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Abstract

Traditional DBMSs decouple statistics collection and

query optimization both in space and time. Decoupling in

time may lead to outdated statistics. Decoupling in space

may cause statistics not to be available at the desired gran-

ularity needed to optimize a particular query, or some im-

portant statistics may not be available at all. Overall, this

decoupling often leads to large cardinality estimation errors

and, in consequence, to the selection of suboptimal plans

for query execution. In this paper, we present JITS, a sys-

tem for proactively collecting query-specific statistics dur-

ing query compilation. The system employs a lightweight

sensitivity analysis to choose which statistics to collect by

making use of previously collected statistics and database

activity patterns. The collected statistics are materialized

and incrementally updated for later reuse. We present the

basic concepts, architecture, and key features of JITS. We

demonstrate its benefits through an extensive experimental

study on a prototype inside the IBM DB2 engine.

1. Introduction

Cost-based optimizers use database statistics to deter-

mine the best execution plan for a query. The optimizer

uses these statistics to estimate the cost of each alternative

plan, and to choose the plan with the least estimated cost.

Ideally, the optimizer should have access to statistics about

tables, groups of predicates and other constructs involved in

the query in order to accurately estimate the cost of each op-

erator (sub-plan). However, traditional systems suffer from

two main problems:

First, statistics collection and query optimization are

usually decoupled. The statistics collection module has no

knowledge of the queries posed to the system. It only col-

lects general statistics that can be used with any query. Ex-

ample general statistics include the number of rows in a ta-

ble, the number of distinct values for a column, the most

frequent values in a column, and the distribution of data

values (usually stored as a histogram). The optimizer relies

on several assumptions to estimate the output cardinalities

of query operators from this subset of statistics, e.g., uni-

formity of data distribution and independence of predicates.

These assumptions often do not reflect the real world data,

leading to very large estimation errors.

Second, because of data updates, these statistics become

stale very quickly. Statistics are not incrementally updated

during data manipulation because such incremental main-

tenance is prohibitively expensive. Traditional systems try

to address this problem by periodically updating the stored

statistics. This, however, is not particularly useful for ta-

bles with high data change rates, or temporary tables that

get created and dropped during a workload. The presence

of outdated statistics causes the optimizer to inaccurately

estimate the costs of the operators in a query plan, which

results in choosing a suboptimal plan.

A brute-force approach to get accurate cost estimation

would be to collect statistics on all data sources, and the

combinations of predicates in a given query before opti-

mization. However, the problem with this approach is that

(1) it is non-trivial to enumerate all statistics needed by the

optimizer; (2) collecting all needed statistics for each query

can be prohibitively expensive; and (3) it is hard to deter-

mine the most crucial statistics for the optimization process.

Numerous efforts have been proposed to address these

issues. For example, reactive techniques monitor operators’

cardinalities at run time and detect large estimation errors.

Reacting to estimation errors may involve re-optimizing the

running query [9, 11] or adjusting stored statistics to com-

pensate for these errors in future queries [14, 1]. In con-

trast, proactive techniques try to minimize the optimizer’s

mistakes by collecting statistics at compilation time [6] or

by keeping multiple query plans and using the cardinalities

monitored at run time to choose among them [3]. Section 5

gives more details on related work.

In this paper, we propose an efficient approach to

proactively determine, collect, and materialize Just-in-Time

Statistics (JITS) for the currently optimized query. In

contrast to earlier attempts, our approach: (1) employs a



lightweight sensitivity analysis based on the query struc-

ture, the existing statistics and the data activity to iden-

tify the crucial statistics; and (2) materializes and incre-

mentally updates the collected partial statistics for future

reuse. Materializing and reusing query-specific statistics is

a challenging problem since the statistics cover partial (pos-

sibly overlapping) regions of the data space. JITS integrates

these partial statistics in a reusable form by maintaining

maximum-entropy-based structures. Our proposed frame-

work can easily be extended to employ more sophisticated

sensitivity analysis techniques. We implemented a proto-

type in the IBM R© DB2 R© Universal DatabaseTM product

(DB2 UDB) that demonstrates our approach and evaluates

its benefits through an extensive experimental study.

