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ABSTRACT
Violations of functional dependencies (FDs) are common in prac-
tice, often arising in the context of data integration or Web data
extraction. Resolving these violations is known to be challenging
for a variety of reasons, one of them being the exponential num-
ber of possible “repairs”. Previous work has tackled this problem
either by producing a single repair that is (nearly) optimal with re-
spect to some metric, or by computing consistent answers to se-
lected classes of queries without explicitly generating the repairs.
In this paper, we propose a novel data cleaning approach that is not
limited to finding a single repair or to a particular class of queries,
namely, sampling from the space of possible repairs. We give sev-
eral motivating scenarios where sampling from the space of FD re-
pairs is desirable, propose a new class of useful repairs, and present
an algorithm that randomly samples from this space. We also show
how to restrict the space of generated repairs based on user-defined
hard constraints that define an immutable trusted subset of the input
relation, and we experimentally evaluate our algorithm against pre-
vious approaches. While this paper focuses on repairing FDs, we
envision the proposed sampling approach to be applicable to other
integrity constraints with large repair spaces.

1. INTRODUCTION
Functional dependencies (FDs) can be thought of as integrity

constraints that encode data semantics. In that sense, violations
of FDs indicate deviations from the expected semantics, possibly
caused by data quality problems. In practice, FDs tend to break
after integrating heterogeneous data or extracting data from the
Web. Even in a traditional DBMS, unknown FDs may be hidden
in a complex evolving schema, or the database administrator may
choose not to enforce some FDs for various reasons. For example,
Figure 1 shows a database instance and a set of FDs, some of which
are violated (e.g., tuples t2 and t3 violate ZIP→City, tuples t2
and t3 violate Name→ SSN,City, and tuples t1 and t4 violate
ZIP → State,City).

There is often a very large number of ways to modify a table so
that it satisfies all the required FDs. One way is to delete the of-
fending tuples (ideally, delete the fewest possible such tuples) such
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SSN Name City State ZIP Functional Dependencies:

Input Instance

t1 72163 John Smith Chicago IL 90101
t2 87991 Mark Green LA CA 90065

t3 87891 Mark Green Los 
Angeles CA 90065

Functional Dependencies:
SSN → Name, City, State, ZIP
Name → SSN, City, State, ZIP
ZIP → State, City

Angeles
t4 23212 Mary Clarke LA CA 90101

Repair 1 Repair 2
SSN Name City State ZIP
72163 John Smith LA CA 90101
87991 Mark Green LA CA 90065

SSN Name City State ZIP
72163 John Smith Chicago IL ?
87891 Mark Green LA CA 90065

Repair 1 Repair 2

87991 Mark Green LA CA 90065

87891 ? Los 
Angeles CA ?

23212 Mary Clarke LA CA 90101

87891 Mark Green LA CA 90065

87891 Mark Green LA CA 90065

23212 Mary Clarke LA CA 90101

Figure 1: An Example of an Unclean Database and Possible
Repairs.

that the remainder satisfies all the FDs [7, 8]. For example, we
can “repair” the relation instance in Figure 1 by deleting t1 and
t3. However, deleting an entire tuple may result in loss of “clean”
information if only one of its attribute values is incorrect. Alterna-
tively, we can modify selected attribute values (we do not consider
adding new tuples as this would not fix any existing violations). For
example, Figure 1 shows two possible repairs obtained by modify-
ing some attributes values; question marks indicate that an attribute
value (to which we will also refer as a cell) can be modified to one
of several values in order to satisfy the FDs.

In this paper, we present a novel approach to repair violations of
FDs, which is to sample from the space of “suitable” repairs. Our
technique is complementary to existing data quality and cleaning
tools, and, as we will show, it is useful in various practical situa-
tions. While we focus on repairing FDs in this paper, we believe
that the proposed sampling approach can be a useful tool for other
integrity constraints with complex repair spaces.

1.1 Motivating Examples
Independently of how we choose to repair violations, two repair

frameworks have appeared in previous work. One is to produce a
single, nearly-optimal repair, in terms of the number of deletions or
attribute modifications (e.g., [6, 12]). For instance, we might prefer
Repair 2 in Figure 1 because it makes fewer modifications. An-
other approach—consistent query answering—computes answers
to selected classes of queries that are valid in every possible “rea-
sonable” repair [7, 8, 15, 16, 9, 4]. In Figure 1, a consistent answer
of the query that select all tuples with ZIP code 90101, with respect
to the two illustrated repairs, is {t4}.



We argue that existing approaches do not address the needs of at
least the following applications.

Interactive Data Cleaning Consider an interactive data cleaning
process, where several possible FD repairs (of a whole table, a sub-
set of a table, or a single tuple) are suggested to the user as a guide
on how to repair the data. The user may then perform some of the
suggested repairs and request a new set of suggestions, in which
the repairs performed previously cannot change. For example, in
Figure 1, Repair 1 and Repair 2 provide two alternatives for
modifying each tuple in the database. A user might prefer chang-
ing t1 according to Repair 1 and prefer changing t2 according
to Repair 2. Note that this application is not tied to a specific
query, so consistent answers are not suitable. Moreover, the ap-
plication requires several suggested repairs, but not necessarily all
possible repairs, to be generated at any given time. Hence, comput-
ing a single repair is not sufficient.

Data Integration Data integration is another example where
user-defined constraints on the allowed data modifications are
important—often, we have prior knowledge that some sources are
more reliable than others. Although previous approaches (e.g., [6,
12]) penalize changing trusted tuples or columns by associating
higher update cost to them, they do not support imposing hard con-
straints to completely avoid changing a set of immutable cells.

Uncertain Query Answering We can generalize the notion of con-
sistent query answering to an approach that computes probabilis-
tic query answers as though each possible repair were a possible
world. Even if generating all repairs is intractable, computing a
subset of the possible repairs may be sufficient to obtain meaning-
ful answers. One example of such a framework is the Monte Carlo
Database (MCDB) [11]. Again, computing a single repair or a con-
sistent query answer is not sufficient for this application.

1.2 Challenges and Contributions
Our motivating applications have the following requirements and

challenges in common. First, it is insufficient to generate a single
repair, even if it is nearly optimal in some well-defined sense. Sec-
ond, due to the exponential space of possible FD repairs, we may
not be able to, or may not want to, generate all repairs. Instead,
the challenge lies in finding a meaningful subset of repairs that can
generated in an efficient way. Third, we want to allow user-defined
constraints that determine which columns, tuples, or cells may or
may not be modified during a repair.

In this paper, we propose a novel technique for data cleaning
that accommodates our motivating applications and addresses the
aforementioned challenges. Our approach is based on efficiently
generating a random sample of a meaningful repair space. Our
specific contributions are as follows.

• We introduce a novel space of possible repairs, called
cardinality-set-minimal, that combines the advantages of two
existing spaces: set-minimal and cardinality-minimal.

• We give an efficient algorithm for generating a random sam-
ple of cardinality-set-minimal repairs. A major challenge
here is the interplay among violations of FDs, i.e., repairing
a tuple that violates one FD may introduce a new violation
of another FD. The main insight behind our algorithm is to
perform the repair one cell at a time, rather than one tuple
at a time. Another major challenge is efficiency, in response
to which we introduce a mechanism that partitions the input
instance into blocks that can be repaired independently.

• We describe a simple modification of our approach that al-
lows users to specify hard constrains on the set of cells that
may or may not be modified during a repair.

We also conduct an experimental study to show the scalability of
our repair sampling technique.

