
Descriptive and Prescriptive Data Cleaning

Anup Chalamalla1∗, Ihab F. Ilyas1∗, Mourad Ouzzani2, Paolo Papotti2
1 University of Waterloo, 2 Qatar Computing Research Institute (QCRI)

akchalam@cs.uwaterloo.ca, ilyas@uwaterloo.ca, {mouzzani,ppapotti@qf.org.qa}

ABSTRACT
Data cleaning techniques usually rely on some quality rules
to identify violating tuples, and then fix these violations us-
ing some repair algorithms. Oftentimes, the rules, which are
related to the business logic, can only be defined on some tar-
get report generated by transformations over multiple data
sources. This creates a situation where the violations de-
tected in the report are decoupled in space and time from
the actual source of errors. In addition, applying the repair
on the report would need to be repeated whenever the data
sources change. Finally, even if repairing the report is possi-
ble and affordable, this would be of little help towards iden-
tifying and analyzing the actual sources of errors for future
prevention of violations at the target. In this paper, we pro-
pose a system to address this decoupling. The system takes
quality rules defined over the output of a transformation
and computes explanations of the errors seen on the output.
This is performed both at the target level to describe these
errors and at the source level to prescribe actions to solve
them. We present scalable techniques to detect, propagate,
and explain errors. We also study the effectiveness and ef-
ficiency of our techniques using the TPC-H Benchmark for
different scenarios and classes of quality rules.

1. INTRODUCTION
A common approach to address the problem of dirty

data [8] is to apply a set of data quality rules or constraints
over a target database, to“detect”and to eventually “repair”
erroneous data [1, 7, 10, 3, 15]. Tuples or cells (attribute-
value of a tuple) in a database D that are inconsistent w.r.t.
a set of rules Σ are considered to be in violation, thus pos-
sibly “dirty”. A repairing step tries to “clean” these viola-
tions by producing a set of updates over D leading to a new
database D′ that satisfies Σ. Unfortunately, in many real life
scenarios [13], the picture is different, and data and rules are
decoupled in space and time; constraints are often declared

∗Work partially done while at QCRI.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610520.

not on the original data but rather on reports or views, and
at a later stage in the data processing life cycle.

Example 1. Consider the report T (see Figure 1) about
shops for an international franchise. The HR department
enforces a set of policies in the franchise workforce and iden-
tifies two problems in T . The first violation (ta and tb, in
bold) comes from a rule stating that, in the same shop, the
average salary of the managers (Grd=2) should be higher
than that of the staff (Grd=1). The second violation (tb
and td, in italic) comes from a rule stating that a bigger
shop cannot have a smaller staff.

T Shop Size Grd AvgSal #Emps Region
ta NY1 46 ft2 2 99 $ 1 US
tb NY1 46 ft2 1 100 $ 3 US
tc NY2 62 ft2 2 96 $ 2 US
td NY2 62 ft2 1 90 $ 2 US
te LA1 35 ft2 2 105 $ 2 US
tf LND 38 ft2 1 65 £ 2 EU

Emps EId Name Dept Sal Grd SId JoinYr
t1 e4 John S 91 1 NY1 2012
t2 e5 Anne D 99 2 NY1 2012
t3 e7 Mark S 93 1 NY1 2012
t4 e8 Claire S 116 1 NY1 2012
t5 e11 Ian R 89 1 NY2 2012
t6 e13 Laure R 94 2 NY2 2012
t7 e14 Mary E 91 1 NY2 2012
t8 e18 Bill D 98 2 NY2 2012
t9 e14 Mike R 94 2 LA1 2011
t10 e18 Claire E 116 2 LA1 2011

Shops SId City State Size Started
t11 NY1 New York NY 46 2011
t12 NY2 New York NY 62 2012
t13 LA1 Los Angeles CA 35 2011

Figure 1: A report T on data sources Emps & Shops.

To explain these errors, we adopt an approach that sum-
marizes the violations in terms of predicates on the database.
In the example, since the problematic tuples have Attribute
Region set to US, we describe (explain) the violations in
the example as [T.Region = US]. Note that this explana-
tion summarizes all tuples that are involved in a violation,
and not necessarily the erroneous tuples; in many cases, up-
dating only one tuple in a violation (set of tuple) is enough
to bring the database into a consistent state. For example, a
repairing algorithm would identify tb.Grd as a possible error
in the report. Hence, by updating tb.Grd, the two violations
would be removed. Limiting the erroneous tuples can guide
us to a more precise explanation. In the example, the expla-
nation [T.Region = US∧T.Shop = NY 1] is more specific, if
we believe that tb.Grd is the erroneous cell. The process of
explaining data errors is two-fold: identifying a set of poten-
tial erroneous tuples (cells); and finding concise descriptions

Figure 2: System Architecture.

that summarize these errors and that can be consumed by
users or by other analytics layers.

We highlight the problem of explaining errors when er-
rors are identified in a different space and at a later stage
than when errors were digitally born. Consider the following
query that generated Table T in Example 1. Since violations
detected in the report are actually caused by errors that
crept in at an earlier stage, i.e., from the sources, propagat-
ing these errors from a higher level in the transformation to
the underlying sources can help in identifying the source of
the errors and in prescribing actions to correct them.

Example 2. Let us further assume that the previous re-
port T is the result of a union of queries over multiple shops
of the same franchise. We focus on the query over source
relations Emps and Shops for the US region (Figure 1).
Q: SELECT SId as Shop, Size, Grd, AVG(Sal) as

AvgSal, COUNT(EId) as #Emps,‘US’ as Region

FROM US.Emps JOIN US.Shops ON SId

GROUP BY SId, Size, Grd

We want to trace back the tuples that contributed to the
problems in the target. Tuples ta − td are in violation in
T and their lineage is {t1 − t8} and {t11 − t12} over Tables
Emps and Shops. By removing these tuples from any of the
sources, the violation is removed. Two possible explanations
of the problems are therefore [Emps.JoinY r = 2012] On
Table Emps, and [Shops.State = NY] on Table Shops.

As we mentioned earlier, tb is the erroneous tuple that was
identified by the repairing algorithm. Its lineage is {t1, t3, t4}
and {t11} over Tables Emps and Shops, respectively. By
focusing on this tuple, we can compute more precise expla-
nations on the sources, such as [Emps.Dept = S]. Drilling
even further, an analysis on the lineage of tb may identify
t4 as the most likely source of error since by removing t4,
the average salary goes down enough to clear the violation.
Therefore, the most precise explanation is [Emps.EId = e8].
The example shows that computing likely errors enables the
discovery of better explanations. At the source level, this
leads to the identification of actions to solve the problem.
In the example, the employee with id e8 seems to be the
cause of the problem.

We propose Database Prescription (DBRx for short)
(Figure 2), a system to support descriptive and prescrip-
tive data cleaning. DBRx takes quality rules defined over
the output of a transformation and computes explanations
of the errors. Given a transformation scenario (sources Si,
1 < i < n, and query Q) and a set of quality rules Σ, DBRx
computes a violation table V T of tuples not complying with
Σ. V T is mined to discover a descriptive explanation 1© in
Figure 2 such as [T.Region = US]. The lineage of the vi-
olation table over the sources enables the computation of a

prescriptive explanation 4© such as [Emps.JoinY r = 2012]
and [Shops.State = NY] on the source tables. When ap-
plicable, a repair is computed over the target, thus allow-
ing the possibility of a more precise description 2© such as
[T.Region = US ∧T.Shop = NY 1], and a more precise pre-
scriptive explanation 3© based on propagating errors to the
sources such as [Emps.Dept = S] and [Emps.EId = e8].

Building DBRx raises several challenges: First, propagat-
ing the evidence about violating tuples from the target to
the sources can lead to a lineage that covers a large number
of source tuples. For example, an aggregate query would
clump together several source tuples, with only few contain-
ing actual errors. Simply partitioning the source tuples as
dirty and clean is insufficient; tuples do not contribute to vi-
olations in equal measure. Second, we need a mechanism to
accumulate evidences on tuples across multiple constraints
and violations and hence identify the most likely tuples with
errors. For the target side, there are several repairing algo-
rithms that we can use. But for the source side, a new
algorithm, which relaxes the requirements of repair seman-
tics, is needed. Third, after identifying the likely errors,
mining the explanations involves two issues that we need
to deal with: (1) what are the explanations that accurately
cover all and only the identified erroneous tuples?; and (2)
how to generate explanations concise enough in order to be
consumable by humans?

