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Abstract Violations of functional dependencies (FDs) and
conditional functional dependencies (CFDs) are common in
practice, often indicating deviations from the intended data
semantics. These violations arise in many contexts such as
data integration and Web data extraction. Resolving these
violations is challenging for a variety of reasons, one of them
being the exponential number of possible repairs. Most of the
previous work has tackled this problem by producing a single
repair that is nearly optimal with respect to some metric. In
this paper, we propose a novel data cleaning approach that
is not limited to finding a single repair, namely sampling
from the space of possible repairs. We give several motivat-
ing scenarios where sampling from the space of CFD repairs
is desirable, we propose a new class of useful repairs, and we
present an algorithm that randomly samples from this space
in an efficient way. We also show how to restrict the space of
repairs based on constraints that reflect the accuracy of dif-
ferent parts of the database. We experimentally evaluate our
algorithms against previous approaches to show the utility
and efficiency of our approach.
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1 Introduction

Data quality is a key requirement for effective data analy-
sis and processing. In many situations, the quality of busi-
ness and scientific data is impaired by various sources of
noise (e.g., heterogeneity of data formats, imperfection of
information extractors, and imprecision of data generating
devices). This leads to data quality problems such as missing
values [14,26], violated integrity constraints [4,9,23], and
duplicate records [16,27]. These problems cost enterprises
billions of dollars annually and may have unpredictable
consequences in mission-critical tasks [15]. Databases that
experience data quality problems are usually referred to as
unclean/dirty databases. The process of data cleaning refers
to detecting and correcting errors in the data. A great deal of
effort has been directed to improving the effectiveness and
efficiency of data cleaning.

Functional dependencies (FDs) can be thought of as
integrity constraints that encode data semantics. In that sense,
violations of FDs indicate deviations from the expected
semantics, possibly caused by data quality problems. In prac-
tice, FDs tend to break after integrating heterogeneous data
or extracting data from the Web. Even in a traditional data-
base, unknown FDs may be hidden in a complex evolving
schema, or the database administrator may choose not to
enforce some FDs for various reasons. For example, Fig. 1
shows a database instance and a set of FDs, some of which are
violated (e.g., tuples t2 and t3 violate ZIP→City, tuples
t2 and t3 violate Name→SSN,City, and tuples t1 and t4
violate ZIP→State,City).

There may be many ways to modify a table so that it satis-
fies a set of FDs. One is to delete the offending tuples (ideally,
delete the fewest possible such tuples) such that the remain-
der satisfies all the FDs [10,11]. For example, we can repair
the relation instance in Fig. 1 by deleting t1 and t3. However,
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Fig. 1 An inconsistent database and possible repairs

deleting an entire tuple may result in loss of “clean” infor-
mation iff only one of its attribute values is incorrect. Alter-
natively, we can modify selected attribute values (we do not
consider adding new tuples as this would not fix any existing
violations). For example, Fig. 1 shows two possible repairs
obtained by modifying some attribute values; question marks
indicate that an attribute value (to which we refer as a cell)
can be modified to one of several values in order to satisfy
the FDs.

One extension of FDs is conditional functional dependen-
cies (CFDs), which are frequently used in the context of data
cleaning [8,12,17]. A CFD consists of a template FD and a
tableau that contains a set of patterns. The role of the patterns
is restricting the scope of the template FD to a specific set
of tuples in the database instance and/or restricting the right-
hand-side (RHS) attribute of the template FD to a certain
constant. Clearly, FDs represent a subclass of CFDs.

For instance, an example CFD defined on the data-
base in Fig. 1 is (City→ State, (‘LA’, ‘CA’)).
This CFD indicates that FD City→State holds for
tuples with City = ‘LA’. Also, State must be equal
to ‘CA’ for these tuples. Another CFD is (State, ZIP
→City, (‘MI’,_,_)), which indicates that the FD State,
ZIP→City holds for tuples with State = ‘MI’.

In this paper, we present a novel approach to resolving
violations of FDs and CFDs, which is to sample from the
space of possible repairs. Our technique is complementary
to existing data quality and cleaning tools, and, as we will
show, it is useful in various practical situations.

1.1 Motivating examples

Independently of how we choose to repair constraint viola-
tions, different repair frameworks have appeared in previ-
ous work. One approach is to produce a single, nearly opti-
mal repair, in terms of the number of deletions or attribute
modifications (e.g., [9,12,23]). For instance, we might prefer
Repair 2 in Fig. 1 because it makes fewer modifications.

The main shortcoming of this approach is that all other pos-
sible repairs, including other minimal repairs, are discarded.

A second approach—consistent query answering—
computes answers to selected classes of queries that are valid
in every “reasonable” repair [4,10,11,20,30,31]. In Fig. 1,
a consistent answer of the query that selects all tuples with
ZIP code 90101, with respect to the two illustrated repairs,
is {t4}. However, consistent query answering may produce
empty results iff there are multiple ways of repairing the
same tuple.

A third approach is to have a domain expert manually
clean the data. Unfortunately, this approach does not scale
well with the data size and requires constant attention from
the expert.

We argue that one-shot cleaning algorithms and consis-
tent query answering do not address the needs of at least the
following applications.

Interactive data cleaning Consider an interactive data clean-
ing process, where several possible CFD repairs (of a whole
table, a subset of a table, or a single tuple) are suggested to
the user. The user may then perform some of the suggested
repairs and request a new set of suggestions, in which pre-
viously performed repairs do not change. For example, in
Fig. 1, Repair 1 and Repair 2 provide two alternatives
for modifying each tuple in the database. A user might pre-
fer changing t1 according toRepair 1 and prefer changing
t2 according to Repair 2. Note that this application is not
tied to a specific query, so consistent answers are not suitable.
Moreover, the application requires several suggested repairs,
but not necessarily all possible repairs, to be generated at any
given time. Hence, computing a single repair is not sufficient.

Uncertain query answering We can generalize the notion
of consistent query answering to an approach that com-
putes probabilistic query answers as though each possible
repair was a possible world. Even if generating all repairs is
intractable, computing a subset of the possible repairs may
be sufficient to obtain meaningful answers. One example of
such a framework is the Monte Carlo Database (MCDB)
[22]. Again, computing a single repair or a consistent query
answer is not sufficient for this application.

1.2 Challenges and contributions

Our motivating applications have the following requirements
and challenges in common.

– Due to the exponential space of possible FD and CFD
repairs, we may not be able to, or may not want to, gen-
erate all possible repairs. Instead, the challenge lies in
finding a meaningful subset of repairs that is sufficiently
large and can be generated in an efficient way.
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– We need to ensure that the constraints that reflect the
user’s confidence in the data (e.g., specifying which cells
must remain unchanged) are satisfied during the repairing
process.

In this paper, we propose a novel data cleaning tech-
nique that accommodates our motivating applications and
addresses the above challenges. Our approach is based on
efficiently generating a sample from a meaningful repair
space. Our contributions in this paper are as follows.

– We introduce a novel space of possible repairs, called
cardinality-set-minimal, that combines the advantages
of two existing spaces: set-minimal and cardinality-
minimal.

– We give an efficient algorithm for generating a sample of
cardinality-set-minimal repairs of FD violations. A major
challenge here is the interplay among violations of FDs:
repairing a tuple that violates one FD may introduce a
new violation of another FD. Note that although existing
heuristics for finding a single nearly optimal repair may
be modified to generate multiple random repairs, they do
not give any guarantees on the space of generated repairs
(more details in Sect. 9).

– We introduce a mechanism that partitions the input
instance into disjoint blocks that can be repaired inde-
pendently in order to significantly improve the efficiency
of repair sampling.

– We describe a modification of our approach that allows
users to specify constraints on the set of cells that
reflect the user’s confidence in the accuracy of data. We
use a confidence model that is different from previous
work (e.g., [9,12,23]), where database tuples are asso-
ciated with weights reflecting their accuracy (refer to
Sects. 3, 5.3, and 9.2).

– We extend our sampling algorithm to generate repairs of
CFD violations.

We also conduct an experimental study to show the scal-
ability of our repair sampling technique.

The remainder of the paper is organized as follows. In
Sect. 2, we describe the notation used in this paper. In Sect. 3,
we define our space of possible repairs. In Sect. 4, we discuss
repairing violations of a single FD. In Sect. 5, we introduce
our approach to sample from the new space of possible repairs
for violations of multiple FDs and we show how to enforce
user-defined hard constraints. In Sect. 6, we improve the effi-
ciency of the sampling algorithm by partitioning the data into
separately repairable blocks. In Sect. 7, we extend our sam-
pling algorithm to support CFDs. In Sect. 8, we present an
experimental study of our sampling approach. In Sect. 9, we
discuss related work and explain why previous data cleaning
algorithms cannot be extended to generate a sample from a

well-defined space of repairs. We conclude the paper with
final remarks in Sect. 10.

2 Notation and definitions

Let R be a relation schema consisting of m attributes,
denoted (A1, . . . , Am). We use the notation A1, A2, . . . , Ak

to represent the union of the concatenated attributes (i.e,
{A1, A2, . . . , Ak}). Let Dom(A) be the domain of an
attribute A. We denote by I an instance of R consist-
ing of n tuples, each of which belongs to the domain
Dom(A1) × . . . × Dom(Am) and has a unique identifier.
We denote by T I Ds(I ) the identifiers of tuples in I and use
the terms “tuple” and “tuple identifier” interchangeably. Let
ADom(A, I ) be the active domain of attribute A in I , which
is defined as the set of values of attribute A that appear in
tuples of I (i.e., ADom(A, I ) = ΠA(I )).

We refer to an attribute A ∈ R of a tuple t ∈ T I Ds(I )
as a cell. Each cell C is identified by a pair (t, A) consisting
of the tuple t ∈ T I Ds(I ) and the attribute A ∈ R. For a
set of attributes X ⊆ R, we denote by (t, X) the set of cells
{(t, A) : A ∈ X}. We denote by C I Ds(I ) = {(t, A) : t ∈
T I Ds(I ), A ∈ R} the set of all cell identifiers in I . We
denote by I (t, A) the value of a cell (t, A) in an instance
I . If the instance I is clear from the context, we write t[A]
instead of I (t, A).

For two attribute sets X, Y ⊆ R, an FD X → Y holds on
an instance I , denoted I |� X → Y , iff for every two tuples
t1, t2 in I such that t1[X ] = t2[X ], t1[Y ] = t2[Y ]. The set of
FDs defined over R is denoted as Σ . We assume that Σ is
minimal and in canonical form [2]; each FD is in the form
X → A, where X ⊆ R and A ∈ R. I is inconsistent with
respect to Σ iff I violates at least one FD in Σ . For an FD
X → A, we refer to X as the left-hand-side (LHS) attributes,
and we refer to A as the RHS attribute.

A recent generalization of FDs, named CFDs, has been
proposed in [8]. CFDs are regular FDs that are defined
only on a subset of tuples. A CFD is defined as a pair
(X → A, tc), where X → A is an FD, and tc is a
(pattern) tuple whose attributes are X A. Each attribute of
tc can be either a constant or an unnamed variable ‘_’.
An instance tuple t matches pattern tuple tc on X , written
t[X ] � tc[X ], iff∀B ∈ X (tc[B] = t[B] ∨ tc[B] = _).
CFDs are divided into two variants: variable CFDs, where
tc[A] = _ , and constant CFDs, where tc[A] is a constant.
A variable CFD (X → A, tc) indicates that for any two
tuples t1, t2, t1[X ] = t2[X ] � tc[X ] → t1[A] = t2[A].
A constant CFD (X → A, tc) indicates that for each tuple
t, t[X ] � tc[X ] → t[A] = tc[A]. Without loss of generality,
we assume that for a constant CFD (X → A, tc), all values
in tp[X ] are constant [17].
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For example, consider a relation Address
(StreetNumber, StreetName, City, Country,
PostalCode). A constant CFD defined over Address
is (PostalCode → City, (N2L3G1, Waterloo)),
which indicates that for all tuples with PostalCode =
N2L3G1, City must be equal to Waterloo. An exam-
ple of a variable CFD on relation Address is (Country,
PostalCode→ StreetName, (UK, _, _)), which indi-
cates that for pairs of tuples with Country = UK and equal
values of PostalCode, their StreetName values must
be equal.

In general, there is a large number of FD repairs for a
given database instance. In this paper, we use the notion of
V-instances, which was introduced in [23], to concisely rep-
resent data instances. In V-instances, cells can be either set to
constants or to variables that can be instantiated in a specific
way.

Definition 1 (V-instance) Given a set of variables {vA
1 ,

vA
2 , . . .} for each attribute A ∈ R, a V-instance of R is an

instance of R where each cell (t, A) can be assigned to either
a constant in Dom(A) or a variable from the set {vA

1 , vA
2 , . . .}.

A V-instance I represents multiple ground (i.e., variable
free) instances of R that can be obtained by assigning vari-
ables in I as follows. Each variable vA

i in attribute A in I
can be assigned to any value from Dom(A)\ADom(A, I )
and such that no two distinct variables vA

i and vA
j have equal

values.
Finding at least one ground instance for a V-instance is

always possible iff the number of domain values for each
attribute is larger than the number of tuples in the input
database (e.g., in case of unbounded and high-cardinality
domains). In this paper, we assume that all attributes satisfy
this condition. Handling the case in which attribute domains
are bounded and have low cardinality is left for future work.

The main use of variables in the context of repairing
FD violations is representing unknown values that emerge
from modifying the LHS attributes of a violated FD. In the
remainder of the paper, we refer to a V-instance as simply an
instance.

3 Spaces of possible repairs

A repair of an inconsistent instance I with respect to a set
of FDs Σ is another instance I ′ that satisfies Σ . In general,
violations of FDs can be repaired by either deleting erro-
neous tuples (e.g., [10,24]) or changing erroneous cells (e.g.,
[9,23]). In this paper, we only consider repairs obtained by
modifying tuple attributes. An FD repair is formally defined
as follows:

Definition 2 (FD repair) Given a set of FDs Σ defined over
a relation R, and an instance I of R that does not satisfy

Σ , a repair of I is another instance I ′ of R such that I ′ |�
Σ, T I Ds(I ) = T I Ds(I ′) and C I Ds(I ) = C I Ds(I ′).

