
A Formal Framework for Probabilistic Unclean
Databases
Christopher De Sa
Cornell University, Ithacan, NY, USA
cdesa@cs.cornell.edu

Ihab F. Ilyas
University of Waterloo, Waterloo, ON, Canada
ilyas@uwaterloo.ca

Benny Kimelfeld
Technion - Israel Institute of Technology, Haifa, Israel
bennyk@cs.technion.ac.il

Christopher Ré
Stanford University, Stanford, CA, USA
chrismre@cs.stanford.edu

Theodoros Rekatsinas
University of Wisconsin - Madison, Madison, WI, USA
thodrek@cs.wisc.edu

Abstract
Most theoretical frameworks that focus on data errors and inconsistencies follow logic-based reasoning.
Yet, practical data cleaning tools need to incorporate statistical reasoning to be effective in real-world
data cleaning tasks. Motivated by empirical successes, we propose a formal framework for unclean
databases, where two types of statistical knowledge are incorporated: The first represents a belief of
how intended (clean) data is generated, and the second represents a belief of how noise is introduced
in the actual observed database. To capture this noisy channel model, we introduce the concept
of a Probabilistic Unclean Database (PUD), a triple that consists of a probabilistic database that
we call the intention, a probabilistic data transformator that we call the realization and captures
how noise is introduced, and an observed unclean database that we call the observation. We define
three computational problems in the PUD framework: cleaning (infer the most probable intended
database, given a PUD), probabilistic query answering (compute the probability of an answer tuple
over the unclean observed database), and learning (estimate the most likely intention and realization
models of a PUD, given examples as training data). We illustrate the PUD framework on concrete
representations of the intention and realization, show that they generalize traditional concepts
of repairs such as cardinality and value repairs, draw connections to consistent query answering,
and prove tractability results. We further show that parameters can be learned in some practical
instantiations, and in fact, prove that under certain conditions we can learn a PUD directly from a
single dirty database without any need for clean examples.

2012 ACM Subject Classification Database Theory → Data modeling; Database Theory → Incom-
plete, inconsistent, and uncertain databases

Keywords and phrases Unclean databases, data cleaning, probabilistic databases, noisy channel

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.3

Related Version https://arxiv.org/abs/1801.06750

Funding Ihab F. Ilyas: This work was supported by NSERC under a Discovery Grant.
Benny Kimelfeld: This work was supported by the Israel Science Foundation (ISF) Grant 1295/15.
Theodoros Rekatsinas: This work was supported by the Wisconsin Alumni Association, Amazon
under an ARA Award, and by NSF under grant IIS-1755676.

© Christopher De Sa and Ihab F. Ilyas and Benny Kimelfeld and Christopher Ré and Theodoros
Rekatsinas;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 3; pp. 3:1–3:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cdesa@cs.cornell.edu
mailto:ilyas@uwaterloo.ca
mailto:bennyk@cs.technion.ac.il
mailto:chrismre@cs.stanford.edu
mailto:thodrek@cs.wisc.edu
https://doi.org/10.4230/LIPIcs.ICDT.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 A Formal Framework for Probabilistic Unclean Databases

1 Introduction

Managing errors and inconsistency in databases is traditionally viewed as a challenge of a
logical nature. It is typical that errors in a database are defined with respect to integrity
constraints that capture normative aspects of downstream applications. The aim of integrity
constraints is to guarantee the consistency of data used by these applications. Typically,
an unclean database is defined as a database J that violates the underlying set of integrity
constraints. In turn, a repair of a database J is a clean database I wherein all integrity
constraints hold, and is obtained from J by a set of operations (e.g., deletions of tuples or
updates of tuple values) that feature some form of non-redundancy [2, 4].

Various computational problems around unclean databases have been investigated in
prior work [4,28,29,32]. Past theoretical research has established fundamental results that
concentrate on tractability boundaries for repair-checking and consistent query answering [2,
15,26]. In their majority, these works adopt a deterministic interpretation of data repairs
and cast all repairs equally likely. These theoretical developments have inspired practical
tools that aim to automate data cleaning [7,12,20,42,43]. The majority of proposed methods
assume as input a set of integrity constraints and use those to identify possible repairs via
search-based procedures. To prioritize across possible repairs during search, the proposed
methods rely on the notion of minimality [11,23,30]. Informally, minimality states that given
two candidate sets of repairs, the one with fewer changes with respect to the original database
is preferable. The use of minimality as an operational principle to find data repairs is a
practical artifact that is used to limit the search space. These approaches to data cleaning
suffer from two major drawbacks: First, they do not permit concrete statements about the
“likelihood” of possible repairs. Consequently, they categorize query answers to a limited set
of validity labels (e.g., certain, possible, and impossible); these labels might be unsuitable for
downstream applications. Second, combinatorial principles such as minimality, while desired,
do not entail the richness of the arguments and evidences (e.g., statistical features of data)
that are needed to reason about and generate correct repairs.

Effective data cleaning needs to incorporate statistical reasoning. Our recent work on
HoloClean [34] casts data repairing as a statistical learning and inference problem and reasons
about a most probable repair instead of a minimal repair. Our study shows that HoloClean
obtains more accurate data cleaning results than competing minimality-based data cleaning
tools for a diverse array of real-world data cleaning scenarios [34]. HoloClean uses training
data to learn a probabilistic model for how clean data is generated and how data errors are
injected. HoloClean’s model follows the noisy channel model [22], the de-facto probabilistic
framework used in natural language tasks, such as spell checking and speech recognition, to
reason about noisy data. To the best of our knowledge, existing theoretical frameworks for
data cleaning do not capture this type of probabilistic reasoning.

Goals We aim to establish a formal framework for probabilistic unclean databases (PUD)
that adopts a statistical view of database cleaning. We do so by following the aforementioned
noisy channel paradigm of HoloClean. Within the PUD framework, we formalize fundamental
computational problems: cleaning, query answering, and learning. With that, we aim to draw
connections between theoretical database research and important aspects of practical systems.
In particular, our goal is to open the way for analyses and algorithms with theoretical
guarantees for such systems. We argue that our framework is basic enough to allow for
nontrivial theoretical advances, as illustrated by our preliminary results that (a) draw
connections to traditional deterministic concepts, and (b) devise algorithms for special cases.

C. De Sa, I.F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 3:3

Probabilistic unclean databases We view an unclean database as if a clean database I had
been “distorted” via a noisy channel into a dirty database J ; we aim to establish a model
of this channel. Given the observed unclean database J , we seek the true database I from
which J is produced. This model adopts Bayesian inference: out of all possible I, we seek the
one for which the probability, given J , is highest. Following Bayes’ rule, our objective is to
find arg maxI Pr(I) · Pr(J |I). This objective decomposes in two parts: (1) the prior model
for a clean database captured by Pr(I), and (2) the channel or error model characterized
by Pr(J |I). To capture that, we define a Probabilistic Unclean Database (PUD) as a triple
(I,R, J?) where: (1) I, referred to as the intention model, is a distribution that produces
intended clean databases; (2) R, referred to as the realization model, is a function that maps
each clean database I to a distribution RI that defines how noise is introduced into I; and
(3) J? is an observed unclean database. The distribution I defines the prior Pr(I) over clean
databases, while the distribution RI defines the aforementioned noisy channel Pr(J |I).