The rest of this paper is organized as follows: Section 2

discusses the concept of Query-Specific Statistics. We ex-

plain the JITS framework in Section 3 and discuss our ex-

perimental results in Section 4. Section 5 outlines similar

efforts done in query optimization, and Section 6 concludes

our work.

2. Query-Specific Statistics

As mentioned in Section 1, the assumptions made by tra-

ditional optimizers (independence and data uniformity) are

often not true, and usually yield high estimation errors. This

raises the need for Query-Specific Statistics (QSS), which

take into consideration the predicates and the values used in

a particular query. QSS allow the optimizer to accurately es-

timate the cost of different execution (sub)plans, while min-

imizing the assumptions made on the underlying data. For

example, consider a simple query that selects all employee

records with salary > $100k and age > 30 from Table

Employees. A QSS for this query is an accurate estimate

of joint selectivity of the two predicates, salary > $100k
and age > 30, to allow the optimizer to choose the best ac-

cess path to Table Employees. However, even with the ex-

istence of histograms on Columns age and salary, the opti-

mizer assumes uniformity within each bucket. Furthermore,

since the optimizer cannot maintain multi-dimensional his-

tograms for all possible combinations of columns, the opti-

mizer may assume independence to compute the joint selec-

tivity of the two predicates. These assumptions often lead to

huge errors in cost estimation. The problem is further mag-

nified with more complex queries that involve large num-

bers of predicates and joins.

Note that predicate selectivities, in addition to being

query-specific, can also be plan-specific; the selectivity of a

particular predicate can be useful for costing a certain plan

but useless for costing another plan representing the same

query. For example, consider a query that contains a join

of 3 tables A, B, and C. In one possible plan, the join or-

der is (A ⊲⊳ B) ⊲⊳ C. This plan needs the selectivity of
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Figure 1. JITS architecture

the join predicate of A ⊲⊳ B. Another plan with a different

join order A ⊲⊳ (B ⊲⊳ C) would need the selectivity of the

join predicate of B ⊲⊳ C. Hence, in general, collecting all

needed statistics would involve collecting the selectivity of

all possible join predicates and other plan-specific statistics,

which is prohibitively expensive.

QSS can be viewed as a compromise between: (1) gen-

eral statistics currently collected by query optimizers, where

multiple unrealistic assumptions are made to generate the

required statistics for cost estimation; and (2) plan-specific

statistics that can be directly used in cost estimation, elim-

inating the need for assumptions but suffering from pro-

hibitively expensive collection cost.

A system that collects and exploits QSS in query opti-

mization needs to address the following issues: (1) which

QSS to collect among a large number of possible candi-

dates; and (2) how to efficiently materialize the collected

QSS for later reuse. Section 3 describes the JITS frame-

work, and how it tackles these issues.

3. JITS Framework

In this section, we describe JITS, a system for proac-

tively collecting query-specific statistics during query com-

pilation. We give the overall architecture of JITS, describe

the structure of the QSS archive, and give details of our im-

plementation of the various modules.

3.1. System Architecture

Figure 1 gives a strawman architecture of JITS. Entities

in dotted lines already exist in current query engines, while

entities in solid lines are new JITS modules.



Algorithm 1 Query analysis

1: procedure QUERYANALYSIS(Q)

2: PG← {}
3: B ← set of query blocks in Q
4: for all b ∈ B do

5: P ← set of predicates in b
6: T ← set of tables involved in b
7: for all t ∈ T do

8: Pt ← {p|p ∈ P , p is local on t}
9: for i← 1, |Pt| do

10: G← all i-pred. groups; predicates ∈ Pt

11: PG← PG ∪G
12: end for

13: end for

14: end for

15: return PG
16: end procedure

The Query Analysis module analyzes the query structure,

after parsing and rewriting, to determine all relevant statis-

tics, and generates a list of candidate statistics. The Sen-

sitivity Analysis module processes the candidate statistics

to decide the most crucial statistics to collect. Our imple-

mentation examines the query, existing statistics, as well

as the history of data activity (e.g., frequency of updates

and deletes on a particular table). In general, the sensitiv-

ity analysis module can use any more sophisticated tech-

nique, e.g., by incorporating the planning module to deter-

mine the sensitivity of the query to a particular statistic [6].