We summarize our contributions in this paper as follows:
a. We introduce the problem of descriptive and prescrip-

tive data cleaning (Section 2). We define the notion of
explanation, and formulate the problem of discovering
explanations over the annotated evidence of errors at
the sources (Section 3).

b. We develop a novel weight-based approach to anno-
tate the lineage of target violations in source tuples
(Section 4).

c. We present an algorithm to compute the most likely
errors in presence of violations that involve large num-
ber of tuples with multiple errors (Section 5).

d. We combine multi-dimensional mining techniques with
approximation algorithms to efficiently solve the expla-
nation mining problem (Section 6).

We perform an extensive experimental analysis using the
TPC-H Benchmark and real-world datasets (Section 7). We
conclude the paper with a discussion of related work (Sec-
tion 8) and of future direction of research (Section 9).

2. PROBLEM STATEMENT
Let S = {S1, S2, . . . , Sn} be the set of schemas of n source

relations, where each source schema Si has di attributes
ASi

1 , . . . , A
Si
di

with domains dom(ASi
1), . . . , dom(ASi

di
). Let R

be the schema of a target view generated from S. Without
loss of generality, we assume that every schema has a special
attribute representing the tuple id. A transformation is a
union of SPJA queries on an instance I of S that produces
a unique instance T of R with t attributes AT1 , . . . , A

T
t .

Any instance T of a target view is required to comply with
a set of data quality rules Σ. We clarify the rules supported
in our system in the next Section. For now, we characterize
them with the two following functions:
• Detect(T) identifies cells in T that do not satisfy a

rule r ∈ Σ, and store them in a violation table V (T).
• Error (V (T)) returns the most likely erroneous cells

for the violations in V (T) and store them in an error
table E(T).

While Detect has a clear semantics, Error needs some
clarifications. At the target side, we consider the most likely
erroneous cells as simply those cells that a given repair al-
gorithm decides to update in order to produce a clean data
instance, i.e., an instance that is consistent w.r.t. the input
rules. Our approach can use any of the available alternative
repair algorithms, e.g., [15], (Section 3.3). At the source, we
need to deal with the lineage of problematic cells instead of
the problematic cells themselves, to produce the most likely
erroneous cells. Existing repair algorithms were not meant
to handle such a scenario; we show in Section 5 our own
approach to produce these cells.

Our goal is to describe problematic data with concise ex-
planations. Explanations are composed of queries over the
relations in the database as follows.

Definition 1. An explanation is a set E of conjunctive
queries where q ∈ E is a query of k selection predicates
(ASi

l1
= vl1) ∧ · · · ∧ (ASi

lk
= vlk) over a table Si with di

attributes, 1 ≤ k ≤ di, and vlj (1 ≤ j ≤ k) are constant
values from the domain of the corresponding attributes. We
denote with size(E) the number of queries in E.

There are three requirements for an explanation: (i) cover-
age - covers error tuples, (ii) conciseness - has small number
of queries, and (iii) accuracy - covers mostly error tuples.

Example 3. Consider again relation Emps. Let us as-
sume that t1, t3, t4, and t7 are error tuples. There are
alternative explanations that cover them. The most concise
is exp7:(Emps.Grd=1), but one clean tuple is also covered
(t5). Explanation exp8:(Emps.eid=e4) ∨ (Emps.eid=e7)
∨(Emps.eid=e8) ∨ (Emps.eid=e14) has a larger size, but it
is more accurate since no clean tuples are covered.

We define cover of a query q as the set of tuples re-
trieved by q. The cover of an explanation E is the union
of cover(q1), . . . , cover(qn), qi ∈ E . For a relation R with
a violation table V (R) computed with Detect, we denote
with C the clean tuples R\ Error (V (R)). We now state the
exact Descriptive and Prescriptive Data Cleaning (DPDC)
problem:

Definition 2 (Exact DPDC). Given a relation R, a
corresponding violation table V (R), and an Error function
for V (R), a solution for the exact DPDC problem is an
explanation Eopt s.t.

Eopt = argmin
size(E)

(E|(cover(E) = E(R)))

If function Error over the target is not available (1©),
the problem is defined on V(R) instead of E(R).

Unfortunately, since all errors must be covered and no
clean tuples are allowed in the cover, the exact solution in
the worst case does not exist. In other cases, it may be a
set of queries s.t. each query covers exactly one tuple. The
number of queries in the explanation equals the number of
errors (as for exp8 in Example 3), making the explanation
hard to consume.

To allow more flexibility, we drop the strict requirement
over the precision of the solution and allow it to cover some
clean tuples. We argue that explanations such as exp7 can
better highlight problems over the sources and are easier to
consume. More specifically, we introduce a weight function
for a query q, namely w(q), that depends on the number of
clean and erroneous tuples that it covers:

w(q) = |E(R) \ cover(q)|+ λ ∗ |cover(q) ∩ C|

where C is the set of clean tuples, w(E) is the sum w(q1) +
. . .+ w(qn), qi ∈ E that we want to minimize, and the con-
stant λ has a value in [0,1]. The weight has two roles. First,
it favors queries that cover many errors (first part of the
weight function) to minimize the number of queries to ob-
tain full coverage in E . Second, it favors queries that cover
few clean tuples (second part). Constant λ weighs the rela-
tive importance of clean tuples w.r.t. errors. In fact, if clean
and erroneous tuples are weighted equally, selective queries
with |cover(q) ∩ C| = ∅ are favored, since they are more
precise, but they lead to larger size for E . On the contrary,
obtaining a smaller explanation justifies the compromise of
covering some clean tuples. We set parameter λ to the error
rate for the scenario, we shall describe in Section 6 how it is
computed. We now state the relaxed version of the problem.

Definition 3 (Relaxed DPDC). Given a relation R,
a corresponding violation table V (R), an Error function
for V (R), and a weight function w(E), a solution for the
relaxed DPDC problem is an explanation Eopt s.t.

Eopt = argmin
w(E)

(cover(E) ⊇ E(R))

When the DPDC problem is solved over the target (resp.
sources), it computes descriptive (resp. prescriptive) ex-
planations. We can map this problem to the well-known
weighted set cover problem, which is proven to be an NP-
Complete problem [4], where the universe are the errors in
E(R) and the sets are all the possible queries over R.

3. VIOLATIONS AND ERRORS
While many solutions are available for the standard data

cleaning setting, i.e., a database with a set of constraints,
we show in this section how the two levels in our framework,
namely target and source, make the problem much harder.

3.1 Data Quality Rules
Quality rules can be usually expressed either using known

formalisms or more generally through arbitrary code. We
thus distinguish between two classes of quality rules over
relational databases.

Examples for the first class are conditional functional de-
pendencies (CFDs) and check constraints (CCs). Since rules
in these formalisms can be expressed with the more general
class of denial constraints (DCs), we will refer to this lan-
guage in the following and denote such rules with ΣD.1

1Our repair model focuses on detecting problems on the ex-
isting data with the big portion of business rules supported

Consider a set of finite built-in operators
B = {=, <,>, 6=,≤,≥}. A DC has the general form

ϕ : ∀tα, tβ , tγ , . . . ∈ R, q(P1 ∧ . . . ∧ Pm)

where Pi is of the form v1φv2 or v1φ const with v1, v2 of the
form tx.A, x ∈ {α, β, γ, . . .}, A ∈ R, and const is a constant.
For simplicity, we use DCs with only one relation S in S.

Example 4. The rules in the running example corre-
spond to the following DCs (for simplicity, we omit the uni-
versal quantifiers):
c1 :q(tα.Shop = tβ .Shop∧tα.Avgsal > tβ .Avgsal∧tα.Grd <
tβ .Grd)
c2 :q(tα.Size > tβ .Size ∧ tα.#Emps < tβ .#Emps)

The second class includes rules expressed with arbitrary
declarative languages (such as SQL) and procedural code
(such as Java programs) [7]. These are alternatives to the
traditional rules in ΣD. We denote these more general rules
with ΣP . Thus, Σ = ΣD ∪ ΣP .

Example 5. A rule expressed in Java could use an ex-
ternal web service to validate if the ratio of the size of the
staff and the size of the shop comply with a local legal policy.