That is, a repair I ′ of an inconsistent instance I is an
instance that satisfies Σ and has the same set of tuple and cell
identifiers (i.e., tuples or columns are not added or deleted).

We denote by Repairs(I,Σ) the set of all possible
repairs of an instance I w.r.t. Σ . Let Δ(I, I ′) be the iden-
tifiers of cells that have different values in I and I ′, that
is, Δ(I, I ′) = {C ∈ C I Ds(I ) : I (C) 
= I ′(C)}. For
example, in Fig. 2, Δ(I, I2) = {(t2, B), (t3, B)}. Also, we
denote by λ(I, I ′) the set of changes made in I in order to
obtain I ′, where each change is represented as a pair of a
cell and the new value assigned to this cell in I ′. Formally,
λ(I, I ′) = {(C, x) : I (C) 
= I ′(C)∧ x = I ′(C)}. For exam-
ple, in Fig. 2, λ(I, I4) = {((t1, A), 7), ((t1, B), 3)}.

It is useful to filter out repairs that are less likely to rep-
resent the actual clean database. A widely used criterion is
the minimality of changes (e.g., [9–12,21,23]). Frequently
used definitions for minimality of changes are described as
follows.

Definition 3 (Cardinality-minimal repair [23]) A repair I ′
of I is cardinality-minimal iff there is no repair I ′′ of I such
that |Δ(I, I ′′)| < |Δ(I, I ′)|.

That is, a repair I ′ of I is cardinality-minimal iff the num-
ber of changed cells in I ′ is the minimum across all repairs
of I .

A weighted version of the cardinality-minimal repairs is
used in [9,12]. Each cell C is associated with a weight in the
range [0, 1], denoted w(C), reflecting the confidence placed
by user in the accuracy of C . Also, the distance between any
two values x and y is measured using a distance function
dis(x, y). The cost of a repair I ′ of I is defined as follows.

cost (I, I ′) =
∑

C∈Δ(I,I ′)
w(C) · dis

(
I (C), I ′(C)

)
(1)

Definition 4 (Cost-minimal repair [9]) A repair I ′ of I
is cost-minimal iff there is no repair I ′′ of I such that
cost (I, I ′′) < cost (I, I ′).

Another definition of minimal repairs uses set-containment
for describing minimality of changes.

Definition 5 (Set-minimal repair [4,24]) A repair I ′ of I is
set-minimal iff there is no repair I ′′ of I such that λ(I, I ′′) ⊂
λ(I, I ′).

That is, a repair I ′ of I is set-minimal if no strict subset
of the changed cells in I ′ can be reverted to their original
values in I without violating Σ . Note that we use the symbol
⊂ to indicate strict (proper) subset (also written as � in other
publications).

Previous approaches that generate a single repair of an
inconsistent relation instance typically find a nearly optimal
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Fig. 2 Examples of various types of repairs

Fig. 3 The relationship between spaces of possible repairs

cost-minimal or cardinality-minimal repair (finding a cost-
minimal or a cardinality-minimal repair is NP-hard [9,10,
23]). In contrast, prior work on consistent query answering
considers set-minimal repairs [11,21]. Repairs that are not
set-minimal are not desirable since they involve unnecessary
changes [4,11,24].

We introduce a novel space of repairs called cardinality-
set-minimal. Our goal is to provide a space of repairs that
can be sampled in an efficient manner and is neither too
restrictive (e.g., cost-minimal or cardinality-minimal) nor too
large (e.g., set-minimal).

Definition 6 (Cardinality-set-minimal repair) A repair I ′
of I is cardinality-set-minimal iff there is no repair I ′′ of I
such that Δ(I, I ′′) ⊂ Δ(I, I ′).

That is, a repair I ′ of I is cardinality-set-minimal iff no
subset C of the changed cells in I ′ can be reverted to their
original values in I without violating Σ , even if we allow
modifying the cells in Δ(I, I ′)\C to other values.

In Fig. 2, we show various types of repairs of an instance I ,
with the changed cells grayed out. Repair I1 is cardinality-

minimal because no other repair has fewer changed cells.
Repair I1 is also cardinality-set-minimal and set-minimal.
Repairs I2 and I3 are set-minimal because reverting any
subset of the changed cells to the values in I will violate
A→ B. On the other hand, I3 is not cardinality-set-minimal
(or cardinality-minimal) because reverting t2[B] and t3[B]
back to 3 and changing t1[B] to 3 instead of 5 gives a repair
of I , which is the same as I1. Repair I4 is not set-minimal
because I4 still satisfies A → B after reverting t1[A] to 1.
The relationship among various minimal repairs is depicted
in Fig. 3 and described in the following lemma.

Lemma 1 The set of cardinality-minimal repairs is a subset
of cardinality-set-minimal repairs. The set of cardinality-set-
minimal repairs is a subset of set-minimal repairs. Finally,
the set of cost-minimal repairs is a subset of set-minimal
repairs if for each cell C ∈ C I Ds(I ), w(C) > 0.

Proof For any two repairs I ′ and I ′′ of I ,

Δ(I, I ′′) ⊂ Δ(I, I ′)→ |Δ(I, I ′′)| < |Δ(I, I ′)|
This implies that for any repair I ′ of I ,

�I ′′ ∈ Repairs(I,Σ)
(|Δ(I, I ′′)| < |Δ(I, I ′)|)

→ �I ′′ ∈ Repairs(I,Σ)
(
Δ(I, I ′′) ⊂ Δ(I, I ′)

)

Therefore, if I ′ is a cardinality-minimal repair, I ′ is
cardinality-set-minimal.

Similarly, for any two repairs I ′ and I ′′ of I ,

λ(I, I ′′) ⊂ λ(I, I ′)↔
Δ(I, I ′′) ⊂ Δ(I, I ′) ∧ ∀C ∈ Δ(I, I ′′)

(
I ′′(C) = I ′(C)

)

and thus,

λ(I, I ′′) ⊂ λ(I, I ′)→ Δ(I, I ′′) ⊂ Δ(I, I ′)
�I ′′ ∈ Repairs(I,Σ)

(
Δ(I, I ′′) ⊂ Δ(I, I ′)

)

→ �I ′′ ∈ Repairs(I,Σ)
(
λ(I, I ′′) ⊂ λ(I, I ′)

)

Thus, if I ′ is a cardinality-set-minimal repair, I ′ is set-
minimal as well.

Since dis is a distance function, for each two different val-
ues x and y, dis(x, y) > 0. Also, for each cell C, w(C) > 0.
It follows:

λ(I, I ′′) ⊂ λ(I, I ′)→ cost (I, I ′′) < cost (I, I ′)
and,

�I ′′ ∈ Repairs(I,Σ)
(
cost (I, I ′′) ⊂ cost (I, I ′)

)

→ �I ′′ ∈ Repairs(I,Σ)
(
λ(I, I ′′) ⊂ λ(I, I ′)

)

In other words, if I ′ is a cost-minimal repair, I ′ is set-
minimal as well. ��

In general, cost-minimal repairs are not necessarily
cardinality-minimal or cardinality-set-minimal, and vice
versa. However, for a constant weighting function w (i.e., all
cells are equally trusted) and a constant distance function dis
(i.e., the distance between any pair of values is the same), the
set of cost-minimal repairs and the set of cardinality-minimal
repairs coincide.

123



108 G. Beskales et al.

4 Repairing violations of a single FD

In this section, we discuss how to generate various types of
repairs when Σ consists of a single FD.

First, we define the concept of clean cells and relate it to
cardinality-minimal and cardinality-set-minimal repairs.

We define a clean set of cells C ⊆ C I Ds(I ) with respect
to a set of FDs Σ as follows.

Definition 7 (Clean cells) A set of cells C in an instance I is
clean iff there is at least one repair I ′ ∈ Repairs(I,Σ) such
that ∀C ∈ C, I ′(C) = I (C).

That is, a set of cells in an instance I is clean if their
values in I can remain unchanged while obtaining a repair of
I . For example, in Fig. 2, the sets {(t1, A), (t1, B), (t2, A)}
and {(t1, B), (t2, A), (t2, B)} are clean, while the set {(t1, A),
(t1, B), (t2, A), (t2, B)} is not clean.

Definition 8 (Maximum set of clean cells) A set of cells C is
a maximum clean set iff C is clean and no other clean set has
greater cardinality than C.

For example, {(t1, A), (t2, A), (t2, B), (t3, A), (t3, B)}
and {(t1, B), (t2, A), (t2, B), (t3, A), (t3, B)} in Fig. 2 are
maximum clean sets.

Definition 9 (Maximal set of clean cells) A set of cells C is
a maximal clean set iff C is clean and no strict superset of C
is clean.

For example, the sets {(t1, A), (t1, B), (t2, A), (t3, B)}
and {(t1, A), (t2, A), (t2, B), (t3, A), (t3, B)} in Fig. 2 are
maximal clean sets.

In the following theorem, we establish the link between
clean cells and cardinality-minimal and cardinality-set-
minimal repairs.

Theorem 1 Given an input instance I and a set of FDs Σ ,
a repair I ′ of I with respect to Σ is cardinality-set-minimal
iff the set of unchanged cells in I ′ (i.e., C I Ds(I ′)\Δ(I, I ′))
is a maximal clean set of cells. A repair I ′ of I with respect
to Σ is cardinality-minimal iff the set of unchanged cells in
I ′ is a maximum clean set.

Proof We prove the “if” condition of the first statement as
follows. Let C = C I Ds(I ′)\Δ(I, I ′) be a maximal clean
set of cells. We cannot add any cell to C without making
C unclean. Based on the definition of clean cells (Defini-
tion 7), there does not exist any other repair of I that has a
set of unchanged cells C′ that is a strict superset of C (i.e.,
�I ′′ ∈ Repairs(I,Σ)(Δ(I, I ′′) ⊂ Δ(I, I ′)). Thus, I ′ is a
cardinality-set-minimal repair.

We prove the “only if” condition of the first statement as
follows. Let I ′ be a cardinality-set-minimal repair of I . The
set C = C I Ds(I ′)\Δ(I, I ′) is a clean set of cells because I ′
is a repair. Because I is cardinality-set-minimal, no cells in

Δ(I, I ′) can be reverted back to their original values without
violating Σ , even if we allow remodifying other changed
cells (i.e., �I ′′ ∈ Repairs(I,Σ)(Δ(I, I ′′) ⊂ Δ(I, I ′))). It
follows that we cannot extend C by adding one or more cells
without violating the clean cells property. It follows that C is
a maximal clean set of cells.

Similarly, we can prove the second statement in the the-
orem by replacing the set-containment minimality criterion
with the set-cardinality-minimality criterion. ��

In general, obtaining a maximum clean set of cells (and
hence a cardinality-minimal repair) is NP-complete [23].
However, as we will show shortly, finding a maximum clean
set of cells for a single FD can be done in PTIME. On the
other hand, obtaining a maximal clean set of cells (and hence
a cardinality-set-minimal repair) can still be done in PTIME
for multiple FDs (Sect. 5).

Based on Theorem 1, we can generate a cardinality-set-
minimal repair by obtaining a maximal clean set and modi-
fying the remaining cells suitably. In this section, we assume
there is a single FD in Σ , and we extend our algorithm to
multiple FDs in Sect. 5. Assuming that Σ contains an FD
X → A, we describe in Algorithm 1 how to generate a max-
imal clean set of cells, namely CleanSet , and how to change
the cells outside CleanSet in order to obtain a cardinality-
set-minimal repair.

Algorithm 1 is a randomized algorithm and thus invoking
it multiple times gives a random sample of cardinality-set-
minimal repairs. Moreover, it is possible to modify the algo-
rithm to generate cardinality-minimal repairs (for a single
FD) as we show later in this section.

Algorithm 1 Gen-Repair-1FD(I,X → A)
1: CleanSet ← ∅
2: I ′ ← I
3: for each tuple t ∈ T I Ds(I ) (based on a random iteration order) do
4: if ∃(t ′, X A) ⊂ CleanSet such that I (t, X) = I (t ′, X) and

I (t, A) 
= I (t ′, A) then
5: randomly select k−1 cells from (t, X)∪{(t, A)} and add them

to CleanSet , where k is the number of attributes in X ∪ {A}
6: else
7: add (t, X) and (t, A) to CleanSet
8: end if
9: end for
10: for each cell (t, Ai ) ∈ C I Ds(I )\CleanSet do
11: if Ai ∈ X (i.e., Ai is a left-hand-side attribute) then
12: assign any value c ∈ Dom(Ai ) to I ′(t, Ai ) such that

�(t ′, X A) ⊂ CleanSet where I ′(t ′, X) = I ′(t, X) ∧
I ′(t ′, A) 
= I ′(t, A)

13: else
14: locate a tuple t ′ such that (t ′, X A) ⊂ CleanSet and

I ′(t ′, X) = I ′(t, X)

15: I ′(t, A)← I ′(t ′, A)

16: end if
17: add (t, Ai ) to CleanSet
18: end for
19: return I ′
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Fig. 4 An example of repairing violations of a single FD A→ B

In lines 3–9, the algorithm iterates over the tuples in I
in random order and expands the set CleanSet by inserting
cells that are consistent with the cells already in CleanSet . In
lines 10–18, unclean cells are updated accordingly to obtain
a cardinality-set-minimal repair I ′.

The set CleanSet constructed in lines 3–9 represents a
clean set of cells because (1) all complete tuples in the set
CleanSet are consistent w.r.t. X → A, and (2) we can find
an assignment to the cells that are not in CleanSet such that
X → A is not violated. That is, for each tuple t such that
(t, X) ∈ CleanSet and (t, A) 
∈ CleanSet , we set (t, A) to
the value of A of the first tuple processed by the algorithm
with attributes X equal to t[X ]. Also, for each tuple t such
that (t, B) 
∈ CleanSet , for an attribute B ∈ X , and (t, A) ∈
CleanSet , we assign (t, B) to a value from Dom(B) that
results in no violations of X → A. Such a value must exist,
assuming that Dom(B) is unbounded.