The remainder of the paper is organized as follows. In Section 2,
we describe the notations that are used in the paper. In Section 3,
we introduce a novel definition of possible repairs. In Section 4,
we study generating a random sample of repairs. In Section 5 we
describe how to enforce user-defined constraints. An experimen-
tal study is presented in Section 6. We discuss related works in
Section 7. We conclude the paper with final remarks in Section 8.

2. NOTATIONS AND DEFINITIONS
Let R be a relation on which a set of FDs is defined. Attributes

of R are denoted by Attrs(R) = {A1, . . . , Am}. Dom(A) de-
notes the domain of an attribute A ∈ Attrs(R). An instance
I of R is a set of tuples, each of which belongs to the domain
Dom(A1) × · · · × Dom(Am). We denote by DomI(A) the set
of values of an attribute A ∈ Attrs(R) that appear in tuples of
I (i.e., DomI(A) = ΠA(I)). We assume that each tuple in I is
associated with an identifier t that remains unchanged even if some
of its attribute values change. We denote by TIDs(I) the set of
identifiers of tuples in I . We refer to an attribute A ∈ Attrs(R)
of a tuple t ∈ TIDs(I) as a cell, denoted t[A]. Each cell t[A] is
identified by its tuple t and its attribute A. The set of all cell identi-
fiers in I is denoted CIDs(I). We denote by I(t[A]) the value of
a cell t[A] ∈ CIDs(I) in an instance I .

For two attribute sets X,Y ⊆ Attrs(R), an FD X → Y holds
on an instance I , denoted I |= X → Y , if for every two tuples
t1, t2 in I such that t1[X] = t2[X], t1[Y ] = t2[Y ]. The set of
FDs defined over R is denoted as Σ. We assume that Σ is minimal
and in canonical form [2]; each FD is in the form X → A, where
X ⊂ Attrs(R) and A ∈ Attrs(R). I is inconsistent with respect
to Σ if I violates at least one FD in Σ.

In general, a repair of an inconsistent instance I is another in-
stance I ′ that satisfies Σ. As explained in Section 1.1, we will only
consider repairs obtained by a set of modifications to I .

DEFINITION 1. Repair of a Relation Instance. Given a set of
FDs Σ defined over a relation R, and two instances I and I ′ of R,
I ′ is a repair of I w.r.t. Σ if I ′ |= Σ and TIDs(I ′) = TIDs(I).

Based on Definition 1, a repair I ′ of an inconsistent instance I is
an instance that satisfies Σ and has the same set of tuple identifiers
in I . Of course, the attribute values of tuples in I and I ′ can be
different. The sets of cell identifiers in both I ′ and I are equal (i.e.,
CIDs(I) = CIDs(I ′)). We denote by ∆(I, I ′) identifiers of
the cells that have different values in I and I ′, that is, ∆(I, I ′) =
{C ∈ CIDs(I) : I(C) 6= I ′(C)}. Note that for infinite domains
of attributes in R, there is an infinite number of repairs. Similar
to [12], we can represent the infinite space of repairs as a finite
set of instances with variable attribute values, which are called V-
instances.

DEFINITION 2. V-instance. Given an instance I , I ′ is a V-
instance of I if CIDs(I ′) = CIDs(I) and ∀t[A] ∈ CIDs(I ′),
I ′(t[A]) is either a constant in DomI(A) or a variable vAi .

We assume that for each attribute A ∈ Attrs(R), there is an
infinite set of variables, denoted {vA1 , vA2 , . . . }. A V-instance that
contains no variable is called a ground instance. Each V-instance
I ′ represents a (possibly infinite) number of ground instances each



of which can be obtained by substituting each variables vAi with a
constant in Dom(A) \DomI(A) such that vAi 6= vAj for all i 6= j
(the symbol \ represents the set difference operator).

DEFINITION 3. V-repair. Given a set of FDs Σ defined over a
relation R and an instance I of R, I ′ is a V-repair of I w.r.t. Σ if
I ′ is a V-instance of I and all ground instances represented by I ′

satisfy Σ.

We denote by Repairs(I) the set of all V-repairs of an instance
I . In the remainder of this paper, we refer to the terms “V-repair”
and “V-instance” as simply “repair” and “instance”, respectively.

It is crucial to filter out repairs that are less likely to represent the
actual clean database. A widely used criterion is the minimality of
changes (e.g., [7, 6, 12, 8, 10]). Two frequently used definitions for
minimality of changes are described as follows.

DEFINITION 4. Cardinality-Minimal Repair [6, 12]: A repair
I ′ of I is cardinality-minimal iff there is no repair I ′′ of I such that
|∆(I, I ′′)| < |∆(I, I ′)|.

That is, a repair I ′ of I is cardinality-minimal iff the number of
changed cells in I ′ is minimal with respect to all repairs of I .

DEFINITION 5. Set-Minimal Repair [4, 13]: A repair I ′ of I
is set-minimal iff there is no repair I ′′ of I such that ∆(I, I ′′) ⊂
∆(I, I ′) and for each C ∈ ∆(I, I ′′), I ′′(C) = I ′(C).

That is, a repair I ′ of I is set-minimal iff no subset C of the
changed cells in I ′ can be reverted to their original values in I
(while keeping the current values of other cells in ∆(I, I ′) \ C in
I ′) without violating Σ.

Previous approaches that generate a single repair of a dirty re-
lation instance typically find a nearly-optimal cardinality-minimal
repair (solving this problem exactly is NP-hard [7, 6, 12]). In
contrast, prior work on consistent query answering considers set-
minimal repairs [8, 10]. Repairs that are not set-minimal are be-
lieved to be unacceptable repairs since they involve unnecessary
changes [4, 8, 13].

3. CARDINALITY-SET-MINIMAL RE-
PAIRS

In this section, we introduce cardinality-set-minimal repairs,
which aim at striking a balance between the “fewest changes” met-
ric of cardinality-minimality and the “necessary changes” criterion
of set-minimality.

DEFINITION 6. Cardinality-Set-Minimal Repair A repair I ′ of
I is cardinality-set-minimal iff there is no repair I ′′ of I such that
∆(I, I ′′) ⊂ ∆(I, I ′).

That is, a repair I ′ of I is cardinality-set-minimal iff no subset C
of the changed cells in I ′ can be reverted to their original values in
I without violating Σ, even if the cells in ∆(I, I ′) \ C are modified
to other values.

In Figure 2, we show various types of repairs of an instance
I , with the changed cells greyed out. Repairs I1 and I2 are
cardinality-minimal because no other repair has fewer changed
cells. Clearly, I1 and I2 are also cardinality-set-minimal and set-
minimal. I3 is set-minimal because reverting any of the changed
cells to the values in I will violate A → B. On the other hand,
I3 is not cardinality-set-minimal (or cardinality-minimal) because
changing t1[B] to 3 and reverting t2[B] to 3 gives a repair of I . I4

A B
1 3
1 3

Set-Minimal
1 3
4 5
6 7

I1 Cardinality-Minimal
Cardinality-Set-Minimal

Set-Minimal
Cardinality-Minimal
Cardinality Set MinimalA B

A B
4 2
1 3
4 5

P

I I2 Cardinality-Set-MinimalA B
t1 1 2
t2 1 3 A B

4 5
6 7

P
ossible R

2

Set-Minimal
Not Cardinality-Minimal
Not Cardinality-Set-Minimal

Σ {A B}

t3 4 5
t4 6 7

1 5
1 5
4 5
6 7

R
epairs I3

Σ= {A B} 6 7

Not Set-Minimal
Not Cardinality Minimal

A B
v1 3
1 3I Not Cardinality-Minimal

Not Cardinality-Set-Minimal
1 3
4 5
6 7

I4

Figure 2: Examples of Various Types of Repairs.

is not set-minimal because I4 satisfies A→ B even after reverting
t1[A] to 1. The relationship among the various definitions of min-
imal repairs is depicted in Figure 3 and described in the following
lemma (whose proof is in Appendix C.1).