3.2 Target Violation Detection
Given a set of rules Σ, we require that any rule r ∈ Σ has

a function detect that identifies groups of cells (or tuples)
that together do not satisfy r. We call such set of cells a
violation. We collect all such violations over T w.r.t. Σ in
a violation table with the schema (vid, r, tid, att, val), where
vid represents the violation id, r is the rule, tid is the tuple
id, att is the attribute name of the cell, and val is the value
tid.att of that cell. We denote the violation table of a target
view T as V (T). We mine V (T) for explanations in case 1©.

For DCs in ΣD, detect can be easily obtained. A DC
states that all the predicates cannot be true at the same
time, otherwise, we have a violation. Given a database in-
stance I of schema S and a DC ϕ, if I satisfies ϕ, we write
I |= ϕ, and we say that ϕ is a valid DC. If we have a set of
DC Σ, I |= Σ if and only if ∀ϕ ∈ Σ, I |= ϕ.

For rules in ΣP , the output emitted by the code when
applied on the data can be used to extract the output re-
quired by detect. In Example 5, in case of non compliance
with the policy, the cells Size, #Emps and Region will be
considered as one violation.

3.3 Target Errors Detection
As we mentioned in the introduction (Example 2), the

ability to identify actual errors can improve the performance
of the system (case 2©). We can rely on the literature on data
repairing as a tool to identify the errors in a database. If
a cell needs to be changed to make the instance consistent,
then that cell is considered as an error.

Repair refers to the process of correcting detected viola-
tions. Several algorithms have been proposed for repairing
inconsistent data, mainly based on declarative data quality
rules (such as in ΣD) [1, 10, 3]. These rules naturally have a
static semantics for violation detection (as described above)
and a dynamic semantics to remove them. This can be mod-
eled with a repair function. Given a violation for a certain

by DCs. However, more complex repair models for missing
tuples, such as [11], can be supported with extensions.

rule, this function outputs an update to the database to sat-
isfy the violations identified by the corresponding detect.

For rules in ΣP , the repair function must be provided [7].
If such a function is not available (as in many cases), our
explanations will be limited to violations and their lineage,
cases 1© and 4©, respectively. For a DC in ΣD, computing
its repair function is straightforward: the repair function is
the union of the inverse for each predicate in it.

Example 6. Given the rules in the running example, a
repair function would compute the following updates:
repair(c1): (tα.Shop 6= tβ .Shop)∨(tα.Avgsal ≤ tβ .Avgsal)∨
(tα.Grd ≥ tβ .Grd)
repair(c2) : (tα.Size ≤ tβ .Size)∨ (tα.#Emps ≥ tβ .#Emps)

The repair problem (even with FDs only) is known to have
NP complexity [15]. Heuristic algorithms to compute repairs
identify the minimal number of cells to change to obtain an
instance that conforms to the rules. More precisely, for a
violation table V (T) and the repair functions F = f1, . . . , fn
for n rules in Σ, Repair(V (T),F) computes a set of cell
updates on the database s.t. it satisfies Σ. While we are not
interested in the actual updates to get a repair, we consider
the cells to be updated by the repair algorithm to be the
likely errors, therefore Error coincides with repair.

3.4 From Target to Sources
We have introduced how violations and errors can be de-

tected over the target. Unfortunately, a target rule can be
rewritten at the sources only in limited cases. This is not
possible for the rules expressed as Java code in ΣP as we
treat them as black-boxes. For rules in ΣD, the rewriting
depends on the SQL script in the transformation. Rules may
involve target attributes whose lineage is spread across mul-
tiple relations (as in Example 1), thus the transformation
is needed in order to apply them. An alternative approach
is to propagate the violations from the target to source at
the instance level. However, going from the target to the
sources introduces new challenges.

T Shop avgHrs
ta NY1 23
tb NY2 25

Shifts Sid Hours Week Clerk
t1 NY1 20 11 John
t2 NY1 20 11 Anne
t3 NY1 30 12 Anne
t4 NY1 30 12 John
t5 NY1 22 13 John
t6 NY1 22 13 John
t7 NY1 17 14 John
t8 NY2 20 11 Laure
t9 NY2 30 11 Bill

Figure 3: Average Hours by Shop.

Example 7. Consider a source relation Shifts and a tar-
get relation T (Figure 3) obtained with the following query:
SELECT SId as Shop, AVG(Hours) as avgHrs

FROM Shifts where SID like ‘NY%’

GROUP BY SId

Given the check constraint ¬(avgHrs < 25) over T , tuple ta
is a violation. By removing its lineage (t1−t7), the violation
is removed. However, we are interested in identifying most
likely errors and considering the entire lineage may not be
necessary. In fact, it is possible to remove the violation by
just removing a subgroup of the lineage. In particular, all
the subsets of size 1 to 4 involving t1, t2, t5, t6, t7 are possible
alternatives, whose removal removes the violation on ta.

It is easy to see that the lineage of the violation leads to
the problematic tuples over the source. Computing a repair

on the source requires a new repair algorithm such that by
updating some source tuples, the results of the query change
and satisfy the constraints. This is always possible, for ex-
ample by removing the entire lineage. However, similarly to
the target level, the traditional concept of minimality can
still guide the process of identifying the source tuples that
need to change. There are two motivations for this choice.
First, treating the entire lineage as errors is far from the re-
ality for a query involving a large number of tuples. Second,
considering the entire lineage for explanation discovery will
not help in finding meaningful explanations. Unfortunately,
it is known that computing all the possible subsets of such
lineage is a NP problem even in simpler settings with one
SPJU query [5]. We can easily see from the example how
the number of subsets can explode.

The above problem shows the impossibility of computing
a minimal repair for the target violations over the sources.
However, we are interested in identifying the source error
tuples in order to discover explanations, not in computing
a target repair. Thus, the source Error module will use
the minimality principle, without the need to compute a
target repair. In Section 4, we introduce scoring functions
to quantify the importance of source tuples w.r.t. target
violations. We then use these scores in two algorithms that
return the most likely error source tuples (Section 5).

4. EVIDENCE PROPAGATION
The evidence propagation module involves two tasks. The

first task is to trace the lineage of tuples in violations at the
target to source tuples. To this end, we implemented inverse
query transformation techniques proposed by Cui et al. [6].
The second task is to determine how to propagate violations
as evidence over the source.

For each tuple t in a violation v ∈ V (T), we denote the
cells in t that are involved in v as problematic cells. These
cells are in turn computed from some source cells, also la-
beled as problematic. To solve a violation, we consider the
delete operation over the sources. However, as discussed
above, we do not want to identify the minimal groups of
problematic source tuples that need to be removed. On the
contrary, we take a practical approach. We look at tuples
individually by using two scores that quantify the effect of
source tuples and source cells in the lineage of each violation.

Cells Contribution. Given a violation v, we want to
measure how much the value in each problematic source cell
contributes to v. In fact, not all problematic source cells
contribute equally to v.

Example 8. The first violation in Example 1 covers
problematic tuples ta and tb and the problematic cells over
attributes Shop, Grd, AvgSal. The cells are in turn computed
from t11.Sid, t1-t4.Grd, t1-t4.SId, and t1-t4.Sal. One of the
predicates that trigger the violation is tb.AvgSal>ta.AvgSal.
Tuple tb.AvgSal is computed from t1.Sal, t3.Sal and t4.Sal.
Among them, the high value of t4.Sal is a more likely cause
for the violation than t1.Sal or t3.Sal.

Tuples Removal. Wrongly joined tuples can trigger an
extra tuple in the result of a query, thus causing a violation
in the target. We want to measure how much removing a
problematic source tuple removes v.

Example 9. Let us assume that the correct value for
t1.SId is a shop different from NY1, say NY2. Erasing t1

removes the violation for the second rule in Example 1 (the
two stores would have the same number of employees), even
though NY1 as a value is not involved in the violation.

We derive from sensitivity analysis [14] our definitions of
contribution and removal scores. The intuition is that we
want to compute the sensitivity of a model to its input. In
general, given a function, the influence is defined by how
much the output changes given a change in one of the input
variables. In our context, the models are the operators in
the SQL query, which take a set of source tuples as input
and output the problematic tuples in the view.

Definition 4. A contribution score csv(c) of a problem-
atic source cell c w.r.t. a target violation v is defined as the
difference between the original result and the updated output
after removing c divided by the number of cells that satisfy
the SQL operator.

A removal score rsv(t) of a problematic source tuple t
w.r.t. a target violation v is 1 if by removing c, v is re-
moved, 0 otherwise.