Computational problems We define and study three computational problems in the PUD
framework: (1) data cleaning, where given a PUD (I,R, J), we seek to compute a database
I that maximizes the probability I(I) ×RI(J); (2) probabilistic query answering, that is,
the problem of evaluating a query Q over a PUD following the traditional possible tuple
semantics [13, 40]; and (3) learning a PUD, where we consider parametric representations IΞ
and RΘ of the intention and realization models, and seek to estimate the parameter vectors
Ξ∗ and Θ∗ that maximize the likelihood of training data.

Preliminary analysis PUDs allow for different instantiations of the intention and realization
models. To establish preliminary complexity and convergence results, we focus on specific
instantiations of the intention and realization models. We study intention models that can
describe the distribution of tuple values as well as both soft and hard integrity constraints.
We also focus on simple noise models. We study (1) realizations that introduce new tuples,
hence, the clean database is a subset of the observed unclean database, and (2) realizations
that update table cells, hence, the clean database is obtained via value repairs over the
observed unclean database.

We present PUD instantiations for which solving the data cleaning problem has polynomial-
time complexity. For instance, we show that in the presence of only one key constraint,
soft or hard, data cleaning in PUDs can be solved in polynomial time. This result extends
results for deterministic repairs that focus on hard integrity constraints to weak (soft) key
constraints (e.g., two people are unlikely to, but might, have the same first and last name).
Here, the most probable repair under the PUD framework may violate weak key constraints.
We also draw connections between data cleaning in the PUD framework and minimal repairs.
We identify conditions under which data cleaning in the PUD framework is equivalent to
cardinality repairs [32] and optimal V-repairs [23]. For PUD learning, we consider both
supervised and unsupervised learning. In the former case, we are given intension-realization
pairs, and in the former, we are given only realizations (i.e., dirty databases). Our results
discuss convexity and gradient computation for the optimization problem underlying the
learning problem.

Our PUD model can be viewed as a generalization of the approach of Gribkoff et al. [19],
who view the dirty database as a tuple-independent probabilistic database [13], and seek the
most-probable database that satisfies a set of underlying integrity constraints (e.g., functional
dependencies). In contrast, our modeling allows for arbitrary distributions over the intention,
including ones with weak constraints that we discuss later on. Interestingly, our PUD model

ICDT 2019

3:4 A Formal Framework for Probabilistic Unclean Databases

goes in the reverse direction of the operational approach of Calautti et al. [10], who view
the dirty database as a deterministic object and its cleaning (rather than the error) as a
probabilistic process (namely a Markov chain of repairing operations).

Vision This paper falls within the bigger vision of bridging database theory with learning
theory as outlined in a recent position article [1]. We aim to draw connections between the
rich theory on inconsistency management by the database community, and fundamentals of
statistical learning theory with emphasis on structured prediction [5]. Structured prediction
typically focuses on problems where, given a collection of observations, one seeks to predict
the most likely assignment of values to structured objects. In most practical structured
prediction problems, structure is encoded via logic-based constraints [18] in a way similar to
how consistency is enforced in data cleaning. It is our hope that this paper will commence a
line of work towards theoretical developments that take the benefit of both worlds, and will
lead to new techniques that are both practical and rooted in strong foundations.

Organization We begin with preliminary definitions in Section 2. In Section 3 we present
the concept of PUDs. We present the three fundamental computational problems in Section 4,
and describe preliminary results in Sections 5 and 6. We conclude with a discussion in
Section 7. For space limitations, all proofs are in the extended version of our paper [36].

2 Preliminaries

We first introduce concepts, definitions and notation that we need throughout the paper.

Schemas and databases A relation signature is a sequence α = (A1, . . . , Ak) of distinct
attributes Ai, where k is the arity of α. A (relational) schema S has a finite set of relation
symbols, and it associates each relation symbol R with a signature that we denote by sigS(R),
or just sig(R) if S is clear from the context. We assume an infinite domain Const of constants.
Let S be a schema, and let R be a relation symbol of S. A tuple t over R is a sequence
(c1, . . . , ck) of constants, where k is the arity of sig(R). If t = (c1, . . . , ck) is a tuple over R
and sig(R) = (A1, . . . , Ak), then we refer to the value cj as t.Aj (where j = 1, . . . , k). We
denote by tuples(R) the set of all tuples over R.

In our databases, tuples have unique record identifiers. Formally, a table r over R is
associated with a finite set ids(r) of identifiers, and it maps each identifier i to a tuple r[i]
over R. A database I over S consists of a table RI over each relation symbol R of S, such
that no two occurrences of tuples have the same identifier; that is, if R1 and R2 are distinct
relation symbols in S, then ids(RI1) and ids(RI2) are disjoint sets. We denote by ids(I) the
union of the sets ids(RI) over all relation symbols R of S. If i ∈ ids(RI), then we may refer
to the tuple RI [i] simply as I[i].

A cell of a database I is a pair (i, A), where i ∈ ids(RI) for a relation symbol R, and A
is an attribute inside sig(R). We denote the cell (i, A) also by i.A, and we denote by cells(I)
the set of all cells of I.

Let I and J be databases over the same schema S. We say that I is a subset of J if I can
be obtained from J by deleting tuples, that is, ids(RI) ⊆ ids(RJ) for all relation symbols R
of S (hence, ids(I) ⊆ ids(J)) and I[i] = J [i] for all i ∈ ids(I). We say that I is an update of
J if I can be obtained from J by changing attribute values, that is, ids(RJ) = ids(RI) for
all relation symbols R of S.

C. De Sa, I.F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 3:5

A query Q over a schema S is associated with fixed arity, and it maps every database D
over S into a finite set Q(D) of tuples of constants over the fixed arity.

Integrity constraints Various types of logical conditions are used for declaring integrity
constraints, including Functional Dependencies (FDs), conditional FDs [7], Denial Constraints
(DCs) [17], referential constraints [14], and so on. In this paper, by integrity constraint over
a schema S we refer to a general expression ϕ of the form ∀x1, . . . , xm[γ(x1, . . . , xm)], where
γ(x1, . . . , xm) is a safe expression in Tuple Relational Calculus (TRC) over S. For example,
an FD R : A→ B is expressed here as the integrity constraint

∀x, y [(x ∈ Ry ∈ R)→ (x.A = y.A→ x.B = y.B)] .

A violation of ϕ = ∀x1, . . . , xm[γ(x1, . . . , xm)] in the database I is a sequence i1, . . . , im of
tuple identifiers in ids(I) such that I violates γ(I[i1], . . . , I[im]), and we denote by V (ϕ, I)
the set of violations of ϕ in I. We say that I satisfies ϕ if I has no violations of ϕ, that
is, V (ϕ, I) is empty. Finally, I satisfies a set Φ of integrity constraints if I satisfies every
integrity constraint ϕ in Φ.

Minimum repairs Traditionally, database repairs are defined over inconsistent databases,
where inconsistencies are manifested as violations of integrity constraints. A repair is a
consistent database that is obtained from the inconsistent one by applying a minimal change,
and we recall two types of repairs: subset (obtained by deleting tuples) and update (obtained
by changing values). Moreover, the repairing operations may be weighted by tuple weights
(in the first case) and cell weights (in the second case).