The Statistics Collection module collects the required statis-

tics, and uses them to update the QSS archive. The Plan

Generation and Costing module uses the information in the

QSS archive and the system catalog to select an execution

plan. The information in the QSS archive can be used to

periodically update the system catalog using the Statistics

Migration module.

The QSS archive is a repository of adaptive single- and

multi-dimensional histograms. Categorical and character

data types can be represented as numerical values using a

mapping function to allow for interpolation. We maintain

a time stamp with each bucket, which is used by the sen-

sitivity analysis module to determine the recentness of the

statistics. We elaborate on the details of the histograms and

their update strategy in Section 3.4.

3.2. Query Analysis

The Query Analysis module determines which statistics

are relevant to the query, regardless of whether or not they

should be collected. These statistics can be classified as:

(1) table statistics (e.g., number of rows), which are needed

Algorithm 2 Sensitivity analysis

1: procedure SENSITIVITYANALYSIS(Q, PG)

2: T ← set of tables involved in Q
3: for all t ∈ T do

4: PGt ← {g|g ∈ PG, g is local on t}
5: if ShouldCollectStats(t, PGt) then

6: Mark t for statistics collection

7: for all g ∈ PGt do

8: if ShouldMaterialize(g) then

9: Mark g for materialization

10: end if

11: end for

12: end if

13: end for

14: end procedure

for every table involved in the query, and (2) column statis-

tics, which basically include the selectivities of predicates

or groups of predicates.

The query analysis (Algorithm 1) takes as input a query

Q and returns the set PG of candidate predicate groups on

which statistics are needed in order to optimize Q. Each

element in PG is a group of predicates that appear in the

query. The algorithm analyzes the query by examining its

internal structure after parsing and rewrite. It enumerates

all possible combinations of predicates belonging to each

table involved in the query. For each table t, it considers

groups of i-predicates, for i = 1, 2, ..., m (m is the number

of local predicates on this table). For example, consider the

following query:

SELECT price FROM car

WHERE make = ’Toyota’

AND model = ’Corolla’

AND year > 2000

Applying the query analysis algorithm, the set Pt

will contain the predicates (make = ‘Toyota’), (model =

‘Corolla’) and (year > 2000). The first iteration of the

loop in line 9 produces all single predicates. The second it-

eration produces 3 groups of 2 predicates each, and the last

iteration produces a single group with 3 predicates.

Since the aim of QSS is to be directly used by the op-

timizer, Algorithm 1 collects predicate groups per query

block (SPJ block), since most optimizers, including our pro-

totype DBMS, perform intra-block optimization. Note that

the input to the algorithm is the query after rewrite, so the

query blocks are finalized and ready to be processed by the

optimizer.



3.3. Sensitivity Analysis

Statistics collection during query compilation is an ex-

pensive process. Collecting all statistics recommended by

the query analysis module is not always necessary, so it is

crucial to decide which statistics are necessary to collect.

The sensitivity analysis (Algorithm 2) takes as input the

query Q and the list of predicate groups recommended by

the query analysis module. The algorithm makes use of two

other algorithms: Algorithm ShouldCollectStats(t, PGt)
(Algorithm 3) determines if statistics should be collected on

a table t based on the candidate statistics PGt. Ideally, the

sensitivity analysis evaluates the “importance” of each can-

didate statistic. We adopt a simplification heuristic that de-

cides on all the statistics PGt of a table as one unit. The

rationale is that most of the cost of computing the statistics

is in the sampling process. Once a table is sampled, it is

relatively cheap to collect the selectivities of all predicate

groups that belong to this table. However, to meet the space

constraints, it is not always necessary to materialize all the

collected statistics, especially if they involve creating new

QSS histograms. Algorithm ShouldMaterialize(g) (Al-

gorithm 4) determines if a certain predicate group g should

be materialized. The details of the two subroutines are given

in Sections 3.3.2 and 3.3.3, respectively.

3.3.1 Data Structures

The sensitivity analysis module maintains two main data

structures:

UDI counter: For each table, we maintain a counter that en-

capsulates the number of updates, deletions and insertions

that took place since the last statistics collection on this ta-

ble. We use the UDI counter as an indication of the change

in the data.