A score vector CSV of a cell for contribution scores (RSV
of a tuple for removal scores) is a vector [cs1, . . . , csm]
([rs1, . . . , rsm]), where m is the number of violations and
cs1, . . . , csm ∈ R (rs1, . . . , rsm ∈ B). If a problematic cell
or tuple does not contribute to a certain violation, we put
an empty field in the vector. We will omit the subscript if
there is no confusion.

We assume that the transformation is a SPJAU query.
We compute CSVs and RSVs using the query tree. For an
SPJAU query, every node in the tree is one of the following
five operators: (1) selection (S), (2) projection (P), (3) join
(J), (4) aggregation (A), and (5) union (U).

Example 10. Figure 5 shows the query tree for our run-
ning example. It has three operators: (1) the ./ operator,
(2) the aggregation operator with the group by, and (3) the
projection on columns Sid, Size, Grd, Region, Sal, and
Eid (not shown in the figure for the sake of space).

4.1 Computing CSVs
We compute CSVs for cells in a top-down fashion over

the operator tree. Each leaf of the tree is a source tuple,
with its problematic cells annotated with a CSV. Let v be a
violation in V (T) on a rule r ∈

∑
. We initialize, cs of each

problematic cell in target T to 1. Let Il be an intermediate
result relation computed by an operator Ol ∈ {S, P, J,A, U}
at level l of the tree, whose input is a non-empty set of
intermediate source relations Inp(Ol) = Il−1

1 , Il−1
2 , In

our rewriting, we compute the scores for problematic cells
of Inp(Ol) from the cell scores of Il.

Let cl be a problematic cell in Il, cs(cl) its contribution
score, val(cl) its value, and Lin(cl, Il−1) its lineage. Proce-
dure 1 computes cs for intermediate cells.

Procedure 1. (Intermediate Cell CS): Let Il−1
k be an in-

termediate relation contributing to cell cl. We have two
cases for computing cs(cl−1), cl−1 ∈ Lin(cl, Il−1

k):

(a) If Ol = A (cl is an aggregate cell) and r ∈ ΣD,
then cs(cl−1) depends on the aggregate operator op
and on the constraint predicate P ∈ r being violated,
P : val(cil)φval(cl0) with φ ∈ {<,>,≤,≥}:
• if op ∈ {avg, sum}, then cs(cl−1) is

val(cl−1)∑
val(gi),gi∈Lin(cl,Il−1)

if φ ∈ {<,≤}, and

cs(cl) · (1− val(cl−1)∑
val(gi),gi∈Lin(cl,Il−1)

) if φ ∈ {>,≥};

I11 Sid [CSV] Size [CSV] Grd [CSV] Sal [CSV] Eid [CSV]

i11 NY1 [1
3

,‘’] 46 ft2 [‘’, 1
3

] 1 [1
3
, 1
3

] 91 [91
300

, ‘’] e4 [‘’, 1
3

]

i12 NY1 [1,‘’] 46 ft2 2 [1,‘’] 99 [0, ‘’] e5

i13 NY1 [1
3

,] 46 ft2 [‘’, 1
3

] 1 [1
3
, 1
3

] 93 [93
300

, ‘’] e7 [‘’, 1
3

]

i14 NY1 [1
3

, ‘’] 46 ft2 [‘’, 1
3

] 1 [1
3
, 1
3

] 116 [116
300

,‘’] e8 [‘’, 1
3

]

i15 NY2 62 ft2 [‘’, 1
2

] 1 [‘’, 1
2

] 89 e11 [‘’, 1
2

]

i16 NY2 62 ft2 2 94 e13

i17 NY2 62 ft2 [‘’, 1
2

] 1 [‘’, 1
2

] 91 e14 [‘’, 1
2

]

i18 NY2 62 ft2 2 98 e18
i19 LA1 35 ft2 2 94 $ e19
i110 LA1 35 ft2 2 116 $ e20

Figure 4: Procedure 1 Applied on Intermediate Source I11 .

T

Group By(Sid, Size,Grd,Region)
Compute Avg(Sal), Count(eid)

./
Emps.Sid = Shops.Sid

Emps

I01 = Emps

Shops

I02 = Shops

I11

I21 = T

Figure 5: Query Tree.Emps EId [CSV] Sal [CSV] Grd [CSV] SId[CSV] [RSV]

t1 e4 [‘’, 1
3

] 91 [91
300

,‘’] 1 [1
3
, 1
3

] NY1 [1
3

,‘’] [0,1]
t2 e5 99 [0,‘’] 2 [1,‘’] NY1 [1,‘’] [1,‘’]

t3 e7 [‘’, 1
3

] 93 [93
300

,‘’] 1 [1
3
, 1
3

] NY1 [1
3

,‘’] [0,1]

t4 e8 [‘’, 1
3

] 116 [116
300

,‘’] 1 [1
3
, 1
3

] NY1 [1
3

,‘’] [1,1]

t5 e11 [‘’, 1
2

] 89 1 [‘’, 1
2

] NY2 [‘’,0]
t6 e13 94 2 NY2 []

t7 e14 [‘’, 1
2

] 91 1 [‘’, 1
2

] NY2 [‘’,0]
t8 e18 98 2 NY2 []
t9 e14 94 2 LA1 []
t10 e18 116 2 LA1 []

Figure 6: Procedures 1 and 2 Applied on Emps.

Shops SId [CSV] Size [CSV] [RSV]
t12 NY1 [2,‘’] 46 [‘’,1] [1,1]
t13 NY2 62 [‘’,1] [‘’,1]
t14 LA1 35 []

Figure 7: Procedures 1 and 2 Applied on Shops.

• if op ∈ {max,min}, let Lin¬P (cl, Il−1
k) ⊆

Lin(cl, Il−1
k) be the subset of cells that vio-

late P , cs(cl−1) is 1

|Lin¬P (cl,Il−1
k

)|
for cl−1 ∈

Lin¬P (cl, Il−1
k), and 0 for all other cells.

(b) else, cs(cl−1) is cs(cl) · 1

|Lin(cl,Il−1
k

)|

Example 11. Figure 4 reports the CSVs of problematic
cells in the intermediate relation I11 . These are computed by
rewriting I21 , which is T , as shown in Figure 5. For example,
tb.Grd is computed from cells i11.Grd, i13.Grd, and i14.Grd.
By case (b) these cells get a score of 1

3
.

Similarly, tb.AvgSal is aggregated from i11.Sal, i
1
3.Sal, and

i14.Sal, and ta.AvgSal from i12.Sal. By case (a) the scores
of i11.Sal, i

1
2.Sal, i

1
3.Sal, and i14.Sal are based on the values

of the cells, as shown in Fig. 4. Score of i12.Sal is computed
as 0 using the first part of case (a).

Procedure 1 has two cases depending on the query oper-
ators and Σ. In case (a), where an aggregate is involved in
a violation because of the operator of a rule, we have addi-
tional information with regards to the role of source cells in
a violation. In case (b), which involves only SPJU opera-
tors where the source values are not changed in the target,
we uniformly distribute the scores of the problematic cells
across the contributing cells. Notice that case (a) applies

for
∑D only, since the actual test in

∑P is not known.
However, case (b) applies for both types of rules.

An intermediate source cell may be in the lineage of sev-
eral intermediate problematic cells. In this case, their cell
scores are accumulated by summation following Procedure 2.

Procedure 2. (Intermediate Cell Accumulation): Let
Ol = O(cl−1, Il) denote the set of all cells computed from
cell cl−1 ∈ Il−1

k in the intermediate result relation Il by op-

erator O, cs(cl−1) =
∑
cl∈Ol cs(c

l−1, cl).

Algorithm 1: ComputeCSV(T , V (T), S)

1: OT ← Operator that generated T
2: h← Highest level of query tree
3: Inp(OT)← Ih−1

1 , . . . , Ih−1
rh

4: rstate← (T,OT , Inp(OT))
5: stateStack ←new Stack()
6: stateStack.push(rstate)
7: for each violation v ∈ V (T) do
8: while !stateStack.empty() do
9: nextState← stateStack.pop()

10: if nextState[1] is T then
11: pcells← vc(T) {Problematic cells at T}
12: else
13: pcells← Lin(vc(T), nextState(1)) {Problematic

cells at an intermediate relation}
14: for each cell c ∈ pcells do
15: computeScores(c, v, l, nextState)
16: for each intermediate relation Il−1 ∈ nextState[3]

do
17: Apply Procedure 2 on problematic cells of Il−1

18: Ol−1 ← operator that generated Il−1

19: newState← (Il−1, Ol−1, Inp(Ol−1))
20: stateStack.push(newState)
21:
22: function computeScores(c, v, l, nstate)
23: for each intermediate relation Il−1 ∈ nstate[3] do
24: Apply Procedure 1 on c, nstate[2], Il−1

Example 12. In Fig. 7, CSVs of t12.SId for the viola-
tion between ta and tb are computed from 4 cells in the inter-
mediate relation I11 in Figure 4. Cells i11.SId, i13.SId, i14.Sid
have a score of 1

3
and i12.Sid has a score 1. Procedure 2

computes cs(t12.Sid) =2 w.r.t. this violation.