Formally, let S be a schema, Φ a set of integrity constraints over S, and J a database
that does not necessarily satisfy Φ. A consistent subset (resp., consistent update) of J is a
subset (resp., update) I of J such that I satisfies Φ. A minimum subset repair of J w.r.t. a
weight function w : ids(J) → [0,∞) is a consistent subset I of J that minimizes the sum∑

i∈ids(J)\ids(I) w(i). As a special case, a cardinality repair of J is a minimum subset repair
w.r.t. a constant weight (e.g., w(i) = 1), that is, a consistent subset with a maximal number of
tuples. A minimum update repair of J w.r.t. a weight function w : cells(J)× Const→ [0,∞)
is a consistent update I of J that minimizes the sum

∑
i.A∈cells(I) w(i.A, I[i].A).

Probabilistic databases A probabilisitic database is a probability distribution over ordinary
databases. As a representation system, our model is a generalization of the Tuple-Independent
probabilistic Database (TID) wherein each tuple might either exist (with an associated
probability) or not [13, 40]. In our model, each tuple comes from a general probability
distribution over tuples (where inexistence is one of the options). This allows us to incorporate
beliefs about the likelihood of tuples and cell values.

We now give the formal definition. Let S be a schema. A generalized TID is a database
K that is defined similarly to an ordinary database over S, except that instead of a tuple,
the entry RK[i] is a discrete probability distribution over the set tuples(R) ∪ {⊥}, where
the special value ⊥ denotes that no tuple is generated. Hence, for every tuple t over R,
the probability that RK[i] produces t is given by RK[i](t), or just K[i](t); moreover, the
number K[i](⊥) is the probability that no tuple is generated for the identifier i. Therefore,
K defines a probability distribution over databases I over S such that ids(I) ⊆ ids(K) and
the probability K(I) of a database I is defined as follows:

K(I) def=
∏

i∈ids(I)

K[i](I[i]) ×
∏

i∈ids(K)\ids(I)

K[i](⊥)

ICDT 2019

3:6 A Formal Framework for Probabilistic Unclean Databases

Table 1 Main symbols used in the framework.

S A schema.
U A PUD (I,R, J?).
I An intention model (probabilistic database).
R A realization model, maps every I into a probabilistic database RI .
J? An observed unclean database.
R◦I Distribution over pairs (I, J) given by R◦I (I, J) = I(I) · RI(J).
U? A probabilistic database given by U?(I ′) = Pr(I,J)∼R◦I(I = I ′ | J = J?).

(D, τ, J?) A parfactor/subset PUD.
(D, κ, J?) A parfactor/update PUD.
D A parfactor database (K,Φ, w) with w : Φ→ (0,∞).
K A generalized tuple-independent database (generalized TID).
Φ A set of integrity constraints ϕ.
τ Maps i ∈ ids(RD) to a discrete distribution τ [i] over tuples(R) ∪ {⊥}.
κ Maps (i, t) ∈ ids(RD)× tuples(R) to a discrete distribution κ[i, t] over tuples(R).

We incorporate weak integrity constraints by adopting the standard concept of parametric
factors (or parfactors for short), which has been used in the soft keys of Jha et al. [21] and
the PrDB model of Sen et al. [38], and which can be viewed as a special case of the Markov
Logic Network (MLN) [35]. Under this concept, each constraint ϕ is associated with a weight
w(ϕ) > 0 and each violation of ϕ contributes a factor of exp(−w(ϕ)) to the probability of a
random database I. Formally, a parfactor database over a schema S is a triple D = (K,Φ, w),
where K is a generalized TID, Φ is a finite set of integrity constraints, both over S, and
w : Φ→ (0,∞) is a weight function over Φ. The probability D(I) of a database I is defined
as follows.

D(I) def= 1
Z
× K(I) × exp

−∑
ϕ∈Φ

w(ϕ)× |V (ϕ, I)|

Recall that V (ϕ, I) the set of violations of ϕ in I. The number Z is a normalization factor
(also called the partition function) that normalizes the sum of probabilities to one:

Z
def=

∑
I

K(I) × exp

−∑
ϕ∈Φ

w(ϕ)× |V (ϕ, I)|

Observe that the above sum is over a countable domain, since we assume that every RK[i]
is discrete (hence, there are countably many random databases I). Since we normalize the
probability, it is not really necessarily for K to be normalized, as D would be a probability
distribution even if K is not normalized. In fact, in our analysis, we will not make the
assumption that K is normalized.

3 Probabilistic Unclean Databases

We introduce the Probabilistic Unclean Database (PUD) framework and describe examples of
PUD instantiations that correspond to data cleaning applications in the HoloClean system [34].
In our framework, a PUD consists of three components following a noisy-channel model:
(1) an intention model for generating clean databases, (2) a noisy realization model that
can distort the intended clean database, and (3) an observed unclean database. The formal
definition follows.

C. De Sa, I.F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 3:7

(A) Schema,
and Constraints

Integrity Constraints

FD: Zip Code City, State
PK: Business ID

Zip CodeState

Business Listing

City
Business

ID

(B) The Unclean Database Generation Process

t1
t2
t3

Zip Code

53703
53703

53703EVP Coffee WIMadison
Graft WIMadison

MadisonPorter WI

StateCity
Business

ID

Constraints

Tuple Identifiers

Intentional Model I Sample of clean intended data I

Realizer
Model RR

Chicago 60609t4 ILGraft

t1
t2
t3

Zip Code

53703
53703

53703EVP Coffee WIMadison
Graft WIVerona

MadisonPorter WI

StateCityBusiness
ID

Dirty data instance J

�

J⇤
K

Tuple
Probability

Error model

!

Figure 1 Overview of the PUD framework.

I Definition 1. Let S be a schema. A PUD (over S) is a triple U = (I,R, J?) where:
1. I is a probabilistic database, referred to as the intention model;
2. R, referred to as the realization model, is a function that maps each database I to a

probabilistic database RI ;
3. J? is a database referred to as the observed or unclean database.

I Example 2. Figure 1 illustrates a high-level example of the PUD framework. We use a
running example from business listings. Figure 1(A) depicts the schema S of the example.
The constraints include a primary key and a functional dependency. Figure 1(B) depicts
the unclean database generation process. Intention I outputs a valid database I with three
tuples. The realizer R takes as input this database I, injects the new tuple t4 and updates
the City value of tuple t2 from “Madison” to “Verona.” J

A PUD U = (I,R, J?) defines a probability distribution, denoted R◦I, over pairs (I, J).
Conditioning on J = J?, the PUD U also defines a probability distribution, denoted U?, over
intentions I (i.e., a probabilistic database). In the generative process of R◦I, we sample the
intention I from I, and then we sample J from the realization RI . Hence, the probability of
(I, J) is given by

R◦I (I, J) def= I(I) · RI(J) .

In the probabilistic database U?, the probability of each candidate intention I ′ is given by

U?(I ′) def= Pr(I,J)∼R◦I(I = I ′ | J = J?) = R◦I (I ′, J?)∑
I R◦I (I, J?)

that is, the probability conditioned on the random J being J?. For this distribution to be
well defined, we require J? to have a nonzero probability; that is, there exists I such that
R◦I (I, J?) > 0. Table 1 lists the main symbols in the framework, along with their meaning.

3.1 Example Instantiations of PUDs
Our definition of a PUD is abstract, and not associated with any specific representation model.
We now present concrete instantiations of PUD representations. These instantiations are
probabilistic generalizations of the (deterministic) concepts of subset repairs [2,32] and update
repair [23,30], respectively. More precisely, in both instantiations, the PUD U = (I,R, J?)
is such that I is represented as a parfactor database D (as defined in Section 2) and J? is
an ordinary database (as expected); the two differ in the representation of the realization
model R. In the first instantiation, R is allowed to introduce new random tuples (hence, the
intended database is a subset of the unclean one) and in the second, R is allowed to randomly
change tuples (hence, the intended database is an update of the unclean one). Formally, let
S be a schema.