StatHistory: The optimizer can estimate the selectivity of

conjuncts of predicates such as sel(p1 ∧ p2 ∧ p3 ∧ p4) by

using partial selectivities such as sel(p1), sel(p2 ∧ p3), and

sel(p2 ∧ p3 ∧ p4) [10]. We maintain a history of statis-

tics collection that we use to evaluate the effectiveness of

the optimizer’s assumptions in computing column group

statistics from partial statistics. Each entry is of the form

(T, colgrp, statlist, count, errorfactor), where T is the

table name to which the column group belongs; colgrp are

the columns in the group; statlist is a set of column groups

that were used to estimate the selectivity of this group;

count is the number of times that the column groups in

statlist have been used to compute the selectivity of this

group; and errorfactor is the estimated selectivity divided

by the actual selectivity.

The errorfactor is usually provided by a feedback sys-

tem that monitors the actual selectivities and compares them

Table 1. Statistics collection history
T colgrp statlist count errorfactor

T 1 (a, b, c) {(a, b), (c)} 5 0.4

T 1 (a, b, c) {(a), (b, c)} 2 0.7

T 1 (a, b, c) {(a, b, c)} 10 0.98

T 1 (a, b, d) {(a, b), (d)} 4 0.8

to the optimizer’s estimates. In our case, we use the out-

put of LEO [14] to provide the errorfactor values in the

StatHistory. For example, suppose that the selectivity of

the predicate group (a=5 AND b>10 AND c<100) was esti-

mated to be 0.2 using a histogram on (a, b) and a histogram

on c. However, during the query execution, the actual selec-

tivity was 0.5. Thus errorfactor = 0.2/0.5 = 0.4. Table

1 gives a sample of the stored StatHistory.

3.3.2 Determining Crucial Statistics

Deciding whether or not to collect statistics on a particular

table is mainly based on evaluating two metrics: s1 reflects

the accuracy of currently existing statistics on this table; and

s2 reflects the data activity on the table. Each of the two

metrics can be viewed as a value ranging from 0 to 1; where

0 means that no statistics collection is needed and 1 mean-

ing that statistics must be collected.

Computing these scores is described in Algorithm 3. To

compute s1, the algorithm first gets the predicate group that

has the maximum number of predicates (i.e., the one with

all predicates), and fetches all the history entries that refer

to this group. For example, if this group is (a=5 AND b>10

AND c<100), and the history is as shown in Table 1, then H
will have the first 3 entries. For each of these entries, Algo-

rithm 3 calculates the accuracy (accu) of using statlist to

estimate the selectivity of colgrp. The accuracy depends on

the errorfactor value in that entry, as well as the accuracy

of each of the statlist elements. We show how to calculate

the accuracy in case of histograms later in this section. s1

can be calculated as (1 - the maximum accuracy). The sec-

ond metric, s2, can be calculated as the ratio between the

UDI and the table cardinality.

The total score of the table is computed as an aggregate

function of the two metric values. One way to use the aggre-

gated score is to use a threshold of statistic importance; if

the value of the total score exceeds a threshold smax, statis-

tics must be collected on this table. As smax approaches

1, no QSS are collected during compilation. As smax de-

creases, the system becomes more aggressive and tends to

collect all possible QSS. In our implemented prototype, the

aggregate function is the average of the two scores. Section

4.3 elaborates on the effect of changing the value of smax

on the system performance.



Algorithm 3 Is a particular table important?

1: procedure SHOULDCOLLECTSTATS(t, PG)

2: g ← group from PG with the max. # of predicates

3: H ← {h|h ∈ history; h.T = t, h.colgrp = g}
4: MaxAcc← 0
5: for all h ∈ H do

6: n← no. of elements in h.statlist
7: accu← h.errorfactor
8: for i← 1, n do

9: accu← accu ∗ accuracy(h.statlist[i], g)
10: end for

11: if accu > MaxAcc then

12: MaxAcc← accu
13: end if

14: end for

15: s1 ← (1−MaxAcc)
16: s2 ← min(UDI(t)/cardinality(t), 1)
17: score← f(s1, s2)
18: if score ≥ smax then

19: Return TRUE

20: else

21: Return FALSE

22: end if

23: end procedure

Since computing s1 depends on calculating the accuracy

of the underlying statistics, we show how to compute the

accuracy of a histogram. The accuracy of a histogram with

respect to a predicate (group) is a value in the range [0,1]

that represents how accurately the selectivity of this predi-

cate (group) can be estimated from this histogram.