Given a target relation T , its violation table V (T)
and source relations S, Algorithm 1 computes CSVs of
the problematic cells. The algorithm defines a state as
a triple (Il, Ol, Inp(Ol)). It initializes the root state
(T,OT , Inp(OT)) (line 4), where OT is the top operator in
the tree that computed T . For each violation v and for each
problematic cell c, we compute the scores of problematic
cells (lineage of c) in all relations in Inp(OT) (Lines 10-13)
using Procedure 1 (Line 24). For each intermediate relation
in Inp(OT), we use Procedure 2 to accumulate the cs scores
of each problematic cell and compute its final cs score w.r.t.
the violation v (Lines 16-17). We then add new states to the
stack for each relation in Inp(OT). The algorithm computes
scores all the way up to source relations until the stack is
empty, terminating when all the generated states have been
visited. Examples of CSVs are shown in Figures 6 and 7.

Once CSVs are computed for cells, we compute them for
tuples by summing up the cell scores along the same viola-
tion while ignoring non contributing cells.

4.2 Computing RSVs
In contrast to contribution scores, removal scores are di-

rectly computed on tuples and are Boolean. If a violation
can be eliminated by removing a source tuple, independently
of the other tuples, then such a tuple is important. This
heuristics allow us to identify minimal subsets of tuples in
the lineage of a violation that can solve it through removal.
Instead of computing all subsets, checking for each source
tuple allows fast computation.

We use a simple bottom-up algorithm to compute RSVs.
It starts with the source tuples in the lineage of a violation.
For each source relation S and for each problematic tuple
s ∈ S, it removes both s and the tuples computed from it
in the intermediate relations in the path from S to T in the
query tree. If the violation is removed, we assign a score
1 to si, 0 otherwise. RSVs for the source relations in the
running example are shown in Figures 6 and 7.

5. LIKELY ERRORS DISCOVERY
Given the target violations, we use our scoring methods

to identify the most likely errors at the source (scenarios 3©
and 4©). Since the goal is to correctly separate the potential
error tuples from non-error tuples, we use the intuition that
most likely errors are expected to have higher scores. A top-
k analysis of the tuples’ scores for each violation can identify
potential errors. However, there is no k that works for all
scenarios.

We present two approaches to solve this problem. In the
first approach, we design an outlier function to separate high
and low scoring tuples for each violation. In the second
approach, we show a reduction from the facility location
problem and apply a polynomial time logn-approximation
algorithm to compute the likely source errors [12].

5.1 Distance Based Local Error Separation
In several cases (such as queries with aggregates), source

tuples in the lineage of a violation consist of a subset of
tuples that have high scores based on our scoring model,
while the remaining have low scores. To precisely measure
the distance between tuples, we define it as follows.

Definition 5. Given two source tuples s1 and s2 in v, we
define their distance as:

D(s1, s2) = |(csv(s1) + rsv(s1))− (csv(s2) + rsv(s2))|

Two tuples with high scores are expected to have a smaller
distance between them than the distance between a high-
scoring tuple and a low-scoring one. Our goal is to obtain
an optimal separation between high- and low-scoring tuples.

Let Hv be the set of high-scoring tuples and Lv the set
of low-scoring ones. Intuitively, a separation is preferable to
another one if by adding a tuple s ∈ Lv to Hv, the difference
between the sum of pair-wise distances among all tuples of
Hv ∪ {s} and the sum of their scores becomes smaller. The
intuition is clarified in the following gain function.

Definition 6. Let the score of a tuple si for violation v
be cv(si) = (csv(si) + rsv(si)). Let Lin(v, S) consists of the
lineage tuples of v in S and Lv be a subset of Lin(v, S). We
define the separation gain of Lv as:

SG(Lv) =
∑
s∈Lv

(cv(s))−
∑

1≤j<|Lv|

∑
j<k≤|Lv|

D(sj , sk)

We define an optimal separation as the one that maximizes
this function for Hv.

Example 13. Consider six source tuples for a viola-
tion v having scores {s1:0.67, s2:0.54, s3:0.47, s4:0.08,
s5:0.06, s6:0.05}. The sum of pair-wise distances for Hv =
{s1, s2, s3} is 0.24, while the sum of scores is 1.68, thus
SG(Hv)=1.44. If we add s4 to Hv, the pair-wise distances
of H ′v : {s1, s2, s3, s4} raises to 1.67 and the sum of scores
to 1.76. Clearly, this is not a good separation, and this is
reflected by the low gain SG(H ′v)=0.08. Similarly, if we re-
move s3 from Hv the new SG also decreases to 1.14.

As it is exponential in the number of subsets to obtain an
optimal separation, we provide a greedy heuristic to com-
pute its approximation using ideas from the nearest neigh-
bor chain algorithm for agglomerative clustering [18]. We
first order all the tuples in Lin(v, S) in the descending order
of their scores, and designate each tuple as its own cluster.
We start with the highest scoring tuple’s cluster, and keep
adding to it the next tuple in the order, while computing the
separation gain at each step. We terminate after reaching
a separation where the gain attains a local maximum. We
generate two clusters, the cluster that is being extended and
the subset of tuples that are not in this cluster. In Exam-
ple 13, the gain after adding s1, s2, and s3 is 0.6, 1.14, and
1.44, respectively. After adding s4, the gain becomes 0.08
and therefore we stop at s3. From each violation v, its Hv is
added to the set of most likely source error tuples. The algo-
rithm requires a linear space and quadratic time (pair-wise
distances) in the number of tuples.

5.2 Global Error Separation
Since we have multiple violations, instead of looking at

scores locally per violation, we introduce an alternative ap-
proach that looks for the most likely error tuples globally.
We accumulate evidences coming from multiple violations
as in the following example.

Example 14. Consider two violations v1 and v2, and
four source tuples s1–s4. Let the scores of the tuples be v1:
(s1[0.8], s2[0.1], s3[0.1]), v2: (s3[0.5], s4[0.5]). Here, s1 is

the most likely error tuple for v1 and s3 is the one for v2 as
it is the one that contributes most over the two violations.

The goal is to select a subset of tuples that globally con-
tribute the most to the violations. We can formulate this
problem using the known NP-Hard uncapacitated facility
location problem (FLP) [17]. The uncapacitated facility lo-
cation problem is described as follows.

a. a set Q = {1, . . . , n} of potential sites for locating fa-
cilities,

b. a set D = {1, . . . ,m} of clients whose demands need
to be served by the facilities,

c. a profit cqd for each q ∈ Q and d ∈ D made by serving
the demand of client d from the facility at q,

d. a non-negative cost fq for each q ∈ Q associated with
opening the facility at site q.

The objective is to select a subset Q ⊆ Q of sites to open
facilities and to assign each client to exactly one facility s.t.
the difference of the sum of maximum profit for serving each
client and the sum of facility costs is maximized, i.e.,

argmax
Q⊆Q

(
∑
d∈D

max
q∈Q

(cqd)−
∑
q∈Q

fq)

We obtain a reduction from the FLP to the problem of
computing most likely errors in PTIME in the number of
violations and in the number of source tuples. For each client
d, we associate a violation vj ∈ V (T). Let Lin(V (T), S) =
∪vj∈V (T)Lin(vj , S), n = |Lin(V (T), S)|, and m = |V (T)|.
For each site q, we associate a source tuple in Lin(V (T), S).
For each tuple s in Lin(vj , S), we associate the cost cqd
between site q (s) and client d (vj) with the score (csj(s) +
rsj(s)). We assume the fixed cost fq of covering a source
tuple to be 1. A solution to our problem is optimal if and
only if a solution to the facility location problem is optimal.
We present a greedy heuristic [17] for this problem as follows.