The set CleanSet is a maximal clean set since adding any
cell (t, Ai ) from C I Ds(I )\CleanSet to CleanSet results
in a violation of X → A. Thus, the constructed instance is a
cardinality-set-minimal repair.

In order to generate a sample of cardinality-set-minimal
repairs, we run Algorithm 1 multiple times. Each run will
generate a maximal clean set (by iterating over each tuple in
random order in line 3) and modify the remaining tuples to
satisfy the FD.

In Fig. 4, we show an example of repairing a single FD
A → B. To generate a cardinality-set-minimal repair, we
first obtain a maximal clean set of cells; say the algorithm
chooses {(t1, A), (t1, B), (t2, B), (t3, A)}. Then, we obtain
a cardinality-set-minimal repair by setting the value of the
unclean cell (t2, A) to 2 and (t3, B) to 2.

Obtaining a maximum clean set of cells, and hence, a
cardinality-minimal repair can be performed in PTIME when
Σ contains a single FD. To do so, lines 3–9 in Algorithm 1
can be changed as follows to obtain a maximum clean set.
For each group of tuples with the same value of attributes
X , we first insert (t, X A) into CleanSet for each tuple t
whose attribute A is associated with the most frequent value
of A across all tuples in the group. For the remaining tuples
in the group, we insert randomly selected k − 1 cells per
tuple, where k = |X ∪{A}|. Clearly, each one of these tuples

must have at least one cell changed, which is the cell that is
not inserted into CleanSet . Thus, it is not possible to obtain
a clean set of cells with greater cardinality than CleanSet
(i.e., CleanSet is a maximum clean set of cells). Updating
the unclean cells in lines 10–18 remains unchanged.

For example, returning to Fig. 4, the value 3 is the most
frequently occurring value of B for A = 1, so first we add
(t2, A), (t2, B), (t3, A), and (t3, B) to CleanSet ., Then, we
consider (t1, A) and (t1, B) next. The latest cell inserted into
CleanSet is modified to resolve the violation. For example,
if (t1, A) is considered first in line 3, we will change the value
of (t1, B) from two to three in line 15. Otherwise, we will
change the value of (t1, A) from one to, say, two, in line 12.

5 Sampling possible repairs for multiple FDs

The results indicated by Theorem 1 carry over to the case
of multiple FDs in Σ . However, obtaining a maximum clean
set is now equivalent to obtaining a repair with the minimum
number of cell changes, which is NP-hard [23]. Fortunately,
generating a maximal clean set remains doable in PTIME, as
we show in this section.

The sampling space should be neither too restrictive (and
thus missing too many repairs) nor too large (and thus sam-
pling repairs with very low probability of being correct). We
argue that the cardinality-set-minimal space provides this
balance, and we thus target sampling from this space.

Our sampling algorithm for multiple FDs is based on The-
orem 1. We randomly pick a maximal clean set of cells C,
and then, we randomly change cells outside C in a way that
satisfies Σ .

The organization of this section is as follows. First, we
provide an algorithm to detect whether a set of cells is
clean in Sect. 5.1, and we show how to generate a maximal
clean set of cells. Then, we introduce a sampling algorithm
in Sect. 5.2 that samples from the space of cardinality-set-
minimal repairs. In Sect. 5.3, we define two forms of hard
constraints that specify the user confidence in cells and we
show how to enforce them.

5.1 Generating a maximal clean set of cells

In the following, we determine whether a set of cells is
clean. We observe that it is not enough to verify that the
cells in C do not violate any FDs, that is, checking that
�(t1, X A), (t2, X A) ⊂ C, X → A ∈ Σ such that (t1[X ] =
t2[X ]∧ t1[A] 
= t2[A])). For example, consider Fig. 5, which
shows a set of non-empty cells in an instance. Assume that
we need to determine if the shown cells are clean. Although
the shown cells do not directly violate any FD in Σ (i.e., we
cannot find a pair of tuples that violates Σ), no repair may
contain the current values of those cells regardless of the val-
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Fig. 5 Checking whether the six non-empty cells are clean

ues of the other cells. This is because t1[A] = t2[A] implies
t1[C] = t2[C] (by A → C) and t2[B] = t3[B] implies that
t2[C] = t3[C] (by B → C). Thus, t1[C], t2[C] and t3[C]
have to be equal in any repair. However, t1[C] 
= t3[C] in the
shown instance.

To determine whether a set of cells C is clean, we need
to capture the equality constraints over the cells in I that are
imposed by the FDs in Σ . Then, we check for contradictions
between these constraints and the values of cells in C. We
model equality constraints as an equivalence relation over
cells in I , denoted E . Equivalence relations have been used
for the same purpose in previous data cleaning algorithms
(e.g., [9,12]). We denote by ec(E, Ci ) the equivalence class
E ∈ E to which a cell Ci belongs according to E . We denote
by merging two equivalence classes in E replacing them by a
new equivalence class that is equal to their union. Algorithm 2
builds the equivalence relation E given a set of cells C in an
instance I .

Algorithm 2 BuildEquivRel(C,I,Σ)
1: let T I Ds(C) be the set of tuple identifiers involved in C, {t : (t, A) ∈

C}
2: let Attrs(C) be the set of attributes involved in C, {A : (t, A) ∈ C}
3: let E be an initial equivalence relation on the set {(t, A) : t ∈

T I Ds(C), A ∈ Attrs(C)} such that the cells in C that belong to
the same attribute and have equal values in I are in the same equiva-
lence class, and all other cells outside C belong to separate (singleton)
classes

4: while ∃t1, t2 ∈ T I Ds(C), A ∈ Attrs(C), X ⊂ Attrs(C), X →
A ∈ Σ such that ∀B ∈ X (ec(E, (t1, B)) = ec(E, (t2, B))), and
ec(E, (t1, A)) 
= ec(E, (t2, A)) do

5: merge the equivalence classes ec(E, (t1, A)) and ec(E, (t2, A))

6: end while
7: return E

Figure 5 shows an example of the initial and final equiv-
alence relations that are built by Algorithm 2. The equiva-
lence class {(t1, C), (t2, C), (t3, C)} in the final equivalence
relation indicates that these three cells must be equal in any
repair in which the six non-empty cells are unchanged. This
is clearly infeasible since (t1, C) and (t3, C) have different
values, which means that the set of six non-empty cells is not
clean.

In general, a set of cells C in I is clean with respect to
Σ , denoted isClean(C, I,Σ, E), iff every two cells in C that

belong to the same equivalence class in E have the same value
in I .

Lemma 2 Given a set of cells C in an instance I and
a set of FDs Σ , let E be the outcome of procedure
BuildEquivRel(C, I,Σ). C is clean iff ∀Ci , C j ∈ C,
ec(E, Ci ) = ec(E, C j ) implies that I (Ci ) = I (C j ).

Proof We prove the “only if” direction as follows. Let C be
a clean set of cells in I , and let I be the non-empty subset
of repairs of I whose cells in C are unchanged (i.e., ∀I ′ ∈
I (Δ(I, I ′) ∩ C = ∅)). The proof consists of two steps. We
first prove that each pair of cells in I belonging to the same
equivalence class in E have equal values in every I ′ ∈ I.
Second, we prove that each pair of cells in C belonging to the
same equivalence class in E have equal values in I .

We prove the first part as follows. Based on Algorithm 2,
for every two cells (t1, A) and (t2, A) that belong to the same
equivalence class, we have two possibilities:

– (t1, A) and (t2, A) were placed in the same equivalence
class in line 3 in Algorithm 2. In other words, (t1, A) and
(t2, A) belong to C and I (t1, A) = I (t2, A), and thus,
I ′(t1, A) = I ′(t2, A) for all I ′ ∈ I, or

– (t1, A) and (t2, A) were placed in the same equivalence
class in line 5 in Algorithm 2. In this case, there must exist
an FD X → A ∈ Σ such that for all B ∈ X, (t1, B) and
(t2, B) belong to the same equivalence class. Recursively,
we can prove that for all B ∈ X, I ′(t1, B) = I ′(t2, B).
The fact that I ′ |� X → A implies that I ′(t1, A) =
I ′(t2, A).

The second part of the proof is trivial since each cell in
C has the same value in I and all repairs in I, and thus
∀Ci , C j ∈ C (ec(E, Ci ) = ec(E, C j )→ I (Ci ) = I (C j )).

We prove the “if” direction as follows. Consider the case
where ∀Ci , C j ∈ C (ec(E, Ci ) = ec(E, C j ) → I (Ci ) =
I (C j )). We need to prove that the set I (i.e., the set of repairs
of I that do not change cells in C) is not empty. We construct
one instance I ′ ∈ I as follows. We assign each cell in C in
I ′ to the same value in I (i.e., ∀C ∈ C, I ′(C) = I (C)). We
iterate over all other cells outside C in random order. Each cell
that belongs to a singleton equivalence class in E or belongs
to a tuple that is not mentioned in C is set to a new variable.
For each cell C that belongs to a non-singleton equivalence
class E ∈ E that includes at least one cell with an assigned
value (call it x), we set I ′(C) to x . Finally, for each cell C that
belongs to a non-singleton equivalence class E ∈ E whose
cells are not assigned to any values yet, we assign C to a new
variable.

Now, we show that the constructed instance I ′ is indeed a
repair. The construction method of I ′ as well as the fact that
∀Ci , C j ∈ C (ec(E, Ci ) = ec(E, C j ) → I (Ci ) = I (C j ))

ensure that cells belonging to the same equivalence class in
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E are assigned to the same value in I ′. Also, all cells in I ′
that have equal values belong to the same equivalence class.
This is true for cells assigned to variables in I ′ since we can
only assign a cell C to an old variable vi if C belongs to an
equivalence class that contains another cell already assigned
to vi . On the other hand, a cell C can be assigned to a constant
c only if C belongs to an equivalence class that contains
one or more cells from C whose values are equal to c. Also,
Algorithm 2 places all cells in C with the same value into
the same equivalence class. It follows that cells in I ′ that are
assigned to constants and have equal values are in the same
equivalence classes.

For every two tuples t1, t2 ∈ I ′ and for every FD X → A ∈
Σ, I ′(t1, X) = I ′(t2, X) implies that for all B ∈ X, (t1, B)

and (t2, B) belong to the same equivalence class. There-
fore, (t1, A) and (t2, A) must belong to the same equivalence
class as well (refer to lines 4–6 in Algorithm 2), and thus
I ′(t1, A) = I ′(t2, A). This proves that I ′ |� Σ and thus I is
not empty (i.e., cells in C are clean). ��

Next, we show how to randomly pick a maximal clean
set of cells, given I and Σ . We describe our procedure in
Algorithm 3.

Algorithm 3 GetMaxCleanSet(I,Σ)
1: Define a set CleanSet and initialize it to ∅
2: for each cell C ∈ C I Ds(I ) (based on a random iteration order) do
3: E ← BuildEquivRel(CleanSet ∪ {C}, I,Σ)

4: if isClean(CleanSet ∪ {C}, I,Σ, E) then
5: CleanSet ← CleanSet ∪ {C}
6: end if
7: end for
8: return CleanSet

Algorithm 3 starts with an empty set of clean cells and
attempts to add cells to the clean set, one cell at a time, in
random order. The algorithm terminates when all the cells
have been considered. We prove its correctness below.

Lemma 3 The sets of cells returned by Algorithm 3 are max-
imal clean sets.

Proof Given a set of clean cells returned by Algorithm 3,
denotedC, we need to prove that for any subset of C I Ds(I )\C
(call it S), C ∪ S is not clean.

First, we prove that if a set C is not clean, then any superset
of C is not clean as well. Let C1 and C2 be two sets of cells in
an instance I such that C1 ⊂ C2. Let E1 (respectively, E2) be
the outcome of BuildEquivRel(C1, I,Σ) (respectively,
BuildEquivRel(C2, I,Σ). By analyzing Algorithm 2, we
reach that each equivalence class in E1 must be contained in
another equivalence class in E2. Therefore, if there exist two
cells in C1 that belong to the same equivalence class in E1

and have different values in I (i.e., C1 is not clean), the two

cells must belong to the same equivalence class in E2, which
means that C2 is not clean as well.

Assume, to the contrary, that ∃S ⊂ C I Ds(I )\C such that
C ∪ S is clean. Clearly, every cell C in S has been rejected
in line 4 in Algorithm 3, which means that Cs ∪ {C} is not
clean, where Cs is the subset of C that is constructed up to the
point of rejecting C . The set C ∪ S is a superset of Cs ∪ {C}.
Therefore, C ∪ S is not clean, a contradiction. ��

Complexity analysis Let n be the number of tuples in the
input instance I and m be the number of attributes in I . In
Algorithm 2, the maximum number of merges of equiva-
lence classes is less than the number of tuples that appear
in C multiplied by the number of attributes that appear in C.
Each merge operation can be done in a constant time (for all
practical database sizes) using the find-union algorithm [29].
Therefore, the complexity of Algorithm 2 is in O(n · m).
Evaluating isClean can be done in O(n · m) using a hash
table structure. That is, all cells belonging to the same equiv-
alence class are hashed to a unique bucket, and we associate
each bucket with the values of the inserted cells so far. Upon
insertion of each cell, we only need to compare the cell value
to the bucket value to determine the cleanness of the cells. A
straightforward implementation of Algorithm 3 has a com-
plexity of O(n2 · m2).

5.2 Sampling cardinality-set-minimal repairs

In this section, we present a randomized algorithm for gen-
erating cardinality-set-minimal repairs (Algorithm 4). This
algorithm is a generalized version of the procedure we
described in the proof of Lemma 2.

