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Abstract

Data quality is one of the most important problems in data manage-
ment, since dirty data often leads to inaccurate data analytics results
and wrong business decisions. Poor data across businesses and the gov-
ernment cost the U.S. economy $3.1 trillion a year, according to a report
by InsightSquared in 2012.

To detect data errors, data quality rules or integrity constraints
(ICs) have been proposed as a declarative way to describe legal or
correct data instances. Any subset of data that does not conform to
the defined rules is considered erroneous, which is also referred to as a
violation.

Various kinds of data repairing techniques with different objectives
have been introduced, where algorithms are used to detect subsets of
the data that violate the declared integrity constraints, and even to
suggest updates to the database such that the new database instance
conforms with these constraints. While some of these algorithms aim to
minimally change the database, others involve human experts or knowl-
edge bases to verify the repairs suggested by the automatic repeating
algorithms.

In this paper, we discuss the main facets and directions in design-
ing error detection and repairing techniques. We propose a taxonomy
of current anomaly detection techniques, including error types, the au-
tomation of the detection process, and error propagation. We also pro-
pose a taxonomy of current data repairing techniques, including the
repair target, the automation of the repair process, and the update
model. We conclude by highlighting current trends in “big data” clean-
ing.
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2012.
DOI: 10.1561/1900000045.



1
Introduction

As businesses generate and consume data more than ever, enforcing and
maintaining the quality of their data assets become critical tasks. One
in three business leaders does not trust the information used to make
decisions [36], since establishing trust in data becomes a challenge as
the variety and the number of sources grow. For example, in health care
domains, inaccurate or incorrect data may threaten patient safety [75].

Gartner predicted that more than 25% of critical data in the world’s
top companies is flawed [106]. Poor data across businesses and the
government costs the U.S. economy $3.1 trillion a year, according to a
report by InsightSquared [29]. With the increasing popularity of data
science, it became evident that data curation, preparation, cleaning,
and other “janitorial” data tasks, are key enablers in unleashing value
of data, as indicated in a 2014 article in the New York Times1.

Even when the data is ingested in JSON, XML, or text format,
many of data quality assessment and cleaning activities happen after
transforming the data into relational tables. There are many notions
related to relational data quality: data consistency, data accuracy, data
completeness, and data currency. Data consistency refers to the valid-

1http://nyti.ms/1t8IzfE
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ity and integrity of data; data accuracy refers to how accurate the data
values in a database with respect to the true values; data completeness
indicates whether all the data needed to meet the information needs
is available; and data currency, also known as, data timeliness, gives
the degree to which the data is current with respect to the world or
the process it models. There are various surveys and books on rela-
tional data quality. Rahm and Do [93] give a classification of different
types of errors that can happen in an Extract-Transform-Load (ETL)
process, and survey the tools available for cleaning data in an ETL pro-
cess; some focus on the effect of incompleteness data on query answer-
ing [61], and the use of a Chase procedure for dealing with incomplete
data [62]; Hellerstein [67] focuses on cleaning quantitative data, such
as integers and floating points, using mainly statistical outlier detec-
tion techniques. Bertossi [8] provides complexity results for repairing
inconsistent data, and performing consistent query answering on in-
consistent data; Fan and Geerts [44] discuss the use of data quality
rules in data consistency, data currency, and data completeness, how
different aspects of data quality issues might interact; and Dasu and
Johnson [33] summarize how techniques in exploratory data mining can
be integrated with data quality management.

In this paper, we focus on the data consistency aspect of relational
data quality. To ensure data consistency, data quality rules are often
used. We use integrity constraints (ICs) to express data quality rules.
Any part of the data that does not conform to a given set of ICs is con-
sidered erroneous, also known as a violation of ICs. Data deduplication
can be seen as enforcing a key constraint defined on all the attributes of
a relational schema, since two duplicate tuples can be seen as a viola-
tion of the key constraint. Data cleaning, in this context, is the exercise
of detecting errors, and possibly modifying the database, such that the
data conforms to a set of data quality rules expressed in a variety of
languages. This paper covers techniques to detect data inconsistencies,
as well as techniques to repair data inconsistencies.

The following example illustrates a real world tax record database
that has various data quality problems due to the violations of different
data quality rules, and the existence of duplicate records.
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Example 1.1. Consider the US tax records in Table 1.1. Each record de-
scribes an individual’s address and tax information with 15 attributes:
first and last name (FN, LN), gender (GD), area code (AC), mobile
phone number (PH), city (CT), state (ST), zip code (ZIP), marital
status (MS), has children (CH), salary (SAL), tax rate (TR), tax ex-
emption amount if single (STX), married (MTX), and having children
(CTX).

The following constraints hold: (1) area code and phone identify a
person; (2) two persons with the same zip code live in the same state;
(3) a person who lives in Los Angeles lives in California; (4) if two
persons live in the same state, the one with lower salary has a lower
tax rate; (5) tax exemption is less than the salary.

A violation with respect to an IC is defined as the minimal subset
of database cells, such that at least one of the cells has to be modified
to satisfy the IC, where a cell is an attribute value of a tuple, e.g., Cell
t1[FN] corresponds to Attribute FN of Tuple t1 . For instance, the
set of four cells {t1[ZIP], t8[ZIP], t1[ST], t8[ST]} is a violation with
respect to the second constraint. Furthermore, Record t4 and t9 refer
to the same person, even though t4[FN] and t9[FN] are different, and
t9[AC] is empty. Given a relational database instance I of schema R
and a set of integrity constraints Σ, we need to find another database
instance I ′ with no violations with respect to Σ.

1.1 Notations

Let R denote a relational schema, and I be an instance of that schema.
Attributes of R are denoted as attr(R) = {A1, . . . , Am}. For each At-
tribute A inR, letDom(A) denote the domain of A. I consists of a set of
tuples, each of which belongs to the domainDom(A1)×. . .×Dom(Am).
We assume that there is a unique tuple identifier associated with each
tuple t ∈ I. Let TIDs(I) denote the set of all tuple identifiers. We
identify a cell of Attribute A of a tuple t in I by I(t[A]), simply re-
ferred to as t[A] when the context is clear. Let CIDs(I) denote the set
of all cell identifiers in I.
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1.2 Outline

The remainder of the paper is organized as follows. Section 2 discusses
different ways to detect anomalies in the data, such as data duplica-
tion, integrity constraints languages, along with algorithms for their
automatic discovery, and provenance-based error propagation, based
on what, how, and where to detect. Section 3 introduces the taxonomy
we adopt to classify data repairing techniques, based on what, how,
and where to repair, and presents the details of multiple techniques in
each dimension. Section 4 discusses the techniques proposed for deal-
ing with big data cleaning. Section 5 concludes and summarizes future
research directions.



2
Taxonomy of Anomaly Detection Techniques

Given a dirty database instance, the first step toward cleaning the
database is to detect and surface anomalies or errors. Figure 2.1 depicts
the classification we adopt to categorize the current anomaly detection
techniques. In the following, we discuss our classification dimensions.
For each dimension, we give one or more examples to discuss in de-
tail. The three adopted dimensions capture the three main questions
involved in detecting errors in a database.

• Error Type (What to Detect?) Anomaly detection techniques can
be classified according to which type of errors can be captured.
While we mentioned earlier in Section 1 that duplicate records
can be considered a violation of an integrity constraint, we recog-
nize the large body of work that focused on this problem and we
discuss it separately from other types of integrity constraints. We
discuss example violations of various integrity constraints (ICs),
including functional dependencies (FDs), conditional functional
dependencies (CFDs), and denial constrains (DCs), along with
methods for their automatic discovery, and the main steps in-
volved in detecting duplicate records.

287
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Figure 2.1: Classification of anomaly detection techniques.

• Automation (How to Detect?) We classify proposed approaches
according to whether and how humans are involved in the
anomaly detection process. Most techniques are fully automatic,
for example, detecting violations of functional dependencies,
while other techniques involve humans, for example, to identify
duplicate records.

• Business Intelligence Layer (Where to Detect?) Errors can hap-
pen in all stages of a business intelligence (BI) stack, for example,
errors in the source database are often propagated through the
data processing pipeline. While most anomaly detection tech-
niques detect errors in the original database, some errors can
only be discovered much later in the data processing pipeline,
where more semantics and business logics becomes available, for
example, constraints on total budget can only be enforced after
aggregating cost and expenses.

Table 2.1 shows a sample of anomaly detection techniques, which
cover all categories of the proposed taxonomy.



2.1. What to Detect 289

Error Type
What

Automation
How

BI Layer
Where

IC D
ata

deduplication

A
utom

atic

H
um

an
involved

Source

Target

FDs value modification [17] D D D

Holistic data cleaning [26] D D D

CrowdER [114] D D D

Corleone [59] D D D

Causality Analysis [87] D D D

Scorpion [123] D D D

DBRx [19] D D D

Table 2.1: A sample of anomaly detection techniques.

2.1 What to Detect

In this section, we discuss the various types of errors considered in
this paper, namely, violations of integrity constraints, and presence of
duplicate records. We start by discussing example formal types of in-
tegrity constraints (e.g., functional dependencies and denial constraints
in Section 2.1.1, and we briefly survey de-duplication proposals in Sec-
tion 2.1.2.

2.1.1 Integrity Constraints

Integrity constraints (ICs), which are usually declared as part of the
database schema, have been increasingly used as data quality rules, ei-
ther through checking the validity of the data upon addition or update,
or by cleaning the dirty data at various points during the processing
pipeline [26, 77]. Quality constraints are used to identify data viola-
tions and automatically repair them according to some cost function,
such as minimizing the number of changes to the original data. Tra-
ditional types of ICs, such as key constraints, check constraints, and
functional dependencies (FDs), have been proposed for data quality
management [17]. Conditional functional dependencies (CFDs), an ex-
tension of FDs, have been found to be more general and expressive
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than FDs as they can capture many real life data quality problems
that FDs fail to capture [18]. Not surprisingly, the more expressive an
IC language is, the more difficult it is to exploit it in automated data
cleaning algorithms, or even in consistency checking. Hence, a balance
should be achieved between the expressive power of ICs in order to
deal with a broader space of business rules from one side, and the de-
velopment of effective cleaning and discovery algorithms from the other
side [25].

Since data owners are often not data quality experts, automatic
IC discovery is an extremely useful functionality in bootstrapping the
cleaning exercise. In this section, we survey the most commonly used
ICs in the literature for detecting data inconsistencies, as well as the
techniques proposed for their automatic discovery.

Let Σ denote a set of integrity constraints (ICs). We use I |= Σ
to indicate that database Instance I conforms with the set of integrity
constraints Σ. We say that I ′ is a repair of I with respect to Σ if I ′ |= Σ
and CIDs(I) = CIDs(I ′) (i.e., no deletions or insertions are allowed
to clean a database instance).

2.1.1.1 Functional Dependencies

Consider a relational schema R with attributes attr(R).

Definition 2.1. A functional dependency (FD) ϕ is defined as X → Y ,
where X ⊆ attr(R) and Y ⊆ attr(R). An instance I of R satisfies
FD ϕ, denoted as I |= ϕ if for any two tuples tα, tβ in I, such that
tα[X] = tβ[X], then tα[Y ] = tβ[Y ].

In other words, if there exist any two tuples, tα, tβ, in any instance
I, that have the same value for attributes X, but different values for Y ,
then there must be some errors present in tα or tβ. We call X the left
hand side (LHS), and Y the right hand side (RHS). In Example 1.1,
the second data quality rule is an FD ZIP → ST .

Example 2.1. Consider two tuples t1 and t8 in Table 1.1; they
have the same value “25813” for ZIP , but t1 has “WA” for ST

and t8 has “WV” for ST . Clearly, at least one of the four cells
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{t1[ZIP ], t8[ZIP ], t1[ST ], t8[ST ]} has to be incorrect. In order to limit
the space of possible repairs, certain data cleaning algorithms only al-
low changes on the RHS. In this case, changing t1[ST ] to “WV” or
changing t8[ST ] to “WA” would fix the violation of the FD. If changes
on the LHS are allowed, changing t1[ZIP ] or t8[ZIP ] to any value other
than “25813” would also resolve the violation.

FD Discovery
An FD ϕ : X → A is valid with respect to a database instance I if
there is no violation of ϕ on I. FD ϕ is said to be minimal if removing
any attribute from X would make it invalid. Moreover, an FD is trivial
if its RHS is a subset of its LHS. Since FDs with multiple attributes in
the RHS can be equivalently decomposed into multiple FDs with one
attribute in the RHS, only FDs with one attribute in the RHS need to
be considered. Thus, given a database instance I of schema R, the FD
discovery problem is to find all valid minimal nontrivial FDs with one
attribute in the RHS that hold on I.

Current FD discovery approaches can be divided into schema-driven
and instance-driven approaches. We present an example technique for
each category: TANE [71] as an example of a schema-driven approach,
and FASTFD [125] as an example of an instance-driven approach.
TANE adopts a level-wise candidate generation and pruning strategy
and relies on a linear algorithm for checking the validity of FDs. On
the other hand, FASTFD first computes difference sets from data, then
adopts a heuristic-driven depth-first search algorithm to search for cov-
ers of difference sets. TANE is sensitive to the size of the schema, while
FASTFD is sensitive to the size of the instance.

TANE Assume the relational schemaR hasm attributes; |R| = m.
Selecting an attribute as the RHS of an FD, any subset of the remaining
m−1 attributes could serve as the LHS. Thus, the space to be explored
for FD discovery is m×2m−1. Figure 2.2a shows the space of candidate
FDs organized in a lattice for a table with four columns, A,B,C, andD,
with every edge in the lattice represents a candidate FD. For example,
edge A to AC represents the FD A→ C.
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(a) Space of FDs. (b) Candidate FDs pruned if A → C
is valid

Figure 2.2: TANE

Algorithm 1 describes TANE [71]. TANE searches the lattice level
by level. The level-by-level traversal ensures that only minimal FDs are
in the output. There are three types of pruning employed by TANE:
(1) If X → A ∈ Σ, then all FDs of the form XY → A are implied,
and hence they can be pruned; (2) If X → A ∈ Σ, then all FDs of the
form XAY → B can be pruned. The reason is that if XY → B is a
valid FD, then XAY → B is implied by XY → B, which would be
discovered earlier due to level-by-level traversal, and if XY → B is not
a valid FD, then XAY → B is also not valid due to X → A; and (3)
If X is a key, then any node containing X can be pruned.

Partitioning I by X produces a set of nonempty disjoint subsets
denoted as ΠX , and each subset contains identifiers of all tuple in I

sharing the same value for attributes X. An FD X → A is valid if
and only if |ΠX | = |ΠX∪A|, where |ΠX | denotes the number of disjoint
subsets in ΠX . The partitions need not be computed from scratch for
every set of attributes, rather, TANE computes ΠXY from two previ-
ously computed partitions, ΠX and ΠY . Note that ΠXY contains all
subsets of tuples, where each subset is in both ΠX and ΠY . For ex-
ample, if ΠX = {{t1}, {t2, t3}, {t4}} and ΠY = {{t1, t2, t3}, {t4}}, then
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Algorithm 1 TANE
Input: One relational instance I, schema R
Output: All minimal FDs Σ
1: L1 ← {{A}|A ∈ attr(R)}
2: l← 1
3: while Ll 6= ∅ do
4: for all Node Y ∈ Ll do
5: for all Parent node X of Y do
6: if X → Y −X is valid then
7: add X → Y −X to Σ
8: pruning Ll based on the three pruning rules
9: Ll+1 ← generate next level based on Ll

10: l← l + 1

ΠXY = {{t1}, {t2, t3}, {t4}}. Therefore, TANE needs only to compute
partitions for every single attribute A ∈ R, partitions for every set
of attributes X can be computed from a previous level following the
level-by-level traversal.

FASTFD FASTFD [125] is an instance-based FD discovery algo-
rithm. We start by defining the difference set of two tuples t1, t2 as
D(t1, t2) = {A ∈ attr(R) | t1[A] 6= t2[A]}. The difference sets of I are
DI = {D(t1, t2) | t1, t2 ∈ I, D(t1, t2) 6= ∅}. Given a fixed A ∈ attr(R),
the difference sets of I modulo A areDA

I = {D−{A} |D ∈ DI , and A ∈
D}. An FD X → A is a valid FD if and only if X covers DA

I , i.e., X
intersects with every element in DA

I . The intuition is that if X inter-
sects with every element in DA

I , then X distinguishes any two tuples
that disagree on A.

Example 2.2. Consider a table I of R with four attributes as follows:

A B C D

t1 a1 b1 c1 d1
t2 a2 b1 c1 d2
t3 a1 b2 c2 d1

We have D(t1, t2) = {AD}, D(t1, t3) = {BC}, and D(t2, t3) =
{ABCD}. Thus, DI = {AD,BC,ABCD}, and DA

I = {D,BCD}.
Since {D} is a minimal cover of DA

I , we have D → A.
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Therefore, the problem of finding all valid FDs is transformed to
the problem of finding all minimal set covers of DA

I for every attribute
A ∈ attr(R). Every subset of attr(R) − A is a potential candidate
minimal cover of DA

I . Algorithm 2 describes FASTFD. In the following,
we describe the depth-first search (Line 4) of Algorithm 2 using the
table in Example 2.2.

Algorithm 2 FASTFD
Input: One relational instance I, schema R
Output: All minimal FDs Σ
1: for all A ∈ attr(R) do
2: calculate DA

I

3: for all A ∈ attr(R) do
4: Finding all minimal set covers of DA

I using a depth-first search
5: For every cover X, add X → A to Σ

To generate all possible minimal set covers for DA
I , that is all sub-

sets of {BCD}, without repetition, the attributes are lexically ordered,
i.e., B > C > D, and arranged in a depth-first search tree, as shown in
Figure 2.3a. An improved version of the search orders the remaining at-
tributes dynamically according to how many difference sets they cover.
Ties are broken lexically. For example, to search for minimal covers of
DA
I using {BCD}, the attributes are ordered D > B > C, since D

covers two difference sets, while B and C cover one difference set, as
shown in Figure 2.3b. If the algorithm reaches at a node where there
are no remaining difference sets left, we have reached a cover X, which
may not be minimal. If every immediate subset of X is not a cover,
then X is minimal. If a node is reached where there are still remaining
difference sets, but no attributes left, the depth-first search procedure
terminates.

2.1.1.2 Conditional Functional Dependencies

FDs are not sufficient to capture certain semantics of data. Conditional
functional dependencies (CFDs), an extension of FDs, are capable of
capturing FDs that hold partially on the data [18].
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(a) Static ordering of at-
tributes.

(b) Dynamic ordering of at-
tributes

Figure 2.3: FASTFD

Definition 2.2. A CFD ϕ on R is a pair (R : X → Y, Tp), where:

• X,Y ⊂ R;

• X → Y is an FD, called embedded FD in the context of CFD;
and

• Tp is called a pattern tableau of ϕ, where for every attribute A ∈
X ∪ Y and each pattern tuple tp ∈ Tp, either tp[A] is a constant
in the domain Dom(A) of A, or tp[A] is a wild card ‘-’.