We start with an empty set Q of tuples, and at each step
we add to Q a tuple s ∈ Lin(V (T), S) \ Q that yields the
maximum improvement in the objective function:

f(Q) =
∑
d∈D

max
q∈Q

(cqd)−
∑
q∈Q

fq

For a tuple s ∈ Lin(V (T), S)) \ Q, let ∆s(Q) = f(Q ∪
{s})− f(Q) denote the change in the function value. For a
violation vj , let uj(Q) be max

s∈Q
(csj(s) + rsj(s)), and uj(∅) =

0. Let δjs(Q) = csj(s) + rsj(s) − uj(Q). Then, we write
∆s(Q) as follows:

∆s(Q) = f(Q ∪ {s})− f(Q)

=
∑

vj∈V (T)

(

{
δjs(Q) if δjs(Q) > 0
0 otherwise

)
− 1 (1)

The −1 corresponds to the cost of covering a tuple. In
each iteration, of the heuristic, ∆s(Q) is computed for each
s ∈ Lin(V (T), S)) \ Q. We add a tuple s whose marginal
cost ∆s(Q) is maximum. The algorithm terminates if either
there are no more tuples to add or if there is no such s with
∆s(Q) > 0.

The algorithm identifies tuples whose global (cumulative)
contributions (to all violations) is significantly higher than
others. This global information leads to higher precision
compared to the distance based error separation, but to a
lower recall if more than one tuple is involved in a violation.

Favor precision w.r.t. to recall is desirable, as it is easier to
discover explanations from fewer errors than discover them
from a mix of error and clean tuples. This will become
evident in the experiments.

6. EXPLANATION DISCOVERY
The problem of explanation discovery pertains to select-

ing an optimal explanation of the problematic tuples from a
large set of candidate queries. An optimal explanation cov-
ers the most likely error tuples, while minimizing the number
of clean tuples being covered and the size of the explanation.

We compute optimal explanations in two steps. We first
determine candidate queries. We then use a greedy algo-
rithm for the weighted set cover, with weights based on the
function over query q defined in Section 2.

Candidate Queries Generation The goal is to generate
the candidate queries for a source S with d dimensions. The
algorithm first generates all queries with a single predicate
for each attribute Al of R, s.t. the queries cover at least one
tuple in E(R). A data structure P [1..d] is used to store the
queries of the respective attributes. The algorithm then has
a recursive step in which queries of each attribute (Al0) are
expanded in a depth-first manner by doing a conjunction
with queries of attributes Al . . . Ad where l = l0 + 1. The
results of the queries are added to a temporary storage P ′

and are expanded in the next recursive step.
Computing Optimal Explanations In the second

stage, we compute the optimal explanation from the gener-
ated candidate queries. In Section 2, we defined the weight
associated with each query as follows.

w(q) = |E(R) \ cover(q)|+ λ ∗ |cover(q) ∩ C|

Our goal is to cover in E the tuples in E(R), while mini-
mizing the sum of weights of the queries in E . An explana-
tion is optimal if and only if a solution to the weighted set
cover is optimal. By using the greedy algorithm for weighted
set cover [4], we can compute a log(|E(R)|)-approximation
to the optimal solution. The explanation is constructed
incrementally by selecting one query at a time. Let the
marginal cover of a new query q w.r.t. E be defined as the
number of tuples from (R) that are in q and that are not
already present in E :

mcover(q) = (q ∩ E(R)) \ (E ∩ E(R))

Algorithm 2: GreedyPDC(candidate queries P over R)

1: Eopt ← {}
2: bcover(Eopt)← {}
3: while bcover(Eopt) < |E(R)| do
4: minCost←∞
5: min q ← null
6: for each query q ∈ P do

7: cost(q)← w(q)
mcover(q)

8: if cost(q)≤ minCost then
9: if cost(q)= minCost and

bcover(q) < bcover(min q) then
10: continue to next query
11: min q ← q
12: minCost = cost(q)
13: Add min q to Eopt
14: bcover(Eopt)← bcover(Eopt) ∪ bcover(min q)

At each step, Algorithm 2 adds to E the query that min-
imizes the weight and maximizes the marginal cover. Let
bcover(q) = E(R) ∩ cover(q), similarly for bcover(Eopt).

Parameter λ weighs the relative importance of the clean
tuples w.r.t. errors. In practice, the number of errors in a
database is a small percentage of the data. If clean and er-
roneous tuples are weighted equally in the weight function,
selective queries that do not cover clean tuples are favored.
This can lead to a large explanation size. We set the pa-
rameter λ to be the error rate, as it reflects the proportion
between errors and clean tuples. If the error rate is very low,
it is harder to get explanation with few clean tuples, thus we
give them a lower weight in the function. If there are many
errors, clean tuples should be considered more important in
taking a decision. For mining at the source level (3© and
4© in Figure 2), we estimate the error rate by dividing the
number of likely errors by the number of tuples in the lin-
eage of the transformation (either violations or errors from
the target).

7. EXPERIMENTS
An end-to-end evaluation of our system requires a setup

with one or more source relations and a set of target schemas
on which business rules can be defined. In Sec. 7.1, we test
the quality of error and explanation discovery modules with
datasets from the TPC-H benchmark. In Sec. 7.2, we com-
pare the explanations computed by DBRx against two alter-
native systems on five real-world datasets.

7.1 Synthetic Dataset
The TPC-H Benchmark data generator defines a general

schema typical of many businesses. We picked two represen-
tative queries as target schemas, namely Q3 and Q102, and
defined three scenarios with the following rules in ΣD:
Scenario S1. cQ10 :q(tα.revenue > δ1).
Scenario S2. c′Q10 :q(tα.name = tβ .name∧

tα.c phone[1, 2] 6= tβ .c phone[1, 2]).
Scenario S3. cQ3 :q(tα.revenue > δ2),

c′Q3 :q(tα.o orderdate = tβ .o orderdate∧
tα.o shippriority 6= tβ .o shippriority).

Rules cQ10 and cQ3 are check constraints over one tuple,
while c′Q10 and c′Q3 are FDs over pairs of tuples. In these

scenarios, we focus on ΣD to show the impact of (i) the
repair computation over the target and of (ii) the role of
Error in the source. We use ΣP in the real-data study.

Error Induction on TPC-H. We generate instances and
queries using dbgen and qgen tools, respectively. We assign
values to parameters in the rules s.t. the reports have no
violations. We then add errors in the source relations s.t.
the reports have violations when recomputed.

Each experiment has a source instance D, a transforma-
tion Q, and target rules Σ. We identify candidate source
attributes A based on the lineage of the attributes in the
rule. Since our goal is to explain errors, we induce errors
s.t. they happen on tuples covered by some pre-set expla-
nations, or ground explanations. This allows us to test how
good we are at recovering these explanations. We induce
errors for a given ground explanation over the source, such
as Eg = {q1 : (lineitem.l ship = R), q2 : (lineitem.l ship =
S)}, while enforcing that attributes in Eg are not in A.

2The TPC-H documentation [20] contains the SQL code.

We consider two parameters for inducing errors w.r.t.
ground explanation Eg: source error rate e (ratio of num-
ber of error tuples to |Lin(V (T))|), and explanation rate n
(a fixed percentage of e · |Lin(V (T))|). Error rate e cor-
responds to the total number of errors to induce, while n
corresponds to the number of such error tuples that should
satisfy the ground explanation. The remaining errors, i.e.,
(1−n) ·e · |Lin(V (T))|, are induced on random tuples which
do not match the ground explanation (Lin(V (T)) \ Eg).

For each r ∈ ΣD and for each predicate P ∈ r, we identify
the corresponding attributes AP and tuples in cover(Eg),
and modify their values up to the budget of errors. We make
sure that errors are detectable over the target schema. In
scenarios S1 and S2, one error tuple at the source is sufficient
to detect a target violation, while for S3 we need to introduce
two or three errors to induce a target violation.
Metrics. We introduce two metrics to test DBRx. For each
metric, we show how to compute precision(P) and recall (R).

Error Discovery Quality – evaluates the quality of the
likely errors discovery and the scoring. We compare the er-
rors computed by Error over the lineage versus the changes
introduced in the errors induction step (B).

PErr =
E(T) ∩ B
E(T)

RErr =
E(T) ∩ B
B

Explanation Quality – evaluates the quality of the discov-
ered explanations. We measure the quality of an explana-
tion computed by DBRx by testing the tuples overlap with
the ground explanations.

