
KATARA: A Data Cleaning System Powered by Knowledge
Bases and Crowdsourcing

Xu Chu1∗ John Morcos1∗ Ihab F. Ilyas1∗

Mourad Ouzzani2 Paolo Papotti2 Nan Tang2 Yin Ye2

1University of Waterloo 2Qatar Computing Research Institute
{x4chu,jmorcos,ilyas}@uwaterloo.ca {mouzzani,ppapotti,ntang,yye}@qf.org.qa

ABSTRACT
Classical approaches to clean data have relied on using in-
tegrity constraints, statistics, or machine learning. These
approaches are known to be limited in the cleaning accu-
racy, which can usually be improved by consulting master
data and involving experts to resolve ambiguity. The advent
of knowledge bases (kbs), both general-purpose and within
enterprises, and crowdsourcing marketplaces are providing
yet more opportunities to achieve higher accuracy at a larger
scale. We propose Katara, a knowledge base and crowd
powered data cleaning system that, given a table, a kb, and
a crowd, interprets table semantics to align it with the kb,
identifies correct and incorrect data, and generates top-k
possible repairs for incorrect data. Experiments show that
Katara can be applied to various datasets and kbs, and
can efficiently annotate data and suggest possible repairs.

1. INTRODUCTION
A plethora of data cleaning approaches that are based on

integrity constraints [2,7,9,20,36], statistics [30], or machine
learning [43], have been proposed in the past. Unfortunately,
despite their applicability and generality, they are best-effort
approaches that cannot ensure the accuracy of the repaired
data. Due to their very nature, these methods do not have
enough evidence to precisely identify and update errors. For
example, consider the table of soccer players in Fig. 1 and a
functional dependency B → C, which states that B (coun-
try) uniquely determines C (capital). This would identify a
problem for the four values in tuple t1 and t3 over the at-
tributes B and C. A repair algorithm would have to guess
which value to change so as to “clean” the data.

To increase the accuracy of such methods, a natural ap-
proach is to use external information in tabular master
data [19] and domain experts [19,35,40,44]. However, these
resources may be scarce and are usually expensive to em-
ploy. Fortunately, we are witnessing an increased availabil-
ity of both general purpose knowledge bases (kbs) such as

∗Work partially done while interning/working at QCRI.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2749431.

Al B C D E F G
bt1 Rossi Italy Rome Verona Italian Proto 1.78
bt2 Klate S. Africa Pretoria Pirates Afrikaans P. Eliz. 1.69
bt3 Pirlo Italy Madrid Juve Italian Flero 1.77

Figure 1: A table T for soccer players

Yago [21], DBpedia [31], and Freebase, as well as special-
purpose kbs such as RxNorm1. There is also a sustained
effort in the industry to build kbs [14]. These kbs are usu-
ally well curated and cover a large portion of the data at
hand. In addition, while access to an expert may be limited
and expensive, crowdsourcing has been proven to be a viable
and cost-effective alternative solution.

Challenges. Effectively exploring kbs and crowd in data
cleaning raises several new challenges.

(i) Matching (dirty) tables to kbs is a hard problem. Tables
may lack reliable, comprehensible labels, thus requiring the
matching to be executed on the data values. This may lead
to ambiguity; more than one mapping may be possible. For
example, Rome could be either city, capital, or club in the
kb. Moreover, tables usually contain errors. This would
trigger problems such as erroneous matching, which will add
uncertainty to or even mislead the matching process.

(ii) kbs are usually incomplete in terms of the coverage of
values in the table, making it hard to find correct table pat-
terns and associate kb values. Since we consider data that
could be dirty, it is often unclear, in the case of failing to
find a match, whether the database values are erroneous or
the kb does not cover these values.

(iii) Human involvement is needed to validate matchings and
to verify data when the kbs do not have enough coverage.
Effectively involving the crowd requires dealing with tradi-
tional crowdsourcing issues such as forming easy-to-answer
questions for the new data cleaning tasks and optimizing the
order of issuing questions to reduce monetary cost.

Despite several approaches for understanding tables with
kbs [13,28,39], to the best of our knowledge, they do not ex-
plicitly assume the presence of dirty data. Moreover, previ-
ous work exploiting reference information for repair has only
considered full matches between the tables and the master
data [19]. On the contrary, with kbs, partial matches are
common due to the incompleteness of the reference.

To this end, we present Katara, the first data cleaning
system that leverages prevalent trustworthy kbs and crowd-
sourcing for data cleaning. Given a dirty table and a kb,

1
https://www.nlm.nih.gov/research/umls/rxnorm/

A (person)

B (country) C (Capital)

D (football
club)

E (language)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (city)

hasClub

(a) A table pattern ϕs

A (Rossi)

B (Italy) C (Rome)

D (Verona)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Proto)

hasClub

(b) t1: kb validated

A (Klate)

B (S. Africa) C (Pretoria)

D (Pirates)

E (Afrikaans)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (P. Eliz.)

hasClub

(c) t2: kb & crowd validated

A (Pirlo)

B (Italy) C (Madrid)

D (Juve)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Flero)

hasClub

(d) t3: erroneous tuple

Figure 2: Sample solution overview

Katara first discovers table patterns to map the table to
the kb. For instance, consider the table of soccer players in
Fig. 1 and the kb Yago. Our table patterns state that the
types for columns A, B, and C in the kb are person, country,
and capital, respectively, and that two relationships between
these columns hold, i.e., A is related to B via nationality
and B is related to C via hasCapital. With table patterns,
Katara annotates tuples as either correct or incorrect by
interleaving kbs and crowdsourcing. For incorrect tuples,
Katara will extract top-k mappings from the kb as pos-
sible repairs. In addition, a by-product of Katara is that
data annotated by the crowd as being valid, and which is
not found in the kb, provides new facts to enrich the kb.
Katara actively and efficiently involve crowd workers, who
are assumed to be experts in the kbs, when automatic ap-
proaches cannot capture or face ambiguity, for example, to
involve humans to validate patterns discovered, and to in-
volve humans to select from the top-k possible repairs.

Contributions. We built Katara for annotating and re-
pairing data using kbs and crowd, with the following con-
tributions.

1. Table pattern definition and discovery. We propose a
new class of table patterns to explain table semantics
using kbs (Section 3). Each table pattern is a directed
graph, where a node represents a type of a column
and a directed edge represents a binary relationship
between two columns. We present a new rank-join
based algorithm to efficiently discover table patterns
with high scores. (Section 4).

2. Table pattern validation via crowdsourcing. We devise
an efficient algorithm to validate the best table pat-
tern via crowdsourcing (Section 5). To minimize the
number of questions, we use an entropy-based schedul-
ing algorithm to maximize the uncertainty reduction
of candidate table patterns.

3. Data annotation. Given a table pattern, we annotate
data with different categories (Section 6): (i) correct
data validated by the kb; (ii) correct data jointly val-
idated by the kb and the crowd; and (iii) erroneous
data jointly identified by the kb and the crowd. We
also devise an efficient algorithm to generate top-k pos-
sible repairs for those erroneous data identified in (iii).

4. We conducted extensive experiments to demonstrate
the effectiveness and efficiency of Katara using real-
world datasets and kbs (Section 7).

2. AN OVERVIEW OF KATARA
Katara consists of three modules (see Fig. 9 in Ap-

pendix): pattern discovery, pattern validation, and data
annotation. The pattern discovery module discovers table
patterns between a table and a kb. The pattern validation

module uses crowdsourcing to select one table pattern. Us-
ing the selected table pattern, the data annotation module
interacts with the kb and the crowd to annotate data. It
also generates possible repairs for erroneous tuples. More-
over, new facts verified by crowd will be used to enrich kbs.

Example 1: Consider a table T for soccer players (Fig. 1).
T has opaque values for the attributes’ labels, thus its se-
mantics is completely unknown. We assume that we have
access to a kb K (e.g., Yago) containing information related
to T . Katara works in the following steps.

(1) Pattern discovery. Katara first discovers table patterns
that contain the types of the columns and the relationships
between them. A table pattern is represented as a labelled
graph (Fig. 2(a)) where a node represents an attribute and
its associated type, e.g., “C (capital)” means that the type of
attribute C in kb K is capital. A directed edge between two
nodes represents the relationship between two attributes,
e.g., “B hasCapital C” means that the relationship from B
to C in K is hasCapital. A column could have multiple can-
didate types, e.g., C could also be of type city. However,
knowing that the relationship from B to C is hasCapital
indicates that capital is a better choice. Since kbs are of-
ten incomplete, the discovered patterns may not cover all
attributes of a table, e.g., attribute G of table T is not cap-
tured by the pattern in Fig. 2(a).

(2) Pattern validation. Consider a case where pattern dis-
covery finds two similar patterns: the one in Fig. 2(a),
and its variant with type location for column C. To se-
lect the best table pattern, we send the crowd the question
“Which type (capital or location) is more accurate for val-
ues (Rome,Pretoria and Madrid)?”. Crowd answers will help
choose the right pattern.

(3) Data annotation. Given the pattern in Fig. 2(a),
Katara annotates a tuple with the following three labels:

(i) Validated by the kb. By mapping tuple t1 in table T
to K, Katara finds a full match, shown in Fig. 2(b)
indicating that Rossi (resp. Italy) is in K as a person
(resp. country), and the relationship from Rossi to Italy
is nationality. Similarly, all other values in t1 w.r.t.
attributes A-F are found in K. We consider t1 to be
correct w.r.t. the pattern in Fig. 2(a) and only to
attributes A-F .

(ii) Jointly validated by the kb and the crowd. Consider t2
about Klate, whose explanation is depicted in Fig. 2(c).
In K, Katara finds that S. Africa is a country, and
Pretoria is a capital. However, the relationship from
S. Africa to Pretoria is missing. A positive answer from
the crowd to the question “Does S. Africa hasCapital
Pretoria?” completes the missing mapping. We con-
sider t2 correct and generate a new fact “S. Africa
hasCapital Pretoria”.