A tuple tα ∈ I is said to match a pattern tuple tp ∈ Tp, denoted
as tα ≈ tp, if for every attribute A ∈ X ∪ Y , tα[A] = tp[A], in case
tp[A] is a constant. A relation instance I of R is said to satisfy a CFD
ϕ, denoted as I |= ϕ, if for every tuple tα, tβ ∈ I, and for each tuple
tp ∈ Tp, if tα[X] = tβ[X] ≈ tp[X], then tα[Y ] = tβ[Y ] ≈ tp[Y ].

Intuitively, a CFD is a traditional FD with an added constraint of
the pattern tableau. If, for two tuples tα, tβ ∈ I, tα[X] and tβ[X] are
equal and they both match tp[X], then tα[Y ] and tβ[Y ] must also be
equal and must both match the pattern tp[Y ].

Example 2.3. Consider a table of sales records in Table 2.2 and an FD
{name, type, country} → {price, tax}. The FD does not hold on the
entire relation (e.g., t6 and t7 are violating this FD), but it holds if (1)
type is “clothing”; (2) country is “France” and type is “book”; or (3)
country is “UK”.
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TID name type country price tax
t1 Harry Potter book France 10 0
t2 Harry Potter book France 10 0
t3 Harry Potter book France 10 0.05
t4 The Lord of the Rings book France 25 0
t5 The Lord of the Rings book France 25 0
t6 Algorithms book USA 30 0.04
t7 Algorithms book USA 40 0.04
t8 Armani suit clothing UK 500 0.05
t9 Armani suit clothing UK 500 0.05
t10 Armani slacks clothing UK 250 0.05
t11 Armani slacks clothing UK 250 0.05
t12 Prada shoes clothing USA 200 0.05
t13 Prada shoes clothing USA 200 0.05
t14 Prada shoes clothing France 500 0.05
t15 Spiderman DVD UK 19 0
t16 Star Wars DVD UK 29 0
t17 Star Wars DVD UK 25 0
t18 Terminator DVD France 25 0.08
t19 Terminator DVD France 25 0
t20 Terminator DVD France 20 0

Table 2.2: Sales data records [60]

The constraints, however, can be expressed by the CFD
({name, type, country} → {price, tax}, Tp), with Tp as shown in Fig-
ure 2.4.

While it requires two tuples to have a violation of an FD, one tuple
may also violate a CFD. A single tuple t violates a CFD if t matches
the LHS of a tuple tp in the pattern tableaux, but not the RHS, where
tp consists of all constants, i.e., no wild cards, traditionally referred to
as “tuple check constraint”.

CFD Discovery

Similar to FD discovery, we aim at discovering nontrivial, minimal
CFDs with only one attribute in the RHS that hold on a given database
instance. The CFD discovery problem is challenging for two reasons:
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name type country price tax
- clothing - - -
- book France - 0
- - UK - -

Figure 2.4: Tp for the CFD ({name, type, country} → {price, tax}, Tp)

(1) the number of all possible embedded FDs is exponential in the num-
ber of attributes in the schema, which is shared by the problem of FD
discovery; and (2) the number of all possible constants in the pattern
tableaux is huge, a challenge unique for CFD discovery.

Candidate CFDs can be generated according to the same lattice
used in FD discovery (cf. Figure 2.2a) [22]. Unlike FD discovery, where
each edge in the lattice corresponds to one candidate FD, in CFD dis-
covery, each edge corresponds to multiple candidate CFDs, depending
on which attributes are conditioned on. Specifically, an edge (X,XA)
generates CFDs of the form [Q,P ]→ A, consisting of variable attributes
P and conditional attributes Q, where X = P ∪Q. The conditional at-
tributes are those attributes that appear as constants in Tp. The same
strategy used in TANE is employed to traverse the lattice level by level,
and to reduce the computation at each level by using the results from
previous levels [22]. Several interestingness measures, e.g., support, χ2

test, and conviction, are proposed for discovered CFDs to avoid return-
ing an unnecessarily large number of CFDs.

Three CFD discovery methods that require that the number of tu-
ples matching the pattern tableaux should be above a minimum thresh-
old were proposed [45]. The first method, named CFDMiner, aims
at discovering constant CFDs, i.e., CFDs with the pattern tableaux
containing only constants. CFDMiner leverages the similarity between
the problem of discovering constant CFDs and the problem of min-
ing free and closed itemsets: constant CFDs correspond to association
rules with 100% confidence. The second method, named CTANE, ex-
tends TANE for FD discovery and uses a level-wise search strategy,
which is similar to the search strategy used in [22]. The third method,
FASTCFD, extending FASTFD for FD discovery, employs a depth-first
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search strategy. A novel pruning strategy used in FASTCFD is to use
constant CFDs already discovered by CFDMiner. CTANE is sensitive
to the number of attributes in the schema; while FASTCFD is sensitive
to the number of tuples in the database.

If the embedded FD is given, the CFD discovery problem becomes
that of generating a near-optimal pattern tableaux [60]. The “goodness”
of the pattern tableaux is defined by the support and the confidence,
where the support of a pattern tableaux is defined as the fraction of
tuples in the database that match the LHS of the pattern tuples in the
pattern tableaux, and the confidence of a pattern tableaux is defined as
the maximum fraction of tuples in the database that do not violate the
pattern tableaux. The optimal pattern tableaux generation problem
will be further discussed in Section 3.1.2.

2.1.1.3 Denial Constraints

As powerful as CFDs are, they are still not capable of capturing many
real life data quality rules, such as the fourth rule, that is “if two persons
live in the same state, the one with lower salary has a lower tax rate”,
and the fifth rule, that is “tax exemption is less than the salary”, in
Example 1.1. Denial constraints (DCs), a universally quantified first
order logic formalism, which subsume FDs and CFDs, can describe all
data quality rules in Example 1.1.

Definition 2.3. A denial constraint (DC) ϕ on R is defined as:
∀tα, tβ, tγ , . . . ∈ R, q(P1 ∧ . . . ∧ Pm), where each predicate Pi is of the
form v1θv2 or v1θc with v1, v2 ∈ tx.A, x ∈ {α, β, γ, . . .}, A ∈ R, c is a
constant in the domain of A, and θ ∈ {=, <,>, 6=,≤,≥}.

A relation instance I of R is said to satisfy a DC ϕ, denoted as
I |= ϕ, if for every ordered list of tuples ∀tα, tβ, tγ , . . . ∈ I, at least one
of Pi is false.

For a DC ϕ according to the definition, if ∀Pi, i ∈ [1,m] is of the
form v1φv2, then we call such DC a variable denial constraint (VDC),
otherwise, ϕ is a constant denial constraint (CDC).

A DC states that all the predicates cannot be true at the same time,
otherwise, we have a violation. Single-tuple constraints (such as check
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constraints), FDs, and CFDs are special cases of unary and binary
denial constraints with equality and inequality predicates.

Example 2.4. DCs are expressive enough to capture all data quality
rules in Example 1.1 as follows:

c1 : ∀tα, tβ ∈ R, q(tα.AC = tβ.AC ∧ tα.PH = tβ.PH)
c2 : ∀tα, tβ ∈ R, q(tα.ZIP = tβ.ZIP ∧ tα.ST 6= tβ.ST )
c3 : ∀tα ∈ R, q(tα.CT = ‘Los Angeles’ ∧ tα.ST 6= ‘CA’)
c4 : ∀tα, tβ ∈ R, q(tα.ST = tβ.ST∧tα.SAL < tβ.SAL∧tα.TR > tβ.TR)
c5 : ∀tα ∈ R, q(tα.SAL < tα.STX)

DC Discovery

FASTDC [27, 25] is proposed as an extension of FASTFD for DC dis-
covery. In order to define the space of DCs, we first need to define the
space of predicates P, since DCs are composed of predicates. Then,
the evidence set EviI is built. The evidence set EviI is a set, where
each element in EviI is a subset of predicates in P that are satisfied
by a tuple pair in I. The evidence set has a similar functionality to
the difference set in FASTFD, in that each minimal set cover for EviI
corresponds to a valid minimal DC.

Example 2.5. Consider the following Employee table with three at-
tributes: Employee ID (I), Manager ID (M), and Salary(S):

TID I(String) M(String) S(Double)
t9 A1 A1 50
t10 A2 A1 40
t11 A3 A1 40

For each attribute in the schema, we add two equality predicates
(=, 6=) between two tuples on it. In the same way, for each numeri-
cal attribute, we add order predicates (>,≤, <,≥). For every pair of
attributes in R, they are joinable (comparable) if equality (order) predi-
cates hold across them, and we add cross column predicates accordingly.
We build the following predicate space P for it:
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P1 : tα.I = tβ.I P5 : tα.S = tβ.S P9 : tα.S < tβ.S

P2 : tα.I 6= tβ.I P6 : tα.S 6= tβ.S P10 : tα.S ≥ tβ.S
P3 : tα.M = tβ.M P7 : tα.S > tβ.S P11 : tα.I = tα.M

P4 : tα.M 6= tβ.M P8 : tα.S ≤ tβ.S P12 : tα.I 6= tα.M

P13 : tα.I = tβ.M P14 : tα.I 6= tβ.M

Given a pair of tuple 〈tx, ty〉 ∈ I, the satisfied predicate set for
〈tx, ty〉 is SAT (〈tx, ty〉) = {P |P ∈ P, 〈tx, ty〉 |= P}, where P is the
predicate space, and 〈tx, ty〉 |= P means 〈tx, ty〉 satisfies P . The evi-
dence set of I is EviI = {SAT (〈tx, ty〉)|∀〈tx, ty〉 ∈ I}. A set of predi-
cates X ⊆ P is a minimal set cover for EviI if ∀E ∈ EviI ,X ∩E 6= ∅,
and @Y ⊂ X, s.t. ∀E ∈ EviI ,Y ∩ E 6= ∅.

Example 2.6. EviEmp = {{P2, P3, P5, P8, P10, P12, P14},
{P2, P3, P6, P8, P9, P12, P14}, {P2, P3, P6, P7, P10, P11, P13}}. Every ele-
ment in EviEmp has at least one pair of tuples in I, such that every
predicate in it is satisfied by that pair of tuples.

X1 = {P2} is a minimal cover, thus q(P2), i.e., q(tα.I = tβ.I) is a
valid DC, which states I is a key.

X2 = {P10, P14} is another minimal cover, thus q(P10 ∧ P14), i.e.,
q(tα.S < tβ.S ∧ tα.I = tβ.M) is another valid DC, which states that a
manager’s salary cannot be less than her employee’s.

Algorithm 3 FASTDC
Input: One relational instance I, schema R
Output: All minimal DCs Σ
1: P← building the predicate space based on R and I
2: EviI ← building the evidence set based on I and P
3: MC← search for all minimal covers of EviI
4: for all X ∈MC do
5: Σ← Σ+q(X)
6: rank DCs in Σ based on their interestingness

Algorithm 3 describes FASTDC, which first builds the space of
predicates and the evidence set, then searches for all minimal set covers
for the evidence set. Every minimal set cover corresponds to a mini-
mal DC. In the end, all discovered DCs are ranked according to their
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interestingness, which is a linear combination of succinctness and cov-
erage [25].

2.1.1.4 Other Types of Constraints

Multiple other types of constraints have been proposed for different
purposes: Inclusion Dependencies (INDs) [1] can be used for detecting
inconsistencies or information incompleteness, and schema matching;
Matching dependencies (MDs) [49] use similarity measures to generalize
the equality condition used in FDs, to support record linkage across two
tables; Metric functional dependencies (MFDs) [80] can be considered
as special MDs defined on one table, to capture small variations in
the data; Numeric functional dependencies (NFDs) [43] can capture
interesting constraints involving numeric attributes, since NFDs allow
arithmetic operations; Editing rules (eRs) [50] not only provides a way
to detect errors, but also tells how to fix errors by referencing a master
table; Fixing rules [117] precisely captures which attribute is wrong,
and how to correct the error, when enough evidence is present; Sherlock
Rules [72] annotate the correct and erroneous attributes, and precisely
tell how to fix the errors by referencing master tables.

Inclusion Dependency
Inclusion Dependencies (INDs) [1], which are a generalization of refer-
ential constraints, can be used for detecting inconsistencies or informa-
tion incompleteness [17] and schema matching systems (e.g., [65]).

Definition 2.4. An inclusion dependency ϕ for two relations (R1, R2)
is defined as R1[X] ⊆ R2[Y ], where (X1, X2) are lists of attributes in
(R1, R2), and |X| = |Y |. An instance pair (I1, I2) satisfies IND ϕ if for
any tuple tα ∈ I1, there exists a tuple tβ ∈ I2, such that tα[X] = tβ[Y ].

In other words, for any tα ∈ I1, if there is no tuple tβ ∈ I2 that
satisfies tα[X] = tβ[Y ], then either tα ∈ I1 is incorrect, or there is a
tuple missing in R2. Inclusion dependencies may also refer to only one
relation, i.e., R1 is the same as R2.

Example 2.7. Consider the relation about tax records in Ex-
ample 1.1 as Relation R1, and a second employee relation
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R2(EID,FirstName, LastName) that keeps all the employee IDs, and
their first and last names. A valid IND would be R1[FN, LN] ⊆
R2[FirstName, LastName], which means that if there is a tax record
about a person, then that person must appear in the employee table.

De Marchi et al. [34] discover unary INDs, that is, INDs with one
attribute in X and Y , using a two step process by first building an
inverted index pointing every value in the database to the set of all
attributes containing the value, and then retrieving valid INDs using set
intersections. N-ary INDs are discovered following a level-wise approach
similar to TANE. BINDER [92] does not assumes that the data set fits
into main memory, and aims at discovering INDs in a scalable manner
based on a divide and conquer strategy.

INDs are later extended to conditional inclusion dependencies
(CINDs) [84], which are INDs that hold on subset of the tuples. Just
like the extension of CFDs to FDs, CINDs have more expressive power
than INDs.

Matching Dependency
Matching dependencies (MDs) [49] use similarity measures to generalize
the equality condition used in FDs. While FDs are defined on a single
relation, MDs are defined on two relations.

Definition 2.5. A matching dependency ϕ for two relations (R1, R2) is
defined as follows:

∧j∈[1,k](R1[X1[j]] ≈j R2[X2[j]])→ R1[Z1]
 R2[Z2],

where

• (X1, X2) are lists of attributes in (R1, R2), X1[j], X2[j] denotes
the jth attribute in X1, X2;

• for every j ∈ [1, k], X1[j] and X2[j] are comparable, i.e., they
belong to the same domain;

• for every j ∈ [1, k], ≈j is a similarity operator, which can be any
similarity metric used in record matching, e.g., q-grams or edit
distance;
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• 
 is a matching operator. For any two values x, y, x
 y indicates
that x and y are changed to be identical.

Intuitively, an MD ϕ states that if R1[X1] and R2[X2] are similar
with respect to some similarity metrics, then R1[Z1] and R2[Z2] should
be changed to be identical.

Example 2.8. Consider two relational tables from a bank in
the U.K.: card(FN, LN,St, city,AC, zip, tel, dob, gd) maintains cus-
tomer information collected when credit cards are issued; and
tran(FN, LN, St, city,AC, post, phn, gd, item,when,where) consists of
transaction records of credit cards, which may be dirty. Here a card
tuple specifies a U.K. credit card holder identified by first name (FN),
last name (LN), address (street (St), city, zip code), area code (AC),
phone (tel), date of birth (dob) and gender (gd). A tran tuple is a
record of a purchased item paid by a credit card at place where and
time when, by a U.K. customer who is identified by name (FN, LN),
address (St, city, post code), AC, phone (phn), and gender (gd).

A possible matching rule is that for any tuple in card and any
tuple in tran, if they have the same last name and address, and more-
over, if their first names are similar, then their phone and FN at-
tributes can be identified. This rule can be expressed by an MD ψ:
tran[LN, city,St, post] = card[LN, city, St, zip] ∧ tran[FN] ≈ card[FN] →
tran[FN, phn]
 card[FN, tel].

The MD discovery problem also aims at discovering interesting MDs
with high support and confidence [102], which is similar to CFD dis-
covery [22]. Only interested MDs are selected as output.

Metric Functional Dependency
While MDs are for capturing small variations on string attributes, Met-
ric functional dependencies (MFDs) [80] are usually used to capture
small variations on numerical data.

Definition 2.6. A metric functional dependency (MFD) ϕ is defined as
X

δ→ Y , where X and Y denote subsets of attributes of attr(R). An
instance I of R satisfies this FD ϕ, denoted as I |= ϕ if for any two
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Source Title Duration
movies.aol.com Aliens 110
finnguide.fi Aliens 112
amazon.com Clockwork Orange 137

Table 2.3: Movie data records integrated from multiple data sources.

tuples tα, tβ in I such that tα[X] = tβ[X], then d(tα[Y ], tβ[Y ]) ≤ δ,
where d is a metric function defined on the domain of Y .

An MFD can be seen as a special case of MD where R1 and R2 are
the same relation and the LHS is exact matching.

Example 2.9. Consider a table of movies in Table 2.3, resulting from
integrating movies from multiple websites. A plausible constraint is
that the same movie should have the same duration. However, differ-
ent websites may have different ways of calculating the duration, for
example, depending on whether extra materials, such as the advertise-
ment, are included. An MFD Title 5→ Duration would be more suitable
than the FD Title→ Duration to capture such a constraint.

Numeric Functional Dependency
Numeric functional dependencies (NFDs) [43] are another type of con-
straints for capturing constraints involving numeric attributes. They
are able to capture errors in numeric attributes that FDs, CFDs, and
DCs cannot capture.

Definition 2.7. A numeric functional dependency (NFD) ϕ defined on
a relational table R(A1, . . . , Am) is a pair of tables:

• a pattern table Tp of schema R that has two tuples p1 and p2;
for i ∈ [1, 2] and j ∈ [1,m], pi[Aj ] is a constant in dom(Aj), a
variable x, or a wildcard ‘_’; and

• a condition table Tc with a single condition tuple of the form eopz,
where e is either a variable in Tp or a linear arithmetic expression
of variables in Tp, op is one of the operations in {=, 6=, <,≤, >,≥},
and z is either a constant or a variable in Tp.
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Figure 2.5: NFDs examples [43].

As we can see, NFDs are defined on at most two tuples, and it
can express more constraints involving numeric attributes than FDs,
CFDs, and DCs because NFDs allow arithmetic operations.

Example 2.10. Figure 2.5 shows three NFDs on three different tables.
(1) The first table specifies a person with his name, year of birth (YoB),
year of death (YoD), and origin (country, town). The first NFD with TP1
in Figure 2.5a and TC1 in Figure 2.5b says that no one can live more
than 120 years. (2) The second table specifies the academic report of
courses of a student, with the distribution of the score into homework
(hw), tests, lab, and projects (proj). The second NFD with TP2 in Fig-
ure 2.5c and TC2 in Figure 2.5d says that the total percentage has to
be equal to 100. (3) The third table is about credit card transactions
with each tuple specifying the card number (CC#), the hard holder
information (name, street, city, zip), when and where the card was used,
and the amount charged to the card (amnt). The third NFD, with TP3
in Figure 2.5e and TC3 in Figure 2.5f , asserts that two transactions
involving the same credit card, one happening in Edinburgh (Edi) and
one happening in New York city (NYC), has to be at least two hours
apart.
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Editing Rules
Editing rules (eRs) [50] not only provides a way to detect errors, but
also tells how to fix errors by referencing a master table.