PE =
cover(Eopt) ∩ cover(Eg)

cover(Eopt)
RE =

cover(Eopt) ∩ cover(Eg)
cover(Eg)

Algorithms. We implemented the algorithms introduced
in the paper and baseline techniques to compare the results.
For scoring, we use the technique based on outliers detec-
tion (Local Outliers) and the one based on the facility
location problem (Global-FLP). As baselines, we consider
all the tuples in the lineage with the same base score 1 (No-
Let), and the tuple(s) with the highest score for each vio-
lation (Top-1). For explanation discovery, we implemented
Algorithm 2.
Results. We discuss three experiments designed to mea-
sure the effectiveness and efficiency of the modules in DBRx.
Since we can compute target repairs for these scenarios, we
discuss mining on propagated target errors (3©) and mining
on propagated target violations (4©). All measures refer to
the relations where errors have been introduced.

Experiment A: Quality of Error Discovery. We start
testing the quality of the alternative Error implementa-
tions. For space reason we report the error F-measure.

In ExpA-1, we fix the queries in the ground explana-
tion and increase the error rate without any random errors
(n = 1). We start by discussing the results for the case
of the rewriting of the target violations (4©). Figure 8a
shows that all the methods perform well for S1, with the
exception of No-LET. This shows that computing errors is
easy when there is only a simple check constraint over an
aggregate value. Figure 8b shows that only Global-FLP
obtains high F-measure with S2. This is because it uses the
global information given by the many pair-wise violations.
Figure 8c shows that for S3, which has multiple constraints
and multiple errors, the methods obtain comparable results.
However, a close analysis shows that, despite that having

(a) Errors F, S1 4© (b) Errors F, S2 4© (c) Errors F, S3 4© (d) Errors F, S2 3©

(e) Expl. F, S1 4© (f) Expl. F, S2 4© (g) Expl. F, S3 4© (h) Expl. F, S2 3©

(i) Err. F, Random, S3 4© (j) Expl. F, Random, S1 4© (k) Expl. F, Random, S2 4© (l) Expl. F, Random, S3 4©
Figure 8: Experimental results for the prescriptive data cleaning problem.

multiple errors violate the hypothesis of Global-FLP, it
still achieves the best precision, while the best recall is ob-
tained by No-LET. Figure 8d shows again S2, but com-
puted on the rewriting of the target repair (3©). Compared
to Figure 8b, Global-FLP does slightly worse, while all the
others improve. This reflect the effect of the target repair
at the source level: it gives less, but more precise, informa-
tion to the error discovery. This provides less context to
Global-FLP, which takes advantage of the larger amount
of evidence in 4©. Similar behavior is observed in S3.

In ExpA-2, we study how having 50% random errors af-
fects the quality of error discovery. Figure 8i reports the
error F-measure for S3. Despite the random errors, the re-
sults do not differ much from the simpler scenario in Figure
8c. We observed similar results for S1 and S2.

Experiment B: Quality of Explanations. We test the
quality of the explanations with different Error modules.

In ExpB-1, we study how increasing the error rate affects
the results. Figure 8e shows that all the errors detection
methods have similar results for S1, with the exception of
No-LET. This is not surprising, as in this scenario errors are
easy to identify and the size of the aggregate is large. Figure
8f reflects the quality of the error detection of Global-FLP
(as seen in Figure 8b) on the quality of the explanation for
S2 8g shows that the precision in error detection has higher
impact than the recall for the discovery of explanation. As
discussed for Figure 8c, Global-FLP has the highest preci-
sion for S3, but the lowest recall. This shows that is better
to identify fewer errors with higher confidence. Figure 8h

shows the explanation F-measure for S2 on the rewriting
of the target repair (3©). Compared to Figure 8f, most of
the methods improved their quality, while Global-FLP’s
quality decreased. This is a direct consequence of the detect
error quality shown in Figure 8d. Examples of ground and
discovered explanations are reported in Figure 9.

In ExpB-2, we study how having 50% random errors af-
fects the quality of the discovered explanations. Figures 8j
and 8k show the explanation’s F-measure for scenarios S1
and S2, respectively. Despite the error discovery did not
change much with the random noise, the discovery of ex-
planation is affected in these two scenarios, as it is clear
from the comparison with Figures 8e and 8f. This behaviour
shows that the quality of the explanations is only partially
related to the error detection and that a large amount of er-
rors that cannot be explained can make hard the discovery
of existing explanations. Fortunately, results on real data
show that useful explanations can still be discovered. More-
over, Figure 8l shows consistent result for S3 w.r.t. the case
without random errors (Figure 8g). This shows that the ac-
cumulation of errors from two different quality rules has a
strong effect even in noisy scenarios.

Experiment C: Running Time. We measured the av-
erage running time for TPC-H data of size 10 and 100 MB.
For the 100 MB dataset and S1, the average running time
across different error rates is 100.29 seconds for rewriting the
violations and computing their score. The average running
time for the Error function is less than 2 seconds. The
pattern mining including the candidate pattern generation

Exp. Ground Explanation No-LET Top-1 Local Outliers Global FLP

S1
4©

• l shipmode = RAIL ∧
l shipinstruct = TBR

• l shipmode=SHIP ∧
l shipinstruct=DIP

• l returnflag = R

• l shipmode = RAIL ∧
l shipinstruct =TBR

• l shipmode = SHIP ∧
l shipinstruct =DIP

• l shipmode = RAIL ∧
l shipinstruct =TBR

• l shipmode = SHIP ∧
l shipinstruct =DIP

• l shipmode = RAIL ∧
l shipinstruct =TBR

• l shipmode = SHIP ∧
l shipinstruct =DIP

S2
3©

• c mktsegment =
HOUSE∧c author = a1

• c mktsegment =
AUTO ∧ c author = a2

• c nationkey = 3
• c nationkey = 20
• c nationkey = 16

• c nationkey = 3
• c nationkey = 20
• c nationkey = 16

• c nationkey = 3
• c nationkey = 20
• c nationkey = 16

• c mktsegment =
HOUSE∧c author = a1

• c mktsegment =
AUTO ∧ c author = a2

Figure 9: Explanation output for scenarios S1 and S2.

took 52 seconds. The results for S2 and 100 MB vary only in
the rewriting module, as it took 430 seconds because of the
large number of pair-wise violations. The execution times
for 10 MB are at least 10 times smaller with all modules.

7.2 Real Data
We run DBRx using the Global-FLP technique on five

real-world scenarios with different types of data quality
rules. In some of the scenarios, we also compare DBRx with
Scorpion [21] and the technique on tracing data errors [16].
Since ground explanations are not available, we measure the
output quality only in terms of precision of the explanations.
We manually mark an explanation as correct based on our
own knowledge of the data. The precision is the number
of correct queries in the optimal explanation over the total
number of queries in the explanation.
Datasets and Data Quality Rules on Target. The five
scenarios we evaluate are described as follows:
t sensors [21] The source consists of sensor data with 2.3M
tuples over 7 attributes. The target is a transformation
that averages temperatures grouped by hour over a selec-
tion of dates. The rule over the target is a check constraint
(avg(temperature) < 23).
elections [21] The source contains 18 months campaign ex-
penses from the 2012 US Presidential Election in a 14 at-
tributes and 116K tuples table.The target reports total ex-
penses of Barack Obama on each date, and the rule con-
strains this amount to be less than $10M on any date.
p sensors [16] In this scenario, measurements of nine mobile
phone sensors are recorded and classifiers are defined to de-
termine five Boolean variables. The classifiers act as trans-
formations and the measurements as source data. Classifiers
that do not determine the variables correctly due to input
errors are identified by comparing their output against a
ground truth with a rule expressed as a Java code in ΣP .
stocks We constructed two tables about stocks. The first,
namely Q, contains daily stock quotes of S&P500 compa-
nies for a two-month period from a trusted source with 30K
tuples. The second table is built by extracting mentions of
companies and their stock quotes from 45k Bloomberg arti-
cles during the same time period. On every page, we ran two
regular expression based extractors (E1 and E2) and an in-
duction based one (E3). We mapped the two sources to the
target schema [company, date, stock price, src], where the
attribute src was either extracted or master. We cleaned
the output of E2 to ensure that its tuples are correct. A
target rule in Java code (ΣP) states that two tuples are in
violation if, given the same company and the same date, the
difference among the price values is higher than 10% of the
one coming from Q.
players In this scenario, we obtained data with information
about soccer players from 6 web sites. The data has 7 at-
tributes. The transformation is the union of the 6 sources

with an attribute source that keeps track of the source rela-
tion. The target rule is name→ birthdate.