(iii) Erroneous tuple. For tuple t3, there is also no link from
Italy to Madrid in K (Fig. 2(d)). A negative answer
from the crowd to the question “Does Italy hasCapital
Madrid?” confirms that there is an error in t3, At this
point, however, we cannot decide which value in t3
is wrong, Italy or Madrid. Katara will then extract
related evidences from K, such as Italy hasCapital Rome
and Spain hasCapital Madrid, and use these evidences
to generate a set of possible repairs for this tuple. 2

The pattern discovery module can be used to select the
more relevant kb for a given dataset. If the module cannot
find patterns for a table and a kb, Katara will terminate.

3. PRELIMINARIES

3.1 Knowledge Bases
We consider knowledge bases (kbs) as RDF-based data

consisting of resources, whose schema is defined using the
Resource Description Framework Schema (RDFS). A re-
source is a unique identifier for a real-word entity. For
instance, Rossi, the soccer player, and Rossi, the motorcy-
cle racer, are two different resources. Resources are rep-
resented using URIs (Uniform Resource Identifiers) in Yago
and DBPedia, and mids (machine-generated ids) in Freebase.
A literal is a string, date, or number, e.g., 1.78. A prop-
erty (a.k.a. relationship) is a binary predicate that repre-
sents a relationship between two resources or between a re-
source and a literal. We denote the property between re-
source x and resource (or literal) y by P (x, y). For instance,
locatedIn(Milan, Italy) indicates that Milan is in Italy.

An RDFS ontology distinguishes between classes and in-
stances. A class is a resource that represents a set of objects,
e.g., the class of countries. A resource that is a member of a
class is called an instance of that class. The type relationship
associates an instance to a class e.g., type(Italy) = country.

A more specific class c can be specified as a subclass of a
more general class d by using the statement subclassOf(c, d).
This means that all instances of c are also instances of d,
e.g., subclassOf(capital, location). Similarly, a property P1

can be a sub-property of a property P2 by the statement
subpropertyOf(P1, P2). Moreover, we assume that the prop-
erty between an entity and its readable name is labeled with
“label”, according to the RDFS schema.

Note that an RDF ontology naturally covers the case of a
kb without a class hierarchy such as IMDB. Also, a more ex-
pressive languages, such as OWL (Web Ontology Language),
can offer more reasoning opportunities at a higher computa-
tional cost. However, kbs in industry [14] as well as popular
ones, such as Yago, Freebase, and DBpedia, use RDFS.

3.2 Table Patterns
Consider a table T with attributes denoted by Ai. There

are two basic semantic annotations on a relational table.

(1) Type of an attribute Ai. The type of an attribute is an
annotation that represents the class of attribute values in Ai.
For example, the type of attribute B in Fig. 1 is country.

(2) Relationship from attribute Ai to attribute Aj . The
relationship between two attributes is an annotation that rep-
resents how Ai and Aj are related through a directed binary
relationship. Ai is called the subject of the relationship, and
Aj is called the object of the relationship. For example, the
relationship from attribute B to C in Fig. 1 is hasCapital.

Table pattern. A table pattern (pattern for short) ϕ of a
table T is a labelled directed graph G(V,E) with nodes V
and edges E. Each node u ∈ V corresponds to an attribute
in T , possibly typed, and each edge (u, v) ∈ E from u to
v has a label P , denoting the relationship between two at-
tributes that u and v represent. For a pattern ϕ, we denote
by ϕu a node u in ϕ, ϕ(u,v) an edge in ϕ, ϕV all nodes in ϕ,
and ϕE all edges in ϕ.

We assume that a table pattern is a connected graph.
When there exist multiple disconnected patterns, i.e., two
table patterns that do not share any common node, we treat
them independently. Hence, in the following, we focus on
discussing the case of a single table pattern.

Semantics. A tuple t of T matches a table pattern ϕ con-
taining m nodes {v1, . . . , vm} w.r.t. a kb K, denoted by
t |= ϕ, if there exist m distinct attributes {A1, . . . , Am} in
T and m resources {x1, . . . , xm} in K such that:

1. there is a one-to-one mapping from Ai (and xi) to vi
for i ∈ [1,m];

2. t[Ai] ≈ xi and either type(xi) = type(vi) or
subclassOf(type(xi), type(vi));

3. for each edge (vi, vj) in ϕE with property P , there
exists a property P ′ for the corresponding resources xi

and xj in K such that P ′ = P or subpropertyOf(P ′, P).

Intuitively, if t matches ϕ, each corresponding attribute
value of t maps to a resource r in K under a domain-specific
similarity function (≈), and r is a (sub-)type of the type
given in ϕ (conditions 1 and 2). Moreover, for each property
P in a pattern, the property between the two corresponding
resources must be P or its sub-properties (condition 3).

Example 2: Consider tuple t1 in Fig. 1 and pattern ϕs in
Fig. 2(a). Tuple t1 matches ϕs, as in Fig. 2(b), since for each
attribute value (e.g., t1[A] = Rossi and t1[B] = Italy) there is
a resource in K that has a similar value with corresponding
type (person for Rossi and country for Italy) for conditions 1
and 2, and the property nationality holds from Rossi to Italy
in K (condition 3). Similarly, conditions 1–3 hold for other
attribute values in t1. Hence, t1 |= ϕs. 2

We say that a tuple t of T partially matches a table pattern
ϕ w.r.t. K, if at least one of condition 2 and condition 3
holds.

Example 3: Consider t2 in Fig. 1 and ϕs in Fig. 2(a).
We say that t2 partially matches ϕs, since the property
hasCapital from t2[B] = S. Africa to t2[C] = Pretoria does
not exist in K, i.e., condition 3 does not hold. 2

Given a table T , a kb K, and a pattern ϕ, Fig. 3 shows
how Katara works on T .

(1) Attributes covered by K. Attributes A–F in Fig. 1 are
covered by the pattern in Fig. 2(a). We consider two cases
for the tuples.

(a) Fully covered by K. We annotate such tuples as se-
mantically correct relative to ϕ and K (Fig. 2(b)).

(b) Partially covered by K. We use crowdsourcing to ver-
ify whether the non-covered data is caused by the
incompleteness of K (Fig. 2(c)) or by actual errors
(Fig. 2(d)).

(2) Attributes not covered by K. Attribute G in Fig. 1 is not

KB

(2) Attributes not
covered by KB(1) Attributes covered by KB

(a) Fully covered by KB

(b) Partially covered by KB correct
errors

A table pattern P

A Table

Column 1 Column i Column i+1 ... Column j

Figure 3: Coverage of a table pattern

covered by the pattern in Fig. 2(a). In this case, Katara
cannot annotate G due to the missing information in K.

For non-covered attributes, we could ask the crowd open-
ended questions, such as“What are the possible relationships
between Rossi and 1.78?”. While approaches have been pro-
posed for open-ended questions to the crowd [38], we leave
the problem of extending the structure of the kbs to future
work, as discussed in Section 9.

4. TABLE PATTERN DISCOVERY
We first describe candidate types and candidate relation-

ships generation (Section 4.1). We then discuss the scoring
to rank table patterns (Section 4.2). We also present a rank-
join algorithm to efficiently compute top-k table patterns
(Section 4.3) from the candidate types and relationships.

4.1 Candidate Type/Relationship Discovery
We focus on cleaning tabular data for which the schema

is either unavailable or unusable. This is especially true
for most Web tables and in many enterprise settings where
cryptic naming conventions are used. Thus, for table-kb
mapping, we use a more general instance based approach
that does not require the availability of meaningful column
labels. For each column Ai of table T and for each value
t[Ai] of a tuple t, we map this value to several resources in
the kb K whose type can then be extracted. To this end, we
issue the following SPARQL query which returns the types
and supertypes of entities whose label (i.e., value) is t[Ai].

Qtypes select ?ci
where {?xi rdfs:label t[Ai],

?xi rdfs:type/rdfs:subClassOf∗ ?ci}

Similarly, the relationship between two values t[Ai] and
t[Aj] from a kb K can be retrieved via the two following
SPARQL queries.

Q1
rels select ?Pij

where {?xi rdfs:label t[Ai], ?xj rdfs:label t[Aj],
?xi ?Pij/rdfs:subPropertyOf∗ ?xj}

Q2
rels select ?Pij

where {?xi rdfs:label t[Ai],
?xi ?Pij/rdfs:subPropertyOf∗ t[Aj]}

Query Q1
rels retrieves relationships where the second at-

tribute is a resource in kbs and Q2
rels retrieves relationships

where the second attribute is a literal value, i.e., untyped.

Example 4: In Fig. 1, both Italy and Rome are stored as
resources in K, thus their relationship hasCapital would be
discovered by Q1

rels; while numerical values such as 1.78 are
stored as literals in the kbs, thus the relationship between
Rossi and 1.78 would be discovered by query Q2

rels. 2

In addition, for two values t[Ai] and t[Aj], we consider
them as an ordered pair, thus in total four queries are issued.

Ranking Candidates. We use a normalized version of tf-
idf (term frequency-inverse document frequency) [29] to rank

the candidate types of a column Ai. We simply consider each
cell t[Ai],∀t ∈ T , as a query term, and each candidate type
Ti as a document whose terms are the entities of Ti in K.
The tf-idf score of assigning Ti as the type for Ai is the sum
of all tf-idf scores of all cells in Ai:

tf-idf(Ti, Ai) =
∑
t∈T

tf-idf(Ti, t[Ai])

where tf-idf(Ti, t[Ai]) = tf(Ti, t[Ai]) · idf(Ti, t[Ai]).
The term frequency tf(Ti, t[Ai]) measures how frequently

t[Ai] appears in document Ti. Since every type has a differ-
ent number of entities, the term frequency is normalized by
the total number of entities of a type.

tf(Ti, t[Ai]) =

{
0 if t[Ai] is not of Type Ti

1
log (Number of Entities of Type Ti)

otherwise

For example, consider a column with a single cell Italy
that has both type Country and type Place. Since there is
a smaller number of entities of type Country than that of
Place, Country is more likely to be the type of that column.