ICDT 2019

3:8 A Formal Framework for Probabilistic Unclean Databases

Intended Database

t1
t2
t3

Zip Code

53703
53703

53703EVP Coffee WIMadison
Graft WIMadison

MadisonPorter WI

StateCity
Business

ID

t1
t2
t3

53703
53703

53703EVP Coffee WIMadison
Graft WIMadison

MadisonPorter WI

Zip CodeStateCity
Business

ID

Dirty Database
under Subset Realizer

53703EVP Coffee
WIMadison 53703EVP Coffee 53703

t1
t2
t3

Zip Code

53704
53703

53703EVP Coffee WIadison
Graft WIMadison

MadisonPorter WI

StateCity
Business

ID

Dirty Database
under Update Realizer

Figure 2 Examples of a subset realizer and an update realizer.

A parfactor/subset PUD is a triple (D, τ, J?) where D is a parfactor database, τ maps every
identifier i ∈ ids(RD), where R ∈ S, to a discrete distribution τ [i] over tuples(R) ∪ {⊥},
and J? is an ordinary database. As usual, ⊥ means that no tuple is generated.
A parfactor/update PUD is a triple (D, κ, J?) where D is a parfactor database, κ maps
every identifier i ∈ ids(RD) and tuple t ∈ tuples(R), where R ∈ S, to a discrete
distribution κ[i, t] over tuples(R), and J? is an ordinary database.

In a parfactor/subset PUD U = (D, τ, J?), the probability R◦I (I, J) is then defined as
follows. If I is not a subset of J , then R◦I (I, J) = 0; otherwise:

R◦I (I, J) def= D(I)×
∏

i∈ids(J)\
ids(I)

τ [i](J [i])×
∏

i∈ids(D)\
ids(J)

τ [i](⊥)

That is, R◦I (I, J) is the probability of I (i.e., D(I)), multiplied by the probability that
each new tuple of J is produced by τ (i.e., τ [i](J [i])), multiplied by the probability that each
tuple identifier i missing in J is indeed not produced (i.e., τ [i](⊥)).

In a parfactor/update PUD U = (D, κ, J?), the probability R◦I (I, J) is then defined as
follows. If I is not an update of J , then R◦I (I, J) = 0; otherwise:

R◦I (I, J) def= D(I)×
∏

i∈ids(I)

κ[i, I[i]](J [i])

That is, R◦I (I, J) is the probability of I (i.e., D(I)), multiplied by the probability that κ
changes each tuple I[i] to J [i] (i.e., κ[i, I[i]](J [i])).

I Example 3. Figure 2 shows the intended database from Example 2 and two unclean
versions obtained by a subset realizer and an update realizer. The subset realizer introduces
a duplicate, while the update realizer introduces two typos. These correspond to two types of
common errors in relational data. Our PUD framework can naturally model such cases. J

In Section 5, we discuss connections between these PUD instantiations and the determin-
istic models. Finally, in Section 6, we provide more concrete cases of PUD instantiations.

4 Computational Problems

We define three computational problems over PUDs that are motivated by the need to clean
and query unclean data, and learn the intention and realization models from observed data.

Data Cleaning Given a PUD (I,R, J?), we wish to compute a Most Likely Intention (MLI)
database I, given the observed unclean database J?. We refer to this problem as data
cleaning in PUDs.

C. De Sa, I.F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 3:9

I Definition 4 (Cleaning). Let S be a schema and R a representation system for PUDs. The
problem (S,R)-cleaning is that of computing an MLI of a given PUD U = (I,R, J?), that
is, computing a database I such that the probability U?(I) is maximal (or, equivalently, the
probability R◦I (I, J?) is maximal).

Probabilistic query answering A PUD defines a probabilistic database—a probability
space over the intensions I. The problem of Probabilistic Query Answering (PQA) is that
of evaluating a query over this probabilistic database. We adopt the standard semantics
of query evaluation over probabilistic databases [13,40], where the confidence in an answer
tuple is its marginal probability.

I Definition 5 (PQA). Let S be a schema, Q a query over S, and R a representation system
for PUDs. The problem (S, Q,R)-PQA is the following. Given a PUD U and a tuple a,
compute the confidence of a, that is, the probability PrI∼U?(a ∈ Q(I)).

For now, we assume that both I and R are fully specified. We next define the problem
of learning models I and R using training (potentially labeled) data.

PUD learning For a PUD (I,R, J?), the models I and R are typically represented using
numeric parameters. For example, the parameters of a parfactor/subset PUD (D, τ, J?) are
those needed to represent D (e.g., the weights of the constraints), and the parameters that
define the distributions over the tuples in both D and τ . By a parametric intention we refer
to an intension model IΞ with a vector Ξ of uninitialized parameters, and by IΞ/c we denote
the actual intention model where Ξ is assigned the values in the vector c. Similarly, by a
parametric realization we refer to a realization model RΘ with a vector Θ of uninitialized
parameters, and by RΘ/d we denote the actual realization model where Θ is set to d.

Following the concept of maximum likelihood estimation, the goal in learning is to find
the parameters that best explain (i.e., maximize the probability) of the training examples.
In the supervised variant, we are given examples of both unclean databases and their clean
versions; in the unsupervised variant, we are given only unclean databases.

I Definition 6 (Learning). Let S be a schema, and R a representation system for parametric
intensions and realizations. In the following problems we are given, as part of the input, the
parametric intention and realization models IΞ and RΘ, respectively.

In the supervised (S,R)-learning problem, we are also given a collection (Ij , Jj)nj=1 of
database pairs (intention-realization examples), and the goal is to find parameter values c
and d that maximize

∏n
j=1R◦I (Ij , Jj) for I = IΞ/c and R = RΘ/d.

In the unsupervised (S,R)-learning problem, we are also given a collection (Jj)nj=1 of
databases (realization examples), and the goal is to find parameter values c and d that
maximize

∏n
j=1R◦I (Jj) for I = IΞ/c and R = RΘ/d, where R◦I (Jj) is the marginal

probability of Jj, that is,
∑
I R◦I (I, Jj).

Note that the summation in the unsupervised variant is over the sample space of the
intention model I. While the reader might be concerned about the source of many examples
(Ij , Jj) and Jj in the phrasing of the learning problems, it is oftentimes the case that a single
large example (I, J) (or just J in the unsupervised variant) can be decomposed into many
smaller examples. This depends on the independence assumptions in the parametric models
IΞ and RΘ as we discuss in Section 6.1. In the next sections, we give preliminary results on
the introduced problems, focusing on parfactor/subset and parfactor/update PUDs.

ICDT 2019

3:10 A Formal Framework for Probabilistic Unclean Databases

5 Cleaning and Querying Unclean Data

In this section, we draw connections between data cleaning in the PUD framework (MLIs)
and traditional minimum repairs. We also give preliminary results on the complexity of
cleaning. Finally, we draw a connection between probabilistic query answering and certain
answers.