The first step is constructing a maximal clean set of
cells, denoted MaxCleanCells (line 2). The algorithm iter-
atively cleans the cells outside MaxCleanCells and adds
them to a set called Cleaned. Initially, Cleaned is equal to
MaxCleanCells. In each iteration, the algorithm assigns a
value to the current cell (t, A) such that Cleaned ∪ {(t, A)}
becomes clean. Specifically, if (t, A) belongs to a non-
singleton equivalence class in E that contains other cells
previously inserted into Cleaned, the only choice is to set
I ′(t, A) to the same value as the other cells in the equiva-
lence class (lines 6, 7). Otherwise, we randomly choose one
of the following three alternative values for I ′t, A): (1) a
constant that is randomly selected from ADom(A, I ), (2) a
variable that is randomly selected from the set of variables
previously used in attribute A in I ′, or (3) a new variable
vA

j (line 8). For the first and second alternatives, we need
to make sure that the selected constant or variable makes
the set Cleaned ∪ {(t, A)} clean. One simple approach is to
keep picking a constant (similarly, a variable) at random until
this condition is met. In the worst case, we can select up to
n constants (similarly, n variables), where n is the number
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Fig. 6 An example of executing Algorithm 4

of tuples in the input instance. The third alternative, which
is setting I ′(t, A) to a new variable, guarantees that the set
Cleaned ∪ {(t, A)} becomes clean. In fact, enforcing the
third alternative at every iteration reduces Algorithm 4 to the
repairing algorithm described in the proof of Lemma 2. The
algorithm terminates when all the cells have been added to
Cleaned and returns the resulting instance I ′.

Algorithm 4 Gen-Repair(I,Σ)
1: I ′ ← I
2: MaxCleanCells ← GetMaxCleanSet(I,Σ)

3: Cleaned ← MaxCleanCells
4: E ← BuildEquivRel(Cleaned, I,Σ)

5: for each (t, A) ∈ C I Ds(I )\MaxCleanCells (based on a random
iteration order) do

6: if (t, A) belongs to a non-singleton equivalence class in E that
contains other cells in Cleaned then

7: assign I ′(t, A) to the value (either a constant or a variable) of
the other cells in ec(E, (t, A)) ∩ Cleaned

8: else
9: randomly set I ′(t, A) to one of three alternatives: a randomly

selected constant from ADom(A, I ), a randomly selected vari-
able vA

i that was previously used in I ′, or a fresh variable vA
j

such that Cleaned ∪ {(t, A)} becomes clean
10: end if
11: Cleaned ← Cleaned ∪ {(t, A)}
12: E ← BuildEquivRel(Cleaned, I ′,Σ)

13: end for
14: return I ′

We show an example of executing Algorithm 4 in Fig. 6.
The algorithm obtains a maximal clean set, which is shown as
the middle relation, and changes the two unclean cells (t2, B)

and (t3, A). Because (t2, B) exists in the same equivalence
class as (t1, B), the algorithm assigns the value of (t1, B) to
(t2, B). For the cell (t3, A), the algorithm chooses to assign
a fresh variable, vA

1 , to it.
In the following theorem, we prove the correctness of

Algorithm 4.

Theorem 2 Every instance that is generated by Algo-
rithm 4 is a cardinality-set-minimal repair. Additionally, all
cardinality-set-minimal repairs can be generated by Algo-
rithm 4.

Proof We need to prove the following points.

1. Every generated instance I ′ is a repair of I with respect
to Σ .

2. Every generated repair I ′ is cardinality-set-minimal.
3. Every cardinality-set-minimal repair of I can be gener-

ated by the algorithm.

First, we prove that every instance I ′ generated by
Algorithm 4 is a repair of I with respect to Σ . In other words,
we need to show that all cells in a generated repair I ′ represent
a clean set. Initially, the set Cleaned = MaxCleanCells is
clean with respect to Σ (based on Lemma 3). In each itera-
tion, the algorithm adds a cell to Cleaned and changes this
cell to ensure that the resulting version of Cleaned is clean as
well. This is done by assigning a value to each newly added
cell that satisfies the constraints represented by E . Upon ter-
mination, all cells in I ′ are in Cleaned, which indicates that
the resulting instance I ′ satisfies Σ .

Second, we prove that each generated repair is cardinality-
set-minimal. The initial maximal clean set of cells, denoted
MaxCleanCells, is not modified throughout the algorithm.
Thus, the set of unchanged cells in any generated repair rep-
resents a maximal clean set of cells, which indicates that the
generated repair is cardinality-set-minimal based on Theo-
rem 1.

Third, we prove that every cardinality-set-minimal repair
can be generated by Algorithm 4. Let I ′ be one such repair.
First, note that I ′ consists of some maximal clean set of cellsC
(Theorem 1). This clean set will be used by Algorithm 4 if the
random iteration order in line 2 of Algorithm 3 is such that all
the cells in C are considered first. Next, note that regardless
of the iteration order in which Algorithm 4 processes the
remaining cells C I Ds(I ′)\C (line 5), each cell C processed
in lines 6–10 can be assigned to the value in I ′ to make
Cleaned∪{C} clean. Assuming otherwise implies that there
exists a subset of cells in I ′ that is not clean, which contradicts
the fact that I ′ is a repair. It follows that any cardinality-set-
minimal repair I ′ can be generated by Algorithm 4. ��

Complexity analysis Obtaining a maximal clean set of cells
costs O(n2 ·m2), where n denotes the number of tuples in I
and m denotes the number of attributes. In Algorithm 4, the
number of iterations is at most equal to the number of cells in
I ′ (i.e., n·m). In each iteration, Algorithm 2 is invoked to build
the equivalence classes of cells in Cleaned. Additionally, the
condition isClean can be evaluated for all possible constants
and variables that appear in the attribute A in I ′ (in the worst
case). Hence, the complexity of each iteration is O(m · n2),
and the overall complexity of Algorithm 4 is O(m2 · n3).
Note that if we restrict changing cells in line 9 to the third
alternative only (i.e., assigning new variables to the cells),
the complexity is reduced to O(n2 · m2). Additionally, we
can reduce the runtime of the algorithm by not recomputing
the equivalence relation from scratch in every iteration.
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5.3 User-defined hard constraints

In this section, we modify our approach to generate a sample
of repairs that is consistent with the user’s confidence in the
accuracy of the data. We discuss two possible ways to define
the confidence of a cell, and we show how to modify our
algorithm accordingly.

The first method to specify cell confidence is to pro-
vide a set of cells T that are completely trusted. Such
cells are considered clean, and thus, the cleaning algorithm
must keep their values unchanged. Since the cleaning algo-
rithm cannot change cells in T , we must first ensure that T
itself is clean. To do so, we build the equivalence relation-
ship ET over T using Algorithm 2 and check the value of
isClean(T , I,Σ, ET ). If T is unclean, we return an empty
answer. Assuming that T is clean, we describe our modifi-
cations to the cleaning algorithm as follows. When creating
a maximal clean set of cells using Algorithm 3, we insert
the cells in T first into the set CleanSet (i.e., we initialize
CleanSet to T in line 1 in the algorithm). The remainder of
the algorithm remains unchanged. Finding a maximal clean
set that is a superset of T is possible as long as T is clean.
This modification produces repairs in which none of the cells
in T are changed since Algorithm 4 does not change the cells
in the maximal clean set generated by Algorithm 3.

The second way to specify confidence is using a partial
order relation to indicate the relative trust between pairs of
cells. Consider a strict partial order �c that is defined over
C I D(I ) such that C1 �c C2 iff the user is more confi-
dent about the accuracy of C1 than C2. By definition, �c

is antisymmetric, which prevents contradicting beliefs about
the confidence of different cells (i.e., if C1 �c C2, then
C2 
�c C1).

Intuitively, if C1 �c C2, we should prioritize changing C2

over changing C1. We formulate this requirement as follows.

Definition 10 (�c-compatible repair) Given an instance I
and a strict partial order relation�c defined over cells in I , let
LC(Ci ) be defined as {C j ∈ C I Ds(I ) : Ci �c C j }. A repair
I ntui tively of I is �c-compatible iff there does not exist a
repair I ′′ of I such that Reverted = Δ(I, I ′)\Δ(I, I ′′) is
non-empty and Δ(I, I ′′)\Δ(I, I ′) ⊆⋃

C∈Reverted LC(C).

That is, a repair I ′ is �c-compatible iff we cannot obtain
another repair by reverting one or more changed cells in I ′
back to their original values while allowing changing cells
in I ′ that are less confident than the reverted cells.

It is possible to modify Algorithm 4 to only sample from
�c-compatible repairs as follows. Let �∗c be a linear exten-
sion of �c, which is a total order on cells in I such that for
every Ci and C j in C I Ds(I ), if Ci �c C j , then Ci �∗c C j

[13]. In general, there exists multiple linear extensions for
a given partial order. A random sample of linear extensions
may be obtained using a (randomized) topological sorting

algorithm (refer to [13] for more details). We modify Algo-
rithm 3 by replacing the random selection of cells in line 2
by the order indicated by �∗c , starting with the cell C such
that �Ci ∈ C I Ds(I )(Ci �∗c C).

Lemma 4 Given that cells in line 2 in Algorithm 3 are
selected based on�∗c , each repair I ′ of I generated by Algo-
rithm 4 is a �c-compatible repair.

Proof Assume, for a contradiction, that a generated repair
I ′ is not a �c-compatible repair. It follows that there exits a
repair I ′′ such that Reverted = Δ(I, I ′)\Δ(I, I ′′) 
= ∅ and
Δ(I, I ′′)\Δ(I, I ′) ⊆⋃

C∈Reverted LC(C).
While building I ′, cells are processed in Algorithm 3

based on a total order �∗c that extends �c. Every cell in
Δ(I, I ′)\Δ(I, I ′′) fails the cleanness test in line 4 in Algo-
rithm 3 (otherwise it would be in CleanSet and not in
Δ(I, I ′)). Let C1 be the cell in Δ(I, I ′)\Δ(I, I ′′) that first
failed the cleanness test according to �∗c . Let Cpre be the
cells inserted into CleanSet in Algorithm 3 before C1.
Because cells are processed according to�∗c , cells in LC(Ci )

are processed after Ci for each Ci ∈ Δ(I, I ′)\Δ(I, I ′′).
Thus, cells in

⋃
C∈Reverted LC(C) are processed after C1

and Cpre ∩⋃
C∈Reverted LC(C) = ∅. It follows that Cpre ∩

(Δ(I, I ′′)\Δ(I, I ′)) = ∅. Since cells in Cpre are not changed
in I ′ (i.e., Cpre ∩ Δ(I, I ′) = ∅), Cpre ∩ Δ(I, I ′′) = ∅ (i.e.,
cells in Cpre are not changed in I ′′). But Cpre ∪ {C1} is not
clean and cannot remain completely unchanged in any repair
of I . Thus, C1 must be in Δ(I, I ′′), a contradiction. ��

6 Block-wise repairing

In this section, we improve the efficiency of generating
repairs by partitioning the input instance I into disjoint
blocks, each of which represents a subset of cells in I , such
that the blocks can be repaired independently. A similar idea
has been previously used in the context in duplicate elimina-
tion where tuples are partitioned into blocks and each block
is de-duplicated separately [5,25].

Partitioning an instance I into multiple disjoint blocks
effectively splits a problem instance into a number of smaller
instances, which results in a significant increase in perfor-
mance. Also, such partitioning allows parallelization of the
cleaning process (i.e., all blocks can be repaired in paral-
lel). Furthermore, because subrepairs of individual blocks
are independent, we effectively generate an exponentially
larger number of repairs, which represents all possible com-
binations of subrepairs. That is, if instance I is partitioned
into r blocks, and we generated k repairs for each partition,
the sample size is effectively equal to kr .

A simple strategy for partitioning I is to partition the
attributes in R into multiple disjoint groups such that no FD
in Σ spans more than one group of attributes (i.e., vertical
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partitioning). However, this strategy has a limited impact on
the performance as it fails to reduce the number of tuples in
each partition, which is the main complexity factor.

In order to allow more aggressive partitioning of the input
instance, where each block represents a set of cells, we have
to restrict the values that can be assigned to cells in line
9 in Algorithm 4 to new variables (i.e., the third alterna-
tive). This restriction ensures that the modified cell (t, A)

can never have a value equal to the value of any other cell
(t ′, A) in other blocks. Thus, (t, A) cannot be a part of a
violation of an FD that contains A in the LHS attributes.
We refer to the modified versions of Algorithm 4 as Algo-
rithm Block-Gen-Repair. Note that the modified ver-
sion might miss some cardinality-set-minimal repairs as a
result of restricting the new values of the changed cells, which
might affect the quality of the generated sample of repairs.

Modifying line 9 in Algorithm 4 allows deleting line 12,
which reconstructs the equivalence relationE after modifying
each cell. The reason is that the changes performed in line 7
and the modified version of line 9 do not alter the equivalence
relation E . The only possible change to E in the original
version of Algorithm 4 is caused by merging two equivalence
classes due to changing a cell in line 7 to a constant or a
variable that already exists in I ′ (splitting an equivalence
class is not possible under any circumstances). This case is
not possible after modifying line 9 as described.

In the following, we describe our partitioning algorithm.
Let E0 be the equivalence relation that is constructed over all
cells in I (i.e., BuildEquivRel(C I Ds(I ), I,Σ)). Rela-
tion E0 clusters cells into equivalence classes such that all
pairs of cells that belong to the same attribute and might
be assigned to the same constant throughout the execution
of Block-Gen-Repair(I,Σ) are in the same equiva-
lence class (refer to the proof of Theorem 3). Cells of the
same attribute that belong to different equivalence classes can
never have equal values since we can only assign new vari-
ables to LHS cells and different variables cannot be assigned
to the same constants (Definition 1). For example, Fig. 7
shows an instance I and the corresponding equivalence rela-
tion E0. Cells (t1, C), (t2, C), and (t3, C) belong to the same
equivalence class, which means that they may have equal
values in some generated repairs. On the other hand, (t1, B)

and (t2, B) belong to different equivalence classes, meaning
that they can never have equal values.

We use the equivalence relation E0 to partition the input
instance I such that any two tuples that belong to different
blocks can never have equal values for the LHS attributes X ,
for all X → A ∈ Σ (details are in Algorithm 5). Thus, any
violation of FDs throughout the course of repairing I cannot
span more than one block. In other words, repairing every
block separately results in a repair for the entire instance I .