The inverse document frequency idf(Ti, t[Ai]) measures
how important t[Ai] is. Under local completeness assump-
tion of kbs [15], if the kb knows about one possible type of
t[Ai], the kb should have all possible types of t[Ai]. Thus,
we define idf(Ti, t[Ai]) as follows:

idf(Ti, t[Ai]) =

{
0 if t[Ai] has no type

log Number of Types in K
Number of Types of t[Ai]

otherwise

Intuitively, the less the number of types t[Ai] has, the more
contribution t[Ai] makes. For example, consider a column
that has two cells “Apple” and “Microsoft”. Both have Type
Company, however, “Apple” has also Type Fruit. Therefore,
“Microsoft” being of Type Company says more about the
column being of Type Company than “Apple” says about
the column being of Type Company.

The tf-idf scores of all candidate types for Ai are normal-
ized to [0, 1] by dividing them by the largest tf-idf score of the
candidate type for Ai. The tf-idf score tf-idf(Pij , Ai, Aj) of
candidate relationship Pij assigned to column pairs Ai and
Aj are defined similarly.

4.2 Scoring Model for Table Patterns
A table pattern contains types of attributes and properties

between attributes. The space of all candidate patterns is
very large (up to the Cartesian product of all possible types
and relationships), making it expensive for human verifica-
tion. Since not all candidate patterns make sense in prac-
tice, we need a meaningful scoring function to rank them
and consider only the top-k ones for human validation.

A naive scoring model for a candidate table pattern ϕ,
consisting of type Ti for column Ai and relationship Pij for
column pair Ai and Aj , is to simply add up all tf-idf scores
of the candidate types and relationships in ϕ:

naiveScore(ϕ) = Σm
i=0tf-idf(Ti, Ai) + Σijtf-idf(Pij , Ai, Aj)

However, columns are not independent of each other. The
choice of the type for a column Ai affects the choice of the
relationship for column pair Ai and Aj , and vice versa.

Example 5: Consider the two columns B and C in Fig. 1.
B has candidate types economy, country, and state, C has
candidate types city and capital, and B and C have a candi-
date relationship hasCapital. Intuitively, country as a candi-

Algorithm 1 PDiscovery

Input: a table T , a KB K, and a number k.
Output: top-k table patterns based on their scores
1: types(Ai)← get a ranked list of candidate types for Ai

2: properties(Ai, Aj) ← get a ranked list of candidate relation-
ships for Ai and Aj

3: Let P be the top-k table patterns, initialized empty
4: for all Ti ∈ types(Ai), and Pij ∈ properties(Ai, Aj) in de-

scending order of tf-idf scores do
5: if |P| > k and TypePruning(Ti) then
6: continue
7: generate all table patterns P ′ involving Ti or Pij

8: compute the score for each table pattern P in P ′
9: update P using P ′

10: compute the upper bound score B of all unseen patterns,
and let ϕk ∈ P be the table pattern with lowest score

11: halt when score(ϕk) > B
12: return P

date type for column B is more compatible with hasCapital
than economy since capitals are associated with countries,
not economies. In addition, capital is also more compatible
with hasCapital than city since not all cities are capitals. 2

Based on the above observation, to quantify the“compati-
bility” between a type T and relationship P , where T serves
as the type for the resources appearing as subjects of the
relationship P , we introduce a coherence score subSC(T, P).
Similarly, to quantify the “compatibility” between a type
T and relationship P , where T serves as the type for the
entities appearing as objects of the relationship P , we in-
troduce a coherence scores objSC(T, P). subSC(T, P) (resp.
objSC(T, P)) measures how likely an entity of Type T ap-
pears as a subject (resp. object) of the relationship P .

We use pointwise mutual information (PMI) [10] as a
proxy for computing subSC(T, P) and objSC(T, P). We use
the following notations: ENT(T) - the set of entities in K
of type T , subENT(P) - the set of entities in K that ap-
pear in the subject of P , objENT(P) - the set of entities
in K that appear in the object of P , and N - the total
number of entities in K. We then consider the following

probabilities: Pr(T) = |ENT(T)|
N , the probability of an entity

belonging to T , Prsub(P) = |subENT(P)|
N , the probability of an

entity appearing in the subject of P , Probj(P) = |objENT(P)|
N ,

the probability of an entity appearing in the object of P ,

Prsub(P ∩ T) = |ENT(T)∩subENT(P)|
N , the probability of an en-

tity belonging to type T and appearing in the subject of P ,

and Probj(P ∩ T) = |ENT(T)∩objENT(P)|
N , the probability of an

entity belonging to type T and appearing in the object of
P . Finally, we can define PMIsub(T, P):

PMIsub(T, P) = log
Prsub(P ∩ T)

Prsub(P)Pr(T)

The PMI can be normalized into [−1, 1] as follows [3]:

NPMIsub(T, P) =
PMIsub(T, P)

−Prsub(P ∩ T)

To ensure that the coherence score is in [0, 1], we define
the subject semantic coherence of T for P as

subSC(T, P) =
NPMIsub(T, P) + 1

2
The object semantic coherence of T for P can be defined

similarly.

Example 6: Below are sample coherence scores computed
from Yago.

Algorithm 2 TypePruning

Input: current top-k table patterns P, candidate type Ti.
Output: a boolean value, true/false means Ti can/cannot be

pruned
1: curMinCohSum(Ai) ← minimum sum of all coherence scores

involving column Ai in current top-k P
2: maxCohSum(Ai, Ti)← maximum sum of all coherence scores

if the type of column Ai is Ti

3: if maxCohSum(Ai, Ti) < curMinCohSum(Ai) then
4: return true
5: else
6: return false

subSC(economy, hasCapital) = 0.84
subSC(country, hasCapital) = 0.86
objSC(city, hasCapital) = 0.69
objSC(capital, hasCapital) = 0.83

These scores reflect our intuition in Example 5: country is
more suitable than economy to act as a type for the subject
resources of hasCapital; and capital is more suitable than city
to act as a type for the object resources of hasCapital. 2

We now define the score of a pattern ϕ as follows:

score(ϕ) = Σm
i=0tf-idf(Ti, Ai) + Σijtf-idf(Pij , Ai, Aj)

+Σij(subSC(Ti, Pij) + objSC(Tj , Pij))

4.3 Top-k Table Pattern Generation
Given the scoring model of table patterns, we describe how

to retrieve the top-k table patterns with the highest scores
without having to enumerate all candidates. We formulate
this as a rank-join problem [22]: given a set of sorted lists
and join conditions of those lists, the rank-join algorithm
produces the top-k join results based on some score function
for early termination without consuming all the inputs.

Algorithm. The algorithm, referred as PDiscovery, is
given in Algorithm 1. Given a table T , a kb K, and a
number k, it produces top-k table patterns. To start, each
input list, i.e., candidate types for a column, and candi-
date relationships for a column pair, is ordered according
to the respective tf-idf scores (lines 1-2). When two candi-
date types (resp. relationships) have the same tf-idf scores,
the more discriminative type (resp. relationship) is ranked
higher, i.e., the one with less number of instances in K.

Two lists are joined if they agree on one column, e.g.,
the list of candidate types for Ai is joined with the list of
candidate relationships for Ai and Aj . A join result is a can-
didate pattern ϕ, and the scoring function is score(ϕ). The
rank-join algorithm scans the ranked input lists in descend-
ing order of their tf-idf scores (lines 3-4), table patterns are
generated incrementally as we move down the input lists.
Table patterns that cannot be used to produce top-k pat-
terns will be pruned (lines 5-6). For each join result, i.e.,
each table pattern ϕ, the score score(ϕ) is computed (lines 7-
8). We also maintain an upper bound B of the scores of all
unseen join results, i.e., table patterns (line 10). Since each
list is ranked, B can be computed by adding up the sup-
port scores of the current positions in the ranked lists, plus
the maximum coherence scores a candidate relationship can
have with any types. We terminate the join process if either
we have exhaustively scanned every input list, or we have
obtained top-k table patterns and the score of the kth table
pattern is greater than or equal to B (line 11).

Lines 5-6 in Algorithm 1 check whether a candidate type
Ti for column Ai can be pruned without generating ta-

ble patterns involving Ti by calling Algorithm 2. The in-
tuition behind type pruning (Algorithm 2) is that a can-
didate type Ti is useful if it is more coherent with any
relationship Pix than previously examined types for Ai.
We first calculate the current minimum sum of coherence
scores involving column Ai in the current top-k patterns,
i.e., curMinCohSum(Ai) (line 1). We then calculate the
maximum possible sum of coherence scores involving type
Ti, i.e., maxCohSum(Ai, Ti) (line 2). Ti can be pruned if
maxCohSum(Ai, Ti) < curMinCohSum(Ai) since any table
pattern having Ti as the type for Ai will have a lower score
than the scores of the current top-k patterns (lines 3-6).

Example 7: Consider the rank-join graph in Fig. 4
(k = 2) for a table with just two columns B and
C as in Fig. 1. The tf-idf scores for each candi-
date type and relationship are shown in the parenthe-
ses. The top-2 table patterns ϕ1, ϕ2 are shown on the
top. score(ϕ1) = sup(country, B) + sup(capital, C) +
sup(hasCapital, B,C) + 5 × (subSC(country, hasCapital) +
objSC(capital, hasCapital)) = 1.0 + 0.9 + 0.9 + 0.86 + 0.83 =
4.49. Similarly, we have score(ϕ2) = 4.47.

Suppose we are currently examining type state for column
B. We do not need to generate table patterns involving state
since the maximum coherence between state and hasCapital
or isLocatedIn is less than the the current minimum coher-
ence score between type of column B and relationship be-
tween B and C in the current top-2 patterns.