5.1 Generalizing Minimum Repairs
We now show that the concept of an MLI in parfactor/subset PUDs generalizes the concept of
a minimum subset repair, and the concept of an MLI in parfactor/update PUDs generalizes
the concept of an optimal update repair. Minimum subset repairs correspond to MLIs of
PUDs with hard (or heavy) constraints. Minimum update repairs correspond to MLIs over
PUDs that assume both hard (or heavy) constraints and assumptions of independence among
the attributes. From the viewpoint of computational complexity, this means that finding
an exact MLI is not easier than finding a minimum repair, which is often computationally
hard [30]. Therefore, we should aim for approximation guarantees (which have clear semantics
in the probabilistic setting) if we wish to avoid restricting the generality of the input.

Subset repairs and parfactor/subset PUDs Recall that in parfactor/subset PUDs (as
defined in Section 3.1), every intention I with a nonzero probability is a subset of the
observed unclean database J?. In particular, every MLI is subset of J?. Our first result
relates cleaning in parfactor/subset PUDs to the traditional minimum subset (or cardinality)
repairs. This result states, intuitively, that the notion of an MLI in a parfactor/subset PUD
coincides with the notion of a minimum subset repair if the weight of the formulas is high
enough and the probability of introducing error is small enough.

I Theorem 7. Let (D, τ, J?) be a parfactor/subset PUD with D = (K,Φ, w). For i ∈ ids(J?),
assume that K[i](⊥) > 0 and τ [i](J?[i]) > 0, let q(i) = K[i](J?[i])/(K[i](⊥) · τ [i](J?[i])), and
assume that q(i) ≥ 1. There is a number M such that if w(ϕ) > M for all ϕ ∈ Φ then the
following are equivalent for all I ⊆ J?:
1. I is an MLI.
2. I is a minimum subset repair of J? w.r.t. the weight function w(i) = log(q(i)).

Note that in the theorem, q(i) is the ratio between K[i](J?[i]), namely the probability that
K produces the ith tuple of J?, and K[i](⊥) · τ [i](J?[i]), namely the probability that K does
not generate the ith tuple of J? but τ does.

Next, we draw a similar connection between minimum update repairs and MLIs of
parfactor/update PUDs.

Update repairs and parfactor/update PUDs We now turn our attention to update repairs.
Recall that in a parfactor/update PUD (defined in Section 3.1), the intended clean database
I is assumed to be an update of the observed unclean database J?. We establish a result
analogous to Theorem 7, stating conditions under which MLIs for parfactor/update PUDs
coincide with traditional minimum update repairs.

Let S be a schema, and let U = (D, κ, J?) be a parfactor/update PUD with D = (K,Φ, w).
We say that U is attribute independent if K and κ feature probabilistic independence among
the attributes. More precisely, if i ∈ RD for R ∈ S with sig(R) = (A1, . . . , Ak), then we
assume that K[i](a1, . . . , ak) can be written as K[i](a1, . . . , ak) =

∏k
j=1KAj [i](aj) and, for t =

C. De Sa, I.F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 3:11

(b1, . . . , bk), that κ[i, t](a1, . . . , ak) can be written as κ[i, t](a1, . . . , ak) =
∏k
j=1 κAj [i, bj](aj).

In particular, the choice of the value aj depends only on bj and not on other values bj′ .
The following theorem states that the concept of an MLI of a parfactor/update PUD

coincides with the concept of a minimum update repair when the PUD is attribute independent
and, moreover, the weight of the integrity constraints is high.

I Theorem 8. Let U = (D, τ, J?) be an attribute-independent parfactor/update PUD with
D = (K,Φ, w) such that U?(I) > 0 for at least one consistent update I of J?. There is a
number M such that if w(ϕ) > M for all ϕ ∈ Φ, then the following statements are equivalent
for all I ⊆ J?:
1. I is an MLI.
2. I is a minimum update repair w.r.t. the weight function

w(i.A, a) = − log(KA[i](a) · κA[i, a](J?[i].A)) .

Note that KA[i](a) · κA[i, a](J?[i].A) is the probability that a is produced by K for the cell
i.A, and that a is then changed to J?[i].A via κ. Also note that in the case where this
product is zero, we slightly abuse the notation by assuming that the weight is infinity.

5.2 Complexity of Cleaning with Key Constraints
We now present a complexity result on computing an MLI of a parfactor/subset PUD in
the presence of key constraints. The following theorem states that in the case of a single
key constraint per relation (which is the common setup, e.g., for the analysis of certain
query answering [3, 24,26]), an MLI can be found in polynomial time. Note that we do not
make any assumption about the parameters; in particular, it may be the case that an MLI
violates the key constraints since the constraints are weak. Regarding the representation of
the probability spaces K and τ , the only assumption we make is that, given a tuple t, the
probabilities K[i](t) and τ [i](t) can be computed in polynomial time.

I Theorem 9. Let (D, τ, J?) be a parfactor/subset PUD with D = (K,Φ, w). If Φ consists
of (at most) one key constraint per relation, and no relation of J? has duplicate tuples, then
an MLI can be computed in polynomial time.

It is left for future investigation to seek additional constraints (e.g., functional depen-
dencies) for which an MLI can be found in polynomial time. Note that Theorem 7 implies
that (under conventional complexity assumptions) we cannot generalize the polynomial-time
result to all sets of functional dependencies, since finding a minimum subset repair might be
computationally hard [30,32].

5.3 Probabilistic Query Answering
For probabilisitic query answering, we again focus on the parametric/subset PUDs, and now
we draw a connection to consistent query answering over the cardinality repairs. Recall that
a consistent answer for a query Q over an inconsistent database J is a tuple t that belongs
to Q(I) for every cardinality repair I of J .

Let S be a schema, J? a database, and Φ a set of integrity constraints. Let M = |ids(J?)|.
The uniform parfactor/subset PUD for J? and Φ with the parameters p and u, denoted
Up,u(J?,Φ) or just Up,u if J? and Φ are clear from the context, is the parfactor/subset PUD
(D, τ, J?) with D = (K,Φ, w) such that the following hold.

ICDT 2019

3:12 A Formal Framework for Probabilistic Unclean Databases

For all R ∈ S we have ids(RK) = ids(RJ?) and K[i](x) = 1/M for every tuple identifier i
and argument x in RK ∪ {⊥}. The remaining mass (required to reaching 1) is given to
an arbitrary tuple outside of J?.
w(ϕ) = u for every ϕ ∈ Φ.
τ [i](⊥) = p, and τ [i](t) = (1− p)/M for every identifier i and tuple t in RK. Again, the
remaining mass is given to an arbitrary tuple outside of J?.

Observe that D is defined in such a way that every subset I of J? has the same prior
probability K(I), namely 1/M |J?|.

The following theorem states that, for Up,u, the consistent answers are precisely the
answers whose probability approaches one when all of the following hold: (1) the probability
of introducing error (i.e., 1− p) approaches zero; and (2) the weight of the weak constraints
(i.e., u) approaches infinity, that is, the constraints strengthen towards hardness.

I Theorem 10. Let J? be a database, Φ a set of integrity constraints, Q a query, and t a
tuple. The following are equivalent:
1. t is a consistent answer over the cardinality repairs.
2. limp−→1 limw−→∞ PrI∼U?p,u(t ∈ Q(I)) = 1.

Therefore, Theorem 10 sheds light on the role that the consistent answers have in probabilisitic
query answering over parfactor/subset PUDs.

6 Learning Probabilistic Unclean Databases

We now give preliminary results on PUD learning, focusing on parfactor/update PUDs. We
begin by describing the setup we consider in this section and the representation system R
we use to describe the parametric intention and realization models IΞ and RΘ.

