders an interactive wrapper induction interface. Note, that
DataXFormer identifies human-readable descriptions. Pop-
ups will show the corresponding original HTML code. The
user can then continue to configure the selected form, by
choosing the correct input field and form options. DataX-
Former captures the user’s interaction with the simulated
form and uses the selected parameters to wrap the original
Web form for the transformation task.

4. RELATED WORK

The closest tool to DataXFormer is Google Spreadsheets .
The autofill feature uses machine learning to predict the
transformation values of a column given a few examples.
In contrast, DataXFormer does not try to explicitly define
the transformation, but rather finds the necessary look-up
tables in a corpus of Web tables and Web forms. Since
Google Spreasheets tries to interpolate the transformation
solely from the input, it cannot provide semantic transfor-
mations, such as “airport code to city”, while DataXFormer
can since it uses external knowledge.

InfoGather [10] uses Web tables for attribute discovery
and entity augmentation. While the two approaches are
quite similar, InfoGather relies on pre-computing the full
semantic-match graph for the whole corpus, while DataX-

3http://spreadsheets.google.com

fra | frankfurt (1.00) *|

hbe | alexandria (0.80) * |

ist [istanbul (0.54) *]
istanbul (0.54

jfk | istambul (0.25)

Figure 8: The user can choose between different transforma-
tion results, which are ranked according to their confidence
score

B R
Berlin (1.00) v 7]

Frankfurt (1.00) T

ber

fra

hbe

Alexandria (0.88) ¥

643646990

1268187913 1897500596 1881433035
1268188022 126935543 -

Netherlands

Athens Greece

Beriin Germany | TXL L
United
1 Aberdeen § AB 7
Kingdom Brussels Belgium BRU
e Count Abbr.
2 Abu Dhabi U.A.Emirates | AU ity ry

Figure 9: DataXFormer shows the provenance of a transfor-
mation result. Note that some tables do not have column
headers.

Former finds the required tables on the fly, and leverages
Web forms as well.

Wrangler [7] provides an easy interface to specify scripts
of data transformation. It supports the concept of semantic
roles as well, providing additional functions to be included in
the scripts. DataXFormer requires minimal user interaction,
as it locates Web tables and forms automatically. Similarly
to Google Spreadsheets, Wrangler cannot provide transfor-
mations that rely on external knowledge.

Many proposed systems focus on answering keyword
queries over relational tables by efficiently generating candi-
date networks of joined tuples to form answers, with search
terms from the query spanning multiple records across mul-
tiple tables [2,3,6]. DataXFormer differs from these systems
in that it tries to find tables that provide a transformation
given a few examples for the transformation, rather than
building candidate tuple networks.

S. REFERENCES

[1] Z. Abedjan, J. Morcos, M. Gubanov, 1. Ilyas,
M. Stonebraker, P. Papotti, and M. Ouzzani.

888

earch f an airport

Welcome d Airport Codes, the place to find over 47,000

iatio ngths and other airport

Search

Recently Updated
Search distance between two

Airport Updates airports

-

RS Alrstrip % €332
]

Sear

Please select the correct form:
Select the form that is most likely to represent your transformation query

() Search foran airgort
<h1> Search for an airport </h1> X
() Search distance betwee| <p> Welcome to World Airport Codes, th.

<form role = “search” class = “search s
<input type = “text” value = “” name = “s

Figure 10: DataXFormer identifies the forms on a web page
and presents them as radio options.

Dataxformer: Leveraging the web for semantic data
transformations. In CIDR, 2015.

B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri,
C. Nakhe, P. Parag, and S. Sudarshan. Banks:
Browsing and keyword searching in relational
databases. In VLDB, pages 1083-1086, 2002.

S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A
system for keyword-based search over relational
databases. In ICDE, pages 5-16, 2002.

L. Barbosa and J. Freire. An adaptive crawler for
locating hidden-web entry points. In WW W, pages
441-450, New York, NY, USA, 2007.

A. P. Dawid and A. M. Skene. Maximum likelihood
estimation of observer error-rates using the em
algorithm. Applied statistics, pages 20-28, 1979.

V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In VLDB,
pages 670-681, 2002.

S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data
transformation scripts. In CHI, pages 3363-3372, New
York, NY, USA, 2011.

J. Madhavan, D. Ko, L. Kot, V. Ganapathy,

A. Rasmussen, and A. Halevy. Google’s deep web
crawl. PVLDB, 1(2):1241-1252, Aug. 2008.

M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales,
M. Cherniack, S. B. Zdonik, A. Pagan, and S. Xu.
Data curation at scale: The data tamer system. In
CIDR, 2013.

M. Yakout, K. Ganjam, K. Chakrabarti, and

S. Chaudhuri. Infogather: Entity augmentation and
attribute discovery by holistic matching with web
tables. In SIGMOD, pages 97-108, New York, NY,
USA, 2012.

2]

3]

[4]

[5]

6

[7

8]

9

(10]