Suppose we are examining type whole for column C, and
we have reached type state for B and hasCapital for rela-
tionship B,C. The bound score for all unseen patterns is
B = 0.7 + 0.5 + 0.9 + 0.86 + 0.83 = 3.78, where 0.7, 0.9 and
0.5 are the tf-idf scores for state, whole and hasCapital re-
spectively, and 0.86 (resp. 0.83) is the maximum coherence
score between any type in types(B) (resp. types(C)) and
any relationship in properties(B,C). Since B is smaller than
score(ϕ2) = 4.47, we terminate the rank join process. 2

Correctness. Algorithm 1 is guaranteed to produce the
top-k table patterns since we keep the current top-k patterns
in P, and we terminate when we are sure that it will not
produce any new table pattern with a higher score. In the
worst case, we still have to exhaustively go through all the
ranked lists to produce the top-k table patterns. However,
in most cases the top ranked table patterns involve only
candidate types/relationships with high tf-idf scores, which
are at the top of the lists.

Computing coherence scores for a type and a relation-
ship is an expensive operation that requires set intersection.
Therefore, for a given K, we compute offline the coherence
score for every type and every relationship. For each rela-
tionship, we also keep the maximum coherence score it can
achieve with any type, to efficiently compute the bound B.

5. PATTERN VALIDATION VIA CROWD
We now study how to use the crowd to validate the discov-

ered table patterns. Specifically, given a set P of candidate
patterns, a table T , a kb K, and a crowdsourcing frame-
work, we need to identify the most appropriate pattern for
T w.r.t. K, with the objective of minimizing the number of
crowdsourcing questions. We assume that the crowd work-
ers are experts in the semantics of the reference kbs, i.e.,
they can verify if values in the tables fit into the kbs.

economy(1.0)
country(1.0)
location(1.0)

state(0.7)
…

 type (B)
locatedIn(1.0)

hasCapital(0.9)

 relationship (B, C)
City(1.0)

Capital(0.9)
whole(0.5)
artifact(0.1)
Person(0.1)

…

 type (C)

 1: B (country), C (capital), hasCapital (B, C)
2: B (economy), C (city), hasCapital (B, C)

'
'

Figure 4: Encoding top-k as a rank-join

5.1 Creating Questions for the Crowd
A naive approach to generate crowdsourcing questions is

to express each candidate table pattern as a whole in a single
question to the crowd who would then select the best one.
However, table pattern graphs can be hard for crowd users to
understand (e.g., Fig. 2(a)). Also, crowd workers are known
to be good at answering simple questions [41]. A practical
solution is to decompose table patterns into simple tasks:
(1) type validation, i.e., to validate the type of a column
in the table pattern; and (2) binary relationship validation,
i.e., to validate the relationship between two columns.

Column type validation. Given a set of candidate types
candT(Ai) for column Ai, one type Ti ∈ candT(Ai) needs
to be selected. We formulate the following question to the
crowd about the type of a column: What is the most accurate
type of the highlighted column?; along with kt randomly cho-
sen tuples from T and all candidate types from candT(Ai).
A sample question is given as follows.

Q1 :What is the most accurate type of the highlighted column?

(A, B , C, D, E, F , ...)

(Rossi, Italy , Rome, Verona, Italian, Proto, ...)

(Pirlo, Italy , Madrid, Juve, Italian, Flero
”

...)

© country © economy
© state © none of the above

After q questions are answered by the crowd workers, the
type with the highest support from the workers is chosen.

Crowd workers, even if experts in the reference kb, are
prone to mistakes when t[Ai] in tuple t is ambiguous, i.e.,
t[Ai] belongs to multiple types in candT(Ai). However, this
is mitigated by two observations: (i) it is unlikely that all
values are ambiguous and (ii) the probability of providing
only ambiguous values diminishes quickly with respect to
the number of values. Consider two types T1 and T2 in
candT(Ai), the probability that randomly selected entities

belong to both types is p = |ENT (T1)∩ENT (T2)|
|ENT (T1)∪ENT (T2)| . After q

questions are answered, the probability that all q · kt values
are ambiguous is pq·kt . Suppose p = 0.8, a very high for two
types in K, and five questions are asked with each question
containing five tuples, i.e., q = 5, kt = 5, the probability
pq·kt becomes as low as 0.0038.

For each question, we also expose some contextual at-
tribute values that help workers better understand the ques-
tion. For example, we expose the values for A,C,D,E in
question Q1 when validating the type of B. If the the num-
ber of attributes is small, we show them all; otherwise, we
use off-the-shelf technology to identify attributes that are
related to the ones in the question [23]. To mitigate the risk
of workers making mistakes, each question is asked three
times, and the majority answer is taken. Indeed, our empir-

ical study in Section 7.2 shows that five questions are enough
to pick the correct type in all the datasets we experimented.

Relationship validation. We validate the relationship for
column pairs in a similar fashion, with an example below.

Q2 :What is the most accurate relationship for

highlighted columns (A, B, C , D, E, F , ...)

(Rossi, Italy, Rome , Verona, Italian, Proto, ...)

(Pirlo, Italy, Madrid , Juve, Italian, Flero, ...)

© B hasCapital C © C locatedIn B © none of the above

Candidate types and candidate relationships are stored
as URIs in kbs; thus not directly consumable by the
crowd workers. For example, the type capital is stored as
http://yago-knowledge.org/resource/wordnet capital 10851850,
and the relationship hasCapital is stored as http://yago-

knowledge.org/resource/hasCapital. We look up type and
relationship descriptions, e.g., capital and hasCapital, by
querying the kb for the labels of the corresponding URIs.
If no label exists, we process the URI itself by removing the
text before the last slash and punctuation symbols.

5.2 Question Scheduling
We now turn our attention to how to minimize the total

number of questions to obtain the correct table pattern by
scheduling which column and relationship to validate first.

Note that once a type (resp. relationship) is validated, we
can prune from P all table patterns that have a different type
(resp. relationship) for that column (resp. column pair).
Therefore, a natural choice is to choose those columns (resp.
column pairs) with the maximum uncertainty reduction [45].

Consider ϕ as a variable, which takes values from P =
{ϕ1, ϕ2, . . . , ϕk}. We translate the score associated with
each table pattern to a probability by normalizing the

scores, i.e., Pr(ϕ = ϕi) = score(ϕi)
Σϕj∈Pscore(ϕj)

. Our transla-

tion from scores to probabilities follows the general frame-
work of interpreting scores in [25]. Specifically, our trans-
lation is rank-stable, i.e., for two patterns ϕ1 and ϕ2, if
score(ϕ1) > score(ϕ2), then Pr(ϕ = ϕ1) > Pr(ϕ = ϕ2).

We define the uncertainty of ϕ w.r.t. P as the entropy.

HP(ϕ) = −Σϕi∈PPr(ϕ = ϕi) log2 Pr(ϕ = ϕi)

Example 8: Consider an input list of five table patterns
P = {ϕ1, . . . , ϕ5} as follows with the normalized probability
of each table pattern shown in the last column.

type (B) type (C) P (B,C) score prob
ϕ1 country capital hasCapital 2.8 0.35
ϕ2 economy capital hasCapital 2 0.25
ϕ3 country city locatedIn 2 0.25
ϕ4 country capital locatedIn 0.8 0.1
ϕ5 state capital hasCapital 0.4 0.05

2

We use variables vAi and vAiAj to denote the type of the
column Ai and the relationship between Ai and Aj respec-
tively. The set of all variables is denoted as V . In Exam-
ple 8, V = {vB , vC , vBC}, vB ∈ {country, economy, state},
vC ∈ {capital, city} and vBC ∈ {hasCapital, isLocatedIn}.
The probability of an assignment of a variable v to a is ob-
tained by aggregating the probability of those table patterns
that have that assignment for v. For example, Pr(vB =
country) = Pr(ϕ1) +Pr(ϕ3) +Pr(ϕ4) = 0.35 + 0.25 + 0.1 =
0.7, Pr(vB = economy) = 0.25, and Pr(vB = state) = 0.05.

Algorithm 3 PatternValidation

Input: a set of table patterns P
Output: one table pattern ϕ ∈ P
1: Pre be the remaining table patterns, initialized P
2: initialize all variables V , representing column or column pairs,

and calculate their probability distributions.
3: while |Pre| > 1 do
4: Ebest ← 0
5: vbest ← null
6: for all v ∈ V do
7: compute the entropy H(v).
8: if H(v) > Ebest then
9: vbest ← v

10: Ebest ← H(v)
11: validate the variable v, suppose the result is a, let Pv=a

to be the set of table patterns with v = a
12: Pre = Pv=a

13: normalize the probability distribution of patterns in Pre.
14: return the only table pattern ϕ in Pre

After validating a variable v to have value a, we remove
from P those patterns that have different assignment for
v. The remaining patterns are denoted as Pv=a. Sup-
pose column B is validated to be of type country, then
PvB=country = {ϕ1, ϕ3, ϕ4}. Since we do not know what value
a variable can take, we measure the expected reduction of
uncertainty of variable ϕ after validating variable v, formally
defined as:

E(∆H(ϕ))(v) = ΣaPr(v = a)HPv=a(ϕ)−HP(ϕ)

In each iteration, we choose the variable v (column
or column pair) with the maximum uncertainty reduc-
tion, i.e., E(∆H(ϕ))(v). Each iteration has a complex-
ity of O(|V ||P|2) because we need to examine all |V | vari-
ables, each variable could take |P| values, and calculating
HPv=a(ϕ) for each value also takes O(|P|) time. The follow-
ing theorem simplifies the calculation for E(∆H(v)) with a
complexity of O(|V ||P|).

Theorem 1. The expected uncertainty reduction after
validating a column (column pair) v is the same as the
entropy of the variable. E(∆H(ϕ))(v) = H(v), where
H(v) = −ΣaPr(v = a) log2 Pr(v = a).

The proof of Theorem 1 can be found in Appendix A.
Algorithm 3 describes the overall procedure for pattern val-
idation. At each iteration: (1) we choose the best variable
vbest to validate next based on the expected reduction of
uncertainty of ϕ (lines 4-10); (2) we remove from Pre those
table patterns that have a different assignment for variable
v than the validated value a (lines 11-12); and (3) we renor-
malize the probability distribution of the remaining table
patterns in Pre (line 13). We terminate when we are left
with only one table pattern (line 3).