Definition 2.8. An editing rule (eR) ϕ defined on a relation R and a
master relation Rm is a pair

(
(X,Xm)→ (B,Bm), tp[Xp]

)
, where:

• X and Xm are two lists of distinct attributes in R and Rm re-
spectively, with the same number of attributes;

• B is an attribute in attr(R) − X, and Bm is an attribute in
attr(Rm)−Xm; and

• tp is a pattern tuple over a set of distinct attributes Xp in R,
such that for each A ∈ Xp, tp[A] is one of _, a or a, where a is a
constant from the domain of A, a is any constant other than a,
and _ is an unnamed variable.

An eR ϕ is said to be applicable to a tuple t ∈ I and a tuple tm ∈ Im
to update t to t′, denoted as t→ t′ if:

• t and tm matches on the LHS of ϕ, i.e., t[X] = tm[Xm];

• t matches tp, i.e., t[Xp] ≈ tp[Xp]; and

• t′ is obtained from t by updating t[B] to be tm[Bm].

CFDs and eRs are both based on pattern tuples. CFDs are defined
on a single relation, while eRs are defined on an input tuple and a
master relation. In addition, while CFDs have static semantics, i.e.,
they only tell whether two tuples are in violation or not, eRs have
dynamic semantics, i.e., they update t to t′ if an eR is applicable.

eRs are also similar to MDs in that they both share dynamic seman-
tics. Although both MDs and eRs are defined on two relations, MDs
neither have pattern tuples nor master data relation. For two tuples
t1 and t2, an MD ∧j∈[1,k](R1[X1[j]] ≈j R2[X2[j]]) → R1[Z1] 
 R2[Z2]
only states that t1[Z1] and t2[Z2] should be identified, but it does not
tell what values are to be taken; however, eRs directly dictate that
values from the master relation should be taken.
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Example 2.11. Consider the same two relational tables as defined
in Example 2.8, namely, card(FN, LN, St, city,AC, zip, tel, dob, gd) and
tran(FN, LN, St, city,AC, post, phn, gd, item,when,where). Assume that
card is a clean master relation, that is, tuples in card are correct.

An plausible eR ϕ is that for any tuple t in tran, if there exists a mas-
ter tuple s in card with t[LN,FN, city, St, post] = s[LN,FN, city, St, zip],
the t[phn] should be updated to be s[phn], which can be written
as ϕ:

(
(X,Xm) → (phn, phn), tp[Xp] = ()

)
, where X ranges over

LN,FN, city, St, post, and Xm ranges over LN,FN, city,St, zip.

Editing rules discovery is studied in [37], which adapts techniques
from CFD discovery.

Fixing Rules
Similar to eRs, Fixing rules [117] not only precisely capture which
attribute is wrong, but also indicate how to correct the error, when
enough evidence is present.

Definition 2.9. A fixing rule ϕ defined on a schema R is formalized as
((X, tp[X]), (B, T−p [B]))→ t+p [B] where

• X is a set of attributes in attr(R), and B is an attribute in
attr(R) \X (i.e.B is not in X);

• tp[X] is a pattern with attributes in X, referred to as the evidence
pattern on X, and for each A ∈ X, tp[A] is a constant value in
dom(A);

• T−p [B] is a finite set of constants in dom(B), referred to as the
negative patterns of B; and

• t+p [B] is a constant value in dom(B) \ T−p [B], referred to as the
fact of B.

Intuitively, the evidence pattern tp[X] of X, together with the nega-
tive patterns T−p [B] impose the condition to determine whether a tuple
contains an error on B. The fact t+p [B] in turn indicates how to correct
this error. The last condition in the definition enforces that the correct
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name country capital city conf
r1: George China Beijing Beijing SIGMOD
r2: Ian China Shanghai Hongkong ICDE

(Beijing) (Shanghai)
r3: Peter China Tokyo Tokyo ICDE

(Japan)
r4: Mike Canada Toronto Toronto VLDB

Figure 2.6: Database D: an instance of schema Travel

value (i.e.the fact) is different from known wrong values (i.e.negative
patterns) relative to a specific evidence pattern.

A tuple t of R matches a rule ϕ : ((X, tp[X]), (B, T−p [B]))→ t+p [B],
if (i) t[X] = tp[X] and (ii) t[B] ∈ T−p [B]. In other words, tuple t
matches rule ϕ indicates that ϕ can identify errors in t.

Example 2.12. Consider a table of travel records, shown in Fig-
ure 2.6, for a research institute, specified by the following schema:
Travel (name, country, capital, city, conf). A Travel tuple specifies a per-
son, identified by name, who has traveled to conference (conf), held at
the city of the country with capital. All errors are highlighted and their
correct values are given between brackets. For instance, r2[capital] =
Shanghai is wrong, and its correct value is Beijing.

Consider the following two fixing rules defined on Travel: ϕ1 :
(([country], [China]), (capital, {Shanghai,Hongkong})) → Beijing,
and ϕ2 : (([country], [Canada]), (capital, {Toronto}))→ Ottawa.

In both ϕ1 and ϕ2, X consists of country and B is capital. Here,
ϕ1 states that, if the country of a tuple is China and its capital value
is in {Shanghai, Hongkong}, its capital value is wrong and should be
updated to Beijing. Similarly for ϕ2. Tuple r1 does not match rule ϕ1,
since r1[country] = China but r1[capital] 6∈ {Shanghai, Hongkong}. As
another example, tuple r2 matches rule ϕ1, since r2[country] = China,
and r2[capital] ∈{Shanghai, Hongkong}. Similarly, we have r4 matches
ϕ2. After applying ϕ1 and ϕ2, two errors, r2[capital] and r4[capital], can
be repaired.
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To the best of our knowledge, the automatic discovery for fixing
rules has not been studied.

Sherlock Rules
Sherlock Rules [72] annotate the correct and erroneous attributes, and
precisely tell how to fix the errors by referencing master tables. Let I
be a table over schema R, and M a reference table with schema Rm.
The relational schema R is often different from Rm.

Definition 2.10. A Sherlock Rule (sR) ϕ defined on schemas (R,Rm)
is formalized as ϕ : ((X,Xm), (B,B−

m, B+
m), ~≈) where:

• X and Xm are lists of distinct attributes in schemas R and Rm
respectively, where |X| = |Xm|;

• B is an attribute such that B ∈ R \ X, and B−
m, B+

m are two
distinct attributes in Rm \Xm; and

• ~≈ is a vector of similarity operators over comparable attributes,
(A,Am), (B,B−

m) and (B,B+
m), where A ∈ X, and Am is the

corresponding attribute in Xm.

Rule ϕ says that for a pair of tuples t in I and tm in M , if both
(t[X], tm[Xm]) and (t[B], tm[B−

m]) are similar with respect to some simi-
larity metrics, ϕ validates that t[X] is correct, t[B] is wrong, and more-
over, the correct value of t[B] is tm[B+

m]. Intuitively, given that t[X]
and tm[Xm] are similar, t[B] should take value from t[B+

m], rather than
t[B−

m]. In other words, the rule explicitly captures the possible errors
t[B] can make, for example, attributes B and B+

m might be office phone
number, and B−

m might be mobile phone number.

Example 2.13. Consider the employee table in Figure 2.7, and two
reference tables: the capital table in Figure 2.8 and the phone table
in Figure 2.9. Three sRs are defined as follows: where ϕ1 and ϕ2 are
defined on (emp, phn), and ϕ3 is defined on (emp, cap):
ϕ1: ((name, name), (officePhn, mobile, officePhn), (=,=,=))
ϕ2: ((name, name), (officePhn, mobile, ⊥), (=,=, 6≈))
ϕ3: ((nation, country), (capital, ⊥, capital), (=, 6≈,=))
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name dept nation capital bornat officePhn
t1 Si DA China Beijing ChenYang 28098001
t2 Yan DA China Shanghai Chengdu 24038698
t3 Ian ALT Chine Beijing Hangzhou 33668323

Figure 2.7: Iemp: An instance of the schema emp

country capital
s1 China Beijing
s2 Japan Tokyo
s3 Chile Santiago

Figure 2.8: Mcap: An instance of
the schema cap

name officePhn mobile
r1 Si 28098001 66700541
r2 Yan 24038698 66706563
r3 Ian 27364928 33668323

Figure 2.9: Mphn: An instance of the schema
phn

where “⊥” indicates that a field is missing, and “6≈” that the two
corresponding attributes are not comparable, e.g., when some attribute
is missing from reference tables.

(1) Rule ϕ1 states that for a tuple t in Iemp, if its name matches the
name of a r tuple in Mphn, and t[officePhn] matches r[mobile], then ϕ1
validates that t[name] is correct, and t[officePhn] is wrong. Moreover,
it will rectify t[officePhn] to r[officePhn]. Consider t3 in Iemp and r3 in
Mphn, ϕ1 works as follows. Firstly, t3[name] is matched with r3[name],
and t3[officePhn] with r3[mobile]. It then detects that t3 is about Ian,
but someone messed up his office number with his mobile number.
Consequently, t3[name] is marked as correct and t3[officePhn] as wrong.
Since the office number of Ian is available in r3[officePhn], ϕ1 will update
t3[officePhn] to r3[officePhn], which is 27364928.

(2) Often times, not all evidences are available. Assume that the
column officePhn is missing in phn, namely, consider a revised schema
phn′ (name, mobile). Rule ϕ2 states that given a tuple t in Iemp, if its
name matches the name of a tuple r in Mphn′ , and t[officePhn] matches
r[mobile], then ϕ2 validates that t[name] is correct and t[officePhn] is
wrong. Again, consider t3 in Iemp and r3 in Mphn′ , ϕ2 works similar to
ϕ1, which validates that t3[name] is correct and t3[officePhn] is wrong.
However, due to the missing column officePhn in phn′, ϕ2 cannot up-
date t3[officePhn].

(3) Rule ϕ3 states that for a tuple t in Iemp, if t[country, capital]
matches s[country, capital] of an s tuple in Mcap, it will mark
t[country, capital] as correct. Consider t1 in Iemp and s1 in Mcap. Since
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Figure 2.10: A typical deduplication task.

both country (i.e. China) and capital (i.e. Beijing) match, ϕ3 will mark
t1[country, capital] as correct.

2.1.2 Duplicate Detection

Data deduplication, also known as duplicate detection, record linkage,
record matching, or entity resolution, refers to the process of identifying
tuples in one or more relations that refer to the same real world entity.
The topic has been extensively covered in many surveys [81, 40, 39,
90, 58, 70]: some aim at providing an extensive overview of all the
steps involved in data deduplication [40, 58, 70], some focus on the
design of similarity metrics [90, 81], some discuss the efficiency aspect of
data deduplication [90], and some focus on how to consolidate multiple
records [39].

Example 2.14. Figure 2.10 illustrates a typical example of data dedu-
plication. The similarities between pairs of records are computed, and
are shown in the similarity graph (upper right graph in Figure 2.10).
The missing edges between any two records indicate that they are non-
duplicates. Records are then clustered together based on the similarity
graph. Suppose the user sets the threshold to be 0.5, i.e., any record
pairs having similarity greater than 0.5 are considered duplicates. Al-
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though Record P1 and P5 have similarity less than 0.5, they are clus-
tered together due to transitivity; that is, they are both considered
duplicates to Record P2. All records in the same cluster are consoli-
dated into one record in the final clean relation.

In this section, we discuss techniques used for detecting duplicate
records, including designing similarity metrics, training classifiers to
determine whether two records are duplicates, and clustering to identify
a set of records that refer to the same entity. We then briefly discuss
collective entity resolution. The processing of consolidating multiple
records referring to the same entity into a single record is called data
fusion, and will be discussed in Section 3.1.1 when we talk about data
repairing.

Similarity Metrics
Measuring the similarity between two values in the same column is
an essential component in determining whether two records are dupli-
cates, and a variety of similarity metrics have been proposed to handle
different types of errors.

Typographical errors are one of the most common type of errors,
and multiple character-based similarity metrics, including edit dis-
tance, affine gap distance [118], Jaro distance [73], Jaro-Winkler dis-
tance [121], can be used to handle typographical errors. The edit dis-
tance between two strings s1 and s2 is defined as the minimum number
of edit operations needed to transform s1 to s2; three types of edit oper-
ations are usually considered: inserting a character, deleting a charac-
ter, and replacing one character with another. Levenshtein distance [82]
is the simplest type of edit distance, where the cost of each edit op-
eration is equal. The edit distance falls short when comparing strings
that have been truncated or expanded (e.g., “Chris R. Lang” versus
“Christopher Richard Lang”), the affine gap distance [118] addresses
this problem by introducing two additional edit operations: opening a
gap and extending a gap. The cost of opening a gap is usually larger
than the cost of extending a gap, which results in a smaller cost for gap
mismatches than the cost under the edit distance. Jaro distance [73]
is usually used for comparing person names. There are three steps in
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computing Jaro distance between two strings s1 and s2: (1) comput-
ing the length of two strings, denoted as |s1| and |s2|, respectively; (2)
finding the number of matching characters m in s1 and s2, where two
characters s1[i] and s2[j] from s1 and s2, respectively, are considered
matching if s1[i] is the same as s2[j], and |i− j| ≤ 1

2 min{|s1|, |s2|}; and
(3) finding the number of transpositions t as follows: the lth matching
character in s1 is compared with the lth matching character in s2, if
they are not the same, the number of transpositions is increased by
one. The Jaro distance of s1 and s2 is computed as Jaro(s1, s2) =
1
3( m
|s1| +

m
|s2| +

m−t
m ). Jaro-Winkler distance [121] uses a prefix scale p to

favor two strings that share a common prefix of length l since match-
ing prefixes are generally more important for matching person family
names. Formally, the Jaro-Winkler distance of s1 and s2 is computed
as Jaro_Winkler(s1, s2) = Jaro(s1, s2)+(lp(1−Jaro(s1, s2))), where
l is the length of the prefix up to a maximum of four characters, and
p is a constant scaling factor that does not exceeding 0.25. A standard
value for p is 0.1.

While character-based similarity metrics are suitable for handling
typographical errors, they often fail to capture the similarity between
two strings that use the same set of tokens, but with different ordering
(e.g., “James Smith” versus “Smith James”). Multiple token-based sim-
ilarity metrics can be used to handle such errors, including cosine simi-
larity and Jaccard similarity. WHIRL [30] computes the cosine similar-
ity of two strings s1 and s2 that are in the same column A of a database
instance I, using tf-idf weighting scheme. Each string s is separated into
words and each word w has a weighting vs(w) = log(tfw + 1) log(idfw),
where tfw is the number of times w appears in s, and idfw = |I|

nw
with

|I| being the number of records in I and nw being the number of records
in I that contain w in Column A. Given two strings s1 and s2, and let
W be the set of words s1 and s2 contain, the cosine similarity is defined
as cosine(s1, s2) = Σw∈W vs1 (w)×vs2 (w)√

Σw∈W vs1 (w)2×
√

Σw∈W vs2 (w)2 . Let W1 be the set of
words s1 contain, and W2 be the set of words s2 contain, the Jaccard
similarity of s1 and s2 is calculated as Jaccard(s1, s2) = |W1∩W2|

|W1∪W2| .
Phonetics-based similarity metrics are used to detect the similarity

of two strings that are phonetically similar, even if they are not similar
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according to character-based or token-based similarity metrics (e.g.,
“Clair” versus “Clare”). Soundex [95] is developed to encode surnames
in English for use in censuses. The Soundex code for a surname consists
of a letter followed by three numerical digits, where the letter is the
first letter of the name and the three digits encode the remaining conso-
nants. Daitch-Mokotoff Soundex (D-M Soundex) [104] is a refinement
of Soundex to better match surnames of Slavic and Germanic origin.
The New York State Identification and Intelligence System Phonetic
Code, commonly known as NYSIIS [107], differs from Soundex in that
it does not use numerical digits to replace letters, rather, it replaces
consonants with other, phonetically similar letters.

Classifiers
Given two records t1, t2, a classifier is invoked to determine whether
they are duplicates or not. The classifier is usually a combination of
the similarity metrics on various attributes. For example, a classifier
for records in Table 1.1 could be “if Jaro(t1[FN ], t2[FN ]) > 0.8 and
Jaccard(t1[CT ], t2[CT ]) > 0.5, then t1 and t2 are duplicates”. The
techniques for designing a classifier can be broadly categorized into su-
pervised learning techniques, semi-supervised or active learning tech-
niques, and unsupervised techniques [40].

Supervised learning techniques rely on a training data set in the
form of record pairs labeled as matching or non-matching. The similar-
ity scores between record pairs serve as features for training a classifier
to be applied to the rest of the data. Examples of classifier models in-
clude Naïve Bayes [122], decision tree [20], and support vector machine
(SVM) [15].

Active learning techniques alleviate one major drawback of the
supervised learning techniques, which may require a large training
data set, by actively soliciting user feedback for unlabeled record
pairs, which, when labeled, will provide the highest utility to the
learner [108, 96, 5]. An active learner starts with a limited training
data, and learns a preliminary classifier, which is certain about some
unlabeled record pairs, and uncertain about most others, also known
as, the confusion region of a classifier. The active learner will reduce the
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classifier’s confusion by seeking human labels on those most uncertain
record pairs. There are two main approaches to evaluate the uncer-
tainty of the prediction on a record pair, namely, classifier specific ap-
proach and classifier independent approach. Examples of classifier spe-
cific approach include using posterior probabilities of predications for
Bayesian classifiers [109], and using the inverse of the distance between
an instance and the separator for SVM [99]. A classifier independent ap-
proach to derive the uncertainty is done by measuring the disagreement
among the predications of a set of classifiers, also known as a commit-
tee [100]. The classifiers in the committee are different from each other,
but have similar accuracy on the training data. A certain record pair
would get same predications from almost all committee members, while
an uncertain record pair would result in disagreement, which can be
quantified in various ways, such as entropy on the fraction of committee
members that predicate either duplicates or non-duplicates.

Unsupervised techniques decide on matching pairs without the need
for a training data set. Examples include using a pre-specified threshold
on a distance function [89, 21] and employing domain specific rules [69,
119, 38], such as: If the first name and last name of two persons are
similar, then the two records are duplicates.

Clustering
The result of pairwise comparison process, which takes O(n2) com-
parisons for a database of n records, can be represented as a graph,
where nodes represent records, and edges between nodes exist if they
are considered duplicates by the classifiers. Each edge may also have
a weight, reflecting the confidence of the two nodes connected by the
edge being duplicates, e.g., the similarity between the two records. The
graph is thus referred to as similarity graph. The goal of clustering is to
partition all records into disjoint clusters of records, where each clus-
ter corresponds to one real-world entity, and records in a cluster are
different representations of the same entity [111, 63].

One simple way to obtain such clustering of records is to leverage
the transitivity of duplicate records, that is, if Record A is a duplicate
of Record B, and Record B is a duplicate of Record C, then Record A
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is a duplicate of Record C. Then the clustering problem becomes the
problem of finding all connected components in the similarity graph.
Each connected component is one cluster that represents one real-world
entity [68]. One major drawback of such approach is that it may mis-
takenly consider two records as duplicates since they are in the same
connected component, even though they are very dissimilar.