Universe of Repairs
Set-Minimal Repairs

Cardinality-Set-
Minimal Repairs

Cardinality-
Minimal Repairsp

Figure 3: The Relationship between Spaces of Possible Repairs.

LEMMA 1. The set of cardinality-minimal repairs is a subset of
cardinality-set-minimal repairs. Moreover, the set of cardinality-
set-minimal repairs is a subset of set-minimal repairs.

4. SAMPLING POSSIBLE REPAIRS
Sampling from the space of cardinality-set-minimal repairs alone

turns out to be challenging due to the interplay among violations
of FDs. For example, fixing one violation may result in resolv-
ing other violations as a side effect, and may create new viola-
tions. Thus, we give an algorithm that randomly samples from the
space of all cardinality-set-minimal repairs plus some set-minimal
repairs, starting with a simple version in Section 4.1, and a more
efficient version that partitions the input into separately-repairable
blocks in Section 4.2.

Note that although existing heuristics for finding a single nearly-
optimal repair may be modified to generate multiple random re-
pairs, they do not give any guarantees on the space of generated
repairs. For example, the algorithm in [6] can produce repairs that
are not even set-minimal, while the algorithm from [12] may miss
some cardinality-minimal repairs; see Appendix A for specific ex-
amples.



A B C
t1 1 2
t2 1 1

A B C
t1 1 2
t2 1 1
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Σ= {A C , B C}
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t3 1 3

t2 1 1
t3 1 3

t2 1 1
t3 1 3

Initial Equivalence 
C

Final Equivalence 
ClassesClasses Classes

Figure 4: An Example of Checking Whether a Set of Cells is
Clean.

4.1 Algorithm for Generating Repairs
Note that for any two tuples t1, t2 that violate an FD X → A,

i.e., that agree on X , but not A, one change is enough to produce a
repair: we can either modify t1[A] so it equals t2[A] (or vice versa),
or modify an attribute B ∈ X in either t1 or t2 so that t1[B] 6=
t2[B]. Generalizing this observation, if a set of cells C does not
violate any FDs, consistency of the set C∪{C}, for any cell C, can
always be enforced by modifying C (if necessary). Our algorithm
is based on this observation; it maintains a clean set of cells that is
extended during each iteration by inserting a new randomly chosen
cell and making any necessary modifications to the inserted cell.

We first define a clean set of cells in an instance I as follows.

DEFINITION 7. A set of cells C in an instance I is clean if there
is at least one repair I ′ ∈ Repairs(I) (of any type) such that
∀C ∈ C, I ′(C) = I(C).

That is, a set of cells in an instance I is clean if the values of the
cells in I can remain unchanged while obtaining a repair of I . Note
that it is not enough to verify that the cells in C alone do not violate
any FDs. For example, consider Figure 4, which shows a subset of
cells in an instance. Assume that we need to determine if the shown
cells are clean. Although the shown cells do not violate any FD in
Σ, no repair may contain the current values of those cells regardless
of the values of the other cells. This is because t1[A] = t2[A]
implies t1[C] = t2[C] (by A → C) and t2[B] = t3[B] implies
that t2[C] = t3[C] (by B → C), but t1[C] 6= t3[C].

To systematically determine whether a set of cells is clean, we
need to keep track of equivalence classes. We denote by E an
equivalence relation (i.e., a set of equivalence classes). We denote
by ec(E , Ci) the equivalence class E ∈ E to which the cell Ci be-
longs. We mean by merging two equivalence classes in E replacing
them by a new equivalence class that is equal to their union. Algo-
rithm 1 describes how to build an equivalence relation E over a set
of cells C in an instance I .

Algorithm 1 BuildEquivRel(C,I,Σ)

1: let TIDs(C) be the set of tuple identifiers {t : t[A] ∈ C}
2: let Attrs(C) be the set of attributes {A : t[A] ∈ C}
3: let E be an initial equivalence relation in which each cell t[A]

for t ∈ TIDs(C), A ∈ Attrs(C) belongs to a separate class
4: for each two cells t[A], t′[A] ∈ C such that I(t[A]) = I(t′[A])

do
5: merge the equivalence class ec(E , t[A]) and ec(E , t′[A])
6: end for
7: while ∃t, t′ ∈ TIDs(C), A ∈ Attrs(C), X ⊂ Attrs(C)

such that X → A ∈ Σ, ∀B ∈ X (ec(E , t[B]) =
ec(E , t′[B])), and ec(E , t[A]) 6= ec(E , t′[A]) do

8: merge the equivalence classes ec(E , t[A]) and ec(E , t′[A])
9: end while

10: return E

Having run Algorithm 1 to generate E , a set of cells C is clean in
I , denoted IsClean(C, I, E), if every two cells in C that belong to
the same equivalence class in E have the same value in I . Formally
(see Appendix C.2 for a proof):

THEOREM 1. IsClean(C, I, E) is True iff @Ci, Cj ∈ C such
that ec(E , Ci) = ec(E , Cj) ∧ I(Ci) 6= I(Cj)

Figure 4 shows an example of unclean cells. Cells that belong
to the same equivalence class are shown in the same rectangle. Ini-
tially, each group of cells that have the same value forms an equiv-
alence class. Then, we use the FDs in Σ to infer other equivalence
classes. For example, the cells t1[A] and t2[A] are in the same
equivalence class, and thus t1[C] and t2[C] are placed in the same
equivalence class as well. In the final result, t1[C] and t3[C] belong
to the same equivalence class but their values are different, which
implies that the examined cells are unclean.

We are now ready to present an algorithm for generating random
repairs–Algorithm 2. Cells are inserted into the set CleanCells
in random order (line 4). At each iteration, the algorithm checks
whether CleanCells is clean (lines 5,6). If CleanCells is un-
clean, the last cell that has been inserted into CleanCells, denoted
t[A], is changed as follows. Let Ep be the equivalence relation
on cells of CleanCells before inserting t[A] (line 7). We change
t[A] to a value that satisfies the equivalence relation Ep. Specifi-
cally, if t[A] belongs to a non-singleton equivalence class in Ep that
contains other cells previously inserted in CleanCells, the only
choice is to set I ′(t[A]) to the same value as the other cells in the
equivalence class (lines 8,9). Otherwise, we randomly choose one
of the following three alternatives for modifying t[A]: (1) a con-
stant that is randomly selected from DomI(A), (2) a variable that
is randomly selected from the set of variables previously used in I ′,
or (3) a new variable (line 11). For the first and second alternatives,
we need to make sure that the selected constant or variable makes
the set CleanCells clean. One simple approach is to keep pick-
ing a constant (similarly, a variable) at random until CleanCells
becomes clean. In the worst case, we can select up to n constants
(similarly, n variables), where n is the number of tuples in the input
instance. The third alternative, which is setting I ′(t[A]) to a new
variable, guarantees that the set CleanCells becomes clean.