Example 9: To validate the five patterns in Example 8,
we first calculate the entropy of every variable. H(vB) =
−0.7 log2 0.7− 0.25log20.25− 0.05log20.05 = 1.07, H(vC) =
0.81, and H(vBC) = 0.93. Thus column B is validated first,
say the answer is country. The remaining set of table pat-
terns, and their normalized probabilities are:

type (B) type (C) P (B,C) prob
ϕ1 country capital hasCapital 0.5
ϕ3 country city locatedIn 0.35
ϕ4 country capital locatedIn 0.15

Now Pre = {ϕ1, ϕ3, ϕ4}. The new entropies are: H(vB) =
0, H(vC) = 0.93 and H(vBC) = 1. Therefore, column pair

A (Pirlo)

B (Italy) C (Rome)

D (Juve)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Flero)

hasClub

(a) Possible repair G1

A (Xabi
Alonso)

B (Spain) C (Madrid)

D (Real
Madrid)

E (Spanish)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Tolosa)

hasClub

(b) Possible repair G2

Figure 5: Sample instance graphs

B,C is chosen, say the answer is hasCapital. We are now left
with only one pattern ϕ1, thus we return it. 2

In Example 9, we do not need to validate vC following our
scheduling strategy. Furthermore, after validating certain
variables, other variables may become less uncertain, thus
requiring a smaller number of questions to validate.

6. DATA ANNOTATION
In this section, we describe how Katara annotates data

(Section 6.1). We also discuss how to generate possible re-
pairs for identified errors (Section 6.2).

6.1 Annotating Data
Katara annotates tuples as correct data validated by kbs,

correct data jointly validated by kbs and the crowd, or data
errors detected by the crowd, using the following two steps.

Step 1: Validation by kbs. For each tuple t and pattern ϕ,
Katara issues a SPARQL query to check whether t is fully
covered by a kb K. If it is fully covered, Katara annotates
it as a correct tuple validated by kb (case (i)). Otherwise,
it goes to step 2.

Step 2: Validation by kbs and Crowd. For each node (i.e.,
type) and edge (i.e., relationship) that is missing from K,
Katara asks the crowd whether the relationship holds be-
tween the given two values. If the crowd says yes, Katara
annotates it as a correct tuple, jointly validated by kb and
crowd (case (ii)). Otherwise, it is certain that there exist
errors in this tuple (case (iii)).

Example 10: Consider tuple t2 (resp. t3) in Fig. 1 and the
table pattern in Fig. 2(a). The information about whether
Pretoria (resp. Madrid) is a capital of S. Africa (resp. Italy)
is not in kb. To verify this information, we issue a boolean
question Qt2 (resp. Qt3) to the crowd as:

Qt2 :Does S. Africa hasCapital Pretoria?
© Yes © No

Qt3 :Does Italy hasCapital Madrid?
© Yes © No

In such case, the crowd will answer yes (resp. no) to
question Qt2 (resp. Qt3). 2

Knowledge base enrichment. Note that, in step 2, for
each affirmative answer from the crowd (e.g., Qt2 above), a
new fact that is not in the current kb is created. Katara
collects such facts and uses them to enrich the kb.

6.2 Generating Top-k Possible Repairs
We start by introducing two notions that are necessary to

explain our approach for generating possible repairs.

Instance graphs. Given a kb K and a pattern G(V,E),
an instance graph GI(VI , EI) is a graph with nodes VI and

Algorithm 4 Top-k repairs

Input: a tuple t, a table pattern ϕ, and inverted lists L
Output: top-k repairs for t
1: Gt = ∅
2: for each attribute A in ϕ do
3: Gt = Gt ∪ L(A, t[A])
4: for each G in Gt do
5: compute cost(t, ϕ,G)
6: return top-k repairs in Gt with least cost values

edges EI , such that (i) each node vi ∈ VI is a resource in K;
(ii) each edge ei ∈ EI is a property in K; (iii) there is a one-
to-one correspondence f from each node v ∈ V to a node
vi ∈ VI , i.e., f(v) = vi; and (iv) for each edge (u, v) ∈ E,
there is an edge (f(u), f(v)) ∈ EI with the same property.
Intuitively, an instance graph is an instantiation of a pattern
in a given kb.

Example 11: Figures 5(a) and 5(b) are two instance graphs
of the table pattern of Fig. 2(a) in Yago for two players. 2

Repair cost. Given an instance graph G, a tuple t, and a
table pattern ϕ, the repair cost of aligning t to G w.r.t. ϕ,

denoted by cost(t, ϕ,G) =
n∑

i=1

ci, is the cost of changing

values in t to align it with G, where ci is the cost of the i-th
change and n the number of changes in t. Intuitively, the less
a repair cost is, the closer the updated tuple is to the original
tuple, hence more likely to be correct. By default, we set
ci = 1. The cost can also be weighted with confidences on
data values [18]. In such case, the higher the confidence
value is, the more costly the change is.

Example 12: Consider tuple t3 in Fig. 1, the table pattern
ϕs in Fig. 2(a), and two instance graphs G1 and G2 in Fig. 5.
The repair cost to update t3 to G1 is 1, i.e., cost(t3, ϕs, G1)
= 1, by updating t3[C] from Madrid to Rome. Similarly, the
repair cost from t3 to G2 is 5, i.e., cost(t3, ϕs, G2) = 5. 2

Note that the possible repairs are ranked based on repair
cost in ascending order. We provide top-k possible repairs
and we leave it to the users (or crowd) to pick the most
appropriate repair. In the following, we describe algorithms
to generate top-k repairs for each identified erroneous tuple.

Given a kb K and a pattern ϕ, we compute all instance
graphs G in K w.r.t. ϕ. For each tuple t, a naive solution is
to compute the distance between t and each graph G in G.
The k graphs with smallest repair cost are returned as top-k
possible repairs. Unfortunately, this is too slow in practice.

A natural way to improve the naive solution for top-k
possible repair generation is to retrieve only instance graphs
that can possibly be repairs, i.e., the instance graphs whose
values have an overlap with a given erroneous tuple. We
leverage inverted lists to achieve this goal.

Inverted lists. Each inverted list is a mapping from a key to
a posting list. A key is a pair (A, a) where A is an attribute
and a is a constant value. A posting list is a set G of graph
instances, where each G ∈ G has value a on attribute A.

For example, an inverted list w.r.t. G1 in Fig. 5(a) is as:

country, Italy → G1

Algorithm. The optimized algorithm for a tuple t is given
in Algorithm 4. All possible repairs are initialized (line 1)
and instantiated by using inverted lists (lines 2-3). For each

possible repair, its repair cost w.r.t. t is computed (lines 4-
5), and top-k repairs are returned (line 6).

Example 13: Consider t3 in Fig. 1 and pattern ϕs in
Fig. 2(a). The inverted lists retrieved are given below.

A, Pirlo → G1 X D, Juve → G1 X
B, Italy → G1 X E, Italian → G1 X
C, Madrid → G2 X F, Flero → G1 X

It is easy to see that the occurrences of instance graphs
G1 and G2 are 5 and 1, respectively. In other words, the
cost of repairing t3 w.r.t. G1 is 6 − 5 = 1 and w.r.t. G2 is
6− 1 = 5. Hence, the top-1 possible repair for t3 is G1. 2

The practicability of possible repairs of Katara depends
on the coverage of kbs, while existing automatic data re-
pairing techniques usually require certain redundancy in the
data to perform well. Katara and existing techniques com-
plement each other, as demonstrated in Section 7.4.

7. EXPERIMENTAL STUDY
We evaluated Katara using real-life data along four di-

mensions: (i) the effectiveness and efficiency of table pattern
discovery (Section 7.1); (ii) the efficiency of pattern valida-
tion via the expert crowd (Section 7.2); (iii) the effectiveness
and efficiency of data annotation (Section 7.3); and (iv) the
effectiveness of possible repairs (Section 7.4).

Knowledge bases. We used Yago [21] and DBpedia [27] as
the underlying kbs. Both were transformed to Jena format
(jena.apache.org/) with LARQ (a combination of ARQ
and Lucene) support for string similarity. We set the thresh-
old to 0.7 in Lucene to check whether two strings match.

Datasets. We used three datasets: WikiTables and
WebTables contains tables from the Web2 with relatively
small numbers of tuples and columns, and RelationalTables
contains tables with larger numbers of tuples and columns.
• WikiTables contains 28 tables from Wikipedia pages. The
average number of tuples is 32.
• WebTables contains 30 tables from Web pages. The aver-
age number of tuples is 67.
• RelationalTables has three tables: Person has personal in-
formation joined on the attribute country from two sources:
a biographic table extracted from wikipedia [32], and a coun-
try table obtained from a wikipedia page3 resulting in 316K
tuples. Soccer has 1625 tuples about soccer players and their
clubs scraped from the Web4. University has 1357 tuples
about US universities with their addresses5.

All the tables were manually annotated using types and re-
lationships in Yago as well as DBPedia, which we considered
as the ground truth. Table 1 shows the number of columns
that have types, and the number of column pairs that have
relationships, using Yago and DBPedia, respectively.

All experiments were conducted on Win 7 with an Intel i7
CPU@3.4Ghz, 20GB of memory, and an SSD 500GB hard
disk. All algorithms were implemented in JAVA.

2
http://www.it.iitb.ac.in/~sunita/wwt/

3
http://tinyurl.com/qhhty3p

4
www.premierleague.com/en-gb.html, www.legaseriea.it/en/,

www.premierleague.com/en-gb.html
5
ope.ed.gov/accreditation/GetDownLoadFile.aspx

Yago DBPedia
#-type #-relationship #-type #-relationship

WikiTables 54 15 57 18
WebTables 71 33 73 35
RelationalTables 14 7 14 16

Table 1: Datasets and kbs characteristics

7.1 Pattern Discovery
Algorithms. We compared four discovery algorithms.

(i) RankJoin - our proposed approach (Section 4).