6.1 Setup
To discuss the learning of parameters, we need to specify the actual parametric model we
assume. Let S be a schema, and let U = (D, κ, J?) be a parfactor/update PUD with D =
(K,Φ, w). Since we restrict the discussion to parfactor/update PUDs, we assume (without
loss of generality) that the identifiers in D are exactly those in J?, that is, ids(D) = ids(J?).

In our setup, K of D and κ of U are expressed in a parametric form that allows us to
define the parametric intention and realization models IΞ and RΘ as Gibbs distributions.
We refer to these as Gibbs parfactor/update PUD models, and define them as follows.

Parametric intention To specify K, we assume that for each relation symbol R ∈ S, the
probability K[i](t), with i ∈ ids(RD), is expressed in the form of an exponential distribution
K[i](t) = exp

(∑
f∈F wff(t)

)
where each f ∈ F is an arbitrary function (feature) over t,

and each weight wf is a real number.
For example, a feature f ∈ F may be a function that takes as input a tuple and returns

a value in {−1, 1}. An example feature f can state that f(t) = 1 if t[gender] = female and,
otherwise, f(t) = −1. Another example is f [t] = 1 if t[zip] starts with 53 and t[state] = WI,
and otherwise f [t] = −1. Additional examples of such features include the ones used in our
prior work on HoloClean [34] to capture the co-occurrence probability of attribute value
pairs. Each weight wf corresponds to a parameter of the model. An assignment to these
weights gives as a probability distribution, similarly to probabilistic graphical models [25].

The parameter vector Ξ of the parametric intention model IΞ consists of two sets of
parameters: the weights wf for each feature f ∈ F , and the weights w(ϕ), which we write as

C. De Sa, I.F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 3:13

wϕ for uniformity of presentation, for each constraint ϕ ∈ Φ. Thus, the overall parametric
intention model IΞ is expressed as a parametric Gibbs distribution.

We will take a special interest in the case where the integrity constraints are unary, which
means that they have the form ∀x[γ(x)], where γ is quantifier free; hence, a unary constraint
is a statement about a single tuple. Examples of unary constraints are restricted cases of
conditional functional dependencies [7, 16]. An example of such a constraint can be “age
smaller than 10 cannot co-occur with a salary greater than $100k.”

Parametric realization We consider a parametric realization model that is similar to the
parametric intention model presented above, which is again a parametric Gibbs distribution.
For each relation symbol R ∈ S and every pair (t, t′) ∈ tuples(R)× tuples(R), the probability
κ[i, t](t′), with i ∈ ids(D), is expressed in the form of the Gibbs distribution κ[i, t](t′) =

1
Zκ(t) exp

(∑
g∈G wgg(t, t′)

)
, where G is the set of features, and each g is an arbitrary function

(feature) over (t, t′), each weight wg is a real number, and Zκ(t) is a normalization constant
defined as Zκ(t) =

∑
t′∈tuples(R) exp

(∑
g∈G wgg(t, t′)

)
. Hence, we get a parametric model

for the probability distribution κ.
As an example, a feature function g(t, t′) may capture spelling errors: g(t, t′) = 1 if t′[city]

can be obtained by deleting one character from t[city], and otherwise, g(t, t′) = −1. The
parameter vector Θ of the parametric realization model RΘ consists of the set of weights wg
for each feature g ∈ G.

Assumptions We make two assumption here. First, we assume that the attributes of all
relation symbols in S take values over a finite and given set. This means that for each relation
symbol R ∈ S, tuples(R) is also finite and given as input. Second, all features describing K
and κ can be computed efficiently, that is, in polynomial time in the size of the input.

Obtaining examples for learning For supervised learning, we require a training collection
(Ij , Jj)nj=1 and for unsupervised learning, a training collection (Jj)nj=1. We would like to
make the case that, oftentimes, a single large example can be broken down into many small
examples. Recall that in our setup (Gibbs parfactor/update PUDs), cross-tuple correlations
can be introduced only by the integrity constraints in Φ. Consider, for instance, the case
where all constraints in Φ are unary. Then, we get tuple-independent parfactor/update PUDs,
and each tuple identifier i can become an example database: (I[i], J [i]) in the supervised case,
and J [i] in the unsupervised case. For general constraints, cross-tuple correlations exist, and
each example (Ij , Jj) and (Jj) can be obtained by taking correlated groups of tuples from J?

by considering different values for the attributes participating in each constraint ϕ ∈ Φ. The
number of tuples contained in each example depends on the constraints. This is a standard
practice with parameterized probabilistic models as the ones we consider here [31].

6.2 Supervised Learning
We begin by considering supervised (S,R)-learning. All results presented in this section
build upon standard tools from statistical learning. We are given a collection (Ij , Jj)nj=1 of
intention-realization examples, and the goal is to find parameter values c and d that maximize
the likelihood of pairs (Ij , Jj)nj=1, that is,

∏n
j=1R◦I (Ij , Jj) for I = IΞ/c and R = RΘ/d.

To facilitate the analysis, we write this objective function as a sum over terms by consid-
ering the negative log-likelihood l(Ξ = c,Θ = d; (Ij , Jj)nj=1) = − log

∏n
j=1R◦I (Ij , Jj) =

ICDT 2019

3:14 A Formal Framework for Probabilistic Unclean Databases

−
∑n
j=1 logR◦I (Ij , Jj), and seek parameter values c and d that minimize it. For parfac-

tor/update PUDs we have that R◦I (I, J) = D(I)×
∏
i∈ids(I) κ[i, I[i]](J [i]) where D(I) =

K(I) × 1/Z × exp(−
∑
ϕ∈Φ w(ϕ) × |V (ϕ, I)|). For the Gibbs parfactor/update PUD, c

corresponds to an assignment of parameters wf describing K and parameters wϕ = w(ϕ) for
the constraints ϕ ∈ Φ. Similarly, d corresponds to an assignment of parameters wg describing
κ. We use Z(c) to denote the partition function Z under the parameters c. We have:

l(c,d; (Ij , Jj)nj=1) =−
n∑
j=1

log

K(Ij ; c) × exp

−∑
ϕ∈Φ

wϕ × |V (ϕ, Ij)|

+ n logZ(c)

−
n∑
j=1

∑
i∈ids(Ij)

log (κ[i, I[i]; d](Jj [i])) (1)

where K(Ij ; c) denotes that K is parametrized by c and κ[i, I[i]; d] denotes that κ is
parametrized by d.

Our goal becomes to minimize the expression in (1). It is well-known from the ML
literature that there is no analytical solution to such minimization problems, and one needs
to use iterative gradient-based methods [25]. We investigate whether gradient-based methods
can indeed find a global minimum, and whether computing the gradient of this objective
during each iteration is tractable. For the first question, the answer is positive.

I Proposition 11. l(Ξ = c,Θ = d; (Ij , Jj)nj=1) is a convex function of (Ξ,Θ).

This proposition implies that the optimization objective for supervised learning has only global
optima. Hence, it is guaranteed that any gradient-based optimization method will converge
to a global optimum. Next, we study when the gradient of l(Ξ = c,Θ = d; (Ij , Jj)nj=1) with
respect to c and d can be computed efficiently.