Correlation clustering provides a method for clustering all records
into the optimum number of clusters without specifying that number
in advance [42]. The objective of correlation clustering is to maximize
the sum of similarities between nodes within the same cluster, and the
dissimilarities between nodes in different clusters. Correlation cluster-
ing can be viewed as an integer linear programming (ILP) problem.
Let exy ∈ {0, 1} denote if two records x and y are in the same clus-
ter, let w+

xy ∈ [0, 1] denote the cost of clustering x and y together,
and let w−xy ∈ [0, 1] denote the cost of placing x and y in two dif-
ferent clusters. Thus correlation clustering is to minimize the objec-
tive function Σxy(exyw+

xy + (1 − exy)w−xy), subject to the constraint
∀x, y, z, exy +exz +eyz 6= 2 that ensures the transitivity property. Since
solving the ILP problem is NP-hard [3], a number of greedy approaches
have been proposed [42, 3] that generally work in the following steps:
(1) all records are randomly permuted; (2) each record x is either as-
signed to an existing cluster or a new cluster, according to a certain
criterion, such as assigning x to a cluster that contain the closest match
to x [91], assigning x to a cluster that contains the most recent record
y with w+

xy > 0 [103], and assigning x to a cluster that minimizes the
objective function [41]; and (3) run the greedy approach for multiple
times, and choose the run that results in the best objective value.

Collective Entity Resolution
In the techniques discussed so far, the similarity between two records
is computed based on the attributes of those two records. Sometimes,
there is additional relational information in the database that can be
exploited to determine whether two records are duplicates. Techniques
that exploit these additional relational information are referred to as
collective entity resolution.
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Example 2.15. Consider the task of identifying duplicates in two
tables: Authors and Papers. Suppose we have the additional Table
CoAuthors, modeling the coauthorship of two authors in Authors, which
can be used to determine whether two tuples in Authors are duplicates,
for example, two tuples in Authors are more likely to be duplicates if
they have a common coauthor. Similarly, Table Citations that models
the citation information among papers could be useful for detecting
duplicate tuples in Papers.

Bhattacharya and Getoor [13] model collective entity resolution as
a clustering problem, and encodes the additional relational information
in the similarity computation between two clusters. Deduplog [6] pro-
poses a declarative way of specifying the additional hard constraint,
such as “two authors of the same paper have to be different”, as well as
soft constraint, such as “two authors are more likely to be duplicates
if they have a common coauthor”, and aims at minimizing the num-
ber of soft constraints violated, while ensuring no hard constraints are
violated. Multiple proposals use probabilistic models for solving collec-
tive entity resolution, such as conditional random field [86] and markov
logic network [101]. The tutorial1 by Getoor and Machanavajjhala [58]
gives a more comprehensive treatment on collective entity resolution.

2.2 How to Detect

Since the notion of violation with respect to an IC is well defined,
namely, the minimal subset of database cells that cannot coexist, vi-
olation detection for ICs can be achieved automatically [18, 26]. In
contrast, deciding whether two records are duplicates usually requires
fuzzy matching, for which humans sometimes can achieve better accu-
racy [114, 59, 116, 112].

We discuss three examples techniques: holistic data cleaning [26]
is an example technique for automatically detecting violations of ICs;
CrowdER [114] uses a hybrid machine-human approach to improve
data deduplication accuracy; and Corleone [59] is a data deduplication

1http://goo.gl/f5eym

http://goo.gl/f5eym
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TID FN LN ROLE ZIP ST SAL
t1 Anne Nash E 85376 NY 110
t2 Mark White M 90012 NY 80
t3 Mark Lee E 85376 AZ 75

Table 2.4: Employee data records.

system that is completely crowdsourced, i.e., no developers need to be
involved.

Holistic Data Cleaning

Holistic data cleaning [26] automatically detects violations of mul-
tiple ICs, and captures the cells that are more likely to be erroneous
through the overlapping violations. Two violations are overlapping if
they involve at least one common cell.

Example 2.16. Consider Table 2.4, every tuple specifies an employee in
a company with her identification(TID), name (FN, LN), role (ROLE),
ZIP (ZIP), state (ST), and salary (SAL).

Consider two data quality rules. The first is a functional dependency
(FD) stating that ZIP determines ST. We can see that a set e1 of four
cells {t1[ZIP ], t1[ST ], t3[ZIP ], t3[ST ]} in t1 and t3 present a violation
for this FD: they have the same value for the city, but different states.

The second rule states that for two employees in the same
state, the one whose role is manager cannot earn less than the
one whose role is employee. In this case, a set e2 of six cells
{t1[ROLE], t1[ZIP ], t1[ST ], t2[ROLE], t2[ZIP ], t2[ST ]} in t1 and t2
are violating the rule, since employee White, who is a manager, is
earning less than Nash, who is an employee.

The two rules detect that t1[ST ] is likely to be wrong since it partic-
ipates in the two sets e1 and e2. Looking at e1 individually, one cannot
tell which one of four cells in e1 is wrong; similarly, looking at e2 alone
is also not sufficient.
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(a) Pair-based HIT (b) Cluster-based HIT

Figure 2.11: HITs for data deduplication

CrowdER

CrowdER [114] uses crowd workers to aid in the data deduplication
task. The motivation for CrowdER is that while automatic techniques
for data deduplication have been improving, the quality remains far
from perfect; meanwhile, crowdsourcing platforms offer a more accu-
rate, but expensive (and slow) way to bring human insight into the
process. Crowdsourcing platforms, such as Amazon Mechanic Turk,
support crowdsourced execution of “microtasks” or Human Intelligence
Tasks (HITs), where people do simple jobs requiring little or no domain
expertise, and are paid per job. Figure 2.11 shows two types for HITs
used by CrowdER. The pair-based HIT in Figure 2.11a asks a human
to check each pair of records individually; the cluster-based HIT in Fig-
ure 2.11b asks a human to cluster multiple records at the same time.

CrowdER proposes a human-machine workflow as shown in Fig-
ure 2.12. The workflow first uses machine-based techniques to com-
pute, for each pair, the likelihood that they refer to the same entity.
For example, the likelihood could be the similarity value given by a
similarity-based technique. Then, only those pairs whose likelihood ex-
ceeds a specified threshold are sent to the crowd. It is shown that by
specifying a relatively low threshold the number of pairs that need to
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Figure 2.12: Hybrid human-machine workflow

be verified can be dramatically reduced with only a minor loss of qual-
ity. Given the set of pairs to be sent to the crowd, the next step is to
generate HITs so that people can check them for matches. HIT Gener-
ation is a key component of the workflow. Finally, generated HITs are
sent to the crowd for processing and the answers are collected.

Example 2.17. Figure 2.13 shows a workflow of CrowdER for dedupli-
cating a table consisting of nine records r1, . . . , r9 by using pair-based
HIT. Instead of asking humans to check all pairs of records, that is
9∗8
2 = 36 pairs, CrowdER first employs a machine based approach to
calculate the similarities between pairs of records, such as the classi-
fiers discussed in Section 2.1.2. Those record pairs whose similarities
are lower than a threshold are pruned, such as (r3, r6). The remaining
ten pairs can fit into five pair-based HITS, where each HIT contains
two questions. The final matching pairs are collected based on user
answers.
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Figure 2.13: CrowdER: an example of using the hybrid human-machine workflow

Corleone

In contrast to CrowdER, which is a hybrid human-machine approach
for data deduplication, Corleone [59] is a data deduplication system
that is completely crowdsourced, i.e., no developers need to be in-
volved. Corleone is desirable because enterprises routinely need to solve
tens to hundreds of data deduplication tasks. To involve a developer to
write the blocking rules and matching function for every deduplication
task is time consuming and costly. Figure 2.14 shows the Corleone ar-
chitecture, which consists of four main components: Blocker, Matcher,
Accuracy Estimator, and Difficult Pairs’ Locator. Blocking often uses
heuristic rules, e.g., “if the prices of two products differ by more than
$100, then they do not match”, to reduce the number of pairs of records
to be matched. Corleone takes a small sample from all pairs of records
and asks the crowd to label a small set of informative pairs to learn a
random forest, from which potential blocking rules are extracted. The
crowd is involved again to validate the quality of obtained blocking
rules. After blocking, the next step is to build and apply a matcher
to match surviving pairs of records. Corleone employs active learning
to minimize crowdsourcing costs, taking into account possible noisy
crowd input. The next step, i.e., estimating the matching accuracy, is
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Figure 2.14: The Corleone architecture

vital for real world data deduplication tasks. To do this, Corleone con-
siders constructing a minimal labeled set, given a maximum allowable
error bound. The difficult pairs’ locator finds pairs that the current
matcher has matched incorrectly according to the accuracy estimator.
The whole process is iterated until the estimated matching accuracy
no longer improves.

2.3 Where to Detect

The problem of error detection is further complicated by the fact that
errors are usually discovered much later in the data processing pipeline,
where more business logics becomes available. Consider a simple exam-
ple of two source tables, Employees and Departments. Detecting that
the sum of employee salaries in a department exceeds the budget allo-
cated for that department cannot be done before joining the two tables
and aggregating the salaries of each group of employees.

In many applications, errors are detected in a target database (or
a report) that is the result of data transformations applied on a source
database. Figure 2.15 shows a typical data Extract-Transform-Load
(ETL) processing stack. In each of the layers, various integrity con-
straints are defined as more semantics are added to the data. For exam-
ple, while Constraint (4) (S1.NAME is NOT NULL) can be defined
directly on the sources, Constraints (1) and (2) can only be defined at
the application and reporting layer after the necessary aggregation and
joins have been performed.
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Figure 2.15: The ETL stack.

Propagating errors detected in transformation results to the data
sources is essential for both repairing these errors and preventing them
from reoccurring in the future. Techniques for error propagation vary
according to the type of data transformations assumed, such as Boolean
expressions [87], aggregation on numerical attributes [124, 123], and
more general SPJA queries [19].

Causality Analysis
Causality analysis that tries to reason about the responsibility of a
source in causing errors in query results is an intuitive way to handle
the aforementioned problem. Work in this area [87] models the source
database as a set of variables X = {X1, X2, . . . , Xn} and the target
database as another set of variables Z = {Z1, Z2, . . . , Zm}. Each input
variable Xi takes value from a discrete or continuous domain. Each
output variable Zj is a Boolean variable. The data transformation Φj

for Zj is a Boolean expression over threshold predicates in the form
Xi op c, where Xi ∈ X, op ∈ {<,≤,=, 6=,≥, >}, and c is a constant



324 Taxonomy of Anomaly Detection Techniques

Figure 2.16: (a): Value assignment x for X. (b): The transformations Φ and values
z for Z.

value in the domain of Xi. For example, a simple transformation Φ1
is Z1 = (X1 > 10) ∧ (X2 < 3). Let Φ = {Φ1, . . . ,Φm} denote the m
transformations for m output variables. See that Φ takes input vector
x of values for X, and computes the output vector z of values for Z. Let
ẑ be the ground truth values for Z. Given X,Z,Φ,x, z, ẑ, the sources
of errors are detected by ranking the input variables X according to
how much each variable contributes to the error in z, also referred to
as the responsibility of Xi.

A view-conditioned counterfactual cause (VCC cause) of z|ẑ is a
minimal subset of input variables for which there exists a changed as-
signment that can change the output from z to ẑ. One variable Xi is
a view-conditioned cause (VC cause) of z|ẑ if there exists a set Γ ⊂ X,
called the contingency set of Xi, such that Xi ∪ Γ is a VCC cause of
z|ẑ. The responsibility of Xi is defined as ρXi = 1

1+minΓ |Γ| , where Γ is a
contingency for Xi. Intuitively, the responsibility of Xi is the minimal
number of input variables that need to be changed together with Xi in
order to change the output from z to ẑ.

Example 2.18. Consider Φ given in Figure 2.16. Assume the ground
truth is ẑ = {F, T, T}, which indicates that Z1 and Z3 are errors in
the output. {X1, X3} is a VCC cause of z|ẑ, since changing X1 from
5 to 11 and X3 from 2 to 4 will change the output values from z to ẑ
and changing only X1 or X3 will not flip both Z1 and Z3. The minimal
sized contingency sets for X1, X2, and X3 are {X3}, {X1, X3}, and
{X1}, respectively. Therefore, the responsibilities of X1, X2, and X3
are ρX1 = 1

2 , ρX2 = 1
3 and ρX3 = 1

2 , which show that X1 and X3
contribute more than X2 to the errors in the output variables.
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Since computing the causality and responsibility are NP-hard [87],
the problem of computing causality is reduced to the SAT problem,
and the problem of computing responsibility is reduced to a partial
weighted MaxSAT problem. There exist several highly optimized tools
to solve both SAT and weighted MaxSAT, which allow for efficient
execution.

Scorpion
Another approach for computing the responsibility of sources in target
errors is the Scorpion system [123, 124]. Scorpion assumes a single
relational table as the source database and an SQL aggregate query
as the data transformation. The target database is then a group of
aggregate values, one for each group according to the aggregate query.
The errors in the target database are those aggregate values that are
considered outliers by users. Scorpion finds common properties of the
set of tuples in the source database that cause the outliers in the target
database. The common properties of a set of tuples are described by
predicates over the attributes of the source database.

Scorpion uses sensitivity analysis to identify predicates that are
most influential over the aggregate values. For example, given a func-
tion, y = f(x1, . . . , xn), the influence of xi is defined by the partial
derivative, ∆y

∆xi
. Similarly, the influence of a predicate p on one group

α, denoted as inf(p, α), is defined as the ratio between the change in
the output if the tuples satisfying the predicates are deleted from the
input and the number of tuples satisfying the predicate. Thus, the in-
fluence of predicate p, denoted as inf(p), is the average influence of p
on all groups.

Example 2.19. Figure 2.17a shows some readings from an Intel Sensor
Dataset, with each row corresponding to readings from a certain sensor
at a given time. Figure 2.17b is generated by the following aggregate
query, which groups the readings by the hour and computes the mean
temperature.
Q: SELECT AVE(temp), time

FROM sensors
GROUP BY time
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TIDs Time SensorID Voltage Humidity Temp
t1 11AM 1 2.64 0.4 34
t2 11AM 2 2.65 0.5 35
t3 11AM 3 2.65 0.4 35
t4 12AM 1 2.7 0.3 35
t5 12AM 2 2.7 0.5 35
t6 12AM 3 2.3 0.4 100
t7 1PM 1 2.7 0.3 35
t8 1PM 2 2.7 0.5 35
t9 1PM 3 2.3 0.5 80

(a) Example reading from sensors
ResultIDs Time AVG(temp) Label

α1 11AM 34.6 Normal
α2 12AM 56.6 Outlier
α3 1PM 50 Outlier

(b) Query results (left three columns) and user annotations (right column)

The rightmost column in Figure 2.17b represents user annotations.
The user thinks two groups α2 and α3 have unusual results and group
α1 is a normal result.

Consider a predicate p : V oltage < 2.4. The average temperature of
group α2 after deleting tuples satisfying the predicate that is t6 is 35.
Thus inf(p, α2) = 56.6−35

1 = 21.6. Similarly, inf(p, α3) = 50−35
1 = 15.

Therefore, inf(p) = 18.3. Scorpion searches all possible predicates over
attributes that are not involved in the query, e.g., Voltage and Humidity
in this example, and returns the predicate with the largest influence.

To efficiently compute the influence of a predicate and to avoid test-
ing the exponential number of all possible predicates, Scorpion iden-
tifies several properties of aggregate operators, i.e., incrementally re-
movable, independent, and anti-monotonic influence, that enables the
algorithms to find the most influential predicate efficiently.

DBRx
To handle a more general class of transformations, the DBRx sys-
tem [19] considers SPJA (select, project, join, and aggregate) queries
as the reporting and transformation language. Figure 2.18 shows the
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Figure 2.18: DBRx architecture.

T Shop Size Grd AvgSal #Emps Region
ta NY1 46 ft2 2 99 $ 1 US
tb NY1 46 ft2 1 100 $ 3 US
tc NY2 62 ft2 2 96 $ 2 US
td NY2 62 ft2 1 90 $ 2 US
te LA1 35 ft2 2 105 $ 2 US
tf LND 38 ft2 1 65 £ 2 EU

(a) Target database T (Dirty)
Emps EId Name Dept Sal Grd SId JoinYr
t1 e4 John S 91 1 NY1 2012
t2 e5 Anne D 99 2 NY1 2012
t3 e7 Mark S 93 1 NY1 2012
t4 e8 Claire S 116 1 NY1 2012
t5 e11 Ian R 89 1 NY2 2012
t6 e13 Laure R 94 2 NY2 2012
t7 e14 Mary E 91 1 NY2 2012
t8 e18 Bill D 98 2 NY2 2012
t9 e14 Mike R 94 2 LA1 2011
t10 e18 Claire E 116 2 LA1 2011

(b) Source Relation Emps
Shops SId City State Size Started
t11 NY1 New York NY 46 2011
t12 NY2 New York NY 62 2012
t13 LA1 Los Angeles CA 35 2011

(c) Source Relation Shops

Figure 2.19: A view T on data sources Emps & Shops.
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Figure 2.20: Explanation discovery.

architecture of DBRx that takes quality rules defined over the output
of a transformation and computes explanations of the errors. Given a
transformation scenario (sources Si, 1 < i < n, and query Q) and a
set of quality rules Σ, DBRx computes a violation table V T of tuples
not complying with Σ. V T is mined to discover a descriptive expla-
nation of the violations 1©. The description explanation should cover
the most likely erroneous tuples, while minimizing the clean tuples be-
ing covered. The lineage of the violation table over the sources enables
the computation of a prescriptive explanation on the source tables 4©.
When applicable, a repair is computed over the target, thus allowing
the possibility of a more precise description 2©, and a more precise pre-
scriptive explanation 3©, based on propagating errors to the sources.

Example 2.20. Consider a target database T in Figure 2.19 which lists
shops in an international franchise and information about employees
working in those shops. T is generated by the following query:
Q: SELECT SId as Shop, Size, Grd, AVG(Sal) as

AvgSal, COUNT(EId) as #Emps,‘US’ as Region
FROM US.Emps JOIN US.Shops ON SId
GROUP BY SId, Size, Grd
The HR department has a set of policies (ICs) pertaining to the

franchise workforce and these ICs are enforced on T . The first rule
states that, in the same shop, the average salary of the managers
(Grd=2) should be higher than that of the staff (Grd=1). Cells
Shop,Grd,AvgSal of tuples ta and tb, labeled in bold, violate this
rule. The second rule states that a bigger shop cannot have a smaller
staff (Grd=1), which induces a violation between cells of tb and td,
labeled in italic.
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Tuples ta and tb are in violation and their lineage is {t1 − t4} and
{t11} in sources Emps and Shops, respectively. Similarly, another vio-
lation between tb and td has the combined lineage {t5 − t8} and {t12}.
For each cell and tuple in the lineage, the cell contribution score (CSV)
and tuple removal score (RSV) is computed. The CSV (resp. RSV) is
a m-length vector to represent the contribution (resp. removal) scores
of a cell (resp. tuple), where m is the number of violations in T . For
instance, the RSV of t4 is [1,1] since the removal of t4 would resolve
both violations.

m Based on the CSV and RSV, DBRx identifies t1, t3, t4, t7 to be
the most likely erroneous tuples. To explain these tuples, DBRx sum-
marizes the tuples in terms of source attribute predicates with three de-
sirable properties, namely, coverage, preciseness, and conciseness. Cov-
erage requires an explanation to cover erroneous tuples, preciseness
requires an explanation to cover mostly erroneous tuples, not correct
tuples, and conciseness requires an explanation to have a small number
of predicates. Figure 2.20 lists three different explanations. The first
one lacks coverage, since t7 is not covered; the second one lacks con-
ciseness, since it required four predicates to describe the four tuples;
and the third one lacks preciseness, since it also incorrectly covers the
correct tuple t5. These explanations can then be inspected by users,
and similar errors can be prevented from happening in the future.