(ii) Support - a baseline approach that ranks the candidate
types and relationships solely on their support scores, i.e.,
the number of tuples that are of the candidate’s types and
relationships.

(iii) MaxLike [39] - infers the type of a column and the rela-
tionship between a column pair separately using maximum
likelihood estimation.

(iv) PGM [28] - infers the type of a column, the relationship
between column pairs, and the entities of cells by building a
probabilistic graphic model to make holistic decisions.

Evaluation Metrics. A type (relationship) gets a score of
1 if it matches the ground truth, and a partial score 1

s+1

if it is the super type (relationship) of the ground truth,
where s is the number of steps in the hierarchy to reach the
ground truth. For example, a label Film for a column, whose
actual type is IndianFilm, will get a score of 0.5, since Film
is the super type of IndianFilm with s = 1. The precision P
of a pattern ϕ is defined as the sum of scores for all types
and relationships in ϕ over the total number of types and
relationships in ϕ. The recall R of ϕ is defined as the sum
of scores for all types and relationships in ϕ over the total
number of types and relationships in the ground truth.

Effectiveness. Table 2 shows the precision and recall of
the top pattern chosen by four pattern discovery algorithms
for three datasets using Yago and DBPedia. We first dis-
cuss Yago. (1) Support has the lowest precision and re-
call in all scenarios, since it selects the types/relationships
that cover the most number of tuples, which are usually
the general types, such as Thing or Object. (2) MaxLike
uses maximum likelihood estimation to select the best
type/relationship that maximizes the probability of val-
ues given the type/relationship. It performs better than
Support, but still chooses types and relationships inde-
pendently. (3) PGM is a supervised learning approach
that requires training and tuning of a number of weights.
PGM shows mixed effectiveness results: it performs better
than MaxLike on WebTables, but worse on WikiTables and
RelationalTables. (4) RankJoin achieves the highest preci-
sion and recall due to its tf-idf style ranking, as well as for
considering the coherence between types and relationships.
For example, consider a table with two columns actors and
films that have a relationship actedIn. If most of the val-
ues in the films column also happen to be books, MaxLike
will use books as the type, since there are fewer instances of
books than films in Yago. However, RankJoin would cor-
rectly identify films as the type, since it is more coherent
with actedIn than books.

The result from DBPedia, also shown in Table 2, confirms
that RankJoin performs best among the four methods. No-
tice that the precision and recall of all methods are consis-
tently better using DBPedia than Yago. This is because the

Support MaxLike PGM RankJoin

P R P R P R P R
WikiTables .54 .59 .62 .68 .60 .67 .78 .86
WebTables .65 .64 .63 .62 .77 .77 .86 .84
RelationalTables .51 .51 .71 .71 .53 .53 .77 .77

Yago

P R P R P R P R
WikiTables .56 .70 .71 .89 .61 .77 .71 .89
WebTables .65 .69 .80 .84 .76 .80 .82 .87
RelationalTables .64 .67 .81 .86 .74 .77 .81 .86

DBPedia

Table 2: Pattern discovery precision and recall

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14 16 18 20

F
-
M
e
a
s
u
r
e

a
t

k

k

 Support
 MaxLike

 PGM
 RankJoin

(a) Yago

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14 16 18 20

F
-
M
e
a
s
u
r
e

a
t

k

k

 Support
 MaxLike

 PGM
 RankJoin

(b) DBPedia

Figure 6: Top-k F-measure (WebTables)

number of types in DBPedia (865) is much smaller than that
of Yago (374K), hence, the number of candidate types for a
column using DBPedia is much smaller, causing less stress
for all algorithms to rank them.

To further verify the effectiveness of our ranking function,
we report the F-measure F of the top-k patterns chosen by
every algorithm. The F value of the top-k patterns is de-
fined as the best value of F from one of the top-k patterns.
Figure 6 shows F values of the top-k patterns varying k on
WebTables. RankJoin converges faster than other methods
on Yago, while all methods converge quickly on DBPedia due
to its small number of types. Top-k F-measure results for the
other two datasets show similar behavior, and are reported
in Appendix B.

Efficiency. Table 3 shows the running time in seconds
for all datasets. We ran each test 5 times and report
the average time. We separate the discussion of Person
from RelationalTables due to its large number of tuples.
For Person, we implemented a distributed version of can-
didate types/relationships generation by distributing the
316K tuples over 30 machines, and all candidates are col-
lected into one machine to complete the pattern discovery.
Support, MaxLike, and RankJoin have similar performance
in all datasets, because their most expensive operation is
the disk I/Os for kbs lookups in generating candidate types
and relationships, which is linear w.r.t. the number of tu-
ples. PGM is the most expensive due to the message passing
algorithms used for the inference of probabilistic graphical
model. PGM takes hours on tables with around 1K tuples,
and cannot finish within one day for Person.

7.2 Pattern Validation
Given the top-k patterns from the pattern discovery, we

need to identify the most appropriate one. We validated
the patterns of all datasets using an expert crowd with 10
students. Each question contains five tuples, i.e., kt = 5.

We first evaluated the effect of the number of ques-
tions used to validate each variable, which is a type or a
relationship, on the quality of the chosen pattern. We mea-

Support MaxLike PGM RankJoin

WikiTables 153 155 286 153
WebTables 160 177 1105 162
RelationalTables/Person 130 140 13842 127
Person 252 258 N.A. 257

Yago

WikiTables 50 54 90 51
WebTables 103 104 189 107
RelationalTables/Person 400 574 11047 409
Person 368 431 N.A. 410

DBPedia

Table 3: Pattern discovery efficiency (seconds)

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1 2 3 4 5 6 7 8 9

P
/R

q

Precision

Recall

(a) Yago

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1 2 3 4 5 6 7 8 9

P
/R

q

Precision

Recall

(b) DBPedia

Figure 7: Pattern validation P/R (WebTables)

Yago DBPedia
MUVF AVI MUVF AVI

WikiTables 64 79 88 102
WebTables 81 105 90 118
RelationalTables 24 28 28 36

Table 4: #-variables to validate

sure the precision and recall of the final chosen validation
w.r.t. the ground truth in the same way as in Section 7.1.
Figure 7 shows the average precision and recall of the val-
idated pattern of WebTables while varying the number of
questions q per variable. It can be seen that, even with
q = 1, the precision and recall of the validated pattern is
already high. In addition, the precision and recall converge
quickly, with q = 5 on Yago, and q = 3 on DBPedia. Pattern
validation results on WikiTables and RelationalTables show a
similar behavior, and are reported in Appendix C.

To evaluate the savings in crowd pattern validation that
are achieved by our scheduling algorithm, we compared
our method (denoted MUVF, short for most-uncertain-
variable-first) with a baseline algorithm (denoted AVI for
all-variables-independent) that validates every variable in-
dependently. For each dataset, we compared the number of
variables needed to be validated until there is only one table
pattern left. Table 4 shows that MUVF performs consistently
better than AVI in terms of the number of variables to vali-
date, because MUVF may spare validating certain variables
due to scheduling, i.e., some variables become certain after
validating some other variables.

The validated table patterns of RelationalTables for both
Yago and DBPedia are depicted in Fig. 10 in the Appendix.
All validated patterns are also used in the following experi-
mental study.

7.3 Data Annotation
Given the table patterns obtained from Section 7.2, data

values are annotated w.r.t. types and relationships in the
validated table patterns, using kbs and the crowd. The
result of data annotation is shown in Table 5. Note that

type relationship

kb crowd error kb crowd error
WikiTables 0.60 0.39 0.01 0.56 0.42 0.02
WebTables 0.69 0.28 0.03 0.56 0.39 0.05
RelationalTables 0.83 0.17 0 0.89 0.11 0

Yago

kb crowd error kb crowd error
WikiTables 0.73 0.25 0.02 0.60 0.36 0.04
WebTables 0.74 0.24 0.02 0.56 0.39 0.05
RelationalTables 0.90 0.10 0 0.91 0.09 0

DBPedia

Table 5: Data annotation by kbs and crowd

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

F
-
M
e
a
s
u
r
e

a
t

k

k

person
 university

(a) Yago

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

F
-
M
e
a
s
u
r
e

a
t

k

k

person
 soccer

 university

(b) DBPedia

Figure 8: Top-k repair F-measure (RelationalTables)

Katara annotates data in three categories (cf. Section 6.1):
when kb has coverage for a value, the value is said to be vali-
dated by the kb (kb column in Table 5), when the kb has no
coverage, the value is either validated by the crowd (crowd
column in Table 5), or the value is erroneous (error column in
Table 5). Table 5 shows the breakdown of the percentage of
values in each category. Data values validated by the crowd
can be used to enrich the kbs. For example, a column in one
of the table in WebTables is discovered to be the type state

capitals in the United States. Surprisingly, there are
only five instances of that type in Yago6, we can add the
rest of 45 state capitals using values from the table to en-
rich Yago. Note that the percentage of kb validated data is
much higher for RelationalTables than it is for WikiTables and
WebTables. This is because data in RelationalTables is more
redundant (e.g., Italy appears in many tuples in Person ta-
ble), when a value is validated by the crowd, it will be added
to the kb, thus future occurrences of the same value will be
automatically validated by the kb.

7.4 Effectiveness of Possible Repairs
In these experiments, we evaluate the effectiveness of our

possible repairs generation by (1) varying the number k of
possible repairs; and (2) comparing with other state of the
art automatic data cleaning techniques.

Metrics. We use standard precision, recall, and F-measure
for the evaluation, which are defined as follows.

precision = (#-corrected changed values)/(#-all changes)
recall = (#-corrected changed values)/(#-all errors)
F-measure= 2× (precision× recall)/(precision + recall)

For comparison with automatic data cleaning approaches,
we used an equivalence-class [2] (i.e., EQ) based ap-
proach provided by an open-source data cleaning tool
NADEEF [12], and a ML-based approach SCARE [43].
When Katara provides nonempty top-k possible repairs for
a tuple, we count it as correct if the ground truth falls in
the possible repairs, otherwise incorrect.