We show an example of executing Algorithm 2 in Figure 5. At
each step, we only show the cells that have been selected so far by
the algorithm. Equivalence classes are shown as rectangles. The
cells t1[A], t1[B], t2[A] and t3[B] are added to CleanCells in
step (a). They are all clean and do not need to change. The cell
t2[B] is added to CleanCells in step (b). Because the cells t1[B]
and t2[B] belong to the same equivalence class, the value of t2[B]
must be changed to the value of t1[B], which is 2. In step (c), the
cell t3[A] is added to CleanCells. The value of t3[A] is changed
to a randomly selected constant, namely 6, to resolve the viola-
tion. We continue adding the remaining cells and modifying them
as needed to make sure that CleanCells is clean after each inser-
tion. Finally, the resulting instance I ′ represents a repair of I .

We show in Appendix B that the asymptotic complexity of Algo-
rithm 2 is O(m2 · n3 logn), where n is the number of tuples, and
m is the number of attributes. Also, the following theorem proves
the correctness of Algorithm 2 (the proof is in Appendix C.3).

THEOREM 2. Every instance that can be generated by Algo-
rithm 2 is a set-minimal repair of the input instance I w.r.t. Σ. All
cardinality-set minimal repairs of the input instance I w.r.t. Σ can
be generated by Algorithm 2.



Algorithm 2 GenRepair(I,Σ)

1: I ′ ← I
2: CleanCells← φ
3: while CleanCells 6= CIDs(I ′) do
4: Insert a random cell t[A] ∈ CIDs(I ′) \ CleanCells into

CleanCells, where A ∈ Attrs(R)
5: E ← BuildEquivRel(CleanCells, I ′,Σ)
6: if IsClean(CleanCells, I ′, E) = False then
7: Ep ← BuildEquivRel(CleanCells \ {t[A]}, I ′,Σ)
8: if t[A] belongs to a non-singleton equivalence class in Ep

that contains other cells in CleanCells then
9: set I ′(t[A]) to the value (either a constant or a variable)

of the other cells in ec(Ep, t[A]) ∩ CleanCells
10: else
11: randomly set I ′(t[A]) to one of three alternatives: a

randomly selected constant from DomI(A), a ran-
domly selected variable that appears in I ′, or a new
variable such that CleanCells becomes clean

12: end if
13: end if
14: end while
15: return I ′

4.2 Block-wise Repair Generation
In this section, we improve the efficiency of generating repairs

by partitioning the input instance I into independently repairable
blocks.

We note that modifying line 11 in Algorithm 2 to only assign a
new variable to a cell t[A] (i.e., the third alterative), ensures that
the cell t[A] can never be equal to any other cell in A. Thus, t[A]
can never be a part of a violation to any FD where A is in the left-
hand side. We refer to the modified version of Algorithm 2 (i.e., in
which line 11 is restricted to the third alternative only) as Algorithm
ModGenRepair.

The equivalence relation E that is constructed from cell values
in I (i.e., BuildEquivRel(CIDs(I), I,Σ)) clusters cells into
equivalence classes such that any two cells might have equal values
throughout the execution of ModGenRepair only if they belong
to the same equivalence class (we give a proof in Appendix C.4).
It follows that cells that belong to different equivalence classes
can never have the same value. For example, in Figure 6, cells
t1[C], t2[C] and t3[C] belong to the same equivalence class, which
means that they may have equal values in some generated repairs.
On the other hand, t1[B] and t2[B] belong to different equivalence
classes, meaning that they can never have equal values.

We use the equivalence relation E to partition the input in-
stance such that any two tuples that belong to different blocks can
never have equal values for the left-hand side attributes X , for all
X → A ∈ Σ. Thus, any violation of FDs throughout the course
of repairing I cannot span more than one block. In other words,
repairing every block separately results in a repair of the input in-
stance I .

In Algorithm 3, we describe how to partition an instance I into
a set of disjoint blocks that can be repaired separately using the
Algorithm ModGenRepair in order to repair the instance I .

In Figure 6, we show an example of partitioning an instance. Ini-
tially, an equivalence relation is constructed on the input instance
by invoking BuildEquivRel(CIDs(I), I,Σ). Each equiva-
lence class is represented as a rectangle that surrounds the class
members. We initially assign each cell to a separate partition (e.g.,
cell t1[A] belongs to P1, and cell t2[A] belongs to P2). For each

A B
I I’ I’

A B A BA B
t1 1 2
t2 1 3

A B
t1 1 2
t2 1

A B
t1 1 2
t2 1 2

t3 1 5
t4 6 7

) I t t [A] b) I t &

t3 5
t4

t3 5
t4

{A B}

I’ I’ I’

a) Insert  t1[A], 
t1[B], t2[A], t3[B]

b) Insert & 
change t2[B]

Σ= {A B}

A B
t1 1 2

A B
t1 1 2

A B
t1 1 2

t2 1 2
t3 6 5
t4

t2 1 2
t3 6 5
t4 7

t2 1 2
t3 6 5
t4 v1 7

c) Insert & 
change t3[A]

d) Insert t4[B] e) Insert & 
change t4[A]

4 4 4 1

Figure 5: An Example of Executing Algorithm 2

Algorithm 3 Partition(I,Σ)

1: E = BuildEquivRel(CIDs(I), I,Σ)
2: Initialize the set of partitions P such that each cell in I belongs

to a separate partition
3: for each X → A ∈ Σ do
4: for each pair of tuples ti, tj ∈ I such that ∀B ∈

X, ec(E , ti[B]) = ec(E , tj [B]) do
5: merge the partitions of the cells ti[AX] ∪ tj [AX]
6: end for
7: end for
8: return P

FD X → A, we locate tuples whose attributes X belong to the
same equivalence classes and we merge the partitions of attributes
XA of those tuples. For example, since the cells t1[A] and t2[A]
belong to the same equivalence class and the FD A→ C ∈ Σ, we
merge the partitions of t1[A], t2[A], t1[C], and t2[C].

We prove in Theorem 3 that the blocks generated by Algorithm 3
can be repaired separately using Algorithm ModGenRepair.

THEOREM 3. Blocks of an instance I that are constructed by
Algorithm Partition can be repaired separately using Algo-
rithm ModGenRepair in order to repair the instance I .

The insight behind the performance improvement is as follows.
We transform the problem of repairing an inconsistent instance into
repairing a large number of smaller blocks. Since the largest part
of an input instance is clean in most scenarios, many cells are not
involved in violations, and therefore they will not be clustered with
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Figure 6: An Example of Partitioning an Instance.



other cells during the partitioning step (i.e., they belong to single-
ton blocks). Singleton blocks are already clean and do not have to
be processed by Algorithm ModGenRepair. This significantly
reduces the overhead of inserting clean cells into CleanCells and
evaluating whether CleanCells is still clean.

Note that limiting the values that can be assigned to t[A] in
line 11 to those represented by a new variable comes naturally if
Dom(A) is infinite and all values in Dom(A) have equal prob-
ability of being the correct replacement of t[A]. The reason is
that ignored values (i.e., constants in DomI(A) and variables that
have been already used in I ′) represent a finite number of values in
Dom(A), while a new variable vAj represents an infinite number
of values in Dom(A).

5. USER-DEFINED HARD CONSTRAINTS
In this section, we describe a simple modification to Algorithm 2

that generates random repairs with user-defined hard constraints.
We consider constraints that specify a set of immutable cells T .
Since the algorithm cannot change an immutable cell when gener-
ating a repair, we must first ensure that T itself is clean. For this,
we build the equivalence relationship E over T using Algorithm 1
and invoke Theorem 1.