To compute the gradient of l(Ξ = c,Θ = d; (Ij , Jj)nj=1), one has to compute ∂
∂cl

logZ(c).
To compute this derivative a full inference step is required [25]. This is because computing
this gradient amounts to computing the expected value for each feature (corresponding to
each parameter cl) according to the distribution defined by c [25, Proposition 20.2]. However,
marginal inference is often #P-hard [18]. In our setup, the constraints in Φ correspond to
features, and it is not clear whether the gradient can be efficiently computable. In general,
one can still estimate the aforementioned gradient by using approximate inference methods
such as Markov Chain Monte Carlo (MCMC) methods [9,39] or belief propagation [41]. While
effective in practice, these methods do not come with guarantees on the quality of the obtained
solution. Next, we focus on an instance of PUD learning where exact inference is tractable
(linear on tuples(R)), hence, we can compute the exact gradients of the aforementioned
optimization objective efficiently.

Tuple independence We focus on Gibbs parfactor/update PUD models where all constraints
in Φ are unary. Here, (Ij , Jj)nj=1 corresponds to a collection of n examples, each of which
having one tuple identifier. We use Ij [0] and Jj [0] to denote the tuples in the example
(Ij , Jj). In the extended version of our paper [36], we show that the negative log-likelihood
l(Ξ = c,Θ = d; (Ij , Jj)nj=1) factorizes as l(c,d; (Ij , Jj)nj=1) =

∑n
j=1 l

′(c,d; Ij [0], Jj [0]), where
each l′(c,d; Ij [0], Jj [0]) is a convex function of Ξ and Θ (see the extended version of our
paper [36]). Moreover, we show that the gradient of each l′(c,d; Ij [0], Jj [0]) can be evaluated
in time linear to tuples(R) where R is the relation corresponding to the tuple identifier
associated with example (Ij , Jj) (see the extended version of our paper [36]). Hence, we get
the following.

C. De Sa, I.F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 3:15

I Theorem 12. Given a training collection (Ij , Jj)nj=1 and a Gibbs parfactor/update PUD
model with unary constraints, the exact gradient of l(Ξ = c,Θ = d; (Ij , Jj)nj=1) can be
evaluated in O(n ·maxR∈S |tuples(R)|) time.

The above theorem implies that convex-optimization techniques such as stochastic gradient
descent [8] can be used to scale to large PUD learning instances (i.e., for large n).

A question that arises is about the number of examples (i.e., n) required to learn a PUD
model. To answer this question, we study the convergence of supervised (S,R)-learning
for Gibbs parfactor/update PUD models with unary constraints. For that, we view the
collection (Ij , Jj)nj=1 as independent and identically distributed (i.i.d.) examples, drawn
from a distribution that corresponds to a Gibbs parfactor/update PUD model with unary
constraints and true parameters c? and d?. By the law of large numbers, the Maximum
Likelihood Estimates (MLE) c and d are guaranteed to converge to c? and d? in probability.
This means that for arbitrarily small ε > 0 we have that P (|c − c?| > ε) → 0 as n → ∞.
The same holds for d. Moreover, we show that the MLE c and d satisfy the property of
asymptotic normality [27]. Intuitively, asymptotic normality states that the estimator not
only converges to the unknown parameter, but it converges fast enough at a rate of 1/

√
n.

This implies that to achieve the error ε for c and d, one only needs n = O(ε−2) training
examples.

I Theorem 13. Consider a training collection (Ij , Jj)nj=1 drawn i.i.d. from a Gibbs parfac-
tor/update PUD model with unary constraints and true parameters c? and d?. The maximum
likelihood estimates c and d satisfy asymptotic normality, that is,
√
n (c− c?)→ N

(
0,Σ2

c?
)
as n→∞ and

√
n (d− d?)→ N

(
0,Σ2

d?
)
as n→∞

where Σ2
c? and Σ2

d? are the asymptotic variance of the estimates c and d.

Note that both the multivariate Gaussian distribution N (µ,Σ2) and the asymptotic variance
are defined in classic statistics literature [27].

6.3 Unsupervised Learning
We now present preliminary results for unsupervised (S,R)-learning. We are given a
training collection (Jj)nj=1 and seek to find c and d that minimize the negative log-likelihood
l(Ξ = c,Θ = d; (Jj)nj=1) = −

∑n
j=1 log

∑
I R◦I (I, Jj). Again, there is no analytical solution

for finding optimal c and d. Hence, one needs to use iterative gradient-based approaches,
and again the questions of convexity and gradient computation arise. In the general case,
this function is not necessarily convex. Hence, gradient-based methods are not guaranteed to
converge to a global optimum. However, one can still solve the corresponding optimization
problem using non-convex optimization methods [6]. Nevertheless, we show next that when
realizers do not introduce too much error, we can establish guarantees.

Low-noise condition Consider a Gibbs parfactor/update PUD model. We say that a PUD
defined by IΞ/c and RΘ/d satisfies the low-noise condition with probability p if the realizer
introduces an error with probability at most p. That is, for all intensions I and identifiers
i ∈ ids(I), it is the case that Pr(J [i] = I[i] | I) ≥ 1− p. We have the following.

I Theorem 14. Consider a Gibbs parfactor/update PUD model where Ξ takes values from
a compact convex set. Given a training collection (Jj)nj=1, there exists a fixed probability
p > 0 such that, under the low-noise condition with probability p, the negative log-likelihood
l(Ξ = c,Θ = d; (Jj)nj=1) is a convex function of Ξ.

ICDT 2019

3:16 A Formal Framework for Probabilistic Unclean Databases

Hence, in certain cases, it is possible to find a global optimum of the overall negative
log-likelihood. For that, the low-noise condition should hold with probability p that is also
bounded, that is, it cannot be arbitrarily large. We can show that, if the low-noise condition
holds with probability p, it is indeed bounded for Gibbs parfactor/update PUDs with unary
constraints (see the extended version of our paper [36]). We then find a global optimum
as follows. We assume a simple parametric realization RΘ, that is, a model for which we
can efficiently perform grid search over the space of parameter values d. To find the global
optimum for the negative log-likelihood, we solve a series of convex optimization problems
over Ξ for different fixed Θ = d. For each of these problems, we are guaranteed to find a
corresponding global optimum c, and by performing a grid search we are guaranteed to find
the overall global optima c and d. This approach has been shown to converge for similar
simple non-convex problems [33,37].

Finally, similarly to supervised learning, the negative log-likelihood for fixed Θ = d
decomposes into a sum of convex losses over (Jj)ni=1 where each example Jj contains a
single tuple. We use Jj [0] to denote that tuple. We have that l(Ξ = c,Θ = d, (Jj)nj=1) =∑n
j=1 l

′(c,d; Jj [0]) where d is fixed. We show that the gradient of each l′(c,d; J [0]) can be
evaluated in polynomial time to tuples(R) where R is the relation corresponding to the tuple
identifier associated with the example (Jj).

It is left for future work to find sufficient conditions for p to be bounded for PUD models
with more general constraints, as well as the complexity and convergence aspects.

7 Concluding Remarks

Taking inspiration from our experience with the HoloClean system [34], we introduced the
concept of Probabilistic Unclean Databases (PUDs), a framework for unclean data that
follows a noisy channel approach to model how errors are introduced in data. We defined
three fundamental problems in the framework: cleaning, probabilistic query answering, and
PUD learning (parameter estimation). We introduced PUD instantiations that generalize the
deterministic concepts of subset repairs and update repairs, presented preliminary complexity,
convergence, and learnability results.