6
http://tinyurl.com/q65yrba

Katara (Yago) Katara (DBPedia) EQ SCARE

P R P R P R P R
Person 1.0 0.80 1.0 0.94 1.0 0.96 0.78 0.48
Soccer N.A. 0.97 0.29 0.66 0.29 0.66 0.37
University 0.95 0.74 1.0 0.18 0.63 0.04 0.85 0.21

Table 6: Data repairing precision and recall
(RelationalTables)

Since the average number of tuples in WikiTables and
WebTables is 32 and 67, respectively, both datasets are
not suitable since both EQ and SCARE require reason-
able data redundancy to compute repairs. Hence, we use
RelationalTables for comparison. We learn from Table 5 that
tables in RelationalTables are clean, and thus are treated as
ground truth. Thus, for each table in RelationalTables, we
injected 10% random errors into columns that are covered by
the patterns to obtain a corresponding dirty instance, that
is, each tuple has a 10% chance of being modified to contain
errors. Moreover, in order to set up a fair comparison, we
used FDs for EQ that cover the same columns as the crowd
validated table patterns (see Appendix D). SCARE requires
that some columns to be correct. To enable SCARE to run,
we only injected errors to the right hand side attributes of
the FDs, and treated the left hand side attributes as correct
attributes (a.k.a. reliable attributes in [43]).

Effectiveness of k. We examined the effect of using top-k
repairs in terms of F-measure. The results for both Yago
and DBPedia are shown in Fig. 8. The result for soccer using
Yago is missing since the discovered table pattern does not
contain any relationship (cf. Fig. 10 in Appendix). Thus,
Katara cannot be used to compute possible repairs w.r.t.
Yago. We can see the F-measure stabilizes at k = 1 using
Yago, and stabilizes at k = 3 using DBPedia. The result tells
us that in general the correct repairs fall into the top ones,
which justifies our ranking of possible repairs. Next, we
report the quality of possible repairs generated by Katara,
fixing k = 3.

Results of RelationalTables. The precision/recall of Katara,
EQ and SCARE on RelationalTables, are reported in Table 6.
The result shows that Katara always has a high precision
in cases where kbs have enough coverage of the input data.
It also indicates that if Katara can provide top-k repairs,
it has a good chance that the ground truth will fall in them.
The recall of Katara depends on the coverage of the kbs

of the input dataset. For example, DBPedia has a lot of
information for Person, but relatively less for Soccer and
University. Yago cannot be used to repair Soccer because it
does not have relationships for Soccer.

Both EQ and SCARE have precision that is generally lower
than Katara, because EQ targets at computing a consistent
database with the minimum number of changes, which are
not necessarily the correct changes, and the result of SCARE
depends on many factors, such as the quality of the training
data in terms of its redundancy, and a threshold ML param-
eter that is hard to set precisely. The recall for both EQ and
SCARE is highly dependent on data redundancy, because
they both require repetition of data to either detect errors.

Results of WikiTables and WebTables. Table 7 shows the re-
sult of data repairing for WikiTables and WebTables. Both
EQ and SCARE are not applicable on WikiTables and
WebTables, because there is almost no redundancy in them.

Katara (Yago) Katara (DBPedia) EQ SCARE

P R P R P/R P/R
WikiTables 1.0 0.11 1.0 0.30 N.A.
WebTables 1.0 0.40 1.0 0.46 N.A.

Table 7: Data repairing precision and recall
(WikiTables and WebTables)

Since there is no ground truth available for WikiTables and
WebTables, we manually examine the top-3 possible repairs
returned by Katara. As we can see, Katara achieves high
precision on WikiTables and WebTables as well. In total,
Katara fixed 60 errors out of 204 errors, which is 29%. In
fact, most of remaining errors in these tables are null values
whose ground truth values are not covered by given kbs.

Summary. It can be seen that Katara complements existing
automatic repairing techniques: (1) EQ and SCARE cannot
be applied to WebTables and WikiTables since there is not
enough redundancy, while Katara can, given kbs and the
crowd; (2) Katara cannot be applied when there is no cov-
erage in the kbs, such as the case of Soccer with Yago; and
(3) when both Katara and automatic techniques can be
applied, Katara usually achieves higher precision due to
its use of kbs and experts, while automatic techniques usu-
ally make heuristic changes. The recall of Katara depends
on the coverage of the kbs, while the recall of automatic
techniques depends on the level of redundancy in the data.

8. RELATED WORK
The traditional problems of matching relational tables and

aligning ontologies have been largely studied in the database
community. A matching approach where the user is also
aware of the target schema has been recently proposed [34].
Given a source and a target single relation, the user popu-
lates the empty target relation with samples of the desired
output until a unique mapping is identified by the system. A
recent approach that looks for isomorphisms between ontolo-
gies is PARIS [37], which exploits the rich information in the
ontologies in a holistic approach to the alignment. Unfor-
tunately, our source is a relational table and our target is a
non-empty labeled graph, which make these proposals hard
to apply directly. On one hand, the first approach requires
to project all the entities and relationships in the target kb
as binary relations, which leads to a number of target rela-
tions to test that is quadratic w.r.t. the number of entities,
and only few instances in the target would match with the
source data. On the other hand, the second approach re-
quires to test 2n combinations of source attributes, given a
relation with n attributes. The reason is that PARIS relies
on structural information, thus all possible attributes should
be tested together to get optimal results. If we tested only
binary relations, structural information would not be used
and inconsistent matches may arise. For example, attributes
A,B can be matched with X,Y in the KB, while at the same
time, attributes B,C may match Z,W , resulting in incon-
sistency (Attribute B matches two different classes X and
Z). Katara actually solves this problem by first retrieving
top-k types and relationships, and then using a rank-join
based approach to obtain the most coherent pattern.

Another line of related work is known as Web tables se-
mantics understanding, which identifies the type of a column
and the relationship between two columns w.r.t. a given
kb, for the purpose of serving Web tables to search applica-

tions [13, 28, 39]. Our pattern discovery module shares the
same goal. Compared with the state of the art [28, 39], our
rank join algorithm shows superiority in both effectiveness
and efficiency, as demonstrated in the experiments.

Several attempts have been made to do repairing based
on integrity constraints (ICs) [1, 9, 11, 17, 20]; they try to
find a consistent database that satisfies given ICs in a mini-
mum cost. It is known that the above heuristic solutions do
not ensure the accuracy of data repairing [19]. To improve
the accuracy of data repairing, experts have been involved
as first-class citizen of data cleaning systems [19, 35, 44],
high quality reference data has been leveraged [19, 24, 42],
and confidence values have been placed by the users [18].
Katara differs from them in that Katara leverages kbs as
reference data. As remarked earlier, Katara and IC based
approaches complement each other.

Numerous studies have attempted to discover data qual-
ity rules, e.g., for CFDs [6] and for DCs [8]. Automatically
discovered rules are error-prone, thus cannot be directly fed
into data cleaning systems without verification by domain
experts. However, and as noted earlier, they can exploit the
output of Katara, as rules are easier to discover from clean
samples of the data [8].

Another line of work studies the problem of combining
ontological reasoning with databases [5, 33]. Although their
operation could also be used to enforce data validation, our
work differs in that we do not assume knowledge over the
constraints defined on the ontology. Moreover, constraints
are usually expressed with FO logic fragments that restrict
the expressive power to enable polynomial complexity in the
query answering. Since we limit our queries to instance-
checking over RDFS, we do not face these complexity issues.

One concern with regards to the applicability of Katara
is the accuracy and coverage of the kbs and the quality
of crowdsourcing: neither the kbs nor the crowdsourcing
is ensured to be completely accurate. There are several ef-
forts that aim at improving the quality and coverage of both
kbs [14–16] and crowdsourcing [4, 26]. With more accurate
and big kbs, Katara can discover the semantics of more
long tail tables, and further alleviate the involvement of ex-
perts. A full discussion of the above topics lies beyond the
scope of this work. Nevertheless, kbs and experts are usu-
ally more reliable than the data at hand, thus can be treated
as relatively trusted resources to pivot on.

9. CONCLUSION AND FUTURE WORK
We proposed Katara, the first end-to-end system that

bridges knowledge bases and crowdsourcing for high quality
data cleaning. Katara first establishes the correspondence
between the possibly dirty database and the available kbs

by discovering and validating the table patterns. Then each
tuple in the database is verified using a table pattern against
a kb with possible crowd involvement when the kb lacks
coverage. Experimental results have demonstrated both the
effectiveness and efficiency of Katara.

One important future work is to cold-start Katara when
there is no available kbs to cover the data, i.e., bootstrap-
ping and extending the kbs at the intensional level by so-
liciting structural knowledge from the crowd. It would be
also interesting to assess the effects of using multiple kbs

together to repair one dataset. Another line of work is to
extend our current definition of tables patterns, such as a
person column A1 is related to a country column A2 via two
relationships: A1 wasBornIn city, and city isLocatedIn A2.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In SIGMOD, 2005.

[3] G. Bouma. Normalized (pointwise) mutual information in
collocation extraction. Proceedings of GSCL, pages 31–40,
2009.

[4] S. Buchholz and J. Latorre. Crowdsourcing preference tests,
and how to detect cheating. 2011.

[5] A. Cal̀ı, G. Gottlob, and A. Pieris. Advanced processing for
ontological queries. PVLDB, 2010.

[6] F. Chiang and R. J. Miller. Discovering data quality rules.
PVLDB, 2008.

[7] F. Chiang and R. J. Miller. A unified model for data and
constraint repair. In ICDE, 2011.

[8] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 2013.

[9] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning:
Putting violations into context. In ICDE, 2013.

[10] K. W. Church and P. Hanks. Word association norms,
mutual information, and lexicography. Comput. Linguist.,
16(1):22–29, Mar. 1990.

[11] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving
data quality: Consistency and accuracy. In VLDB, 2007.

[12] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid,
I. F. Ilyas, M. Ouzzani, and N. Tang. NADEEF: a
commodity data cleaning system. In SIGMOD, 2013.