3
Taxonomy of Data Repairing Techniques

Given a relational database instance I of schema R and a set of data
quality requirements expressed in a variety of ways, data repairing
refers to the process of finding another database instance I ′ that con-
forms to the set of data quality requirements. We assume that the data
quality requirements are enforcement of ICs and duplicate detection
in this paper. A plethora of data repairing techniques have been pro-
posed. Figure 3.1 depicts the classification we adopt to categorize the
proposed data repairing techniques. In the following, we discuss our
classification dimensions, and their impact on the design of underlying
data repairing techniques. For each dimension, we give one or more
examples to discuss in detail. The three adopted dimensions capture
the three main questions involved in repairing an erroneous databases:

• Repair Target (What to Repair?) Repairing algorithms make dif-
ferent assumptions about the data and the quality rules: (1) trust-
ing the declared integrity constraints, and hence, only data can
be updated to remove errors; (2) trusting the data completely
and allowing the relaxation of the constraints, for example, to
address schema evolution and obsolete business rules; and finally
(3) exploring the possibility of changing both the data and the

330
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Figure 3.1: Classification of data repairing techniques.

constraints. For techniques that trust the rules, and change only
the data, they can be further divided according to the driver to
the repairing exercise, that is, what types of errors they are tar-
geting. A majority of techniques repair the data with respect to
one type of errors only (one at a time), while other emerging tech-
niques consider the interactions among multiple types of errors
and provide a holistic repair of the data (holistic).

• Automation (How to Repair?) We classify proposed approaches
with respect to the tools used in the repairing process. More
specifically, we classify current repairing approaches according
to whether and how humans are involved. Some techniques are
fully automatic, for example, by modifying the database, such
that the distance between the original database I and the mod-
ified database I ′ is minimized according to some cost function.
Other techniques involve humans in the repairing process either
to verify the fixes, to suggest fixes, or to train machine learning
models to carry out automatic repairing decisions.

• Repair Model (Where to Repair?) We classify proposed ap-
proaches based on whether they change the database in-situ, or
build a model to describe the repair. Most proposed techniques re-
pair the database in place, thus destructing the original database.
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FDs value modification [17] D D D

FDs hypergraph [77] D D D

CFDs value modification [31] D D D

Holistic data cleaning [26] D D D

LLUNATIC [55] D D D

Record matching and data repairing [51] D D D

NADEEF [32] D D D

Generate optimal tablaux [60] D D D

Unified repair [23] D D D

Relative trust [10] D D D

Continuous data cleaning [113] D D D

AJAX [53, 54] D D D

Potter’s Wheel [94] D D D

GDR [126] D D D

KATARA [28] D D D

DataTamer [105] D D D

Editing rules [50] D D D

Sampling FDs repairs [9] D D D

Sampling CFDs repairs [11] D D D

Sampling Duplicates [12] D D D

Table 3.1: A sample of data repairing techniques.

For none in-situ repairs, a model is often built to describe the
different ways to repair the underlying database. Queries are an-
swered against these repairing models using, for example, sam-
pling from all possible repairs and other probabilistic query an-
swering mechanisms.

Table 3.1 shows a sample of data repairing techniques using the
taxonomy.

3.1 What to Repair

Business logic is not static; it often evolves over time. Previously cor-
rect integrity constraints may become obsolete quickly. Practical data
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repairing techniques must consider possible errors in the data as well
as possible errors in the specified constraints. Thus, the repair targets
include data only, rules only, and a combination of both. In data only
repairing, data is modified to conform to a set of ICs; in rules only
repairing, rules are modified, such that they hold on the data; and in
data and rules repairing, data and rules are simultaneously modified,
such that the modified data conforms to the modified rules.

3.1.1 Data Only Repairing

Data repairing techniques in this category assume there is a set of ICs
Σ defined on the database schema R, and any database instance I of
R should conform to these constraints.

Multiple proposed approaches aim at changing a minimum number
of cells in the database, such that a set of FDs are satisfied, either by
changing the data directly [17, 77] or by generating samples from the
space of all possible minimal repairs [9]. We give multiple definitions of
minimal repairs in Section 3.2 when we discuss automatic data repair-
ing techniques. Other approaches that generate minimal repairs were
also proposed to address other types of ICs, such as CFDs [31], and the
more general Denial Constraints (DCs) [26]. Approaches that avoid the
minimal repair heuristic generate verified fixes, for example, by using
reference master data and editing rules [50], or by heavily involving
human experts [126, 105].

In this section, we will discuss one data repairing algorithm with
respect to a given set of FDs, and we will also discuss different record
fusion techniques for dealing with duplicate records.

Algorithm 4 gives the details of a data repairing algorithm with
respect to a given set of FDs [17] as an example. The details of other
examples will be described in other sections when we discuss other
dimensions and design options. Algorithm 4 takes as input a set of
FDs, and a dirty database instance I, and produces a repaired database
instance I ′. At a high level, Algorithm 4 initially puts every database
cell in its own equivalence class. An equivalence class is a set of cells that
should have the same value. Then it greedily merges the equivalence
classes in E until all FDs in Σ are satisfied. The unResolved sets keeps
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tracks of all tuples that participate in violations of FDs in Σ. At each
step, a tuple t and an FDX → A is picked, such that the cost of merging
all equivalence classes that should have the same value according to the
FD is the lowest. The termination of Algorithm 4 is based on the fact
that the number of equivalence class merges is bounded by the total
number of equivalence classes.

Algorithm 4 GenFDsRepair

Input: Database instance I, a set of FDs Σ
Output: Another instance I ′, such that I ′ |= Σ
1: E ← {t[A] : t ∈ I, A ∈ R}
2: Initialize unResolved sets for Σ
3: while unResolved is not empty do
4: pick the next tuple t, and next FD X → A to repair with the

lowest repair cost
5: resolve tuple t and update E
6: update unResolved sets affected by E
7: Return I ′ obtained by picking a value that results in the lowest

cost of cost(eq) for each eq ∈ E

Similar to other data repairing algorithms, the key difficulty ad-
dressed in Algorithm 4 is that repairing one constraint might intro-
duce violations for other constraints. To capture and track the effect of
changing one database cell on the possible values other cells can take,
equivalence classes of database cells are used. An equivalence class eq is
a set of database cells (e.g., {t1[A], t2[A], t3[A]}, where ti is a tuple iden-
tifier and A is an attribute in R) that should have the same value. The
algorithm maintains a global set of equivalence classes E . For a given
cell ti[A], let eq(ti[A]) denote the current equivalence class containing
ti[A] in E . The cost of updating an equivalence class with respect to a
value v, cost(eq, v), is the cost of changing the values of all cells in eq
to v. The cost of an equivalence class cost(eq) is the minimal cost for
all possible values v. The cost of merging a set E of equivalence classes
is mgcost(E) = cost(∪eq∈Eeq)−

∑
eq∈E cost(eq).
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Example 3.1. Consider an equivalence class eq1 = {t1[A], t2[A], t3[A]},
and assume t1[A], t2[A], t3[A] have values a1, a2, and a2, respectively.
Assuming that the cost of changing any cell is 1, we have cost(eq1, a1) =
2 and cost(eq1, a2) = 1, and thus cost(eq1) = 1. Consider another
equivalence class eq2 = {t4[A]} with t4[A] = a3. The cost of merg-
ing eq1 with eq2 to form eq3 = {t1[A], t2[A], t3[A], t4[A]} is given by
mgcost({eq1, eq2}) = cost(eq3)−(cost(eq1)+cost(eq2)) = 2−(1+0) = 1.

Figure 3.2: Classification of strategies to fuse records [16].

The cost of updating and merging equivalence classes become the
main building blocks in finding a minimal-cost repair, while capturing
the dependency among cells when assigning a new value. Algorithm 4
was later extended to handle violations of CFDs based on the concept
of equivalence classes [31].

Record fusion refers to the process of consolidating multiple records
representing the same real world entity into a single representation.
Figure 3.2 shows the classification of different record fusing strate-
gies [16]. Conflict ignorance strategies ignore the conflicts between mul-
tiple records that refer to the same entity, and pass the conflicts to
the users or applications. Probabilistic deduplication discussed in Sec-
tion 3.3 is an example of conflict ignorance strategies. Conflict avoid-
ance strategies acknowledge the existence of conflicting records, and
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apply a simple rule to take a unique decision based on either the data
instance or the metadata. An example of instance based conflict avoid-
ance strategy is to prefer non-null values over null values. An example
of metadata based conflict avoidance strategy is to prefer values from
one relation over values from another. Conflict resolution strategies
resolve the conflicts, by picking a value from the already present val-
ues (deciding) or by choosing a value that does not necessarily exist
among present values (mediating). An example of instance based, de-
ciding conflict resolution strategy is to take the most frequent value.
An example of instance based, mediating conflict resolution strategy is
to take the average of all present values. For instance, to resolve the
SAL attribute of duplicate tuples t4 and t9 in Example 1.1, the aver-
age value of t4[SAL] and t9[SAL] can be taken. More advanced con-
flict resolution strategies [48, 47] consider the interactions of multiple
types of constraints to infer the correct value. For example, a currency
constraint, specifying that a person’s working status can change from
working to retired, and not from retired to working, and a constant
CFD, specifying that the salary of a retired person is zero, can be used
together to determine a person’s correct working status.

Holistic Repairing

Data only repairing techniques make different assumptions about the
driver of the repairing process. In Section 2, we discussed different error
types that trigger data anomaly detections. For each type of error,
such as duplicate records, missing values, and FD violations, multiple
repairing algorithms are proposed. For example, the entity resolution
algorithms mentioned in Section 2.1.2 are examples of techniques that
target duplicates. We discussed one technique in Section 3.1 addressing
violations of FD constraints. Similarly, violations of CFD constraints
have been addressed in multiple proposals, either automatically [31] or
by involving humans in the loop [126]. We describe these techniques
as One at a time techniques. Most available data repairing solutions
are in this category. They address one type of error, either to allow for
theoretical quality guarantees, or to allow for a scalable system.
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However, data anomalies are rarely due to a single type of errors;
multiple data quality problems, such as missing values, typos, the pres-
ence of duplicate records, and business rule violations, are often ob-
served in a single data set. These heterogeneous types of errors inter-
play and conflict on the same dataset, and treating them independently
would miss the opportunity to correctly identify the actual errors in the
data. We call the proposals that take a more holistic view of the data
cleaning process Holistic cleaning approaches [26, 32, 55, 51, 48]

Holistic repairing algorithms consider violations coming from differ-
ent types of ICs at the same time, while suggesting updates to repair the
underlying data. For example, Chu et al. [26] consider a wide range of
ICs including, FDs, CFDs, and DCs, as long as the violations of ICs can
be encoded as a hyperedge in the conflict hypergraph; NADEEF [32],
an open source data cleaning system which provides an interface for
the users to define their own data quality rules, also uses techniques
from [26] to holistically resolve violations; Geerts et al. [55] consider all
constraints that can be expressed as equality-generating dependencies;
Fan et al. [51] integrate data repairing based on CFDs and record
matching based on MDs, and show that these two tasks benefit from
each other when coupled together.

We give the details of a holistic data cleaning algorithm [26] as an
example technique in this category and we briefly mention the main
insights of other proposals [55], [51].

The holistic data cleaning algorithm is shown in Algorithm 5. The
system takes as input a relational database I and a set of ICs Σ, which
express the data quality rules that have to be enforced over the input
database. It first projects the violations coming from different types of
ICs into one homogeneous representation, i.e., a conflict hypergraph.
Each node in the conflict hypergraph is a cell in the database; each
edge is a set of cells participating in a violation of an IC. A minimum
vertex cover for the conflict hypergraph is found. The minimum vertex
cover contains the cells that are mostly likely to be wrong, i.e., those
participating in multiple violations of different ICs. Anchoring on the
cells in the minimum vertex cover, a set of repair requirements are col-
lected, such that if they are satisfied, all the violations will be resolved.
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Algorithm 5 Holistic data cleaning

Input: Database instance I, a set of ICs Σ
Output: Repaired database instance I ′
1: build the conflict hypergraph for I w.r.t. Σ
2: find the minimum vertex cover for the conflict hypergraph
3: using a recursive procedure to recursively collect repair require-

ments, starting from the minimum vertex cover
4: using a determination procedure to satisfy the repair requirement

according to a cost function
5: update the database I ′, and build the CH again.
6: if CH is not null then
7: Go to Line 1
8: else
9: return

The set of repair requirements is fed into a determination procedure,
which computes a set of cell updates to the database, such that all re-
pair requirements are satisfied. Depending on the repair requirements,
different determination procedures can be devised to suit different cost
functions (cf. Section 3.2). For example, if there are >,≥, <,≤ oper-
ators in the repair requirements, a quadratic or linear programming
solver may be used as the determination procedure. The database is
then updated accordingly. The process is repeated until there are no
violations of any ICs.

Example 3.2. Figure 3.3 shows the conflict hypergraph built for the
two violations e1 and e2 in Example 2.16. A minimum vertex cover of
this graph is {t1[ST ]}. Anchoring on t1[ST ], we collect repair require-
ments for fixing e1 and e2. To fix e1 by changing t1[ST ], t1[ST ] has to
be changed to not equal to t3[ST ]. To fix e2 by changing t1[ST ], t1[ST ]
has to be changed to not equal to t2[ST ]. Thus, the two repair require-
ments are: t1[ST ] = t3[ST ] and t1[ST ] 6= t2[ST ]. Given these two repair
requirements, and suppose the cost function is to change the minimum
number of cells, a determination procedure is invoked to change the
minimum number of cells out of these three cells t1[ST ], t2[ST ], t3[ST ],
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Figure 3.3: Conflict Hypergraph.

such that two requirements are satisfied. In this case, changing only
one cell, i.e., updating t1[ST ] from “NY” to “AZ” would satisfy the
two requirements.

As stated before, different determination procedures can be used
for different cost functions.

Example 3.3. Consider an instance of I of a relational schema
R(A,B,C), where I has only one tuple t1 with t1[A] = 0, t1[B] = 3
and t1[C] = 2. Suppose there are two repair requirements: t1[A] < t1[B]
and t1[B] < t1[C].

If one would like to minimize the squared distance between a re-
paired instance I ′ and I, a quadratic programming problem can be used
with the objective function (t1[A]− 0)2+(t1[B]− 3)2+(t1[C]− 2)2 and
the two repair requirements as two constraints. The optimal solution
to the quadratic is t1[A] = 1, t1[B] = 2, and t1[C] = 3.

However, if one would like to minimize the number of changed cells,
only one cell needs to be changed (change t1[B] to 1) to satisfy the two
repair requirements.

LLUNATIC [55] is a data cleaning framework that considers differ-
ent kinds of integrity constraints, as well as different strategies, to repair
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conflicting values. Exactly, it specifies constraints based on equality-
generating dependencies (egds), which can express FDs, CFDs, MDs,
and eRs. To specify different repair strategies, it introduces the notion
of cell group, which is a set of cells that should take on the same value
along with the lineage of the value to take, e.g., coming from a master
relation. A cell group is similar to the notion of an equivalence class,
as discussed earlier in Section 3.1. A partial order is introduced to cell
groups; the partial order specifies the typical strategies to select a value
for a cell group, including master data, certainty, accuracy, freshness,
and currency, as well as user specified preferences. A parallel chase en-
gine is developed to compute the repair. The chase procedure includes
a cost manager, which decides which repair to retain or discard based
on different repairing objectives, e.g., cost minimal or cardinality min-
imal. Example 3.4 shows several cases where one value is preferred to
another in resolving a violation. LLUNATIC is later extended to in-
clude user input into the chase procedure by allowing users to resolve
conflicting values for which there is no clear preference, or by allowing
users to discard unwanted repairs [56, 57]

Figure 3.4: Customers and Treatments.

Example 3.4. Consider the database shown in Figure 3.4, contain-
ing customer data (CUSTOMERS) with addresses and credit card
numbers of customers, and medical treatments paid by insurance
plans (TREATMENTS). The following constraints are defined on the
database: an FD ϕ1 : SSN, NAME → PHONE defined on CUS-



3.1. What to Repair 341

TOMERS, an FD ϕ2 : SSN, NAME → CC# defined on CUS-
TOMERS, and an FD ϕ3 : SSN → SALARY defined on TREAT-
MENTS.

Tuples t2 and t3 are violating ϕ1 and one may want to equate
t2[PHONE] and t3[PHONE] to fix the violation. However, ϕ1 does
not tell which value (“122-1876” or “000-0000”) t2[PHONE] and
t3[PHONE] should take. If the PHONE attribute of CUSTOMERS
comes with a confidence CONF, shown in CUSTOMERS in Fig-
ure 3.4, and the value with higher confidence is preferred, the violation
is repaired by changing t3[PHONE] to “122-1876”.

Tuples t4 and t5 are violating ϕ3 and if the more recent value for
SALARY attribute of a person is preferred, the violation of can be
repaired by changing t4[SALARY] to the value of t5[SALARY], which
is more recent than the value of t4[SALARY], according to Attribute
DATE in TREATMENTS.

It is not always clear how to choose preferred values. For example,
when repairing t2[CC#] and t3[CC#] for ϕ2, there is no information
available to resolve the conflict. The best one can do is to mark the
conflict, and then, perhaps, ask for user-interaction to solve it.

Fan et al. [51] integrate data repairing based on CFDs and record
matching based on MDs (cf. Section 2.1.1), and show that these two
tasks benefit when considered together. For a relation I of schema R,
a master relation Im of schema Rm, a set Σ of CFDs defined on R,
and a set Γ of MDs defined on R and Rm, a repair I ′ of I is another
instance of R, such that (1) I ′ satisfies Σ; (2) I ′ and Im satisfy Γ, and
(3) cost(I, I ′) (cf. Section 3.2) is minimal. Example 3.5 gives a scenario
where these two tasks interplay and benefit from each other.