Consider a one-dimensional histogram on column a. A

histogram has n buckets B1, B2, ..., Bn. Bucket Bi lies be-

tween the boundaries bi−1 and bi. Now consider a predicate

a > value. If value ≈ bi for some i, then estimating the

selectivity is very accurate. As value gets further from any

boundary, the accuracy of the histogram decreases. The ac-

curacy further decreases if value lies within a wide bucket.

To calculate the accuracy on a single dimension, we fol-

low these steps:

1. Locate the bucket that contains value. Let this bucket

be Bj with boundaries bj−1 and bj .

2. Let d1 = value− bj−1 and d2 = bj − value

3. Let u = min(d1,d2)
max(d1,d2)

∗
bj−bj−1

bn−b0

4. accuracy = 1− u

For multi-dimensional histograms, we use a simple

method where the overall accuracy can be computed as the

product of the accuracy in each dimension.

Algorithm 4 Is a statistic useful for other queries?

1: procedure SHOULDMATERIALIZE(g)

2: if histogram exists on g then

3: Return TRUE

4: end if

5: F =
∑

history count
6: H = {h|h ∈ history; g ∈ h.statlist}
7: score← 0
8: for all h ∈ H do

9: score← score+(h.errorfactor∗h.count/F )
10: end for

11: if score ≥ smax then

12: Return TRUE

13: else

14: Return FALSE

15: end if

16: end procedure

3.3.3 Which Statistics to Materialize?

Once a table is sampled, the selectivities of all the candidate

predicate groups given by the query analysis are computed

and are used to optimize the query. However, we must de-

cide which of these statistics to store in the QSS archive

to be reused by future queries, i.e., which statistics can be

useful for later queries. JITS estimates the usefulness of

materializing given statistics by monitoring how useful they

were for previous queries. The usefulness score of a statis-

tic depends on the number of times this particular statistic

has been used, and the accuracy of the estimates computed

using it. Algorithm 4 lists all history entries that have the

statistic in question as one of their statlist elements. For

example, if the statistic in question is the predicate group

(a=5 AND b>10), and the history is as shown in Table 1,

then H will have the first and fourth entries. The statis-

tic is given a score that represents how beneficial it was for

computing needed statistics. The algorithm uses a weighted

average of errorfactor to compute this score. If this score

exceeds a certain threshold, it is considered useful, and is

marked for materialization.

3.4. Updating the QSS Archive

To keep them up-to-date, the histograms in the

QSS archive are updated whenever new statis-

tics are collected. The newly collected statistics

are a set of buckets, each of which has the form

(dimension1, ..., dimensionn, count). This informa-

tion is obtained from the query predicates. The general

form of a predicate is (exp between A and B) where one

or both of A and B can be present. The update process is

based on the maximum entropy principle. We extended

the technique in [13] to update the histograms by finding
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Figure 2. Histogram update

a distribution that satisfies the knowledge gained by the

new statistics without assuming any further knowledge of

the data, i.e., assuming uniformity unless more information

is known. Note that exp can be any expression involving

table columns, although in the current prototype we limit

exp to be a column name. However, A and B have to be

constant values to be used for updating the histograms.

For instance, for columns a, b, c, the predicate (a between

b + 10 and c− 20) cannot be used to update the histogram

using maximum entropy1.

For example, consider a 2-dimensional histogram on at-

tributes a and b. The values of a range from 0 to 50 and

the values of b range from 0 to 100. The total number of

tuples is 100. Initially the histogram has just one bucket,

as shown in Figure 2(a). Now consider a query with the

predicates (a > 20 AND b > 60). After sampling, the sys-

tem finds that 20 tuples satisfy this predicate group. This

information is used directly to optimize the query. How-

ever, from the same sample we can determine the number

of tuples that satisfy each of the 2 predicates individually

(assume it is 70 and 30, respectively). This new informa-

tion is used to update the histogram as in Figure 2(b). The

4 resulting buckets get a new time stamp (shown in the up-

per left corner of each bucket). Assume another query that

has the predicate (a > 40), and assume there are 14 tuples

satisfying this predicate. Since no further information is

known, we assume uniformity within the buckets in the last

histogram. As a result, the newly inserted boundary splits

the buckets as shown in Figure 2(c). The time stamp of the

4 new buckets (on both sides of the dotted line) is updated.