Here is the modification to Algorithm 2. If T is not clean, we
return an empty answer. Otherwise, rather than inserting a random
cell into CleanCells at every iteration, we first insert all the cells
in T into CleanCells. We know that these cells are clean and
that they will not be changed at insertion time. Next, we insert the
remaining cells into CleanCells in a random order. We claim that
this modification produces repairs in which none of the cells in T
are changed since Algorithm 2 always resolves conflicts by only
modifying the cell currently being inserted.

Figure 5 illustrates an example. Assume that T =
{t1[A], t1[B], t2[A], t3[B]}. In step (a), we insert all the cells in
T into CleanCells. The remaining steps show a possible order
of insertions and modifications, if needed, of the remaining cells
into CleanCells. The end result is a repair that satisfies the hard
constraint. On the other hand, if T = {t1[A], t1[B], t2[A], t2[B]},
then we will find that T is not clean and the algorithm will return
an empty answer.

Another way of dealing with the case when T is not clean is to
relax the hard constraint and allow changes to the cells in T . Here,
it is reasonable to return random repairs that minimize the number
of changed cells in T . This objective is beyond the scope of this
paper and will be pursued in future work.

6. EXPERIMENTAL STUDY
In this section, we preset an experimental evaluation of our ap-

proach. The goal of our experiments is twofold. First, we show
that the proposed algorithms can efficiently generate random re-
pairs. Second, we use our repair generator to study the correlation
between the number of changes in a repair and the quality of the
repair. To provide a reference point, we implemented two previous
approaches that deterministically repair FD violations.

6.1 Setup
All experiments were conducted on a SunFire X4100 server

with a Dual Core 2.2GHz processor, and 8GB of RAM. All
computations are executed in memory. We use synthetic data
that is generated by a modified version of the UIS Database
generator [1]. This program produces a mailing list that has
the following schema: RecordID, SSN, FirstName,
MiddleInit, LastName, StNumber, StAddr, Apt,
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Figure 7: The Running Time of Generating a Repair.

City, State, ZIP. The following FDs are defined:

• SSN → FirstName, MiddleInit, LastName,
StNumber, StAddr, Apt, City, State, ZIP

• FirstName, MiddleInit, LastName → SSN,
StNumber, StAddr, Apt, City, State, ZIP

• ZIP → City, State

The UIS data generator was originally created to construct mail-
ing lists that have duplicate records. We modified it to generate
two instances: a clean instance Ic and another instance Id that is
obtained by marking random perturbations to cells in Ic. These
perturbations include modifying characters in attributes, swapping
the first and last names, and replacing SSNs with all-zeros to indi-
cate missing values. To control the amount of perturbation, we use
a parameter Ppert that represents the probability of modifying one
or more attributes of each tuple t ∈ Ic. We use four approaches to
clean the instance Id that are described as follows.

• Holistic: This approach implements Algorithm 2. We
tested two versions of the algorithm that execute line 11 in
different ways. In the first version, we only allow chang-
ing a cell to a new variable (i.e., similar to Algorithm
ModGenRepair described in Section 4.2). In the second
version, we assume that the three alternatives described in
line 11 in Algorithm 2 are equiprobable.

• Block-wise: This approach uses Algorithm 3 to partition
the input instance into disjoint blocks, followed by Algo-
rithm ModGenRepair to repair individual blocks.

• Vertex Cover [12]: This approach is based on model-
ing FD violations as hyper-edges and using an approximate
minimum vertex cover of the resulting hyper-graph to find a
repair with a small number of changes.

• Greedy RHS [6]: This approach repeatedly picks the viola-
tion with the minimum cost to repair and fixes it by changing
one or more cells. Modifications are only performed to the
right-hand side attributes of the violated FDs.

6.2 Performance Analysis
In Figure 7(a), we show the running time for generating one re-

pair for various data sizes. We only show the running time of the
first version of Algorithm Holistic, which is less than or equal
to the running time of the second version. We report the average
runtime for generating five repairs. For Algorithm Block-wise,



the cost of the initial partitioning of the input instance is amortized
over the generated repairs. Algorithm Greedy RHS provides the
best scalability, however, at the cost of providing poor output qual-
ity. Algorithm Block-wise is ranked second and it outperforms
the holistic version of the algorithm by orders of magnitude. For
example, repairing 10000 tuples by Algorithm Block-wise took
11 seconds, while Algorithm Holistic took 1450 seconds. Al-
gorithm Vertex Cover is ranked third. We noticed that mem-
ory requirements of Algorithm Vertex Cover grow quickly as
the number of violations increases due to the large number of the
hyper-edges in the initial hyper-graph (e.g., 2.2 million hyper-edges
when the input instance contains 15000 tuple).

The running times of Algorithms Holistic and
Block-wise are almost linear in the number of generated
repairs (i.e., the sample size) because the running time for gen-
erating a random repair has very low discrepancy. We omit this
experiment due to space constraints.

Figure 7(b) depicts the running time of the four algorithms for
various levels of errors in the input instance, which is captured
by the parameter Ppert. Note that Algorithm Holistic incurs
a large overhead even when the input database is clean. This is
because the algorithm inserts the database cells one-by-one into
the set CleanCells and check whether CleanCells is clean upon
each insertion. On the other hand, Algorithm Block-wise elimi-
nates such overhead by splitting the input instance into a large num-
ber of blocks that can be repaired more efficiently.

6.3 The Relation between the Number of
Changes and Quality

In this section, we use our repair sampling algorithm to study
the correlation between the number of changes in a repair and the
quality of the repair, given that the ground truth is available. Such
a study allows for verifying the concept of minimality of changes.
For completeness, we also show the characteristics of the repairs
generated by other deterministic approaches.

We use the precision and recall of the performed changes with re-
spect to the given ground truth as quality metrics. We use the clean
instance Ic as the ground truth to assess the quality of a given repair
Ir . First, we show how to count the number of correct changes in
Ir . We denote by CC(Ir) the set of cells that are corrected in Ir .

CC(Ir) = {C ∈ ∆(Id, Ir) : Ir(C) = Ic(C) ∧ Id(C) 6= Ic(C)}

Replacing an incorrect value of a cell in Id (w.r.t. Ic) with a
variable can be considered as a partially correct change. We denote
by CV C(Ir) the set of cells that are partially corrected.

CV C(Ir) = {C ∈ ∆(Id, Ir) : Ir(C) is a variable∧ Id(C) 6= Ic(C)}

We define the number of correct changes as the sum of the car-
dinality of CC(Ir), and a fraction (0.5 in our experiments) of the
cardinality of CV C(Ir). We assess the quality of Ir using the pre-
cision and recall of changes in Ir . We define the precision of a
repair Ir as the ratio between the number of correct changes in Ir
to the total number of changes in Ir . We define the recall of a repair
Ir as the ratio between the number of correct changes in Ir to the
number of cells with different values in Ic and Id.

In Figure 8, we show the quality of the repairs generated
by three algorithms: Block-wise, Vertex Cover, and
Greedy RHS. The quality of the repairs generated by Algorithm
Holistic is not shown due to space constraints. The input in-
stance consists of 2000 tuples and the parameter Ppert is set to 5%.

Algorithm Block-wise is executed 500 times (due to the ran-
domness of the generating process) , while Algorithms Vertex
Cover and Greedy RHS are executed once.

The recall of all the algorithms is very low (less than 0.02). The
reason is that many errors in Id are not violations of FDs (e.g.,
errors in the attributes StNumber, StAddr, Apt), and thus
they cannot be detected by the cleaning algorithms. Note that we
use the entire set of errors in Id to compute the recall (instead of
errors that directly contribute to violations of FDs) because there is
no unique subset of errors that can be fixed in order to provide a
valid repair.