In Fig. 7, we show an example of partitioning an instance.
Initially, an equivalence relationE0 is constructed on the input

Algorithm 5 Partition(I,Σ)
1: E0 ← BuildEquivRel(C I Ds(I ), I,Σ)

2: Initialize the set of blocks P such that each cell in I belongs to a
separate block

3: for each X → A ∈ Σ do
4: for each pair of tuples ti , t j ∈ I such that ∀B ∈

X, ec(E0, (ti , B)) = ec(E0, (t j , B)) do
5: merge the blocks of the cells (ti , X A) ∪ (t j , X A)

6: end for
7: end for
8: return P

instance by invoking BuildEquivRel(C I Ds(I ), I,Σ).
Each equivalence class is represented as a rectangle that sur-
rounds the class members. We initially assign each cell to
a separate block (i.e., cell (t1, A) belongs to P1, cell (t2, A)

belongs to P2, and so on). For each FD X → A, we locate
tuples whose attributes X belong to the same equivalence
classes and we merge the blocks of attributes X A of those
tuples. For example, since the cells (t1, A) and (t2, A) belong
to the same equivalence class and the FD A → C ∈ Σ , we
merge the blocks of (t1, A), (t2, A), (t1, C), and (t2, C). We
continue the partitioning algorithm, and we return the final
partitioning that is shown in the figure.

We prove in Theorem 3 that the blocks generated by
Algorithm 5 can be repaired separately using Algorithm
Block-Gen-Repair.

Theorem 3 Given a partitioning of cells in an instance I
that is constructed by AlgorithmPartition(I,Σ), repair-
ing the individual blocks of cells separately using Algorithm
Block-Gen-Repair results in a repair of I .

Proof Let P1, . . . , Pr be the blocks of I generated by Algo-
rithm 5, and let P ′i be a repair of Pi generated by Algorithm

Fig. 7 An example of partitioning an instance
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Block-Gen-Repair. We need to prove that the instance
I ′ that represents the union of all blocks P ′1, . . . , P ′r satisfies
Σ . We first give a road map of the proof as follows.

– LetE0 be the outcome of the procedureBuildEquivRel
(C I Ds(I ), I,Σ). We prove that for any two cells (t1, A)

and (t2, A), if there exists any possible repair I ′ generated
by Algorithm Block-Gen-Repair where I ′(t1, A) =
I ′(t2, A), (t1, A), and (t2, A) must be in the same equiva-
lence class in E0.

– We prove that for each FD X → A ∈ Σ , and for any two
tuples t1 and t2, if I ′(t1, B) = I ′(t2, B) for B ∈ X , then
cells (t1, X), (t1, A), (t2, X), and (t2, A) are necessarily
in the same block and thus I ′ |� Σ .

We first prove that, for any two cells (t1, A) and (t2, A),
if I ′(t1, A) = I ′(t2, A) for any repair I ′ generated by Algo-
rithm Block-Gen-Repair, then (t1, A) and (t2, A) are
in the same equivalence class in E0. If (t1, A) and (t2, A)

have equal values in I , they belong to the same equivalence
class due to the initial step in creating E0 (line 3 in Algo-
rithm BuildEquivRel). Otherwise, (t1, A) and (t2, A)

have different values in I , and at least one of them has
been modified by Algorithm Block-Gen-Repair to have
equal values in I ′. After modifying line 9 in Algorithm 4, we
only assign new variables to cells in line 9 (i.e., they cannot
be equal to any other cell). Therefore, the changed cells (i.e.,
(t1, A), (t2, A), or both) must have been changed in line 7
in (modified) Algorithm 4. Thus, both cells have to belong
to the same equivalence class E in the equivalence relation
E created by the repairing algorithm in line 4. Because the
original values of (t1, A) and (t2, A) in I are different, E
must have been created based on an FD X → A ∈ Σ (refer
to Algorithm 2). That is, there exists X → A ∈ Σ such
that for all B ∈ X , (t1, B), and (t2, B) belong to the same
equivalence class in E that is maintained by the repairing
algorithm. Because any repair must satisfy the constraints
imposed by E , we deduce that for all B ∈ X, I ′(t1, B) =
I ′(t2, B). We recursively prove that for all B ∈ X, (t1, B)

and (t2, B) belong to the same equivalence class in E0. Based
on Algorithm BuildEquivRel and FD X → A, (t1, A)

and (t2, A) must be in the same equivalence class in E0 as
well.

Now, we prove the second point. Given an FD X →
A ∈ Σ , let t1 and t2 be any tuples in I ′ such that
I ′(t1, B) = I ′(t2, B) for B ∈ X . For each attribute B ∈ X ,
if I ′(t1, B) = I ′(t2, B), then (t1, B) and (t2, B) are in the
same equivalence class in E0. Based on Algorithm 5, cells
(t1, X), (t1, A), (t2, X), and (t2, A) must be in the same
block. Because each block P ′i satisfies Σ , it follows that
(t1, X), (t1, A), (t2, X), and (t2, A) satisfies X → A. Thus,
all pairs of tuples in I ′, which represents the union of all
blocks P ′1, . . . , P ′r , satisfy Σ . ��

Complexity analysis The time complexity of Algorithm 5 is
O(n · m), where n is the number of tuples in I and m is
the number of attributes. Building the equivalence relation
E0 is performed in O(n · m). Furthermore, there are at most
O(n · m) merges done in lines 3–7 in Algorithm 5, each
of which can be done in a constant time (for all practical
database sizes) [29]. It follows that the overall complexity is
O(n · m).

7 Repairing violations of CFDs

In this section, we extend our sampling algorithm to handle
CFDs [8].

Let Σ be a set of CFDs {ϕ1, ϕ2, . . .} defined over a rela-
tion R. Each CFD ϕi consists of a pair (X → A, tp) where
X ⊆ R, A ∈ R and tp represents the pattern tuple of the
CFD (recall Sect. 2). We assume that CFDs in Σ are con-
sistent (i.e., there exists a non-empty database that satisfies
them). We divide the task of extending our cleaning algorithm
into three subtasks: (1) changing the procedure of detect-
ing whether a set of cells is clean, (2) changing the sam-
pling algorithm, and (3) changing the block-wise repair algo-
rithm. In the following sections, we address each one of these
tasks.

7.1 Extending the clean cells algorithm

The first step is to redefine the concept of V-instances for
CFDs. In particular, the variables used in a V-instance can
be only substituted by values in the attribute domains that
do not appear in I or the CFD patterns. That is, a vari-
able vA

i of attribute A can only be assigned to a value from
Dom(A)\ADom(A, I )\{tp[A] : (X → B, tp) ∈ Σ ∧ A ∈
X}. Also, two variables cannot be assigned to the same value.
Based on this interpretation of variables in a V-instance, a
variable vA

i cannot match any constant in a CFD pattern tp;
it can only match the unnamed variable ‘_’. This modification
is important in order to guarantee that whenever a variable
appears in a LHS attribute of a tuple for a certain CFD, this
tuple cannot violate the CFD.

The role of the equivalence relation E that is introduced
in Sect. 5.1 is capturing the equality constraints due to FDs
in Σ . Constant CFDs impose different types of constraints:
equating multiple cells to the constants defined in the CFD
tableaux. Thus, we need to extend the equivalence relation
by associating each equivalence class E ∈ E with a constant
denoted E .c. If the cells of an equivalence class are not con-
strained to a specific constant, we set E .c to the unnamed
variable ‘_’.

In the following, we extend the procedure BuildEquiv
Rel (Algorithm 2) to consider CFDs, resulting in procedure
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BuildEquivRel_CFD described in Algorithm 6. We also
modify the algorithm to allow early termination as soon as we
detect contradicting constraints (e.g., when trying to merge
two equivalence classes E1 and E2 where E1.c and E2.c
are equal to different constants). In this case, the algorithm
returns ∅, indicating that C is not clean. Otherwise, the algo-
rithm returns the equivalence relation E indicating that C is
clean.

The algorithm builds the initial equivalence relation E
based on the values of cells in C similar to Algorithm 2.
For each equivalence class E in E , if E contains a cell from
C, we set E .c to the value of this cell in I . Otherwise, we set
E .c to the unnamed variable ‘_’.

The algorithm repeatedly selects two tuples that violate a
variable CFD, or a single tuple that violates a constant CFD.
If no such tuples are found, the algorithm returns E and ter-
minates. For each pair of tuples t1 and t2 violating a variable
CFD (X → A, tp), we merge the equivalence classes of the
cells (t1, A) and (t2, A). If the values assigned to the merged
equivalence classes do not match (i.e., two constants that are
not equal), the algorithm returns∅ and terminates (lines 9 and
14). Otherwise, the value of the resulting equivalence class
E12 is set to the most restricted value of the merged classes
(line 10). For a single tuple t1 that violates a constant CFD
(X → A, tp), if ec(E, (t1, A)).c is equal to the unnamed
variable ‘_’, we set the value of ec(E, (t1, A)).c to tp[A] and
we merge this equivalence class with other classes with the
same assigned value. Otherwise, the algorithm returns ∅ and
terminates.

We show in Fig. 8 an example of executing Algorithm 6.
In Fig. 8a, we show the input CFDs and the set of cells that
we need to check. In Fig. 8b, we show the initial equivalence
relation E resulting from step 3 in Algorithm 6. Each equiv-
alence class is shown as a black rectangle that surrounds
its member cells, and the value of E .c is shown in a solid
black circle at the upper right corner of each rectangle. The
resulting equivalence relation is shown in Fig. 8c. For exam-
ple, cell (t1, A) matches the LHS of CFD (A → B, (1, 1)).
Thus, we change the constant associated with the equivalence
class of (t1, B) to 1. We do the same for t2, and we merge
the equivalence classes of (t1, B) and (t2, B) since they are
associated with the same constant, 1. Also, cells (t3, A) and
(t4, A) match the LHS of CFD (A → B, (_, _)), and thus,
we merge the equivalence classes of (t3, B) and (t4, B), and
we set the constant of the resulting equivalence class to 1.
We merge the two equivalence classes {(t1, B), (t2, B)} and
{(t3, B), (t4, B)} since their associated constants are equal.
We continue the process of merging the equivalence classes,
and we show the final result in Fig. 8c. The shown set of
cells is clean since we can find a non-empty equivalence
relation.

In the following lemma, we prove the correctness of Algo-
rithm 6.

Algorithm 6 BuildEquivRel_CFD(C,I,Σ)
1: let T I Ds(C) be the set of tuples involved in C, {t : (t, A) ∈ C}
2: let Attrs(C) be the set of attributes involved in C, {A : (t, A) ∈ C}
3: let E be an initial equivalence relation on the set {(t, A) : t ∈

T I Ds(C), A ∈ Attrs(C)} such that cells in C that belong to the
same attribute and have equal values in I are in the same equiva-
lence class, and all other cells outside C belong to separate (singleton)
classes

4: for all E ∈ E , if E contains at least one cell from C, set E .c to the
value of this cell in I . Otherwise, set E .c to ‘_’

5: var_CFD_viols← True
6: const_CFD_viols← True
7: while var_CFD_viols = True or const_CFD_viols =
True do

8: select two tuples t1, t2 ∈ T I Ds(C) such that there exists a vari-
able CFD (X → A, tp) ∈ Σ where ∀B ∈ X (ec(E, (t1, B)) =
ec(E, (t2, B)) ∧ ec(E, (t1, B)).c � tp[B]) and ec(E, (t1, A)) 
=
ec(E, (t2, A)) (if no such tuples exist, set var_CFD_viols to
False and skip to step 16)

9: if ec(E, (t1, A)).c = _∨ec(E, (t2, A)).c = _∨ec(E, (t1, A)).c =
ec(E, (t2, A)).c then

10: merge the equivalence classes E1 = ec(E, (t1, A)) and E2 =
ec(E, (t2, A)) into one equivalence class E12

11: set E12.c to the unnamed variable ’_’ if E1.c = E2.c = _ ,
and to E1.c (respectively, E2.c) if E1.c (respectively, E2.c) is
a constant

12: if E12.c is a constant and there exists another equivalence class
E such that E .c = E12.c, merge E12 and E

13: else
14: return ∅
15: end if
16: select a tuple t1 ∈ T I Ds(C) such that there exists a constant

CFD (X → A, tp) ∈ Σ where ∀B ∈ X (ec(E, (t1, B)).c �
tp[B]) and ec(E, (t1, A)).c 
= tp[A] (if no such tuple exists, set
const_CFD_viols to False and skip to step 23)

17: if ec(E, (t1, A)).c = _ then
18: ec(E, (t1, A)).c← tp[A]
19: merge ec(E, (t1, A)) with the equivalence class E of attribute

A where E .c = tp[A] (if any)
20: else
21: return ∅
22: end if
23: end while
24: return E

Lemma 5 The set C in I is clean with respect to Σ iff pro-
cedure BuildEquivRel_CFD(C, I,Σ) returns an equiv-
alence relation E that is not equal to ∅.
Proof First, we prove the “if” condition as follows. Let E 
=∅
be the equivalence relation returned by BuildEquivRel_
CFD. We need to prove that the set C is clean. We approach
the proof by showing how to construct a repair I ′ of I such
that the cells in C are unchanged.

We construct I ′ as follows. We assign each cell in C in
I ′ to the same value in I (i.e., ∀C ∈ C, I ′(C) = I (C)). We
iterate over all other cells outside C in random order. For each
cell that belongs to an equivalence class E where E .c is a
constant, we set the cell value to E .c. In the case that E .c = _ ,
if E is a singleton equivalence class or the cell belongs to a
tuple that is not mentioned in C, we set the cell value to
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(a)

(b)

(c)

Fig. 8 An example of executing Algorithm 6: a Input CFDs and cells
to be checked. b Initial equivalence relation. c Final equivalence relation

a new variable. If E is a non-singleton equivalence class
that includes at least one cell with an already assigned value
(call it x), we set I ′(C) to x . Finally, if E is a non-singleton
equivalence class E ∈ E whose cells are not assigned to any
values yet, we assign the cell value to a new variable.

Based on Algorithm 6 and our construction method of I ′,
we list a number of facts as follows.

– For each E ∈ E, E .c is a constant iff E contains a cell
from C (refer to line 3 in Algorithm 6). In this case, E .c
is equal to the value of that cell.

– For each pair of classes E1 and E2 in the same attribute,
if E1.c and E2.c are constants, then E1.c 
= E2.c.

– If E .c = _ , then all members in E are not in C and
all members will be assigned to the same variable that is
different from all other variables used in I ′ (based on our
construction method).