Figure 10: Precision of explanations with real datasets.

Algorithms and Results. Figure 10 shows the results we
obtained by running DBRx on the five scenarios and for dif-
ferent cases. For t sensors and elections, we compare the
output of our mining at the source (case 3©) with Scor-
pion [21]; we both achieve the same results. For t sensors,
the explanation responsible for high temperatures is sen-
sorid=15. For elections, the explanation for high expenses
is recipient st=‘DC’ ∧ recipient nm=‘GMMB INC.’. For
p sensors, we could only obtain a fragment of the data used
in [16]. This data induces errors in one of the observations
from the sensor “gps”. We were able to retrieve this pattern
by applying our techniques with the same performance of
the system in [16].

In scenarios stocks and players, we mine both the target
and the source and present their results in Fig 10, thus show-
ing all of cases targeted by DBRx. Alternative techniques [22,
21, 16] do not apply here, since we have arbitrary SQL in the
transformation, and declarative constraints as target rules,
thus the ground truth is not available.

For stocks, the system is able to compute explanations
with perfect precision when mining on errors E(T), both
for cases 2© (src=extracted) and 3© (extractor=E1 ∧ extrac-
tor=E3), while some mistakes are made when mining the
violation (V (T)), in both cases 1© and 4©. This reflects the
impact of a repair of very high quality at the target, which
is possible because a reliable source is available.

Things change slightly for the more complicated case of
players. Here there are six sources that often disagree and
may fail to form clear majorities over correct values for the
birthdate of a player. This is reflected in a low precision in
all cases, but again cases 2© and 3© show the positive impact
of the error computation at the target. Examples of correct
explanations at the source level are src=espn ∧ birthdate=0
and src=footymania ∧ birthdate=0/-1/2000.

8. RELATED WORK
Provenance. Several proposals tackled the problem of

verifying the semantic correctness of data transformations
by pointing at anomalies in the results. These have been
mainly termed as “Why questions” [2] and “Why-Not ques-

tions” [11, 19]. In the first case, the system finds the origin
of some tuples or cells in the results. Provenance can be
useful to extend DBRx to transformations expressed as black
boxes. In particular, a transformation system (e.g., a Java
program) supporting the eager approach (aka bookkeeping)
carries extra annotations that can be used to produce ev-
idence tables. Our rewriting technique is a lazy approach
to provenance that can be readily deployed on an existing
system supporting SPJUA queries.

In the second case, we look for explanations about tuples
that were expected but are missing from the results. Two
models have been proposed for this case. One adjusts the
query to provide the desired output [19]. Such model does
not apply to DBRx because we trust the transformations. The
other model explains a missing tuple t in terms of insertions
to the database s.t. t appears in the result. We can extend
DBRx with this model by allowing inclusion dependencies in
ΣD and implementing existing algorithms [11] in the evi-
dence propagation module.

Causality. There have been proposals to discover expla-
nations to problematic values in the results of an aggregate
query [22, 21] or of a transformation process [16]. These
share the same goals as our proposal. However, they have
limitations that limit their applicability. Scorpion [22, 21]
works on aggregate queries only, and target constraints are
limited to one tuple check constraint with a variable and a
constant. It lacks the support for arbitrary Σ and arbitrary
SQL, which are contributions of our work. CARE [16] re-
quires the availability of the ground truth in order to detect
errors. This is not realistic in a data cleaning setting. More-
over, it requires lineage information and it does not tackle
the problem of propagating the evidence to the sources.

Similar attempts over probabilistic databases (e.g., [14])
also rank “sensitive” individual tuples by interest. However,
they do not construct explanations based on predicates.

Dependency Propagation. The problem of propagat-
ing dependencies is to determine, given a target view over
the sources and their dependencies, if another dependency
holds on the view. We address the inverse process with SP-
JAU views; this is not supported by existing approaches and
leads to undecidability [9]. Moreover, our instance-driven
rewriting allows extension for scenarios where the transfor-
mation is not a query, but a black box with provenance.

View Updates. In the view update problem, the goal is
to minimize the number of tuples to delete in the sources,
such that the desired change in the target is obtained and no
other target tuples are modified. The side-effect free variant
of this problem is related to our rewriting from target to
source. Unfortunately, the problem is intractable even for
views defined in terms of simple SPJU queries [5]. This
intractability motivated our scoring scheme; we drop the
requirement to solve the view update in an exact fashion
and opt for scores that can be computed efficiently.

Data Cleaning. Data cleaning focuses on detecting and
repairing errors on a database by using declarative con-
straints [3, 15, 7, 10, 1]. In our target Error module, we
can use any of these algorithms. However, they rely on prop-
erties of the violations that do not apply when the violations
are rewritten over the sources. Thus, they cannot be used
at the source Error module. Extending them to compute
a target repair through updates on the sources requires to
solve the view update problem and is thus not tractable.

9. CONCLUSIONS
Given a view over sources and a set of quality rules over

it to identify violations, we introduced explanations both at
the target and at the source levels for the problematic data.
To make these explanations easy to consume for users, we
formulated a problem that minimise their size while guaran-
teeing coverage of the violations. The main intuitions behind
this work are that (i) violations at the target level can be
expressed as evidence of problems over the sources and (ii)
summarising such evidence leads to meaningful explanations
of the problems. We plan to extend this work by considering
multi-level transformations, such as ETL processes, where at
each step rules for data cleaning can be enforced.

10. REFERENCES
[1] G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs

of functional dependency violations under hard constraints.
PVLDB, 3(1):197–207, 2010.

[2] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends
in Databases, 1(4):379–474, 2009.

[3] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning:
Putting violations into context. In ICDE, 2013.

[4] V. Chvatal. A greedy heuristic for the set-covering problem.
Mathematics of operations research, 4(3):233–235, 1979.

[5] G. Cong, W. Fan, F. Geerts, J. Li, and J. Luo. On the
complexity of view update analysis and its application to
annotation propagation. IEEE TKDE, 24(3):506–519, 2012.

[6] Y. Cui and J. Widom. Practical lineage tracing in data
warehouses. In ICDE, pages 367–378, 2000.

[7] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid,
I. Ilyas, M. Ouzzani, and N. Tang. Towards a commodity
data cleaning system. In SIGMOD, 2013.

[8] W. Fan and F. Geerts. Foundations of Data Quality
Management. Morgan & Claypool Publishers, 2012.

[9] W. Fan, S. Ma, Y. Hu, J. Liu, and Y. Wu. Propagating
functional dependencies with conditions. PVLDB,
1(1):391–407, 2008.

[10] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The
Llunatic Data-Cleaning Framework. PVLDB,
6(9):625–636, 2013.

[11] M. Herschel and M. A. Hernández. Explaining missing
answers to spjua queries. PVLDB, 3(1):185–196, 2010.

[12] D. S. Hochbaum. Heuristics for the fixed cost median
problem. Mathematical programming, 22(1):148–162, 1982.

[13] W. H. Inmon. Building the Data Warehouse. John Wiley
Publishers, 2005.

[14] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis
and explanations for robust query evaluation in
probabilistic databases. In SIGMOD, pages 841–852, 2011.

[15] S. Kolahi and L. V. S. Lakshmanan. On approximating
optimum repairs for functional dependency violations. In
ICDT, 2009.

[16] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. Tracing
data errors with view-conditioned causality. In SIGMOD,
pages 505–516, 2011.

[17] P. B. Mirchandani and R. L. Francis. Discrete location
theory. 1990.

[18] F. Murtagh. Clustering in massive data sets. In Handbook
of massive data sets, pages 501–543. Springer, 2002.

[19] Q. T. Tran and C.-Y. Chan. How to conquer why-not
questions. In SIGMOD, pages 15–26, 2010.

[20] Transaction Processing Performance Council. The TPC
Benchmark H 2.16.0. http://www.tpc.org/tpch, 2013.

[21] E. Wu and S. Madden. Scorpion: Explaining away outliers
in aggregate queries. PVLDB, 6(8):553–564, 2013.

[22] E. Wu, S. Madden, and M. Stonebraker. A demonstration
of dbwipes: Clean as you query. PVLDB, 5(12):1894–1897,
2012.