As the system collects QSS, storage space becomes an

issue, especially since a single column can be involved in

multiple histograms, each of which can be arbitrarily large.

To avoid this problem, we keep a limit on the size of QSS

to maintain. In case the dedicated space is full, and more

1We can store such predicates and the number of tuples that satisfy

them separately, and possibly reuse them for later queries. LRU can be

used to prune unused predicates.

statistics have to be materialized, we remove the histograms

that are almost uniformly distributed (as they are close to the

optimizer’s assumptions). In case more than one histogram

satisfies this property, we use LRU (Least Recently Used)

policy to choose, assuming that the each histogram is asso-

ciated with the last time it has been used by the optimizer.

3.5. JITS Applicability

It is worth mentioning that JITS is more useful for com-

plex, long-running queries such as those used in OLAP and

Decision Support Systems. Such queries usually include

a relatively large number of joined tables, aggregate func-

tions, and predicates, which means more alternative plans

to choose from. The long running time of these queries jus-

tifies spending time on statistics collection to guarantee the

optimizer’s access to recent accurate statistics, thus bring-

ing down the total response time of the query. On the other

hand, simple OLTP queries usually do not involve a large

number of tables, and their running time is usually very

short. For this reason, they might not benefit much from

using the approach presented in this paper. In fact, using

such architecture can increase the time of query processing

if all the queries are very simple. This is further illustrated

in our experimental study.

4. Experimental Evaluation

We implemented the prototype within DB2 UDB.

The database that we generated contains four relations:

CAR, OWNER, DEMOGRAPHICS, and ACCIDENTS.

Several primary-key-to-foreign-key relationships exist

between the tables, as well as a number of correlations

between attributes, such as Make and Model. Table 2

shows the number of tuples in each of the four tables.

The prototype uses the Query Graph Model (QGM) [7]

to analyze the query structure. For statistics collection, the

prototype invokes the RUNSTATS tool with the appropriate



Table 2. Table sizes
Table No. of Tuples

CAR 1,430,798

OWNER 1,000,000

DEMOGRAPHICS 1,000,000

ACCIDENTS 4,289,980

parameters. Based on earlier work [1, 8, 12], the best sam-

ple size sufficient to give accurate statistics of a database

table is independent of the table size, and thus can be scaled

to large tables. To collect specific predicate selectivities, we

had to construct and invoke sampling queries on-the-fly.

As a future extension, techniques such as the work de-

scribed in [15] can be employed to reduce the time used for

sampling by making use of the existing catalog statistics.

4.1. JITS for a Single Query

To evaluate the benefit of our model, we issued a query

given different scenarios. In this experiment, the automatic

sensitivity analysis module was turned off. The query used

for this experiment is:

SELECT o.name, driver, damage

FROM car as c, accidents as a, demographics

as d, owner as o

WHERE d.ownerid = o.id

AND a.carid = c.id

AND c.ownerid = o.id

AND make = ’Toyota’ AND model = ’Camry’

AND city = ’Ottawa’ AND country = ’CA’

AND salary > 5000

This query was issued in 4 different scenarios:

1. No initial statistics (a) with JITS disabled, and (b) with

JITS enabled

2. With Initial basic and distribution statistics on all ta-

bles (a) with JITS disabled, and (b) with JITS enabled

Table 3 shows the compilation, execution, and total times

of the query under the different cases. The times shown are

in seconds. Note that the total time is slightly larger than

the sum of the compilation and execution times because it

also includes the fetch time, which is the same in all cases.

In the first 2 cases, no statistics are known initially.

When JITS is enabled (case 1-b), some overhead is encoun-

tered for collecting statistics. However, the execution time

decreases significantly. The decrease in execution time is

almost 27% and the overall gain is around 18% reduction in

total query time. In the existence of all recent general statis-

tics, JITS might not outperform the traditional model for a

Table 3. Compilation and execution times
Case # Compilation Execution Total

1-a 0.098 138.756 138.855

1-b 11.864 101.681 113.547

2-a 0.073 104.912 104.986

2-b 3.698 101.323 105.023

255.75 47.68
21.96

32.49
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Figure 3. JITS benefit

single query. The reason is that the saving in the execution

time can be overweighed by the JITS overhead. However,

once we consider a sequence of queries in a workload, the

overhead is amortized by reusing the statistics in the QSS

archive. We show the workload effect in Section 4.2.