– For any cells (t1, A) and (t2, A) that have equal values in
I ′, both cells belong to the same equivalence class in E .

– For any cells (t1, A) and (t2, A) that belong to the same
equivalence class in E , both cells have the same value in
I ′.

Now, we show that the constructed instance I ′ is indeed
a repair. For every two tuples t1, t2 ∈ T I Ds(I ′) and for
every variable CFD (X → A, tp) ∈ Σ, t1[X ] = t2[X ] �
tp[X ] implies that for all B ∈ X, (t1, B) and (t2, B) belong
to the same equivalence class E , and E .c � tp[B]. Based
on Algorithm 6, (t1, A) and (t2, A) are placed in the same
equivalence class and thus I ′(t1, A) = I ′(t2, A).

For each tuple t1 ∈ T I Ds(I ′) and for each constant
CFD (X → A, tp) ∈ Σ, t1[X ] = tp[X ] implies that
ec(E, (t1, B)).c = tp[B] for all B ∈ X . Based on Algo-
rithm 6, ec(E, (t1, A)).c = tp[A], and thus I ′(t1, A) =
tp[A]. This proves that I ′ |� Σ , and thus, cells in C are clean.

In the second part of the proof, we prove the “only if”
condition. Let C be a set of cells that is clean. We need
to show that BuildEquivRel_CFD(C, I,Σ) returns an
equivalence relation E that is not equal to ∅. We first high-
light the steps of the proof as follows.

– Because C is clean, there exists at least one repair of I, I ′,
in which the cells in C are unchanged. We prove that
for each intermediate non-singleton equivalence class E
that is created by Algorithm 6, the member cells of E
have equal values in I ′. Also, for both singleton and non-
singleton intermediate equivalence classes, if E .c is a
constant, all member cells of E in I ′ must be equal to
this constant.

– Based on the first fact, we show that Algorithm 6 cannot
return ∅.

We prove the first point as follows. The initial equivalence
relation constructed in line 3 satisfies the fact mentioned in
the first point: for each non-singleton equivalence class E ,
all members of E belong to C and E .c is equal to the value of
the member cells in I , which is equal to their value in I ′ as
well. Also, for all equivalence classes with E .c is a constant,
the member cell(s) has/have to be in C and the value of the
member cell(s) in I and I ′ must be equal to E .c.

For the equivalence classes that are subsequently created
in Algorithm 6, the described fact still holds. Assume that this
fact holds at a certain time of executing the algorithm. We
show that this fact holds after creating a new equivalence class
(i.e., when merging two existing classes or changing E .c
from ‘_’ to a constant). Assume that a violation of a variable
CFD (X → A, tp) ∈ Σ is detected in line 8 involving two
tuples t1 and t2. For B ∈ X , each pair of cells (t1, B) and
(t2, B) belong to the same equivalence class E and E .c �
tp[B]. Thus, I ′(t1, B) = I ′(t2, B) � tp[B] for B ∈ X . The
equivalence class resulting from merging ec(E, (t1, A)) and
ec(E, (t2, A)) has member cells that have equal values in I ′
(i.e., I ′(t1, A) = I ′(t2, A)) because I ′ |� Σ .

Assume that we have a violation of constant CFD (X →
A, tp) ∈ Σ detected in line 16 involving tuple t1. Without
loss of generality, we assume that all values in tp[X ] are con-
stants [17]. Following our assumption, ec(E, (t1, B)).c =
I ′(t1, B) = tp[B] for all B ∈ X . Thus, I ′(t1, A) =
tp[A], which is consistent with the possible changing of
ec(E, (t1, A)).c to tp[A] and merging ec(E, (t1, A)) with any
other equivalence class E ′ with E ′.c = tp[A].

We prove the second point as follows. Assume, to the con-
trary, that Algorithm 6 returns∅ in line 14. It follows that there
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exist two tuples t1 and t2 that belong to an equivalence class
E such that E .c � tp[X ] and thus I ′(t1, X) = I ′(t2, X) �.
Also, (t1, A) belongs to an equivalence class E1, and (t2, A)

belongs to a different equivalence class E2 such that E1.c
and E2.c are different constants. It follows that I ′(t1, A) 
=
I ′(t2, A), which cannot occur since I ′ |� Σ .

Assume, to the contrary, that Algorithm 6 returns ∅ in line
21. It follows that there exists a tuple t1 that belongs to an
equivalence class E such that E .c is a constant and E .c =
I ′(t1, X) = tp[X ]. Also, t1[A] belongs to an equivalence
class E1 such that E1.c is a constant and E1.c = I ′(t1, A) 
=
tp[A], which cannot occur as I ′ |� Σ . Thus, Algorithm 6
cannot return ∅. ��

7.2 Extending the sampling algorithm

The algorithm that generates a maximal clean set of cells
(Algorithm 3) remains unchanged; we only need to replace
the condition isClean(CleanSet ∪ {C}, I,Σ, E) in line 4
with E 
= ∅. The sampling algorithm, on the other hand, must
take into consideration the additional constraints modeled by
the extended equivalence classes. Algorithm 7 describes the
modified sampling algorithm.

The main modification is inserting a new condition in line
8 to capture the case where E .c is a constant. In this case,
we must change the cell values in I ′ to this constant. The
remainder of the algorithm is similar to Algorithm 4.

Algorithm 7 Gen-Repair-CFD(I,Σ)
1: I ′ ← I
2: MaxCleanCells ← GetMaxCleanSet(I,Σ)

3: Cleaned ← MaxCleanCells
4: E ← BuildEquivRel_CFD(Cleaned, I,Σ)

5: for each (t, A) ∈ C I Ds(I )\MaxCleanCells (based on a random
iteration order) do

6: if (t, A) belongs to a non-singleton equivalence class in E that
contains other cells in Cleaned then

7: set I ′(t, A) to the value (either a constant or a variable) of the
other cells in ec(E, (t, A)) ∩ Cleaned

8: else if ec(E, (t, A)).c is a constant then
9: set I ′(t, A) to ec(E, (t, A)).c
10: else
11: randomly set I ′(t, A) to one of three alternatives: a randomly

selected constant from ADom(A, I ), a randomly selected vari-
able vA

i that was previously used in I ′, or a fresh variable vA
j

such that Cleaned ∪ {(t, A)} becomes clean
12: end if
13: Cleaned ← Cleaned ∪ {(t, A)}
14: E ← BuildEquivRel_CFD(Cleaned, I ′,Σ)

15: end for
16: return I ′

We show an example of generating a repair using Algo-
rithm 7 in Fig. 9. In Fig. 9a, we show the input instance and
the set of CFDs. In Fig. 9b, we show a maximal set of clean
cells that is obtained using Algorithm 3, which in turn uses

(c)

(a) (b)

Fig. 9 An example of executing Algorithm 7: a Input CFDs and rela-
tion instance to be checked. b A maximal set of clean cells. c The final
repair

Algorithm 6 for checking whether cells are clean. In Fig. 9c,
we show the repair returned by Algorithm 7. Cells (t1, B)

and (t4, B) belong to an equivalence class that is associated
with a constant equal to 1. Thus, they are modified to the
value 1. Cell (t3, C) is associated with a singleton equiva-
lence class that is not associated with a constant. Therefore,
one possibility based on line 11 in Algorithm 7 is to assign
(t3, C) to a new variable.

We show in the following theorem that repairs generated
by Algorithm 7 are cardinality-set-minimal.

Theorem 4 Every instance that is generated by Algorithm 7
is a cardinality-set-minimal repair.

Proof The proof is similar to the proof of Theorem 2. We
prove that every instance I ′ generated by Algorithm 7 is a
repair of I by showing that the set of cells in I ′ is clean.
Initially, the set Cleaned = MaxCleanCells is clean with
respect to Σ (based on Lemmas 3 and 5). In each iteration,
the algorithm adds a cell to Cleaned and changes this cell
to ensure that the resulting version of Cleaned is clean as
well. This is done by assigning a value to each newly added
cell that satisfies the constraints represented by E . Upon ter-
mination, all cells in I ′ are in Cleaned, which indicates that
the resulting instance I ′ satisfies Σ .

Second, we prove that each generated repair is cardinality-
set-minimal. The initial maximal clean set of cells, denoted
MaxCleanCells, is not modified throughout the algorithm.
Thus, the set of unchanged cells in any generated repair rep-
resents a maximal clean set of cells, which indicates that the
generated repair is cardinality-set-minimal based on Theo-
rem 1. ��
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Some cardinality-minimal repairs cannot be generated by
Algorithm 7 due to the constraint that different variables in
the generated repairs cannot be assigned to the same value
(refer to Definition 1). It is possible to alter the definition of
a V-instance to take into account all possible assignments to
variables that result in a valid repair. However, we argue that
the resulting substitution process will be too complicated for
the end user to follow. Another alternative is to directly gener-
ate a ground instance using our sampling algorithm. In order
to implement this alternative, we replace the three options in
line 11 with only one option that assigns the cell (t, A) in
I ′ to a value from the domain of attribute A, Dom(A), such
that the set Cleaned ∪ {(t, A)} is clean.

7.3 Extending block-wise repairing

For the block-wise sampling algorithm, we need to restrict
the values assigned to unclean cells in line 11 in Algo-
rithm 7 to the third alternative only (i.e., assigning a new
variable to the unclean cell) for the same reasons described
in Sect. 6. Also, it is safe to remove line 14 which updates
the equivalence relation E . We call the modified algorithm
Block-Gen-Repair-CFD.

The core of Algorithm 5, which partitions a given instance
w.r.t. a set of FDs, is the fact that cells in different equivalence
classes in E0 cannot have equal values during the repairing
process (Sect. 6). In the following, we show how to con-
struct E0 for CFDs in Σ as described in Algorithm 8. The
key idea is to detect all possible violations of CFDs and to
modify E0 to reflect the possible ways of repairing the viola-
tions. Note that because E0 corresponds to all possible exe-
cutions of the randomized cleaning algorithm, each equiva-
lence class E ∈ E0 could be assigned to various constants
(i.e., E .c is not fixed for all possible executions). Therefore,
we extend the equivalence relation E0 by associating each
equivalence relation with a set of possible constants, denoted
E .S.

Algorithm 8 builds E0 in a way that is similar to how
Algorithm 6 builds E . The key difference is that Algorithm 8
does not terminate when contradicting constraints are found
(e.g., when trying to merge two equivalence classes that are
associated with different constants). Algorithm 6 views the
constraints defined by equivalence classes as possible con-
straints, and thus, it allows merging contradicting equiva-
lence classes and associates the resulting equivalence classes
with the union of the constants associated with the merged
classes (lines 7, 8, 11, 12).

Algorithm 9 extends Algorithm 5 by checking for possi-
ble CFD violations instead of FD violations. This is achieved
by extending the condition ec(E0, (ti , B)) = ec(E0, (t j , B))

in line 4 in Algorithm 5 to also check if the constant of
ec(E0, (ti , B)) can possibly match the LHS of the considered

CFD. Also, we check whether each tuple ti could violate a
constant CFD X → A (lines 8–12). In this case, we merge
the partitions of cells in (ti , X A).

Algorithm 8 Build_E0_CFD(I,Σ)
1: let E0 be an initial equivalence relation on all cells in I such that

cells belonging to the same attribute and having equal values in I
are in the same equivalence class

2: for all E ∈ E0, set E .S to {v}, where v is the value of the member
cells in I

3: var_CFD_viols← True
4: const_CFD_viols← True
5: while var_CFD_viols = True or const_CFD_viols =
True do

6: select any tuples t1, t2 ∈ T I Ds(I ) such that there exists a vari-
able CFD (X → A, tp) ∈ Σ where ∀B ∈ X (ec(E, (t1, B)) =
ec(E, (t2, B)) ∧ ∃c ∈ ec(E, (t1, B)).S(c � tp[B])) and
ec(E, (t1, A)) 
= ec(E, (t2, A)) (if no such tuples exist, set
var_CFD_viols to False and skip to step 9)

7: merge the equivalence classes E1 = ec(E, (t1, A)) and E2 =
ec(E, (t2, A)) into one equivalence class E12

8: E12.S← E1.S ∪ E2.S
9: select any tuple t1 ∈ T I Ds(I ) such that there exists a con-

stant CFD (X → A, tp) ∈ Σ where ∀B ∈ X (∃c ∈
ec(E, (t1, B)).S (c � tp[B])) and tp[A] 
∈ ec(E, (t1, A)).S (if
no such tuple exists, set const_CFD_viols to False and
skip to step 12)

10: Add tp[A] to ec(E, (t1, A)).S
11: merge E1 = ec(E, (t1, A)) with the equivalence classes E2 of

attribute A where tp[A] ∈ E2.S (if any) resulting in E12
12: E12.S← E1.S ∪ E2.S
13: end while
14: return E0

We show in Fig. 10 an example of partitioning an instance
using Algorithm 9, which depends on Algorithm 8 to build
E0. In Fig. 10a, we show the input relation instance and the
CFDs. In Fig. 10b, we show the initialization of E0 that is
performed in lines 1, 2 in Algorithm 8. Figure 10c shows
relation E0 resulting from Algorithm 8. For example, we
merge the equivalence classes {(t1, B)} and {(t2, B), (t3, B)}
since t1[A] matches the LHS of CFD (A→ B, (1, 1)). The
resulting equivalence class is associated with the constant set
{1, 4}. The algorithm keeps merging the equivalence classes,
and the final equivalence relation E0 is returned. In Fig. 10d,
we show the cell partitioning resulting from Algorithm 9.
The algorithm starts with singleton blocks and merges blocks
that could possibly contain a violation throughout the exe-
cution of the cleaning algorithm. For example, cells (t1, A)

and (t1, B) could possibly violate the constant CFD (X →
A, (1, 1)), and thus, they are placed in the same block. Also,
cells (t1, BC D) and (t2, BC D) could violate the variable
CFD (BC → D, (1, _, _)), and thus, their blocks are merged
together. The algorithm terminates when all possible viola-
tions are processed.