[13] D. Deng, Y. Jiang, G. Li, J. Li, and C. Yu. Scalable column
concept determination for web tables using large knowledge
bases. PVLDB, 2013.

[14] O. Deshpande, D. S. Lamba, M. Tourn, S. Das,
S. Subramaniam, A. Rajaraman, V. Harinarayan, and
A. Doan. Building, maintaining, and using knowledge bases:
a report from the trenches. In SIGMOD Conference, 2013.

[15] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
K. Murphy, T. Strohmann, S. Sun, and W. Zhang.
Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In SIGKDD, 2014.

[16] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy,
S. Sun, and W. Zhang. From data fusion to knowledge
fusion. PVLDB, 2014.

[17] W. Fan. Dependencies revisited for improving data quality.
In PODS, 2008.

[18] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction
between record matching and data repairing. In SIGMOD,
2011.

[19] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain
fixes with editing rules and master data. VLDB J., 21(2),
2012.

[20] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The
LLUNATIC Data-Cleaning Framework. PVLDB, 2013.

[21] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
YAGO2: A spatially and temporally enhanced knowledge
base from wikipedia. Artif. Intell., 194, 2013.

[22] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. VLDB J., 13(3),
2004.

[23] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and
A. Aboulnaga. Cords: Automatic discovery of correlations
and soft functional dependencies. In SIGMOD, 2004.

[24] M. Interlandi and N. Tang. Proof positive and negative
data cleaning. In ICDE, 2015.

[25] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek.
Interpreting and unifying outlier scores. In SDM, pages
13–24, 2011.

[26] R. Lange and X. Lange. Quality control in crowdsourcing:
An objective measurement approach to identifying and
correcting rater effects in the social evaluation of products
and services. In AAAI, 2012.

[27] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch,
D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey,
P. van Kleef, S. Auer, and C. Bizer. DBpedia - a
large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web Journal, 6(2):167–195, 2015.

[28] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating
and searching web tables using entities, types and
relationships. PVLDB, 3(1), 2010.

[29] C. D. Manning, P. Raghavan, and H. Schütze. Scoring,
term weighting and the vector space model. Introduction to
Information Retrieval, 100, 2008.

[30] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a
database approach for statistical inference and data
cleaning. In SIGMOD, 2010.

[31] M. Morsey, J. Lehmann, S. Auer, and A. N. Ngomo.
Dbpedia SPARQL benchmark - performance assessment
with real queries on real data. In ISWC, 2011.

[32] J. Pasternack and D. Roth. Knowing what to believe (when
you already know something). In COLING, 2010.

[33] A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo,
M. Lenzerini, and R. Rosati. Linking data to ontologies. J.
Data Semantics, 10, 2008.

[34] L. Qian, M. J. Cafarella, and H. V. Jagadish.
Sample-driven schema mapping. In SIGMOD, 2012.

[35] V. Raman and J. M. Hellerstein. Potter’s Wheel: An
interactive data cleaning system. In VLDB, 2001.

[36] S. Song, H. Cheng, J. X. Yu, and L. Chen. Repairing vertex
labels under neighborhood constraints. PVLDB, 7(11),
2014.

[37] F. M. Suchanek, S. Abiteboul, and P. Senellart. Paris:
Probabilistic alignment of relations, instances, and schema.
PVLDB, 2011.

[38] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar.
Crowdsourced enumeration queries. In ICDE, 2013.

[39] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen,
F. Wu, G. Miao, and C. Wu. Recovering semantics of tables
on the web. PVLDB, 2011.

[40] M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller.
Continuous data cleaning. In ICDE, 2014.

[41] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 2012.

[42] J. Wang and N. Tang. Towards dependable data repairing
with fixing rules. In SIGMOD, 2014.

[43] M. Yakout, L. Berti-Equille, and A. K. Elmagarmid. Don’t
be SCAREd: use SCalable Automatic REpairing with
maximal likelihood and bounded changes. In SIGMOD,
2013.

[44] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and
I. F. Ilyas. Guided data repair. PVLDB, 2011.

[45] C. J. Zhang, L. Chen, H. V. Jagadish, and C. C. Cao.
Reducing uncertainty of schema matching via
crowdsourcing. PVLDB, 6, 2013.

APPENDIX
A. PROOF OF THEOREM 1

The expected uncertainty reduction is computed as the
difference between the current entropy and the expected one.

E(∆H(ϕ))(v) = −HP (ϕ) +
∑

a Pr(v = a)Hϕi∈Pv=a (ϕi)

The uncertainty of the conditional distribution of patterns
given v = a, Hϕi∈Pv=a(ϕi) can be computed as follows:

Hϕi∈Pv=a (ϕi)

=
∑

ϕi∈Pv=a

Pr(ϕi)∑
ϕi∈Pv=a

Pr(ϕi)
log2

Pr(ϕi)∑
ϕi∈Pv=a

Pr(ϕi)

 Pattern Validation

Return: a table pattern

Algorithm: entropy
based scheduling

 Data Annotation

Return: annotated data,
new facts, top-k repairs

Algorithm: Inverted list
based approach

 Pattern Discovery

Return: candidate
table patterns

Algorithm: rank-join

 INPUT

Trusted KB K

Table T

 OUTPUT

Possible repairs

Crowd validated
KB validated

Enriched KB K'

Table T'

 KATARA

Figure 9: Workflow of Katara

B(capital)

A(country)

hasCapital
55

hasCurrency //
hasOfficalLanguage

))

C(currency)

D(language)

(a) Person(Yago)

A(club) D(director)

B(positions) E(stadium)

C(player)

(b) Soccer(Yago)

B(states)

A(university)

isLocatedIn
55

isLocatedIn

))
C(city)

isLocatedIn

OO

(c) University(Yago)

B(city)

A(country)

capital
66

currency //
officalLanguage

((

C(currency)

D(language)

(d) Person(DBPedia)

A(SoccerClub)

ground **

D(SoccerManager)
managerclubs
oo

C(SoccerPlayer)

clubs

OO

position

��

E(Stadium)

B

(e) Soccer(DBPedia)

B(AdministrativeRegion)

subdivisionName
��

A(University)
city //

state
77

C(city)

areaCodeww
postalCode

��
D E

(f) University(DBPedia)

Figure 10: Validated table patterns

However,
∑

ϕi∈Pv=a
Pr(ϕi) is exactly Pr(v = a). Thus,

we can replace for Hϕi∈Pv=a(ϕi).

E(∆H(ϕ))(v)

= −HP (ϕ) +
∑

a Pr(v = a)
∑

ϕi∈Pv=a

Pr(ϕi)
Pr(v=a)

log2
Pr(ϕi)
Pr(v=a)

= −HP (ϕ)+
∑

a

∑
ϕi∈Pv=a

Pr(ϕi)(log2 Pr(ϕi)−log2 Pr(v = a))

= −HP (ϕ) +
∑

a

∑
ϕi∈Pv=a

Pr(ϕi) log2 Pr(ϕi)

−
∑

a

∑
Pv=a

Pr(ϕi) log2 Pr(v = a)

The first double summation is exactly the summation over
all the current patterns, ordering them by the value of v.
Thus, we have the following:

E(∆H(ϕ))(v)

= −HP (ϕ) +
∑

Pr(ϕ) log2 Pr(ϕ)

−
∑

a log2 Pr(v = a)
∑

ϕi∈Pv=a
Pr(ϕi)

= −HP (ϕ) + HP (ϕ)−
∑

a log2 Pr(v = a)× Pr(v = a)

= −
∑

a Pr(v = a) log2 Pr(v = a)

= H(v)

The above result proves Theorem 1.

B. TOP-K PATTERNS ANALYSIS
Figure 11 shows the F-measure of the top-k patterns vary-

ing k on WikiTables and RelationalTables. It tells us that
RankJoin converges much quicker than other methods on
Yago, while all methods converge quickly on DBPedia due to
its small number of types.

C. PATTERN VALIDATION
Figure 12 shows the quality of the validated pattern, vary-

ing the number of questions per variable q, on WikiTables
and RelationalTables. Notice that RelationalTables only re-
quire one question per variable to achieve 1.0 precision and
recall. This is because RelationalTables are less ambiguous
compared with WikiTables and WebTables. Experts can cor-
rectly validate every variable with only one question.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10 12 14 16 18 20

F
-
M

e
a
s
u
r
e
 a

t
 k

k

 Support
 MaxLike

 PGM
 RankJoin

(a) Yago (WikiTables)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10 12 14 16 18 20

F
-
M

e
a
s
u
r
e
 a

t
 k

k

 Support
 MaxLike

 PGM
 RankJoin

(b) DBPedia (WikiTables)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

F
-
M

e
a
s
u
r
e
 a

t
 k

k

 Support
 MaxLike

 PGM
 RankJoin

(c) Yago (RelationalTables)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14 16 18 20

F
-
M

e
a
s
u
r
e
 a

t
 k

k

 Support
 MaxLike

 PGM
 RankJoin

(d) DBPedia (RelationalTables)

Figure 11: Top-k F-measure

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 1 2 3 4 5 6 7 8 9

P
/R

q

Precision

Recall

(a) Yago (WikiTables)

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1 2 3 4 5 6 7 8 9

P
/R

q

Precision

Recall

(b) DBPedia (WikiTables)

 0.99

 0.995

 1

 1.005

 1.01

 1 2 3 4 5 6 7 8 9

P
/R

q

Precision

Recall

(c) Yago (RelationalTables)

 0.99

 0.995

 1

 1.005

 1.01

 1 2 3 4 5 6 7 8 9

P
/R

q

Precision

Recall

(d) DBPedia (RelationalTables)

Figure 12: Pattern validation P/R

D. DATA REPAIRING
We use the following FDs for algorithm EQ, referring to

Fig. 10.

(1) Person, we used A→ B,C,D.

(2) Soccer, we used C → A,B, A→ E, and D → A.

(3) University, we used A→ B,C and C → B.