Figures 8(a) and 8(b) show the relationship between the number
of changes and the precision/recall of the resulting repair. Both
precision and recall have strong correlation with the number of
changes (-0.95 and -0.68, respectively), which suggests that repairs
with fewer changes have superior quality.

The first version of Algorithm Holistic provides the same
range of precision and recall as Algorithm Block-wise because
both algorithms are based on the same repairing semantic (i.e., both
are based on Algorithm ModGenRepair). The second version of
Algorithm Holistic provides very poor precision and recall (on
average 0.05 and 0.006, respectively). The reason is that most of
the time, the constants selected at line 11 are different from the
correct constant in Ic. This result implies that replacing a cell at
line 11 by a variable is safer than picking a random constant that
resolves the violation.

Note that in Figure 8(c), Algorithm Greedy RHS provides very
low precision, compared to the other algorithms. The main reason
is that this algorithm performs changes only to the right-hand side
attributes of FDs. Thus, errors in left-hand side attributes of FDs
are always fixed in the wrong way. For example, missing SSNs are
usually replaced by all-zeros. Algorithm Greedy RHS changes
all attributes of tuples with missing SSNs to the same value instead
of replacing missing SSNs by variables.

Algorithm Vertex Cover provides a relatively high precision
and recall compared to other approaches (Figure 8(c)). However,
a large number of repairs (around 50% of the repairs) generated
by Algorithm Block-wise have better quality than those gener-
ated by Algorithm Vertex Cover. The reason is that Algorithm
Vertex Cover uses an approximate minimum vertex cover to
decide which cells are changed (finding an exact minimum vertex
cover is NP-hard). We also emphasize that even obtaining a sin-
gle repair that has the fewest number of changes is not enough be-
cause there are several possible repairs that have the same number
of changes.

7. RELATED WORK
In the context of repairing the violations of FDs and other in-

tegrity constraints, the most popular approach has been to obtain
a single repair via the fewest modifications to the input database
(e.g., [6, 12]). Both of these works find a repair whose distance to
the input database is close to the optimal distance. The main draw-
back of single-repair approaches is that there is usually no unique
optimal repair. In our work, we address this problem by generating
a sample of possible repairs of the input database.

Approaches that provide consistent query answers (i.e., answers
that are true in every possible repair) perform query rewriting (e.g.,
[9, 4]), or construct a condensed representation of all repairs that
allows obtaining consistent answers [15, 16]. Usually, a restricted
class of queries can be answered efficiently while harder classes are
answered using approximate methods (e.g., [13]). Our approach
overcomes multiple shortcomings of consistent query answering
such as returning empty query results when no common query an-
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Figure 8: The Quality of the Generated Repairs.

swers are found.
In [10], the authors proposed a model of possible repairs of in-

consistent databases. The proposed model imposes a strong con-
straint on the defined FDs. Specifically, any attribute that appears in
the right-hand side of an FD cannot appear in the left-hand side of
another FD. In this setting, FD violations can be repaired indepen-
dently and cardinality-minimal repairs can be obtained in PTIME.
Our solutions apply to arbitrary sets of FDs.

A related problem is checking whether a given instance is a re-
pair of the input instance. For example, in [3], authors studied the
complexity of deciding whether a specific instance is a minimal re-
pair (under several semantics of minimality) for larger classes of
integrity constraints. New definitions of minimality are also pro-
posed in [3] such as component cardinality repairs, which general-
ize cardinality-minimal repairs of database instances that consist
of multiple relations (i.e., components) in the sense that repairs
that are Pareto-optimal w.r.t. the number of changes in each com-
ponent are considered as possible repairs, even if the total num-
ber of changes is not minimal. Such generalization is not useful
in the class of FDs because individual relations are repaired inde-
pendently and thus component cardinality repairs are equivalent to
cardinality-minimal repairs.

A related topic to or work is answering queries over uncertain
data. Many works have addressed the problem of modeling data un-
certainty in a compact way to allow efficient query answering (e.g.,
[5, 14]). One of the related works is the Monte-Carlo Database
(MCDB) [11], which allows answering user queries efficiently us-
ing a sample of possible realizations (i.e., possible worlds) of a
database by avoiding redundant computations. For example, query
planning is performed only once for the entire set of possible re-
pairs. We envision integrating our repair-generating algorithms
with MCDB to facilitate efficient query answering.

8. CONCLUSION
In this paper, we presented a new technique for constraint-based

database repair, in which we generate a random sample of the pos-
sible repairs. We described a realization of this technique in the
context of Functional Dependencies, given a novel repair space
that combines the features of two well-known existing spaces: set
and cardinality minimal. We also extended our sampling algorithm
to allow user-defined hard constraints that specify a set of cells
that must remain unchanged during the repairing process. Our ex-
perimental study indicates that partitioning the input instance into
blocks that can be repaired independently results in orders of mag-
nitude performance gain.

An important direction for future work is to design new repair
sampling algorithms for other types of integrity constraints and data
quality rules, and understand the corresponding repair spaces.
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APPENDIX
A. RANDOMIZATION OF PREVIOUS AP-

PROACHES
In this section, we give counterexamples to illustrate why previ-

ous approaches that produce a single repair (e.g., [6, 12]) are not
suitable for generating a random sample of repairs.
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Figure 9: An Example of a Repair Generated by the Algorithm
in [6] that is Not Set-minimal.

First, we show that the algorithm introduced in [6] may generate
repairs that are not set-minimal (i.e., contain unnecessary changes).
The algorithm repairs an input instance by repeatedly searching for
tuples that violate a certain FD X → A ∈ Σ and modify the at-
tribute A of the violating tuples to have the same value. For exam-
ple, in Figure 9, we show a possible repair I ′ of the input instance
I that can be generated by the algorithm in [6]. Modified cells are
shaded in the figure. The fist step repairs a violation of B → C by
associating the cells t2[C] and t3[C] to the same equivalence class
and changing the cell t3[C] to 2. In the second step, a violation of
A → B is fixed by changing t2[B] to 4. The resulting repair I ′ is
not set-minimal because the cell t3[C] can be reverted to its value
in I without violating any FD.

Repairs that are not set-minimal can be generated by the algo-
rithm in [6] due to the fact that the generated repairs can involve
contradicting assumptions. For example, the cell t2[B] is used in
the first step for changing t3[C] to 2 (i.e., t2[B] is assumed to be
a correct cell). In the second step, t2[B] is modified to 4, which
implies that t2[B] is incorrect (i.e., unclean). We avoid such con-
tradictions in our algorithm that is presented in Section 4. That is,
once a cell Ci is used for modifying another cell Cj , Ci cannot be
modified any further. We enforce this constraint by avoiding chang-
ing cells that are already in the set CleanCells and only changing
the cell currently being inserted (refer to Algorithm 2).

We show that some cardinality-minimal repairs cannot be gen-
erated by the approach presented in [12]. We illustrate such a fact
using the example in Figure 10. In Figure 10(a), we show the hyper-
edges (also called double and triple conflicts) that exist in the initial
conflict graph. We note that the algorithm in [12] can only change a
cell t[Ai] if it appears in the initial conflict graph, or there exists an
FDX → Aj ∈ Σ such thatAi ∈ X and t[Aj ] appears in the initial
conflict graph. It follows that the cell t2[E] in Figure 10 can never
be changed by the algorithm. Therefore, the cardinality-minimal
repair I ′ that is shown in Figure 10(b) cannot be generated by the
algorithm in [12].