In the following, we prove the correctness of Algorithms 8
and 9.
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Algorithm 9 Partition_CFD(I,Σ)
1: E0 = Build_E0_CFD(I,Σ)
2: Initialize the set of blocks P such that each cell in I belongs to a

separate block
3: for each variable CFD (X → A, tp) ∈ Σ do
4: for each pair of tuples ti , t j ∈ I such that ∀B ∈

X (ec(E0, (ti , B)) = ec(E0, (t j , B))∧∃c ∈ ec(E0, (ti , B)).S(c �
tp[B])) do

5: merge the blocks of the cells (ti , X A) ∪ (t j , X A)

6: end for
7: end for
8: for each constant CFD (X → A, tp) ∈ Σ do
9: for each tuple ti ∈ I such that ∀B ∈ X (∃c ∈

ec(E0, (ti , B)).S(c � tp[B])) do
10: merge the blocks of the cells in (ti , X A)

11: end for
12: end for
13: return P

Lemma 6 Given E0 constructed by procedure Build_E0_
CFD(I,Σ), every two cells that have equal values in at least
one possible repair generated by Algorithm Block-Gen
-Repair-CFD(I,Σ) are necessarily in the same equiv-
alence class in E0. Also, any cell that is assigned to
a constant c in at least one repair generated by Algo-
rithm Block-Gen-Repair-CFD(I,Σ) is necessarily in
an equivalence class E in E0 where c ∈ E .S.

Proof The proof is divided into two steps as follows.

– We prove that if there exists any possible repair I ′ gen-
erated by Algorithm Block-Gen-Repair-CFD in
which (t1, A) and (t2, A) have the same value, (t1, A) and
(t2, A) belong to the same equivalence class in E that is
created in line 4 in Algorithm 7. Also, if a cell (t1, A) is

(c) (d)

(a) (b)

Fig. 10 An example of partitioning an instance: a Input CFDs and
relation instance. b Initialization of E0. c Final shape of E0. d Partitioned
instance

assigned to a constant c in I ′, then (t1, A) belongs to an
equivalence class E in E where E .c = c.

– We prove that for each equivalence class E1 ∈ E , there
exists an equivalence class E2 ∈ E0 such that E1 ⊆ E2.
Also, if E1.c is a constant, then E1.c ∈ E2.S.

We prove the first point as follows. Given a specific
maximal clean set of cells, the repair generated by Algo-
rithm Block-Gen-Repair-CFD is identical to the repair
constructed in the proof of Lemma 5 (modulo the ran-
domization resulting from random selection of cells to
be processed next). Thus, the five facts mentioned in the
proof of Lemma 5 hold on any repair generated by Algo-
rithm Block-Gen-Repair-CFD as well. It follows that
if (t1, A) and (t2, A) have the same value in I ′, they belong
to the same equivalence class in E . Also, if I ′(t1, A) is a
constant, then (t1, A) belongs to an equivalence class E in E
such that E .c = I ′(t1, A).

We prove the second point as follows. Let Ic be an instance
where each cell in MaxCleanCells has the same value as
in I , and all other cells are assigned to unique variables. The
equivalence relations E0 = Build_E0_CFD(Ic,Σ) and E =
BuildEquivRel_CFD(MaxCleanCells, I,Σ) are iden-
tical. That is, for each E1 ∈ E , there exists E2 ∈ E0 such that
E1 = E2 and ((E1.c = _∧ E2.S = {vi })∨{E1.c} = E2.S).
This is because the initial equivalence relations are equal
(compare line 1 in Algorithm 8 and line 3 in Algorithm 6),
and subsequent operations are identical. Now, assume that
we replace one variable in Ic with the value found in I .
Clearly, no equivalence class in E0 will be split; only merg-
ing equivalence classes could occur. Also, for each equiva-
lence class E , Algorithm 8 can only replace a variable in
E .S with a constant and possibly expand the set of con-
stants in E .S. By repeating this process, we conclude that
the equivalence classes in Build_E0_CFD(Ic,Σ) are con-
tained in equivalence classes in Build_E0_CFD(I,Σ), and
for each E1 ∈ Build_E0_CFD(Ic,Σ), there exists E2 ∈
Build_E0_CFD(I,Σ) such that E1.S ⊆ E2.S, which com-
pletes the proof. ��
Theorem 5 Given a partitioning of cells in an instance I
that is constructed by Algorithm Partition_CFD(I,Σ),
repairing the individual blocks of cells separately using Algo-
rithm Block-Gen-Repair-CFD results in a repair of I .

Proof We need to prove that for each variable CFD (X →
A, tp) ∈ Σ , and for any two tuples t1 and t2, if I ′(t1, B) =
I ′(t2, B) � tp[B] for all B ∈ X , then cells (t1, X), (t1, A),

(t2, X), and (t2, A) are necessarily in the same block. Also,
for each constant CFD (X → A, tp) ∈ Σ and for each tuple
t1, if I ′(t1, B) = tp[B] for all B ∈ X , the cells (t1, X) and
(t1, A) are in the same block.

Given a variable CFD (X → A, tp) ∈ Σ , let t1 and t2
be any tuples in I ′ such that I ′(t1, B) = I ′(t2, B) � tp[B]
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for all B ∈ X . For each attribute B ∈ X , since I ′(t1, B) =
I ′(t2, B), (t1, B), and (t2, B) are in the same equivalence
class in E0 based on Lemma 6. Based on Algorithm 9, cells
(t1, X), (t1, A), (t2, X), and (t2, A) must be in the same
block.

Given a constant CFD (X → A, tp) ∈ Σ , let t1 be any
tuple in I ′ such that I ′(t1, B) = tp[B] for all B ∈ X . For each
attribute B ∈ X , since I ′(t1, B) is a constant, (t1, B) is in an
equivalence class E in E0 such that I ′(t1, B) = E .c based on
Lemma 6. Based on Algorithm 9, cells (t1, X), (t1, A) must
be in the same block. ��

8 Experimental study

In this section, we present an experimental evaluation of our
approach. The goal of our experiments is twofold. First, we
show that the proposed algorithms can efficiently generate
random repairs. Second, we use our repair generator to study
the correlation between the number of changes in a repair
and the quality of the repair.

For completeness, we implemented three previous
approaches that deterministically repair FD/CFD viola-
tions [9,12,23]. The goal of these approaches is to obtain a
single repair that is cost-minimal, which is an NP-hard prob-
lem. Since obtaining a cardinality-set-minimal repair can be
done in PTIME, the running time of these algorithms is not
directly comparable to that of our algorithm. However, we
report the running times to put the performance of our algo-
rithms into perspective. For example, these results can show
how many repairs can be produced by our algorithm in the
time taken to generate one repair using one of the previous
algorithms.

8.1 Setup

All experiments were conducted on a SunFire X4100 server
with a Dual Core 2.2 GHz processor, and 8 GB of RAM.
All computations are executed in memory. We used both
synthetic and real data sets. The synthetic data is gen-
erated by a modified version of the UIS database gener-
ator [1]. This program produces a mailing list that has
the following schema: RecordID, SSN, FirstName,
MiddleInit, LastName, StNumber, StAddr,
Apt, City, State, ZIP. The following FDs are
defined on the schema:

– SSN→FirstName, MiddleInit, LastName,
StNumber, StAddr, Apt, City, State,
ZIP

– FirstName, MiddleInit, LastName→ SSN,
StNumber, StAddr, Apt, City, State,
ZIP

– ZIP→City, State

We used the following constant CFDs (we omit the CFD
tableaux for brevity; the tableau of each CFD is set to the
most frequent 10 patterns).

– LastName→StNumber
– LastName→StAddr
– LastName→Apt

Also, we used the following variable CFDs (we omit the
CFD tableaux for brevity; the LHS attributes in the tableaux
are set to the most frequent 10 values where the FD holds).

– LastName→City
– LastName→State
– LastName→ZIP

We chose these CFDs based on the intuition that married
couples, or families in general, with the same last name would
have the same address.

The UIS data generator was originally created to con-
struct mailing lists that have duplicate records. We modified
it to generate two instances: a clean instance Ic and another
instance Id that is obtained by marking random perturbations
to cells in Ic. These perturbations include modifying char-
acters in attributes, swapping the first and last names, and
replacing SSNs with all zeros to indicate missing values. To
control the amount of perturbation, we use a parameter Ppert

that represents the probability of modifying a tuple t ∈ Ic by
altering one or more attributes. The default value for Ppert is
5 %. Note that not every cell modification results in an CFD
violation (e.g., changing attributes that are not mentioned in
any CFD, or changing a LHS attribute to a unique value).

The real data set we used consists of the census-income
data 1, which is part of the UC Irvine Machine Learning
Repository. We select 10,000 tuples from this data set to
evaluate the quality of the generated repairs. The data set
has 42 attributes. In the following, we briefly describe the
attributes that appear in the FDs and CFDs we used.

– region_of_previous_residence: indicates the
previous region of residence (if applicable). Possible val-
ues are Not in universe, South, Northeast, West, Midwest,
Abroad.

– migration_code_change_in_reg: indicates
whether the region of residence has changed. Possible
values are Not in universe, Non-mover, Same county,
Different county same state, Different state same divi-
sion, Abroad, Different region, Different division same
region.

1 http://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD).
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– migration_code_move_within_reg: indicates
whether a person has changed his/her residence within the
same region. Possible values are Not in universe, Non-
mover, Same county, Different county same state, Dif-
ferent state in West, Abroad, Different state in Midwest,
Different state in South, Different state in Northeast.

– migration_code_change_in_msa: indicates
whether a person has changed his/her Metropolitan Sta-
tistical Area of residence. Possible values are Not in uni-
verse, Non-mover, MSA to MSA, NonMSA to nonMSA,
MSA to nonMSA, NonMSA to MSA, Abroad to MSA,
Not identifiable, Abroad to nonMSA.

– live_in_this_house_1_year_ago: Indicates
whether a person lived in the same house for more than
one year. Possible values are Not in universe under 1 year,
Yes, No.

– occupation_code: a code representing the person’s
occupation. Total number of codes is 47.

– major_occupation_code: a code representing the
coarse-grained occupation of a person. There are 15 pos-
sible codes in total.

– industry_code: a code representing the detailed
industry classification to which a person is associated.
In total, there are 52 possible values.

– major_industry_code: a code representing the
coarse-grained classification of the industry. There are
24 possible codes.

– education: indicates the education level of a person.
– income: indicates the total income of a person.

The FDs are chosen from a discovered set that approxi-
mately held on our 10,000 tuple data sample, based on having
a reasonable number of LHS attributes. The used FDs are as
follows.

– region_of_previous_residence,
migration_code_change_in_reg→
migration_code_move_within_reg

– occupation_code→ major_occupation_
code

– migration_code_change_in_msa→ live_
in_this_house_1_year_ago

We also used the following CFDs.

– A constant CFD with FD template being education
→income.

– A variable CFD with FD template being industry_
code→ major_industry_code.

The unconditional versions of these CFDs approximately
hold for the database instance. We populate the tableau of
each CFD with the most frequent 10 patterns.

We use five approaches to clean the instance Id that are
described as follows.

– Sampling: This approach implements Algorithm 7 for
repairing FDs and CFDs. One optimization we intro-
duced in our implementation is obtaining the equivalence
relation E in an incremental way by updating E every time
a cell is inserted instead of recomputing E from scratch.

– Block-wise: This approach partitions the input
instance using Algorithm 5 into disjoint blocks, and then
uses Algorithm Block-Gen-Repair-CFD (the mod-
ified version of Algorithm 7 for repairing each individual
block.

– Vertex Cover [23]: This approach is based on model-
ing CFD violations as hyper-edges and using an approxi-
mate minimum vertex cover of the resulting hyper-graph
to find a repair with a small number of changes.

– Greedy-RHS [9]: This approach repeatedly picks the
FD violation that is cheapest to repair, based on the cost
function described in Sect. 3, and fixes it. Modifications
are only performed to the RHS attributes of the violated
FDs.

– Greedy [12]: This approach extends the algorithm in
[9] to repair violations of CFDs. This algorithm could
possibly change the RHS and/or the LHS attributes of
violated CFDs.

The cost model that is used for implementing Algorithms
Greedy and Greedy-RHS rely on a constant function, dis,
that returns 1 for all pairs of different values and 0 for equal
values (we found that more sophisticated metrics such as
the Damerau–Levenshtein (DL) distance did not improve the
repairing quality). Each tuple is associated with a confidence
weight that is inversely proportional to the number of viola-
tions each tuple is involved in.

8.2 Performance analysis

We used the synthetic data set for evaluating the perfor-
mance of the cleaning algorithms due to ability to manip-
ulate the data size and the number of errors. In Fig. 11, we
show the running time for generating one repair for viola-
tions of FDs only. We first fixed the perturbation probabil-
ity at 5 % and used different numbers of tuples in the data-
base. In the second experiment, we fixed the data size at
5,000 tuples and used various perturbation probabilities. We
report the average runtime for generating five repairs. For
Algorithm Block-wise, the cost of the initial partition-
ing of the input instance is amortized across the generated
repairs.

Algorithm Block-wise provides the best scalability,
followed by AlgorithmSampling. More specifically, Algo-
rithm Block-wise is more than one order of magnitude

123



Sampling from repairs of Conditional functional dependency violations 123

0 10000 20000 30000 40000 50000
10−2

10−1

100

101

102

103

Data Size (tuples)

R
un

ni
ng

 T
im

e 
(s

ec
)

Sampling Block−wise Greedy RHS Greedy Vertex Cover

0% 10% 20% 30%
10−2

10−1

100

101

102

103

Perturbation Probability

R
un

ni
ng

 T
im

e 
(s

ec
)

(a) (b)

Fig. 11 The running time for generating a repair of FD violations: a Against various data sizes. b Against various perturbation probabilities

faster than Algorithm Sampling, two orders of magnitude
faster than Greedy-RHS (for sizes ≥30,000 tuples), and
three orders of magnitudes faster than Vertex Cover.
The memory requirements of Algorithm Vertex Cover
grow quickly as the number of violations increase due to
the large number of the hyper-edges in the initial hyper-
graph (e.g., 2.2 million hyper-edges when the input instance
contains 15,000 tuples). Algorithm Greedy is slower than
Greedy-RHS since it considers changing both RHS and
LHS cells.