Example 3.5. Consider two relational tables card and tran de-
fined in Example 2.8, that is: card(FN, LN, St, city,AC, zip, tel, dob, gd),
and tran(FN, LN,St, city,AC, post, phn, gd, item,when,where). Table 3.2
shows an instance Dm of card, and an instance D of tran. The fol-
lowing constraints are defined on tran and card: a CFD ϕ1 tran([AC
= 020] → [city = Ldn]), an FD ϕ2 tran([city, phn] → [St,AC, post]),
a CFD ϕ3 tran([FN = Bob] → [FN = Robert]), and an MD ψ
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tran[LN, city,St, post] = card[LN, city, St, zip] ∧ tran[FN] ≈ card[FN] →
tran[FN, phn]
 card[FN, tel].

Consider Tuples t3 and t4 in D. The bank suspects that the two
records refer to the same person. If so, then these transaction records
show that the same person made purchases in the U.K. and in the U.S.
at about the same time (taking into account the 5-hour time difference
between the two countries). This indicates that a fraud has likely been
committed.

Tuples t3 and t4 are quite different in their FN, city, St, post and Phn
attributes. No rules can identify the two directly. Nonetheless, they can
indeed be matched by a sequence of interleaved matching and repairing
operations: (a) get a repair t′3 of t3 such that t′3[city] = Ldn via CFD
ϕ1, and t′3[FN]=Robert by normalization with ϕ3; (b) match t′3 with
s2 of Dm, to which ψ can be applied; (c) as a result of the matching
operation, get a repair t′′3 of t3 by correcting t′′3[phn] with the master
data s2[tel]; and (d) find a repair t′4 of t4 via the FD ϕ2: since t′′3 and
t4 agree on their city and phn attributes, ϕ2 can be applied to enrich
t4[St] and fix t4[post] by taking corresponding values from t′′3, which
have been confirmed correct with the master data in Step (c).

At this point t′′3 and t′4 agree on every attribute. It is now evident
enough that they indeed refer to the same person; hence, a fraud. Ob-
serve that not only repairing helps matching, for example, from Step
(a) to (b), but matching also helps to repair the data; for example,
Step (d) can be done only after the matching in (b).

3.1.2 Rules Only Repairing

The techniques in this category assume data is clean, and ICs need to
be changed, such that data conforms to the changed ICs. A particular
example is the pattern tableaux problem for CFDs (cf. Section 2.1.1.2),
where an embedded FD is given [60]. We give the details of this algo-
rithm as an example approach to change ICs.

A good pattern tableaux should maximize the number tuples
matching the pattern tuples in the tableaux while minimizing the num-
ber of violations. Furthermore, a tableaux should be concise to capture
the semantics of the data in a readable way. For example, if every tuple
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in the database is a pattern tuple in the pattern tableaux, then the pat-
tern tableaux would match all the database tuples; however, the large
tableaux size makes it almost unusable in practice.

Given a CFD (R : X → Y, Tp) and a database instance I of schema
R, the cover of a pattern tuple tp ∈ Tp is defined as all the tuples in I
that match tp, i.e., Cover(tp) = {t|t ∈ I and t ≈ tp}. The local support
of tp is thus defined as LS(tp) = |Cover(tp)|

|I| . Let Keepers(tp) be the sub-
set of tuples in Covers(tp) after removing the fewest number of tuples
to remove all violations of tp. The local confidence of tp is thus defined
as LC(tp) = |Keepers(tp)|

|Cover(tp)| . The global support of the pattern tableaux
Tp is defined as the fraction of tuples in I matching any pattern tuple
in Tp, i.e., GS(Tp) = |∪tp∈TpCovers(tp)|

|I| . The global confidence of the

pattern tableaux Tp is defined as GC(Tp) = |∪tp∈TpKeepers(tp)|
|∪tp∈TpCovers(tp)| .

Example 3.6. Consider the CFD ({name, type, country} →
{price, tax}, Tp) in Figure 2.4 for Table 2.2. Consider the third
pattern tuple (−,−, UK|−,−) in Figure 2.4, it covers seven tuples
t8, t9, t10, t11, t15, t16 and t17. Those seven tuples violate this pattern
tuple; removing either t16 or t17 will resolve the violation. Hence, the
local support of this pattern tuple is 7

20 and its local confidence is 6
7 .

Similarly, the local support of (−, clothing,−|−,−) is 7
20 and its local

confidence is 1. The local support of (−,book, France|−, 0) is 5
20 and

its local confidence is 4
5 (t3 causes the violation).

The global support of all three pattern tuples is 15
20 with a global

confidence of 13
15 .

Given the definition of GS,GC,LS,LC, two versions of the pattern
tableaux generation problem are defined: the first version is called pat-
tern tableaux generation with GS and GC, i.e., given an embedded FD
X → Y on R, an instance I of R, and two thresholds (s, c), find the Tp
of the smallest size, such that GS(Tp) ≥ s and GC(Tp) ≥ c. Not only is
the problem NP-complete, but it is also provably hard to approximate
with |I|0.5−ε, ε > 0 [60]. The second version is called pattern tableaux
generation with GS and LC, i.e., given an embedded FD X → Y on R,
an instance I of R, and two thresholds (s, c), find the Tp of the smallest
size, such that GS(Tp) ≥ s and LC(tp) ≥ c,∀tp ∈ Tp. The problem is
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reduced to a variant of the partial set cover problem. Algorithm 6 gives
a greedy approach to the problem.

Algorithm 6 Tableaux Generation with GS and LC

Input: Database instance I of schema R, two thresholds (s, c), and an
embedded FD X → Y

Output: Pattern tableaux Tp
1: Generate all possible pattern tuples from active domain of R, and

compute their local support and local confidence
2: Remove pattern tuples whose local confidence is below c

3: Iteratively choose the pattern tuple tp with the highest marginal
support, add tp to Tp

4: Stop when the global support of Tp is greater than s
5: return Tp

Algorithm 6 computes the support and confidence of every possi-
ble candidate pattern tuple and then iteratively chooses pattern tuples
with the highest marginal support (and those which are above the con-
fidence threshold), adjusting the marginal supports for the remaining
candidate patterns after each selection, until the global support thresh-
old is met or until all candidate patterns are exhausted.

3.1.3 Both Data and Rule Repairing

Cleaning techniques in this category assumes data and rules can be
dirty at the same time [10, 23, 113]. Given a database instance I and a
set of FDs Σ such that I 6|= Σ, we need to find another I ′ and Σ′, such
that I ′ |= Σ′.

Example 3.7. Figure 3.5 shows a table with an FD stating that given
name and surname determine income. There are three violations of
the FD, i.e., the first and the second tuple, the third and the fourth
tuple, and the fifth and the sixth tuple. If the FD is to be completely
trusted, three cell changes are required, shown in the bottom left table
in Figure 3.5. If the data is completely trusted, two attributes are added
to the LHS of the FD, shown in the bottom middle table in Figure 3.5. If
the FD and data have equal trustworthiness, a repair is to only change
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Figure 3.5: Relative trust of FDs and data.

one cell value and add one attribute to the LHS of the FD, shown in
the bottom right table in Figure 3.5.

In the following, we discuss three approaches for repairing FDs and
data relying on the notion of relative trust [10], unified cost [23], and
continuous cleaning [113].

Relative Trust Between Data and Constraints

Beskales et al. [10] model the universe of all possible repairs of (I,Σ) to
include all pairs of (I ′,Σ′) such that, I ′ |= Σ′. Let ∆(I, I ′) denote the
distance between I and I ′ (e.g., the number of different cells between
I and I ′). Let ∆(Σ,Σ′) denote the distance between Σ and Σ′ (e.g.,
the number of attributes added to the LHS of the FDs in Σ). A repair
(I ′,Σ′) is said to be minimal if there does not exist another repair
(I ′′,Σ′′), such that ∆(I, I ′′) ≤ ∆(I, I ′) and ∆(Σ,Σ′′) < ∆(Σ,Σ′), or
∆(I, I ′′) < ∆(I, I ′) and ∆(Σ,Σ′′) ≤ ∆(Σ,Σ′). In other words, a repair
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(I ′,Σ′) is minimal if and only if no other repair (I ′′,Σ′′) dominates it
in terms of the two distances. Minimal repairs spread a wide spectrum
of repairs, ranging from completely trusting I and only changing Σ
to completely trusting Σ and only changing I. The relative trust on
I is defined as the maximum number of allowed cell changes τ . A τ -
constrained repair is a repair that has the minimum distance to Σ across
all repairs with distance to I less than or equal to τ .

Algorithm 7 Relative trust of FDs and data
Input: Database instance I, a set of FDs Σ, a threshold τ
Output: Another instance I ′ and Σ′, such that I ′ |= Σ′
1: obtain Σ′ such that δopt(Σ′, I) ≤ τ , and no other Σ′′ with
δopt(Σ′′, I) ≤ τ has ∆(Σ,Σ′) < ∆(Σ,Σ′′), where δopt(Σ′, I) is the
minimum number of cells that need to be changed in I for I to
satisfy Σ′

2: if Σ′ 6= ∅ then
3: obtain I ′ that satisfied Σ′ with at most δopt(Σ′, I) changes
4: return (I ′,Σ′)
5: else
6: no repair

Algorithm 7 describes the procedure for computing a repair (I ′,Σ′),
given a relative trust level τ on I. It consists of two major steps: (1) find
the closest Σ′ to Σ, such that there exists a repair for I that at most
changes τ cells; and (2) obtain the actual repair I ′ given Σ. The space of
possible repairs is modelled as a state space, where each state represents
extending the LHS of the FDs in the original Σ. Figure 3.6 depicts an
example search space for Σ = {A → B,C → D}. The root node
represents adding nothing to the LHS of the two FDs, while the child
node (C, φ) represents adding C to the LHS of the first FD and not
adding anything to the LHS of the second FD, representing the new
Σ′ = {A→ BC,C → D}.

To perform Step (1), searching the space for optimal Σ′, the algo-
rithm effectively navigates the space of all possible repairs of Σ, while
computing δopt(Σ′, I), i.e., the minimum number of cells that need to
be changed in I for I to satisfy Σ′, without actually performing the
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Figure 3.6: A space for R = {A, B, C, D} and Σ = {A → B, C → D}

cleaning. Since computing δopt(Σ′, I) is an NP-hard problem [17], A
tuple-based conflict hypergraph is used to approximate δopt(Σ′, I) by a
factor of 2×min {|R| − 1, |Σ|}. An A? based algorithm is used to navi-
gate the space of all possible repairs of Σ. Step (2), the actual repairing
of I with respect to Σ′ found in Step (1), is performed using any au-
tomatic FD violation repairing algorithm, such as those described in
Section 3.1.1.

Unified Cost of Changing Data and Constraints
In contrast to the aforementioned approach [10], which treats the cost
of repairing constraints and data separately, Chiang et al. [23] propose
a unified cost model for repairing data and FDs on an equal footing
based on the Minimum Description Length (MDL) principle. Based on
the cost model, Chiang et al. associate a cost for a database instance
I and a set of FDs Σ. Given a database instance I and Σ, such that
I 6|= Σ, the goal is to find another database instance I ′ and Σ′, such
that I ′ |= Σ′, and the cost associated with I ′ and Σ′ is minimized.

We describe how the model is built, and used if there a single FD in
Σ. Assume an FD ϕ : X → Y defined over relational schema R and an
instance I of R; a model M is built for ϕ. The model M consists of a
set of signatures, where each signature s is a single tuple in I projected
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on XY , i.e., s ∈ ΠXY (I). M uses a unit cost for each cell in a relation.
The description length DL for M is defined as the length of the model
L(M), plus the length to encode the data values in the relation I, given
the model L(I|M). See that L(M) is calculated as L(M) = |XY | × S,
where |XY | is the number of attributes in XY and S is the number
of signatures in M , and L(I|M) is calculated as L(I|M) = |XY | × E,
where E is the number of tuples in I whose projection on XY is not
represented by any signature s in M . If the model is empty, namely,
L(M) = 0, then DL = L(I|M) = |XY |×|I|, where |I| is the number of
tuples in I. As more signatures are added toM that do not conflict with
existing ones, L(M) increases while L(I|M) decreases. The goal is to
find anM , such that DL = L(M)+L(I|M) is minimized. Given an FD
ϕ and an instance I of R, an initial model M is built by adding those
signatures into M whose support is more than a predefined threshold,
where the support of a signature s is the number of tuples having s as
their values for XY attributes. To resolve the violations of ϕ, either
the data repair or the constraint repair is chosen depending on which
repair results in a larger reduction in DL.

If there are multiple FDs in Σ, they are processed in an order de-
pending on (1) the number of violations of an FD; and (2) the potential
conflict an FD shares with other FDs defined based on the number of
overlapping attributes.

Continuous Data Cleaning

Rather than repairing data and constraints in a single snapshot of
the database, continuous data cleaning [113] considers repairing both
FDs and the data in a dynamic environment, where data may change
frequently and constraints may evolve. The continuous data cleaning
framework is shown in Figure 3.7.

In the first stage, a probabilistic classifier that predicts the repair
type (data, FDs, or a hybrid of both) is trained using repairs that
have been selected and validated by a user (Figure 3.7 (a)). These
repairs provide a baseline to the classifier representing the types of
modifications that align with the user and the application preferences.
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Figure 3.7: Continuous data cleaning.

As the data and the constraints change, inconsistencies may arise that
need to be resolved. Once the classifier is trained, it predicts the types
of repairs needed to address the violations (Figure 3.7 (b)). A set of
statistics are calculated to describe the properties of the violations, such
as the number of violating tuples, and the number of violating FDs. The
classifier generates predications and computes the probability of each
repair type (data, FD, or a hybrid of both). These repair predictions
are passed to the repair search algorithm, which narrows the search
space of repairs based on the classifier’s recommendation (Figure 3.7
(c)). The repair search algorithm includes a cost model that determines
which repairs are best to resolve the inconsistencies. The repair search
algorithm recommends a set of data and/or FD repairs to the user, who
will decide which repairs to apply (Figure 3.7 (d)). The applied repairs
are then used to re-train the classifier, and the process is repeated.
Incremental changes to the data and to the constraints are passed to
the classifier (Figure 3.7 (b)), and reflected via the statistics and the
patterns.
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3.2 How to Repair

In this section, we discuss data repairing techniques based on whether
and how humans are involved in the repairing process.

3.2.1 Automatic Repairing

There exist multiple theoretic studies [17, 2, 24] and surveys [44, 8] on
studying the complexity of data repairing parameterized by different
classes of ICs, such as FDs, CFDs, and DCs, and different repairing
operations, such as value updating, and tuple deleting. In this section,
we discuss data repairing techniques that aim at updating the database
in a way such that the distance between the original database I and
the modified database I ′ is minimized. With a lack of ground truth,
the main hypothesis behind the minimality objective function is that
a majority of the database is clean, and, thus, only a relatively small
number of updates need to be performed compared to the database
size.

Let ∆(I, I ′) denote the set of cells that have different values in I

and I ′, i.e., ∆(I, I ′) = {C ∈ CIDs(I) : I(C) 6= I ′(C)}.
Definition 3.1 (Cardinality-Minimal Repair). A repair I ′ of I is
cardinality-minimal if and only if there is no repair I ′′, such that
|∆(I, I ′′)| < |∆(I, I ′)|.

A repair I ′ of I is cardinality-minimal if and only if the number
of changed cells in I ′ is minimum among all possible repairs of I. The
automatic repairing algorithm in [77] aims to find cardinality-minimal
repairs for FD violations.

A weighted version of the cardinality-minimal repair associates a
weight with each cell, reflecting the confidence in the correctness of
the cell [17, 31, 26]. In addition, the distance between cell I(C) and
I ′(C) is measured using a distance function dis(I(C), I ′(C)), instead
of binary 0 or 1 in cardinality-minimal repair. The cost of a repair I ′
of I is defined as cost(I, I ′) =

∑
C∈∆(I,I′)

dis(I(C), I ′(C)).

Definition 3.2 (Cost-Minimal Repair). A repair I ′ of I is cost-minimal
if and only if there is no repair I ′′, such that cost(I, I ′′) < cost(I, I ′).
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In Section 3.1 we gave the details of an example cost-minimal re-
pairing algorithm (Algorithm 4 [17]) in the context of discussing data
repair while trusting the declared quality rules. It has been shown [17]
that, even the set of ICs Σ are FDs only, the problem of determining
if there exists a repair I ′ such as cost(I, I ′) < W , for a given constant
W , is NP-complete. Obviously, for constraints that are more expressive
than FDs, such as DCs, the data repairing problem is even harder.

Definition 3.3 (Set-Minimal Repair). A repair I ′ of I is set-minimal if
and only if there is no repair I ′′, such that ∆(I, I ′′) ⊂ ∆(I, I ′) and for
each C ∈ ∆(I, I ′′), I ′′(C) = I ′(C).

A repair I ′ of I is set-minimal if and only if no subset S of the
changed cells in I ′ can be reverted back to their original values while
keeping the current values of other cells in Delta(I, I ′)\S unchanged.
Most existing literature on consistent query answering assumes set-
minimal repairs [7, 83, 8].

Definition 3.4 (Cardinality-Set-Minimal Repair). A repair I ′ of I is
cardinality-set-minimal if and only if there is no repair I ′′, such that
∆(I, I ′′) ⊂ ∆(I, I ′).

A repair I ′ of I is cardinality-set-minimal if and only if no subset S
of the changed cells in I ′ can be reverted back to their original values,
even if the current values of cells in ∆(I, I ′)\S are allowed to be changed
to other values.

Example 3.8. Figure 3.8 shows several examples of different notions of
minimal repairs. Repair I1 is cardinality-minimal because no other re-
pair has fewer changed cells. By definition, Repair I1 is also cardinality-
set-minimal and set-minimal. Repairs I2 and I3 are set-minimal because
reverting any subset of the changed cells to the values in I will violate
A → B. On the other hand, I3 is not cardinality-set-minimal (hence
not a cardinality-minimal) because reverting t2[B] and t3[B] back to 3
and changing t1[B] to 3 instead of 5 gives a repair of I, which is the
same as I1. I3, however, is set-minimal, since reverting any subset of
the changed cells back to the values in I will still violate the FD. Repair
I4 is not set-minimal because I4 still satisfies A → B after reverting
t1[A] to 1.
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Figure 3.8: Examples of various types of repairs.

Figure 3.9 shows the relationships between different notions of min-
imality in a graph [11]. The set of cardinality-minimal repairs is a
subset of cardinality-set-minimal repairs. The set of cardinality-set-
minimal repairs is a subset of set-minimal repairs. Finally, the set of
cost-minimal repairs is a subset of set-minimal repairs if for each cell
C ∈ CIDs(I), w(C) > 0. In general, cost-minimal repairs are not nec-
essarily cardinality-minimal or cardinality-set-minimal, and vice versa.
However, for a constant weighting function w (i.e., all cells are equally
trusted) and a constant distance function dis (i.e., the distance be-
tween any pair of values is the same), the set of cost-minimal repairs
and the set of cardinality-minimal repairs coincide.
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Figure 3.9: The relationships between different notions of minimality.

In the following, we give the details of an algorithm that produces
cardinality-minimal repairs [77]. A technique that samples from the
space of cardinality-set-minimal repairs for FDs [9] is discussed in Sec-
tion 3.3 in the context of creating repairing models, instead of cleaning
data in-situ.