Some cardinality-minimal repairs cannot be generated by the al-
gorithm in [12] because the algorithm is biased towards replacing
the cells that belong to the left-hand side attributes of FDs with new
variables (step 2 of the algorithm presented in [12]). In our algo-
rithm, we consider all possible values when changing a given cell
that is involved in a violation as we describe in Section 4.
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Figure 10: An Example of a Cardinality-minimal Repair that
Cannot Be Generated by the Algorithm in [12].

B. COMPLEXITY ANALYSIS OF ALGO-
RITHM 2

Let n be the number of tuples in the input instance I , and m
be the number of attributes in I . In Algorithm 1, the maximum
number of merges of equivalence classes is less than or equal to
the number of distinct tuples that appear in C multiplied by the
number of distinct attributes in C. Therefore, the complexity of
Algorithm 1 is in O(n · m). Evaluating IsClean can be done
in O(m · n logn) by sorting the cells of each attribute based on
their equivalence classes and ensuring that cells in each equivalence
class have the same value.

In Algorithm 2, the number of iterations is equal to the number of
cells in I ′ (i.e., n ·m). In each iteration, Algorithm 1 is invoked to
build the equivalence classes of cells inCleanCells. Additionally,
in line 11, Algorithm 1 and the condition IsClean can be evaluated
for all possible constants and variables that appear in the attribute
A in I ′ (in worst case). Hence, the complexity of each iteration
is O(m · n2 logn) and the overall complexity of Algorithm 2 is
O(m2 · n3 logn).

C. PROOFS

C.1 Proof of Lemma 1
For any two repairs I ′ and I ′′ of I ,

∆(I, I ′′) ⊂ ∆(I, I ′)→ |∆(I, I ′′)| < |∆(I, I ′)|

This implies that for any repair I ′ of I ,

@I ′′ ∈ Repairs(I) (|∆(I, I ′′)| < |∆(I, I ′)|)
→ @I ′′ ∈ Repairs(I) (∆(I, I ′′) ⊂ ∆(I, I ′))

Therefore, if I ′ is a cardinality-minimal repair, I ′ is cardinality-
set-minimal. Similarly, for any two repairs I ′ and I ′′ of I ,

∆(I, I ′′) ⊂ ∆(I, I ′) ∧ ∀C ∈ ∆(I, I ′′) (I ′′(C) = I ′(C))
→ ∆(I, I ′′) ⊂ ∆(I, I ′)



Therefore, if I ′ is a cardinality-set-minimal repair, I ′ is set-
minimal.

C.2 Proof of Theorem 1
We prove the “only if” direction as follows. Let I be a subset

of repairs of I such that ∀I ′ ∈ I (∀C ∈ C, I ′(C) = I(C)). We
first prove that whenever two cells belong to the same equivalence
class, they must have equal values in every I ′ ∈ I. We provide a
recursive proof as follows. If two cells t[A] and t′[A] belong to the
same equivalence class, then either I(t[A]) = I(t′[A]) and thus
I ′(t[A]) = I ′(t′[A]), or there exists an FD X → A ∈ Σ such
that for all B ∈ X , t[B] and t′[B] belong to the same equivalence
class. Recursively, we can prove that for all B ∈ X , I ′(t[B]) =
I ′(t′[B]). Furthermore, I ′ |= X → A implies that I ′(t[A]) =
I ′(t′[A]).

If there exist two cells Ci and Cj in C that belong to the same
equivalence class while having different values in I , no repair I ′

can satisfy I ′(Ci) = I ′(Cj) and I ′(Ci) 6= I ′(Cj) simultaneously.
Thus, the set I is empty in this case (i.e., cells in C are unclean).

We prove the “if” direction as follows. Consider the case where
@Ci, Cj ∈ C (ec(E , Ci) = ec(E , Cj)∧ I(Ci) 6= I(Cj)). We need
to prove that the set I is not empty. Let I ′ be an instance where
∀C ∈ C, I ′(C) = I(C) and the values of cells inCIDs(I ′)\C are
set as follows. Each cell in a non-singleton equivalence class is set
to the value of the other cells in the equivalence class. Each cell that
belong to a singleton equivalence class, or is not associated with an
equivalence class is set to a distinct variable. In other words, I ′ is
constructed such that cells that have equal values in I ′ must belong
to the same equivalence class, and vice versa.

For every two tuples t, t′ ∈ I ′ and for every FD X → A ∈ Σ,
t[X] = t′[X] implies that for all B ∈ X , t[B] and t′[B] belong to
the same equivalence class. Therefore, t[A] and t′[A] must belong
to the same equivalence class as well (based on Algorithm 1, lines
8-10), and thus I ′(t[A]) = I ′(t′[A]). This proves that I ′ |= Σ and
thus I is not empty (i.e., cells in C are clean).

C.3 Proof of Theorem 2
We need to prove the following points:

1. Every generated instance I ′ is a repair of I w.r.t Σ.

2. Every generated repair I ′ is set-minimal.

3. All cardinality-set-minimal repairs can be generated by the
algorithm.

To prove the first point, we show that all the cells of the gen-
erated instance I ′ are clean. We prove this point by induction.
In the base case, CleanCells contains one cell, and thus the set
of cells CleanCells in the instance I ′ are clean. We need to
prove in the induction step that if the cells CleanCells in I ′ are
clean, CleanCells ∪ {t[A]} in I ′ are clean as well, for any cell
t[A] 6∈ CleanCells that is possibly changed to another value ac-
cording to the lines 6-13 in Algorithm 2. That is, either the set
CleanCells ∪ {t[A]} is clean for I ′(t[A]) = I(t[A]), or I ′(t[A])
is changed in a way that makes the set CleanCells∪{t[A]} clean.
We concentrate on the latter case. Let Ep be the set of equivalence
classes that is constructed based on the set CleanCells, and E be
the set of equivalence classes that is constructed based on the set
CleanCells ∪ {t[A]} after changing t[A] based on lines 6-13 in
the algorithm. There are two possible scenarios, which we describe
as follows.

• t[A] belongs to a non-singleton equivalence class E ∈
E such that E contains other cells previously inserted in
CleanCells. In this case, setting t[A] in I ′ to the values

of other cells in E does not violate the constraints imposed
by Ep. Also, such change implies that E = Ep. It follows that
CleanCells ∪ {t[A]} is clean.

• t[A] belongs to a non-singleton equivalence class that only
contains t[A], or t[A] belongs to a singleton class. In this
case, we set t[A] to a constant or a variable that appears in I ′

such thatCleanCells∪{t[A]} is clean. Alternatively, we set
t[A] to a new variable vAj . In the latter case, the constraints
imposed by Ep are not violated because vAj cannot be in
the same equivalence class of any other cell in CleanCells.
Moreover, setting vAj does not result in merging the equiva-
lence class ec(Ep, t[A]) with any other classes (i.e., E = Ep).
Thus, CleanCells ∪ {t[A]} is clean.

Upon termination of the algorithm, the set CleanCells contains
all cells of I ′. Therefore, I ′ is a repair of I .

To prove the second point, we need to show that any subset of
the changed cells ∆(I, I ′) cannot be reverted to their values in I
without violating Σ. We say that a cell C in ∆(I, I ′) represents a
necessary change in a repair I ′ if we cannot revert any subset of
∆(I, I ′) that contains C without violating Σ. A repair I ′ is set-
minimal if every cell in ∆(I, I ′) represents a necessary change.