The running time of our sampling approach is almost lin-
ear in the number of generated repairs (i.e., the sample size)
because the running time for generating a random repair is
almost constant.

Figure 11 depicts the running time of the algorithms for
various levels of errors in the input instance, which is cap-
tured by parameter Ppert . The performance of Algorithm
Sampling is constant for all perturbation levels. The rea-
son is that most of the running time is consumed in obtaining
a maximal clean set of cells by iterating over all cells in the
database, which is constant in this experiment. The running
time of Algorithm Block-wise is almost constant as well
(after perturbation probability of 10 %). The running time of
Algorithm Vertex Cover grows rapidly with the pertur-
bation probability because larger numbers of violations result
in larger conflict graphs. Most of the running time consists
of building these conflict graphs.

Figure 12 shows the running times of the algorithms when
the set of constraints Σ contains the FDs and the CFDs
described in Sect. 8.1. The performance of each algorithm
is almost the same as in the case of having only FDs in Σ

(cf. Figure 11).
We conclude that the number of repairs that can be sam-

pled by our algorithm is in the order of hundreds, given the
same amount of time that is required to generate a single
repair by previous algorithms.

8.3 Relationship between the number of changes and repair
quality

In this section, we use our repair sampling algorithm to study
the correlation between the number of changes in a repair
and the quality of the repair, given that the ground truth is
available. The goal of this study is to verify that repairs which
make the fewest changes do not always have the highest qual-
ity, which justifies adopting cardinality-set-minimality.

We use the precision (i.e., the percentage of correct data
changes) of the performed changes with respect to the given
ground truth as a quality metric. Note that we do not report the
recall (i.e., the percentage of errors that have been corrected)
because some errors in the data set do not lead to violations
of FDs (e.g., typos in the first name).

We use the clean instance Ic as the ground truth to assess
the quality of a given repair Ir . First, we show how to count
the number of correct changes in Ir . We denote by CC(Ir )

the set of cells that has been correctly fixed in Ir .

CC(Ir )={C ∈ Δ(Id , Ir ) : Ir (C)= Ic(C) ∧ Id(C) 
= Ic(C)}
Replacing an incorrect value of a cell in Id (with respect

to Ic) with a variable can be considered as a partially correct
change. We denote by CV (Ir ) the set of cells that are partially
corrected.

CV (Ir ) = {C ∈ Δ(Id , Ir ) : Ir (C) is a variable ∧
Id(C) 
= Ic(C)}

We define the number of correct changes as the sum of the
cardinality of CC(Ir ) and a fraction (0.5 in our experiments)
of the cardinality of CV (Ir ). We compute the precision of a
repair Ir as the ratio between the number of correct changes
in Ir and the total number of changes in Ir .

We measured the precision of the repairs generated by all
approaches. However, for clarity of presentation, we omit the
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Fig. 12 The running time for generating a repair of CFD violations: a Against various data sizes. b Against various perturbation probabilities
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Fig. 13 Precision of the generated repairs of FD violations in synthetic
data set

results of Algorithm Sampling and we only describe these
results in our discussion. Figures 13 and 14 show the quality
results for the case of FDs and CFDs, respectively, using the
synthetic data set (Algorithm Greedy-RHS does not sup-
port CFDs). The input instance consists of 5,000 tuples, and
the parameter Ppert is set to 5 %. Figures 15 and 16 show
the precision for the case of FDs and CFDs, respectively,
using the real data set. Algorithm Vertex Cover ran out
of memory in the real data set, and thus, it is not shown in
Figs. 15 and 16. In all cases, Algorithms Sampling and
Block-wisewere executed 500 times (due to the random-
ness of the generating process) , while Algorithms Vertex
Cover and Greedy-RHS (when applicable) were executed
once.

The main observation is that the quality of repairs, repre-
sented by precision, is not always correlated to the number of
changes in repairs. For example, in the real data set, the best
repair is not the one with the minimum number of changes.
On the other hand, we observe a strong correlation between
precision and the number of changes in the synthetic data sets
(Figs. 13 and 14). The main conclusion is that cardinality-
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Fig. 14 Precision of the generated repairs of CFD violations in syn-
thetic data set

1.4 1.6 1.8 2 2.2 2.4 2.6

x 104

0

0.1

0.2

0.3

0.4

0.5

Number of Changes

P
re

ci
si

on

Block−wise
Greedy RHS
Greedy

Fig. 15 Precision of the generated repairs of FD violations in real data
set

minimality is not always a trustworthy quality criterion. Rely-
ing on minimality of changes heavily depends on the charac-
teristics of the data (e.g., the distribution of attribute values,
the causes of data errors, and the amount of redundancy in
the data).

We found that the precision of the repairs generated by
Algorithm Sampling is much lower than the repairs gen-
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Fig. 16 Precision of the generated repairs of CFD violations in real
data set

erated by Algorithm Block-wise (<0.1 in average). The
reason is that the former algorithm can assign constant val-
ues to modified cells in line 9, which are very unlikely to be
equal to the correct values. Algorithm Block-wise avoids
this by always assigning a variable to represent a range of
possible values.

In Fig. 13, Algorithm Greedy-RHS has lower precision
than the other algorithms. The main reason is that this algo-
rithm performs changes only to the RHS attributes of FDs.
Thus, errors in LHS attributes of FDs are always fixed in the
wrong way. For example, missing SSNs are usually replaced
by all zeros. Algorithm Greedy-RHS changes all attributes
of tuples with missing SSNs to the same value instead of
replacing missing SSNs with variables.

Algorithm Vertex Cover provides a relatively high
precision compared to other approaches. The reason is that
Algorithm Vertex Cover uses an approximate minimum
vertex cover to decide which cells should be changed, which
results in a relatively small number of changes.

Algorithm Greedy provides a relatively high precision in
the real data set. However, it does not perform as well in the
case of synthetic data. The reason is that, for most incorrectly
changed cells, the new incorrect values had higher frequency
than the correct values. Also, in the cases where both incor-
rect and correct values had the same frequency (usually =
1), there was a very small difference in the tuples’ weights
to prefer the incorrect value over the correct value (i.e., the
tuple of the correct value is involved in more violations).

9 Related work

9.1 Single repair cleaning algorithms

In the context of repairing the violations of FDs and other
integrity constraints, the most popular approach has been
to obtain a single repair that is as close as possible to the
input database instance based on some distance function

Fig. 17 An example of a repair generated by the algorithm in [9] that
is not set-minimal

(e.g., [9,12,23]). We adopt a different approach of gener-
ating a sample of repairs that are not necessary cost-minimal
through a randomized cleaning algorithm.

Single repair cleaning algorithms cannot be easily altered
to efficiently generate a large number of random repairs from
a well-defined space of repairs. Furthermore, randomizing
single repair algorithms by simply replacing deterministic
decisions (e.g., which violation to resolve first and how to
resolve each violation) by randomized decisions may lead to
an ad-hoc sampling space that is difficult to define in a non-
procedural way. Also, the resulting sampling space might
contain repairs that are unlikely to be correct (e.g., repairs
that are not set-minimal) or might miss interesting repairs
(e.g., cardinality-minimal repairs). For example, the algo-
rithm in [9] can produce repairs that are not set-minimal while
the algorithm in [23] could miss some cardinality-minimal
repairs. In the following, we give examples to illustrate these
two cases.

First, we show that the algorithm introduced in [9] may
generate repairs that are not set-minimal (i.e., contain unnec-
essary changes). The algorithm repairs an input instance by
repeatedly searching for tuples that violate FDs in Σ and
selecting a tuple t that violates an FD X → A and can be
resolved in the cheapest way. Then, the algorithm merges
the equivalence classes of (t, A) and the attribute A of other
tuples with the same values of X . For example, in Fig. 17, we
show an instance I that violates Σ = {A → B, B → C}.
Attribute wt reflects the user confidence about the accuracy
of each tuple in I . Initially, the sets un Resolved(A → B)

and un Resolved(B → C) contain the tuples that violate
A → B and B → C , respectively. In the first step, the
algorithm selects either t2 or t3 from un Resolved(B → C)

to repair since they are the cheapest tuples to resolve. The
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(a)

(b)

Fig. 18 An example of a cardinality-minimal repair that cannot be
generated by the algorithm in [23]

algorithm repairs this violation by merging the equivalence
classes of (t2, C) and (t3, C). In the second step, the algo-
rithm selects either t1 or t2 from un Resolved(A → B)

to repair by merging the equivalence classes of (t1, B) and
(t2, B). Finally, a repair I ′ is obtained by replacing each cell
in an equivalence class with a “target” value of the equiva-
lence class that has the minimum cost. For example, (t2, B)

is assigned to 4, and (t3, C) is assigned to 2. Modified cells
are shaded in the figure. The resulting repair I ′ is not set-
minimal because the cell (t3, C) can be reverted to its value
in I without violating any FD.

We show that some cardinality-minimal repairs cannot be
generated by the approach presented in [23]. We illustrate
this fact using the example in Fig. 18. In Fig. 18a, we show
the hyper-edges (also called double and triple conflicts) that
exist in the initial conflict graph. The algorithm in [23] can
only change a cell (t, B) if it appears in the initial conflict
graph, or there exists an FD X → A ∈ Σ such that B ∈ X
and (t, A) appears in the initial conflict graph. It follows
that the cell (t2, E) in Fig. 18 can never be changed by the
algorithm. Therefore, the cardinality-minimal repair I ′ that
is shown in Fig. 18b cannot be generated by the algorithm in
[23].

A related problem is checking whether a given instance
is a repair of the input instance. For example, in [3], the
authors studied the complexity of deciding whether a spe-
cific instance is a minimal repair (under several semantics of
minimality) for larger classes of integrity constraints. New
definitions of minimality are also proposed in [3] such as
component cardinality repairs, which generalize cardinality-
minimal repairs of database instances that consist of multiple

relations (i.e., components) in the sense that repairs that are
Pareto-optimal w.r.t. the number of changes in each com-
ponent are considered as possible repairs, even if the total
number of changes is not minimal. Such generalizations are
not useful in the class of FDs because individual relations
are repaired independently, and thus, component cardinality
repairs are equivalent to cardinality-minimal repairs.

9.2 Data cleaning based on user confidence in data

Multiple papers have addressed the problem of having differ-
ent degrees of trust in different pieces of the data. One possi-
bility is to associate each tuple (or cell) with a weight reflect-
ing the user’s confidence (e.g., [9,12,23]). The cost of the
repairs takes into consideration the weights of the changed
cells, as discussed in Sect. 3.

Another line of research aims at obtaining fixes to dirty
data that are completely trusted (e.g., [18,19]. This is
achieved by linking the input dirty data to master data, which
is completely trusted, through a set of editing rules.

In this paper, we propose a different confidence model in
which the user either identifies a set of cells that are trusted
(and hence should not be changed at all) or specifies his or
her preferences about the relative order in which cells can be
changed (if necessary). In both cases, the algorithm generates
a sample of possible repairs, all of which satisfy these rules.

9.3 Query answering using multiple possible repairs

A related research topic is consistent query answering, which
aims at obtaining query results that are true in every possible
repair (for some definition of a possible repair). Approaches
that provide consistent query answers perform query rewrit-
ing (e.g., [4,20]) or construct a condensed representation of
all repairs that allows obtaining consistent answers [30,31].
Usually, a restricted class of queries can be answered effi-
ciently while harder classes are answered using approximate
methods (e.g., [24]).

In our work, we provide a sample of possible repairs,
which could be used for answering queries over uncertain
data. Recent work has addressed the problem of model-
ing data uncertainty in a compact way to allow efficient
query answering (e.g., [6,28]). One of the related works is
the MCDB [22], which allows answering user queries effi-
ciently using a sample of possible realizations (i.e., possible
worlds) of a database by avoiding redundant computations.
For example, query planning is performed only once for the
entire set of possible repairs. We envision integrating our
repair-generating algorithms with MCDB to facilitate effi-
cient query answering. This approach extends the concept of
consistent query answering to allow almost certain answers,
that is, those which appear in a high percentage of the sam-
pled repairs, but not necessarily all of them.
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In [21], the authors proposed a model of possible repairs
of inconsistent databases, which can be used for answering
queries in a probabilistic way. The proposed model imposes
a strong constraint on the defined FDs. Specifically, any
attribute that appears in the RHS of an FD cannot appear
in the left-hand side of another FD. In this setting, FD viola-
tions can be repaired independently and cardinality-minimal
repairs can be obtained in PTIME. Our solutions apply to
arbitrary sets of FDs/CFDs.

9.4 Previous repair sampling algorithms

In [7], we presented our initial efforts toward sampling from
the space of cardinality-set-minimal repairs. However, the
initial algorithm samples from a superset of the cardinality-
set-minimal repairs. That is, some of the generated repairs
could violate cardinality-set-minimality (although all repairs
are guaranteed to be set-minimal). The reason is that the
algorithm presented in [7] obtains a clean set of cells that
is not necessarily maximal and then modifies the remaining
cells whenever necessary to obtain a repair. In this paper, we
rectified this shortcoming by first obtaining a maximal clean
set of cells and only changing the cells that are not in such
set. This guarantees that we sample exactly from the space
of cardinality-set-minimal repairs (Theorem 1).

Also, we describe in this paper how to extend our algo-
rithms in [7] to support CFDs. Finally, we introduced a num-
ber of optimizations in our implementation of the algorithms,
resulting in significant improvements in their performance
(Sect. 8).

10 Conclusion

In this paper, we presented a new technique for constraint-
based database repair, in which we generate a sample of pos-
sible repairs. We described a realization of this technique in
the context of FDs and CFDs, given a novel repair space that
combines the features of two well-known existing spaces: set
and cardinality minimal repairs. We also extended our sam-
pling algorithm to allow user-defined hard constraints that
specify a set of cells that must remain unchanged during the
repairing process. Experimental results indicate that parti-
tioning the input instance into blocks that can be repaired
independently results in orders of magnitude performance
gains.

An important direction for future work is to design new
repair sampling algorithms for broader classes of integrity
constraints such as denial constraints and matching depen-
dencies. Another point to be pursued in future work is how to
assign confidence values to the generated repairs that reflect
their expected quality.
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