Generating Cardinality-Minimal Repairs

Algorithm 8 finds a repair I ′ whose distance to I (i.e., number of
changed cell) is within a constant factor of the optimum repair dis-
tance, where the constant factor depends on the set of FDs [77]. The
algorithm captures the interplay among the defined FDs in a hyper-
graph, where each node represents a cell in the database, and a hyper-
edge comprising multiple cells that cannot coexist together. We call this
data structure, a Conflict Hypergraph. The algorithm uses the notion
of core implicant to ensure the termination of the algorithm. A core
implicant of an attribute A w.r.t. a set of FDs Σ is a minimal set CA of
attributes such that CA has at least one common attribute with every
implicant X of A, where X is an implicant of A if Σ implies a nontrivial
FD X → A. A minimal core implicant of an attribute A is the core im-
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Algorithm 8 FindVRepairFDs

Input: Database instance I, a set of FDs Σ
Output: Another instance I ′, such that I ′ |= Σ
1: create an initial conflict hypergraph GI for I
2: find an approximation V C for minimum vertex cover in GI
3: change← V C

4: I ′ ← I

5: while there exists two tuples t1, t2 ∈ I ′ violating an FDX → A ∈ Σ
and t1[A] is the only cell in V C do

6: t1[A]← t2[A]
7: change← change− t1[A]
8: for all Cell t[B] ∈ change do
9: I ′(t[B])← fresh variable

10: if there are new violations then
11: let t[B] ← a cell in V C with the largest number of violations

involving t[B]
12: let CI be the set of attributes in the minimal core implicant of

Attribute B w.r.t. Σ
13: for all Attribute C ∈ CI ∪B do
14: I ′(t[C])← fresh variable

plicant with the smallest number of attributes. Intuitively, by putting
variables in Attribute A and all attributes in the core implicant of A,
all violations involving A are resolved, and no more new violations can
be introduced, where a variable denotes an unknown value that is not
in the active domain, where two different variables will have different
values.

The algorithm works as follows. First of all, an initial conflict hy-
pergraph GI is built for I. Then an approximate minimum vertex cover,
V C, in GI is found. For each cell in V C, either a value from the ac-
tive domain (values that appear in the instance) is chosen if it satisfies
the set of defined FDs, if a new variable is chosen. After all cells in
V C have been changed, the resulting I ′ may contain new violations.
A new violation of an FD X → B is resolved by putting variables in
one of the violating tuple for Attributes B and the attributes in the
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minimal core implicant of B, which ensures that no more violations are
introduced [77].

Figure 3.10: An initial conflict hypergraph

Example 3.9. Consider a relational schema R(A,B,C,D,E) with FDs
Σ = {A→ C,B → C,CD → E}. An instance I is shown in Figure 3.10
with three hyperedges of three different types (not all hyperedges are
shown). The first type of hyperedge is due to violation of a single
FD, such as Hyperedge e1 that consists of four cells: t1[B], t2[B], t1[C]
and t2[C], which together violate the FD B → C. The second type
of hyperedge is due to the interaction of two FDs that share the
same RHS attribute, such as Hyperedge e2 that consists of six cells:
t1[A], t1[B], t2[B], t2[C], t3[A] and t3[C], which cannot coexist together
due to the two FDs A → C and B → C. The third type of hyper-
edge is due to the interaction of two FDs, where the RHS of one FD
is part of the LHS of the other, such as Hyperedge e3 that consists of
eight cells: t4[B], t4[C], t5[B], t5[D], t5[E], t6[C], t6[D] and t6[E], which
cannot coexist together due to the two FDs B → C and CD → E.

There are two other hyperedges not shown in Figure 3.10: Hyper-
edge e4, that consists of four cells: t1[A], t1[C], t3[A] and t3[C], and
Hyperedge e5, that consists of four cells: t4[B], t4[C], t5[B] and t5[C].
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Suppose V C = {t2[C], t3[C], t4[B]}. Algorithm 8 enforces t2[C] to
be the value c1 of t1[C] because t2[C] is the only cell in V C among
all cells in Hyperedge e1. Similarly, t3[C] is assigned the value c1 of
t1[C]. t4[B] is changed to a fresh variable. Algorithm 8 terminates after
all cells in V C are changed, because there is no more new violations
introduced.

3.2.2 Human Guided Repairs

Automatic data repairing techniques use heuristics, such as minimal
repairs to automatically repair the data in situ, and they often generate
unverified fixes. Worse still, they may even introduce new errors during
the process. It is often difficult, if not impossible, to guarantee the
accuracy of any data repairing techniques without external verification
via experts and trustworthy data sources.

Example 3.10. Consider two tuples t1 and t8 in Table 1.1; they both
have the same values “25813” for ZIP attribute, but t1 has “WA”
for ST attribute and t8 has “WV” for ST attribute. Clearly, at least
one of the four cells t1[ZIP ], t8[ZIP ], t1[ST ], t8[ST ] has to be incorrect.
Lacking other evidence, existing automatic repairing techniques [17, 26]
often randomly choose one of the four cells to update. Some of them [17]
even limit the allowed changes to be t1[ST ], t8[ST ], since it is unclear
which values t1[ZIP ], t8[ZIP ] should take if they are to be changed.

This shooting in the dark approach, adopted by most automatic
data cleaning algorithms, motivated new approaches that effectively
involve humans or experts in the cleaning process to generate reli-
able fixes. In the following, we list a few examples: AJAX [53] shows
how to involve users in a data cleaning process modeled as a directed
graph of data transformations; Potter’s Wheel [94] is an interactive
data cleaning system that tightly integrates data transformation and
discrepancy detection; Data Wrangler [74, 64] extends Potter’s Wheel’s
data transformation language; GDR (guided data repair) [126] shows
how to effectively incorporate user feedback into CFDs repairing al-
gorithms; Editing rules [50] uses tabular master data and humans to
generate verified fixes; KATARA [28] combines kbs (e.g., Yago and DB-



358 Taxonomy of Data Repairing Techniques

Pedia), which is a collection of curated facts, such as China hasCapital
Beijing, and crowdsourcing to discover and verify table patterns, iden-
tify errors, and suggest possible fixes; and Data Tamer [105] is a data
curation system that involves users with different expertise at multiple
steps of the curation process.

AJAX
AJAX [53] is a data cleaning framework that separates the logic and
physical levels of data cleaning. The logic level supports the design
of the data flow graph that models the data transformations needed
to clean the data, while the physical level supports the implementa-
tions and optimizations of the data transformations. AJAX provides a
declarative language, which is SQL enriched with a set of specific prim-
itives, to express data transformations, such as matching two records.
AJAX raises an exception, implemented via Java exception mechanism,
whenever the data transformation process fails, and the users are ex-
pected to manually examine and resolve the exceptions. AJAX was also
the first to be explicit about the work flow of data deduplication by
mapping it into a sequence of three operations of matching, cluster-
ing, and merging. AJAX is later extended with the notion of quality
constraints [54] imposed on relations within the directed graph of data
transformation, and the violations of the quality constraints can be
inspected by manual data repairs.

Potter’s Wheel
Potter’s Wheel [94] is an interactive data cleaning system that tightly
integrates data transformation and discrepancy detection. Figure 3.11
shows the architecture of Potter’s Wheel, which takes as input a data
source. Data read from the input data source is displayed on a scal-
able Spreadsheet display that allows users to interactively re-sort the
data on any column, and scroll in a representation sample of the data.
The online re-sorting is supported by online reorderer that maintains
a histogram on the sort column. The discrepancy detection is done
at the background on the newly transformed data, and anomalies are
flagged as soon as they are found. Users examine those flagged anoma-
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Figure 3.11: Potter’s Wheel Architecture

lies, and specifies appropriate transformations, which are recorded by
the transformation engine. The specified transformation are applied to
the records already rendered on the screen, as well as those records
used for discrepancy detection. After the user is satisfied with the se-
quence of transforms, Potter’s Wheel can compile it as optimized pro-
gram, which can be applied on the current dataset, or can be invoked
on other datasets.

Data Wrangler
Data Wrangler [74, 64] is a follow-up work built on Potter’s Wheel,
which extends the data transformation language to include additional
common data transformation operations, such as positional transforma-
tions and reshaping transformations. One example of positional trans-
formations is Fill, which fills missing values based on neighboring values
in a row or column; one example of reshaping transformations is Unfold,
which creates new column headers from data values. Data Wrangler re-
actively suggests a list of possible transformations from user selection
in a visualized interface [74], and also proactively suggests data trans-
formations which maps input data to a relational format expected by
analysis tools [64]. To aid the user to select one transformation from
the list of suggested transformations, Data Wrangler provides a short
natural language description for each transformation, as well as vi-
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Figure 3.12: Guided data repair framework

sual previews to enable users to quickly evaluate the effect of a data
transform. The design framework that relieves users from the burden
of specifying the details of desired transformation is called Predictive
Interaction [66].

Guided Data Repair
Guided data repair (GDR) [126] incorporates user feedback in the data
cleaning process to enhance and accelerate automatic data repairing
techniques for CFDs while minimizing user involvement. Figure 3.12
shows the GDR framework.

Given a database instance and a set Σ of CFDs, violations of Σ are
considered dirty tuples; they are identified and stored in a DirtyTuples
list. For an attribute A in a dirty tuple t violating a CFD ϕ ∈ Σ, an on
demand update discovery process based on the mechanism described
in [31] for resolving CFDs violations and generating candidate updates
is used to suggest an update for the cell t[A]. Initially, the process is
called for all dirty tuples and their attributes. Later, during the phase
of user interaction, a consistency manager triggers the repairing pro-
cess upon receiving user feedback. The generated updates are tuples in
the form rj = 〈t, A, v, sj〉 stored in the PossibleUpdates list, where v
is the suggested value for t[A] and sj is the update score assigned to
each update rj to reflect the confidence of the repairing technique in
the suggested update. Once an update r = 〈t, A, v, s〉 is confirmed to
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Figure 3.13: Guided data repair example.

be correct, either by the user or by the learning component, it is imme-
diately applied to the database resulting into a new database instance.
A set of updates are grouped together if they are updating the same
attribute to the same value; grouping provides contextual information
to make it easier for the user to verify the suggested repairs. The groups
are ranked according to the expected quality gain of each group. The
quality gain is estimated by computing the difference between the ex-
pected number of violations before and after processing the updates
in that group. The cost of acquiring user feedback for verifying each
update is reduced by training a machine learning classifier (using an
active learning technique) to replace the user later in the process. The
use of a learning component in GDR is motivated by the correlation
between the original data and the correct updates. If this correlation
can be identified and represented in a classification model, then the
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model can be trained to predict the correctness of a suggested update
and hence replace the user for similar (future) situations.

Example 3.11. Consider the following example. Let Relation
Customer(Name, SRC, STR, CT, STT, ZIP) specify personal address in-
formation Street (STR), City (CT), State (STT) and (ZIP), in addition
to the source (SRC) of the data. An instance of this relation is shown
in Figure 3.13 along with a set of CFDs.

Assume that a cleaning algorithm gives two groups of updates: the
first group suggests assigning Attribute CT to the value ‘Michigan City’
for t2, t3, and t4; and the second group suggests assigning Attribute
ZIP with the value 46825 for t5 and t8. Assume further that the user
provides the correct values for these tuples; the user has confirmed
‘Michigan City’ as the correct CT for t2, t3, but an incorrect CT for
t4, and 46825 as the correct ZIP for t5, but an incorrect ZIP for t8.
The hypothesis in GDR is that consulting the user on the first group,
which has more correct updates, is better and would allow for faster
convergence to a cleaner database instance as desired by the user.

There could be a correlation between the attribute values in a tuple
and the correct updates. For example, when SRC = ‘H2’, CT is incorrect
most of the time, while ZIP is correct. This is an example of a recurrent
mistake that exists in real data. Patterns such as this with a correlation
between the original tuple values and the correct updates, if captured
by a machine learning algorithm, can reduce user involvement.

Editing Rules

Another example of involving humans to generate verified fixes is to
use editing rules (cf. Section 2.1.1) [50]. Given an input tuple t ∈ I of
schema R to be fixed, a set of eRs Σ, and a master data relation Im of
schema Rm, a certain fix t′ of t needs to be found by interacting with
the users, i.e., (1) no matter how Σ and tuples in Im are applied, Σ
and Im will yield a unique t′, and (2) all attributes of t′ are guaranteed
to be correct. Figure 3.14 depicts the framework for using Σ and Im to
derive t′ for t. Specifically, the framework works as follows:

• Initialization. Given t, it picks a precomputed certain region Z
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Figure 3.14: Repairing framework for using editing rules and master data.

and recommends Z to the user. A certain region is a set of at-
tributes that are guaranteed to be correct. Z ′ denotes a set of
attributes that have already been validated by the user to be
correct.

• Generating Correct Fixes. In every interaction with the user, a set
of attributes, initially Z, is shown to the user, who chose a subset
S of asserted correct attributes. If t[S∪Z ′] leads to a unique fix, t
is fixed and Z ′ is extended; otherwise, users are asked to provide
new suggestions.

• Generating New Suggestions. If Z ′ covers all attributes, a cer-
tain fix has been found; otherwise, a new set of suggestions are
computed for the next round of user interaction.

KATARA

KATARA [28] aims at producing accurate repairs by relying on two
authoritative data sources, namely, knowledge bases (kbs), and domain
experts. KATARA first discovers table patterns to map the table to a
kb, such as Yago or DBPedia. With table patterns, KATARA annotates
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A B C D E F G
t1 Rossi Italy Rome Verona Italian Proto 1.78
t2 Klate S. Africa Pretoria Pirates Afrikaans P. Eliz. 1.69
t3 Pirlo Italy Madrid Juve Italian Flero 1.77

Figure 3.15: A table T for soccer players

A (person)

B (country) C (Capital)

D (football 
club)

E (language)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (city)

hasClub

(a) A table pattern ϕs

A (Rossi)

B (Italy) C (Rome)

D (Verona)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Proto)

hasClub

(b) t1: validated by KB

A (Klate)

B (S. Africa) C (Pretoria)

D (Pirates)

E (Afrikaans)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (P. Eliz.)

hasClub

(c) t2: validated by KB&crowd

A (Pirlo)

B (Italy) C (Madrid)

D (Juve)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Flero)

hasClub

(d) t3: Erroneous tuple

Figure 3.16: KATARA patterns

tuples as either correct or incorrect by interleaving the kb and humans.
For incorrect tuples, KATARA will extract top-k mappings from the
kb as possible repairs that are to be examined by humans.

Consider a table T for soccer players (Fig. 3.15). Table T has no
table header, thus its semantics are completely unknown. Assume that a
kbK (e.g. Yago) contains some information related to T . KATARA [28]
works as follows:

(1) Pattern discovery. KATARA first discovers table patterns that con-
tain the types of the columns and the relationships between them. A
table pattern is represented as a labelled graph (Fig. 3.16a) where a
node represents an attribute and its associated type, e.g., “C (capital)”
means that the type of attribute C in kb K is capital. A directed edge
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between two nodes represents the relationship between two attributes,
e.g., “B hasCapital C” means that the relationship from B to C in K
is hasCapital. A column could have multiple candidate types, e.g., C
could also be of type city. However, knowing the relationship from B

to C is hasCapital indicates that capital is a better choice. Since kbs are
often incomplete, the discovered patterns may not cover all attributes
of a table, e.g., attribute G of table T is not described by the pattern
in Fig. 3.16a.

(2) Pattern validation. Consider a case where pattern discovery finds
two similar patterns: the one in Fig. 3.16a, and its variant with Type
location for column C. To select the best table pattern, we send the
crowd the question “Which type (capital or location) is more accu-
rate for values (Rome,Pretoria and Madrid)?” Crowd answers will help
choose the right pattern.

(3) Data annotation. Given the pattern in Fig. 3.16a, KATARA anno-
tates each tuple with one of the following three labels:

(i) Validated by the kb. By mapping tuple t1 in table T to K, we
found a full match, shown in Fig. 3.16b, indicating that Rossi
(resp. Italy) is inK as a person (resp. country), and the relationship
from Rossi to Italy is nationality. Similarly, all other values in t1
with respect to attributes A-F are found in K. We consider t1
to be correct with respect to the pattern in Fig. 3.16a and to
attributes A-F .

(ii) Jointly validated by the kb and the crowd. Consider t2 about
Klate, whose explanation is depicted in Fig. 3.16c. In K, we find
that S. Africa is a country, Pretoria is a capital. However, the re-
lationship from S. Africa to Pretoria is missing. A positive an-
swer from the crowd to the question “Does S. Africa hasCapital
Pretoria?” completes the missing mapping. We consider t2 correct
and generate a new fact “S. Africa hasCapital Pretoria”.

(iii) Erroneous tuple. Similar to case (ii). For tuple t3, there is no link
from Italy to Madrid in K. A negative answer from the crowd to
the question “Does Italy hasCapital Madrid?” confirms that there
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is an error in t3. At this point, however, we cannot decide which
value in t3 is wrong, Italy or Madrid. KATARA extracts evidence
from K, e.g., Italy hasCapital Rome and Spain hasCapital Madrid,
joins them and generates a set of possible repairs for this tuple.

Data Tamer
Data Tamer [105] is a data curation system that cleans and transforms
large scale data sources at the enterprise level. Data Tamer integrates
the schema, and instances of these sources, through a series of mapping,
deduplication and linking exercises. The core technological innovation
of Data Tamer is the automation of the data curation process while in-
volving various roles of data experts, including data owners, data stew-
ards, data scientists, and data curators. This closely coupled design of
machine and human enables practical, end-to-end curation at the scale
of of hundreds to thousands of disparate data sets. Human experts and
owners are involved in multiple tasks, including: (1) answering pair-
wise comparison questions for training machine learning models (e.g.,
classifiers), (2) validating the machine decision on matching attributes
or records from data sources, and (3) providing explicit business rules
for deduplication or cleaning data sources. A task-expertise matching
system is used to dispatch human tasks to solve curation tasks at dif-
ferent granularities (e.g., comparing pairs of columns, comparing pairs
of values, or validating a cluster of related entities). Data Tamer is an
example of involving users to guide the cleaning process at multiple
levels in the curation stack and at multiple granularities.

3.3 Where to Repair

Data repairing techniques are classified based on whether the database
will be changed in place by the repairing techniques, or using a model
that describes the possible changes that will be used to answer queries
against the dirty data. Most of the proposed data repairing techniques
(all discussed so far) identify errors in the data, and find a unique fix
of the data either by minimally modifying the data according to a cost
function or by using human guidance (Figure 3.17(a)).



3.3. Where to Repair 367

Figure 3.17: One-shot vs. probabilistic cleaning

As follows, we describe a different model-based approach for non-
destructive data cleaning. Data repairing techniques in this category do
not produce a single repair for a database instance; instead, they pro-
duce a space of possible repairs (Figure 3.17(b)). The space of possible
repairs is used either to answer queries against the dirty data prob-
abilistically (e.g., using possible worlds semantics) [12], or to sample
from the space of all possible clean instances of the database [9, 11].