Let C1, C2, . . . , Cβ be the order in which cells are inserted into
CleanCells in Algorithm 2, where β = |CIDs(I)|. We prove
by strong induction that every cell Ci, 1 ≤ i ≤ β is either an un-
changed cell or a changed cell that represents a necessary change.

• The base case: The set {C1} is a clean set of cells, and thus
C1 remains unchanged.

• The induction step: We show that if every cell in
{C1, . . . , Ci} is either an unchanged cell or a necessar-
ily changed cell, Ci+1 is either unchanged or a necessarily
changed cell. If Ci+1 is unchanged, the induction step is cor-
rect. Otherwise, Ci+1 is changed and we need to show that
changing Ci+1 is necessary. We prove this fact by contradic-
tion. Assume that ∃S ⊆ ∆(I, I ′) such that Ci+1 ∈ S and we
can revert cells in S to the their original values in I without
violating Σ. All changed cells in {C1, . . . , Ci} represent nec-
essary changes, and thus S ∩ {C1, . . . , Ci} = φ. It follows
that for I ′(Ci+1) = I(Ci+1) (i.e., Ci+1 is unchanged), the
set {C1, . . . , Ci+1} in I ′ is not conflicting. However, in this
case, Algorithm 2 would not change Ci+1, a contradiction.

It follows that every cell in ∆(I, I ′) represents a necessary
change, which implies that I ′ is set-minimal.

In the third point, we show that Algorithm 2 can generate all
cardinality-set-minimal repairs. Algorithm 2 involves two types
of randomness: the order in which cells are inserted into the set
CleanCells (line 4), and the values that are assigned to unclean
cells in line 11. In the following, we show that for every cardinality-
set-minimal repair I ′, there exist an order of cells and a set of new
values of unclean cells that are considered by Algorithm 2 in order
to generate I ′.

Let C1, . . . , Cα be any arbitrary order of the unchanged cells
in I ′, where α = |CIDs(I)| − |∆(I, I ′)|. Let Cα+1, . . . , Cβ
be an arbitrary order of the changed cells in I ′, where β =
|CIDs(I)|. Let I be the set of repairs that can be generated by
Algorithm 2 when inserting the cells into CleanCells in the order
C1, . . . , Cα, Cα+1, . . . , Cβ .

We show that I ′ ∈ I by contradiction. Assume that I ′ 6∈ I.
For each I ′′ ∈ I, let δ(I ′′) be the index of the first cell that has
different values in I ′ and I ′′. That is, δ(I ′′) = min({i : I ′(Ci) 6=



I ′′(Ci)}). For all I ′′ ∈ I, δ(I ′′) > α because C1, . . . , Cα are
clean (i.e., there exist at least one repair of I , which is I ′, such that
C1, . . . , Cα are unchanged). Thus, Algorithm 2 will not change
any cell in C1, . . . , Cα. Also, for all I ′′ ∈ I, δ(I ′′) ≤ β be-
cause no repair I ′′ ∈ I can be identical to I ′ (based on our as-
sumption). Let Im be the repair in I with the maximum δ(.), i.e.,
Im = maxarg I′′∈I δ(I ′′).

Because I ′ is cardinality-set-minimal and the cells
{C1, . . . , Cα} are unchanged in I ′ as well as all repairs in
I, the cells {Cα+1, . . . , Cβ} must be changed in every repair in
I. Therefore, the cell Cδ(Im) must have been changed in Im by
the algorithm, i.e., Im(Cδ(Im)) 6= I(Cδ(Im)). This implies that
C1, . . . , Cδ(Im) in Im are not clean when Cδ(Im) is unchanged
(i.e., Im(Cδ(Im)) = I(Cδ(Im))). The value I ′(Cδ(Im)) is a
possible assignment to Cδ(Im) that is considered by Algorithm 2
at either line 9 or line 11 in order to make C1, . . . , Cδ(Im) clean.
Therefore, there must exist Ip ∈ I such that Ip(Ci) = Im(Ci)
for 1 ≤ i < δ(Im) and Ip(Cδ(Im)) = I ′(Cδ(Im)). This
implies that δ(Ip) > δ(Im), which contradicts the fact that
Im = maxarg I′′∈I δ(I ′′).

It follows that our initial assumption is incorrect (i.e., every
cardinality-set-minimal repair I ′ can be generated by Algorithm 2).

C.4 Proof of Theorem 3
We first prove that for any repair I ′ generated by Algo-

rithm ModGenRepair(I,Σ), every equivalence class in E ′ =
BuildEquivRel(CIDs(I ′), I ′,Σ) is contained in another
equivalence class in E = BuildEquivRel(CIDs(I), I,Σ). We
approach our proof by induction. We denote by CleanCellsi
the value of the set CleanCells at iteration i of the algorithm,
and denote by Ei the equivalence relation returned by the pro-
cedure BuildEquivRel(CleanCellsi, I

′,Σ). Initially, the set
CleanCells1 contains one unchanged cell. Therefore, E1 contains
one singleton equivalence class that is contained in an equivalence
class in E . At iteration i in the algorithm, assume that for each
E′ ∈ Ei−1, ∃E ∈ E such that E′ ⊆ E. An additional cell C
is added to CleanCellsi−1, resulting in the set CleanCellsi. If
C is unchanged during the current iteration, C will be either as-
sociated to the same equivalence class in Ei−1, or be associated
to another class E′′ ∈ Ei−1. In the former case, Ei = Ei−1

and thus the relationship between Ei and E is similar to the rela-
tionship between Ei−1 and E . In the latter case, the class E′′ is
contained in some class E in E . Additionally, the first cell that
is inserted into CleanCells and belongs to E′′ is unchanged and
its value is equal to I(C). Thus, the cell C must belong to E af-
ter executing BuildEquivRel(CIDs(I), I,Σ), which implies
that E′′ ∪ {C} ⊆ E. Now, we consider the case where C is
changed. Algorithm ModGenRepair can only change C such
that Ei = Ei−1. At the final iteration, Ei = E ′, which proves that
∀E′ ∈ E ′(∃E ∈ E , E′ ⊆ E).

A direct result is that the possible constant values of a cell t[A]
in any randomly generated repair I ′ of I , denoted PVI(t[A]), are
values of the cells in the equivalence class ec(E , t[A]) in the input
instance I . Therefore, for two cells t[A] and t′[A] that belong to
different equivalence classes in E , PVI(t[A]) ∩ PVI(t′[A]) = φ.
Based on Algorithm 3, for every FD X → A and for every two
tuples t, t′ such that t[X] and t′[X] belong to different blocks,
PVI(t[X]) ∩ PVI(t′[X]) = φ.

Assume that I is partitioned into multiple blocks P1, P2, . . .
using Algorithm 3 and that P ′i is a repair of Pi. Denote by
PVP (t[X]) the possible values of attributes X of a tuple t in
a randomly generated repair P ′ of a block P . PVP (t[X]) ⊆
PVI(t[X]) because repairing P can be considered as an initial

step of repairing I , where all cells in P are inserted first into
CleanCells. Therefore, for every FD X → A and for every
two sets t[X] ∈ Pi and t′[X] ∈ Pj for i 6= j, PVPi(t[X]) ∩
PVPj (t′[X]) = φ. Hence, P ′1 ∪ P ′2 ∪ . . . satisfies all FDs in Σ
(i.e., the instance resulting from merging P ′1, P ′2, . . . represents a
repair of I).