This paper opens up many research directions for future exploration. One is to investigate
the complexity of cleaning in more general configurations than the ones covered here.
Moreover, in cases where probabilistic cleaning is computationally hard, it is of natural
interest to find approximate repairs that have a probability (provably) close to the maximum.
Another direction is the complexity of probabilistic query answering and approximation
thereof, starting with the most basic constraints (e.g., primary keys) and queries (e.g.,
determine the marginal probability of a fact). Finally, an important direction is to devise
learning algorithms for cases beyond the ones we discussed here. In particular, it is of high
importance to understand when we can learn parameters without training data, based only
on the given dirty database, under more general noisy realization models than the ones
discussed in this paper.

C. De Sa, I.F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 3:17

References
1 Serge Abiteboul, Marcelo Arenas, Pablo Barceló, Meghyn Bienvenu, Diego Calvanese, Claire

David, Richard Hull, Eyke Hüllermeier, Benny Kimelfeld, Leonid Libkin, Wim Martens, Tova
Milo, Filip Murlak, Frank Neven, Magdalena Ortiz, Thomas Schwentick, Julia Stoyanovich,
Jianwen Su, Dan Suciu, Victor Vianu, and Ke Yi. Research directions for principles of data
management (abridged). SIGMOD Record, 45(4):5–17, 2016.

2 Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases: algorithms
and complexity. In ICDT, pages 31–41. ACM, 2009.

3 Periklis Andritsos, Ariel Fuxman, and Renée J. Miller. Clean answers over dirty databases: A
probabilistic approach. In ICDE, page 30. IEEE Computer Society, 2006.

4 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in
inconsistent databases. In PODS, pages 68–79. ACM, 1999.

5 Gükhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben Taskar,
and S. V. N. Vishwanathan. Predicting Structured Data (Neural Information Processing). The
MIT Press, 2007.

6 Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.
7 Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis.

Conditional functional dependencies for data cleaning. In ICDE, pages 746–755. IEEE, 2007.
8 Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

2004.
9 N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear mixed models.

Journal of the American Statistical Association, 88(421):9–25, 1993.
10 Marco Calautti, Leonid Libkin, and Andreas Pieris. An operational approach to consistent

query answering. In PODS, pages 239–251. ACM, 2018.
11 Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tuple

deletions. Information and Computation, 197(1):90–121, 2005.
12 Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Holistic data cleaning: Putting violations into

context. In ICDE, pages 458–469, 2013.
13 Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In

VLDB, pages 864–875. Morgan Kaufmann, 2004.
14 C. J. Date. Referential integrity. In VLDB, pages 2–12. VLDB Endowment, 1981.
15 Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. Dichotomies in the complexity of

preferred repairs. In PODS, pages 3–15, New York, NY, USA, 2015. ACM.
16 Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional functional

dependencies for capturing data inconsistencies. ACM Trans. Database Syst., 33(2):6:1–6:48,
June 2008.

17 Terry Gaasterland, Parke Godfrey, and Jack Minker. An overview of cooperative answering.
J. Intell. Inf. Syst., 1(2):123–157, 1992.

18 Amir Globerson, Tim Roughgarden, David Sontag, and Cafer Yildirim. How hard is inference
for structured prediction? In ICML, pages 2181–2190. JMLR.org, 2015.

19 Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. The most probable database problem. In
BUDA, 2014.

20 Ihab F. Ilyas. Effective data cleaning with continuous evaluation. IEEE Data Eng. Bull.,
39:38–46, 2016.

21 Abhay Kumar Jha, Vibhor Rastogi, and Dan Suciu. Query evaluation with soft-key constraints.
In PODS, pages 119–128, 2008.

22 Daniel Jurafsky and James H. Martin. Speech and Language Processing (2Nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009.

23 Solmaz Kolahi and Laks V. S. Lakshmanan. On approximating optimum repairs for functional
dependency violations. In ICDT, volume 361, pages 53–62. ACM, 2009.

24 Phokion G. Kolaitis and Enela Pema. A dichotomy in the complexity of consistent query
answering for queries with two atoms. Inf. Process. Lett., 112(3):77–85, 2012.

ICDT 2019

3:18 A Formal Framework for Probabilistic Unclean Databases

25 Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques -
Adaptive Computation and Machine Learning. The MIT Press, 2009.

26 Paraschos Koutris and Jef Wijsen. Consistent query answering for self-join-free conjunctive
queries under primary key constraints. ACM Trans. Database Syst., 42(2):9:1–9:45, 2017.

27 Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.
28 Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246,

New York, NY, USA, 2002. ACM.
29 Leonid Libkin. Incomplete data: What went wrong, and how to fix it. In PODS, pages 1–13,

New York, NY, USA, 2014. ACM.
30 Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing optimal repairs for functional

dependencies. In PODS, pages 225–237. ACM, 2018.
31 Ben London, Bert Huang, Ben Taskar, and Lise Getoor. Collective stability in structured

prediction: Generalization from one example. In Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pages 828–836, 17–19 Jun 2013.

32 Andrei Lopatenko and Leopoldo E. Bertossi. Complexity of consistent query answering in
databases under cardinality-based and incremental repair semantics. In ICDT, pages 179–193,
2007.

33 Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit regularization in nonconvex
statistical estimation: Gradient descent converges linearly for phase retrieval, matrix completion
and blind deconvolution. arXiv preprint arXiv:1711.10467, 2017.

34 Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean: Holistic data
repairs with probabilistic inference. PVLDB, 10(11), 2017.

35 Matthew Richardson and Pedro Domingos. Markov logic networks. Mach. Learn., 62(1-2):107–
136, February 2006.

36 Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and Theodoros Rekatsinas.
A formal framework for probabilistic unclean databases. CoRR, abs/1801.06750, 2018. arXiv:
1801.06750.

37 Christopher De Sa, Christopher Ré, and Kunle Olukotun. Global convergence of stochastic
gradient descent for some non-convex matrix problems. In ICML, volume 37 of JMLR
Proceedings, pages 2332–2341. JMLR.org, 2015.

38 Prithviraj Sen, Amol Deshpande, and Lise Getoor. Prdb: managing and exploiting rich
correlations in probabilistic databases. VLDB J., 18(5):1065–1090, 2009.

39 Sameer Singh, Michael Wick, and Andrew McCallum. Monte carlo MCMC: Efficient inference
by approximate sampling. In MNLP-CoNLL, pages 1104–1113. Association for Computational
Linguistics, 2012.

40 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases.
Morgan & Claypool Publishers, 1st edition, 2011.

41 Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. Tree-reweighted belief
propagation algorithms and approximate ML estimation via pseudo-moment matching. In
AISTATS, January 2003.

42 Jiannan Wang and Nan Tang. Towards dependable data repairing with fixing rules. In
SIGMOD, pages 457–468. ACM, 2014.

43 Mohamed Yakout, Ahmed K Elmagarmid, Jennifer Neville, Mourad Ouzzani, and Ihab F Ilyas.
Guided data repair. PVLDB, 4(5):279–289, 2011.

http://arxiv.org/abs/1801.06750
http://arxiv.org/abs/1801.06750

	Introduction
	Preliminaries
	Probabilistic Unclean Databases
	Example Instantiations of PUDs

	Computational Problems
	Cleaning and Querying Unclean Data
	Generalizing Minimum Repairs
	Complexity of Cleaning with Key Constraints
	Probabilistic Query Answering

	Learning Probabilistic Unclean Databases
	Setup
	Supervised Learning
	Unsupervised Learning

	Concluding Remarks