We give the details of two algorithms in this category. The first
creates a succinct model of all possible duplicate-free instances from
a dirty database with duplicates and provides a probabilistic query
engine to answer queries against the dirty data [12]. The second algo-
rithm considers the space of possible repairs of FD and CFD violations
and provides a sampling technique to sample possible clean instances
with certain minimality guarantees, more specifically, with cardinality-
set-minimal repairs (cf. Section 3.2)[9, 11]. Techniques from consistent
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query answering [7, 83] also fall under this category, since they consider
a tuple in the original dirty database instance I to be in the answer
of a query, if that tuple is present in every possible repair I ′ of I. We
refer readers to a survey [8] for a comprehensive treatment of consistent
query answering.

Probabilistic Deduplication
Beskales et al. [12] study the problem of modeling and querying possi-
ble repairs in the context of duplicate detection, which is the process of
detecting records that refer to the same real-world entity. Figure 3.18
shows an input relation representing sample census data that possibly
contains duplicate records. Duplicate detection algorithms generate a
clustering of records (represented as sets of record IDs in Figure 3.18),
where each cluster is a set of duplicates that are eventually merged
into one representative record per cluster. A one-shot duplicate detec-
tion approach identifies records as either duplicates or non-duplicates
based on the given cleaning specifications (e.g., a single threshold on
record similarity). Hence, the result is a single clustering (repair) of
the input relation (e.g., any of the three possible repairs shown in Fig-
ure 3.18). However, in the probabilistic duplicate detection approach,
this restriction is relaxed to allow for uncertainty in deciding on the true
duplicates (e.g., based on multiple similarity thresholds). The result is
a set of multiple possible clusterings (repairs), as shown in Figure 3.18.

Figure 3.18: Probabilistic duplicate detection

Beskales et al. [12] constrain the space of all possible repairs to
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repairs generated by parameterized hierarchical clustering algorithms
for two reasons: (1) the size of the space of possible repairs is linear
in the number of records in the unclean relation, and (2) a probabil-
ity distribution on the space of possible repairs can be induced based
on the probability distribution on the values of the parameters of the
algorithm. Specifically, let τ represent possible parameter values of a
duplicate detection algorithm A ( e.g., τ could be the threshold value of
deciding whether two clusters should be merged in a hierarchical clus-
tering algorithm ), let [τ l, τu] represent the possible values of τ , and let
fτ represent the probability density function of τ defined over [τ l, τu].
The set of possible repairs X is defined as {A(R, t) : t ∈ [τ l, τu]}. The
set X defines a probability space created by drawing random param-
eter values from [τ l, τu], based on the density function fτ , and using
the algorithm A to generate the possible repairs corresponding to these
values. The probability of a specific repair X ∈ X , denoted Pr(X), is
equal to the probability of the parameter range that generates such
repair.

Uncertain clean relation (U-clean relation for short) is used to en-
code the possible repairs X of an unclean relation R generated by a
parameterized clustering algorithm A. A U-clean relation, denoted Rc,
is a set of c-records where each c-record is a representative record of a
cluster of records in R. Attributes of Rc are all attributes of Relation
R, in addition to two special attributes: C and P . Attribute C of a
c-record is the set of record identifiers in R that are clustered together
to form this c-record. Attribute P of a c-record represents the param-
eter settings of the clustering algorithm A that lead to generating the
cluster represented by this c-record. Figure 3.19 illustrates the model
of possible repairs for the unclean relation Person. U-clean relation
Personc is created by clustering algorithms A using parameters τ that
is defined on the real interval [0, 10] with uniform distributions. Rela-
tion Personc captures all repairs of the base relations corresponding to
possible parameter values. For example, if τ ∈ [1, 3], the resulting repair
of Relation Person is equal to {{P1, P2}, {P3, P4}, {P5}, {P6}}, which is
obtained using c-records in Personc whose parameter settings contain
the interval [1, 3]. Moreover, the U-clean relation allows for identifying
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the parameter settings of the clustering algorithm that lead to gener-
ating a specific cluster of records. For example, the cluster {P1, P2, P5}
is generated by algorithm A if the value of parameter τ belongs to the
range [3, 10).

Figure 3.19: An example of U-clean relation

Relational queries over U-clean relations are defined using the con-
cept of possible worlds semantics, as shown in Figure 3.20. More specif-
ically, queries are semantically answered against individual clean in-
stances of the dirty database that are encoded in input U-clean rela-
tions, and the resulting answers are weighted by the probabilities of
their originating repairs. For example, consider a selection query that
reports persons with Income greater than 35k, considering all repairs
encoded by Relation Personc in Figure 3.19. One qualified record is
CP3. However, such a record is valid only for repairs generated at the
parameter settings τ ∈ [0, 3). Therefore, the probability that record
CP3 belongs to the query result is equivalent to the probability that τ
is within [0, 3), which is 0.3.

Sampling the Space of Possible Repairs
For any two tuples t1, t2 that violate an FD X → A, the violation can
be repaired by either changing t1[A] to be the value of t2[A] (or vice
versa), or by modify an attribute B ∈ X in either t1 or t2, so that
t1[B] 6= t2[B]. Generalizing this observation, if a set of CleanCells does
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Figure 3.20: U-clean relation query model

not violate any FD in Σ, the consistency of CleanCells∪C, for any cell C,
can always be ensured by modifying C if necessary. To systematically
determine whether a set of cells is clean, the equivalence classes E for
that set of cells is built. An equivalence eq ∈ E denotes a subset of cells
that should be equal according to Σ. Thus, to check if a set of cells is
clean or not, it is sufficient to check if any two cells in an equivalent
class eq ∈ E indeed have the same value.

Figure 3.21: An example of checking whether a set of cells is clean

Example 3.12. For example, in order to determine if the set of six cells
t1[A], t1[C], t2[A], t2[B], t3[B], t3[C] in Figure 3.21 is clean or not, a set
of equivalence classes E is built. Initially, t1[A], t2[A] belong to the same
equivalence class, since they have the same value, so do t2[B], t3[B],
t1[C] and t3[C] belong to their own equivalence classes. According to
the FD A→ C, t1[C] and t2[C] should belong to the same equivalence
class. According to the FD B → C, t2[C] and t3[C] should belong
to the same equivalence class. Thus, t1[C] and t3[C] end up in the
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Algorithm 9 Sampling FDs Repairs

Input: Database instance I, a set of FDs Σ
Output: Possible repairs I ′
1: I ′ ← I

2: CleanCells ← ∅
3: while CleanCells 6= CIDs(I ′) do
4: Insert a random cell t[A] ∈ CIDs(I ′)\CleanCells to CleanCells,

where t ∈ I and A ∈ R
5: Build the equivalence classes E of CleanCells according to Σ
6: if CleanCells is not clean w.r.t. E then
7: Build the equivalence classes Ep of CleanCells \t[A] according

to Σ
8: if t[A] belongs to a non-singleton equivalence class in Ep then
9: set I ′(t[A]) to the value of other cells that are in the same

equivalence class in Ep
10: else
11: randomly set I ′(t[A]) to one of the three alternatives: a ran-

domly selected constant from Dom(A), a randomly selected
variable that appears in I ′, or a new variable such that
CleanCells is clean w.r.t. E

12: return I ′

same equivalence class. However, t1[C] and t3[C] have different values.
Therefore, the set of six cells is not clean.

Algorithm 9 describes the procedure for generating repairs. Cells
are inserted into CleanCells in random order. At each iteration, the
algorithm checks whether CleanCells is clean or not by building the
equivalence classes E according to Σ. If CleanCells is not clean, the last
inserted Cell C is changed so that CleanCells is clean again.

An example of executing Algorithm 9 is shown in Figure 3.22.
At each step, the cells that have been selected so far by the algo-
rithm are shown. Equivalence classes are shown as rectangles. The cells
t1[A], t1[B], t2[A] and t3[B] are added to CleanCells in step (a). They
are all clean and do not need to change. The cell t2[B] is added to
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Figure 3.22: An example of executing Algorithm 9

CleanCells in step (b). Because the cells t1[B] and t2[B] belong to the
same equivalence class, the value of t2[B] must be changed to the value
of t1[B], which is 2. In step (c), the cell t3[A] is added to CleanCells.
The value of t3[A] is changed to a randomly selected constant, namely,
6, to resolve the violation. We continue adding the remaining cells and
modifying them as needed to make sure that CleanCells is clean after
each insertion. Finally, the resulting instance I ′ represents a repair of I.
Algorithm 9 is extended to sampling from the space of all cardinality-
set-minimal repairs for CFDs [11].



4
Big Data Cleaning

With the advent of big data era, data cleaning has come more important
and challenging than ever. Due to the sheer volume of generated data,
and the fast velocity of arriving data, data cleaning activities need to be
performed in a scalable and timely manner, and at the same time cope
with the increasing variety of data sources. In this section, we discuss
various algorithmic and systematic approaches in cleaning big data,
including blocking for duplicate detection, sampling for data cleaning,
incremental data cleaning, distributed data cleaning.

DeDuplicating Big Data

As discussed in Section 2.1.2, detecting duplicate records in a
database of n records requires O(n2) comparisons for every pair of
records. When the number of tuples n is large, duplicate detection
is expensive. To avoid computing the similarity between all pairs of
records, three methods are often employed, namely, blocking, window-
ing, and canopy clustering.

Blocking methods partition all records into disjoint blocks; only
records within the same block are compared, while records residing in
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different blocks are considered non-duplicates [4, 14]. A simple way to
perform blocking is to scan all the records and compute the hash value
of a hash function for each record based on some attributes, commonly
referred to as blocking keys. Those records with the same hash value
are within the same block. Examples of blocking keys are first three
characters of last name, and the concatenation of city, state, and zip
attribute. Although blocking can substantially increase the compari-
son efficiency, it can result in many false negatives when two duplicate
records do not agree on the blocking key, and thus reside in two dif-
ferent blocks. One way to alleviate such problem is to perform the
deduplication algorithm in multiple passes, using a different blocking
criteria for each pass; another approach is to build a complex blocking
function that is a combination of multiple blocking criteria [98, 88].

Windowing methods, also known as sorted neighborhood ap-
proaches, sort all the records according to some keys, and then slide
a fixed sized window across the sorted records; only records within
the same window are compared [68, 69]. The windowing methods rely
on the assumption that duplicate records are close to each other in the
sorted list. It can be seen that the effectiveness of the windowing meth-
ods is highly dependent on the sorting keys. Often times, a single key
is not sufficient to place all duplicate record pairs in the same window.
Thus, similar to blocking methods, multiple passes based on different
ordering keys can be employed.

Canopy clustering [85] is another approach to speed up the pair-wise
comparison of records. Canopy clustering places records into overlap-
ping clusters, referred to as canopies, using an inexpensive comparison
metric. Canopies are different from blocks in that two canopies can
contain the same records, while two blocks must be disjoint. After all
records are grouped into canopies, the pair-wise comparison is per-
formed within each canopy using a more expensive similarity metric
that leads to better deduplication quality. Canopy clustering hinges on
the existence of a cheap similarity function that serves as a “quick-
and-dirty” way to check for a more expensive similarity function. For
instance, two strings with length difference more than 10 cannot have
their edit distance less than 10. Thus, the length comparison can serve
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Figure 4.1: SampleClean Framework.

as the cheap similarity function for the more expensive edit distance
computation.

Sampling for Data Cleaning

Despite all the developments of data cleaning techniques, cleaning
large sized data is a challenging task. Particularly, in order to obtain
reliable data cleaning results, humans often need to be involved, which
is highly inefficient for large dataset. SampleClean [115] applies data
cleaning to a relatively small sample of the data and uses the cleaned
sample for answering queries.

Figure 4.1 illustrates the SampleClean framework. SampleClean
first generates a sample of dirty data, and then invokes data cleaning
techniques that possibly involve crowds and experts to clean the dirty
sample. SampleClean then uses the cleaned sample to answer aggregate
queries, and gives unbiased estimates with confidence intervals, mean-
ing that in expectation the estimates are equal to the query results if
the entire dataset was first cleaned, and then used to answer the query.
SampleClean provides two types of estimates, namely, RawSC and Nor-
malizedSC. RawSC directly estimates the true query result based on
the cleaned sample, and NormalizedSC uses the difference between the
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cleaned sample and the dirty sample to correct the error in a query
result over the entire dirty data. To obtain unbiased estimates, Sam-
pleClean has to account for duplicates when sampling. For example,
consider a query asking for the average number of citations of all pa-
pers published every year, grouping by year. Assume that the table
has duplicates, and papers with a higher citation count tend to have
more duplicates. The more duplicates a paper has, the more likely that
paper is sampled, leading to over-estimated average citation count per
year when random sampling is used. Therefore, SampleClean samples a
tuple that has more duplicates with a smaller probability. Specifically,
a tuple with no duplicates is c times more likely to be included in the
sample than a tuple with c duplicates.

Incremental Data Cleaning

Data may arrive constantly, and the data quality rules might also
evolve over time. Cleaning one snapshot of the data with respect to one
set of data quality rules is already a challenging and time-consuming
task, applying data cleaning techniques every time as data or rules
change is impractical. Therefore, incremental data cleaning techniques
are valuable in dealing with constantly changing data and rules. Whang
and Garcia-Molina [120] study the problem of entity resolution (ER)
with evolving rules, that is the logic of comparing two records are evolv-
ing over time. For example, an entity resolution logic, saying that two
persons match if their names are similar, might produce inaccurate ER
results as more persons are added to the database. Therefore, the logic
should be changed to two persons match if their names are similar and
the zip codes of the two persons are the same. Since the new logic is
“stricter” than the old logic, the ER results using the new logic could
be obtained from the previous ER results using the old logic. Gruen-
heid et al. [63] study the problem of ER with changing data, including
insertions, deletions, and value modifications. Instead of running an
ER algorithm on the entire set of records, two algorithms are proposed
that only need to apply the ER algorithm on a subset of the records
that are affected by the changed records. Since the subset of the records
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that are affected by the changed records could also be large, a greedy
algorithm is also proposed that merges, splits clusters connected to the
changed records, and moves records between those clusters. Continues
data cleaning [113] discussed in Section 3.1.3 study the problem of ICs
based data cleaning, when the data and the ICs are both evolving.

Distributed Data Cleaning

Recently, cleaning large datasets was implemented using a dis-
tributed framework, such as MapReduce [35], or Spark [127]. De-
doop [79, 78] specializes in performing ER using MapReduce. Despite
the use of blocking techniques, ER remains a costly process. A straight-
forward implementation using MapReduce would be to distribute every
block to one reducer machine. However, such a basic implementation
is susceptible to severe load balancing issues due to skewed block sizes.
Dedoop proposes two strategies for load balancing: BlockSplit, and
PairRange. BlockSplit assigns every small block into one reducer ma-
chine if this does not violate load balancing constraint, and splits large
blocks into smaller chunks to enable parallel processing. PairRange, on
the other hand, evenly distributes all the tuple pairs in all blocks to all
available reducer machines. There are also techniques that balance the
workload of comparing all record pairs by exploiting the properties of
the similarity measure used for comparing two record [97, 110].

BigDansing [76] is a distributed data cleaning system that runs on
top of common data processing platforms, such as DBMS, or MapRe-
duce frameworks. It takes as input a set of ICs or user defined data
quality rules, and runs these rules through a series of transformations
that enable distributed computations and optimizations. For example,
to detect violations for an FD X → Y , instead of enumerating all the
tuple pairs in the database, BigDansing groups all the tuples based on
their values for Attribute X, and only enumerates all tuple pairs that
have the same value for X, which is similar to blocking in duplicate
detection. BigDansing also includes other optimizations for violation
detection, such as, scoping, which limits the amount of data that needs
to be treated, and shared scan, which identifies common operations
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for detecting violation for multiple rules. BigDansing also utilizes dis-
tributed framework for data repairing, for example, every connected
component in the conflict hypergraph (cf. Section 3.1.1) is being pro-
cessed by an independent machine.

The data cleaning techniques we’ve discussed so far assume that
the data resides in a centralized database. In practice, a relation can
be fragmented and distributed across different sites, which make the
data cleaning problem harder. In order to detect violations, data might
need to be shipped from one site to another. For example, if Tuple t1
and Tuple t8 in Example 1.1 reside at two different sites, then some data
shipment has to happen to ensure that both t1 and t8 appear together
at least at one site in order to be able to detect the violation consisting
of four cells {t1[ZIP], t8[ZIP], t1[ST], t8[ST]} . Fan et al. [46] study
the problem of detecting violations for CFDs when the data is either
horizontally partitioned, or vertically partitioned, across multiple sites.
The objective now is to minimize data shipment. The work is further
extended to incrementally detect violations when the distributed data
is updated [52].



5
Conclusion

In this paper we shed some light on some of the foundational aspects
and trends in data cleaning efforts. We primarily focused on the two
phases of data cleaning: error detection and repairing.

For anomaly detection, we provided a classification for data repair-
ing techniques based on What, How and Where to detect the errors:

• What Surveys many integrity constraints languages proposed to
capture data errors, along with algorithms for their automatic
discovery, as well as major steps involved for detecting duplicate
records.

• How Discusses how humans may be helpful for detecting anoma-
lies.

• Where Presents multiple errors propagation approaches that al-
low for detecting errors in source data when anomalies are de-
tected at higher levels of the processing stack.

For data repairing, we also provided a classification for data repair-
ing techniques based on What, How and Where to repair the data:
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• What Reflects the different options repairing techniques take
when deciding on the repairing target (data, rules, or both). Data
only repairing further depends on the different types of errors that
drive the repairing process, and whether it is a single error type
(e.g., FD violations) or a set of heterogeneous types of errors that
need to be repaired holistically.

• How Highlights the different repairing methodologies followed
by most repairing algorithms, mainly, whether and how humans
and machines are used to figure out the correct updates to the
erroneous data. This dimension also highlights the different ob-
jective functions adopted by automatic repairing algorithms, for
example, cardinality-minimal repairs.

• Where Contrasts in-situ repairing to model-based repairing,
where models are built to describe possible ways to repair the
data, instead of repairing it in place.

Data quality and data cleaning are becoming more important than
ever, with direct and timely needs in the Big Data era. Data cleaning
is the first line of defense in extracting value from the huge amounts
of heterogeneous, incomplete, and continuously growing data sets. We
envision multiple future work directions, we list some of them in the
following:

• Anomaly Detection. While we have discussed several ways to de-
tect anomalies in the data, many data errors may still remain
undetected. One direction is to devise more expressive integrity
constraint languages that allow data owners to easily specify data
quality rules and to effectively involve human experts in anomaly
detection.

• Master data curation. To perform reliable data repairing, mas-
ter data often needs to be referenced. However, existing master
data sources, such as knowledge bases, often cannot provide a
comprehensive coverage for the data to be repaired. Automatic
creation and maintenance of relevant master and authoritative
data catalogs are essential tasks in enabling high-quality repairs.
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• Human involved data repairing. Although much research has been
done about involving humans to perform data deduplication, in-
volving humans in other data cleaning tasks, such as repairing
integrity constraint violations is yet to be explored.

• Scalability. Large volumes of data render most current techniques
unusable in real settings. The obvious trade-off between accuracy
and performance has to be taken more seriously in designing the
next generation cleaning algorithms that take time and space
budget into account. Example tools include sampling, and ap-
proximate cleaning algorithms, with clear approximation seman-
tics that can be leveraged by analytics applications.
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