4.2. JITS for a Workload

This experiment demonstrates the performance of JITS

as opposed to traditional query processing. We observed the

performance of the system using a workload of 840 queries,

including data updates to simulate a real-world operational

database. The workload was executed in four settings:

1. JITS disabled, having no initial statistics

2. JITS disabled, having general (basic and distribution)

statistics about all tables and columns

3. JITS disabled, having general (basic and distribution)

statistics about all tables and columns in addition to

workload statistics (i.e., all column groups that occur

in all the queries)

4. JITS enabled, having no initial statistics

Figure 3 shows a box plot (a graph depicting the small-

est observation, lower quartile, median, upper quartile and

largest observation) of the elapsed time of the workload
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Figure 4. Workload stats vs. JITS

queries in the four settings. The results show that having

general statistics only results in a slight benefit. However,

if the workload information is available, it can be analyzed

and all the needed statistics can be collected beforehand,

which improves the overall performance. However, even

in this case, the statistics are general statistics, not query-

specific, i.e., the optimizer still has to make some unifor-

mity and/or independence assumptions. In addition, due

to data updates, these statistics soon become stale, and the

estimation error increases. With JITS enabled, the system

samples the data to get the actual selectivities of the pred-

icates in the query. The benefit of having these very accu-

rate values outweighs the sampling overhead. In addition,

the data updates have no effect on the accuracy of the col-

lected statistics, since the system detects the staleness of

these statistics, and recollects them when needed. Figure 3

shows that JITS outperforms the other cases.

Figure 4 shows a scatter chart of the elapsed times of in-

dividual queries when JITS is enabled (with no prior statis-

tics) versus when JITS is disabled (having workload statis-

tics to start with). Some of the queries, especially in the

beginning of the workload, suffer from the overhead of col-

lecting statistics when JITS is enabled. As the data gets

updated, the workload statistics become stale, and the ben-

efits of JITS become evident. However, in the majority of

the systems, where prior workload knowledge is not avail-

able, only general statistics can be collected initially. Figure

5 depicts JITS versus having general statistics. Almost all

of the queries have a significant improvement, while only a

few ones lie in the degradation region.
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Figure 5. General stats vs. JITS

4.3. Tuning the Sensitivity Analysis

As mentioned in Section 3.3.2, the sensitivity analysis

module determines whether or not to collect certain statis-

tics. Each statistic is given an overall score based on indi-

vidual scoring factors. A statistic is to be collected if its

overall score exceeds a certain threshold smax.

We used the same workload used in Section 4.2. Fig-

ure 6 shows the average elapsed time per query for smax =
0, 0.1, 0.5, 0.7, 0.9, and 1. At smax = 0, all possible statis-

tics are always collected, i.e., there is no actual sensitivity

analysis. This explains the very large compilation time. The

compilation time decreases as smax increases since fewer

statistics are collected. At smax = 1, no statistics are

ever collected. Note that if there is no sensitivity analysis

(smax = 0), our system performs worse than traditional

query optimization (smax = 1) because of the added over-

head. Increasing smax from 0 to 0.5 decreases the average

compilation time significantly while the average execution

time is not affected, which means that there has been use-

less statistics collection at the lower values of smax. At

smax = 0.7, there is an increase in the average execution

time, outweighed by the decrease in the average compila-

tion time. This means that setting smax = 0.7 might be a

better choice if we have a workload. However, smax = 0.5
would be better for a single query (where the system col-

lects the minimum amount of statistics to achieve the least

possible execution time).

5. Related Work

Most of the published work regarding the optimizer’s de-

pendence on statistics only addresses the problem of stale
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Figure 6. Sensitivity analysis threshold

or outdated database statistics and their effect on query op-

timization. The problem of deciding which statistics to col-

lect has not been thoroughly explored. The approaches that

tackle the statistics aspect of cost-based optimization can be

categorized mainly as being either reactive or proactive.

Reactive approaches are based on monitoring a query

during execution, and reacting to observed errors between

the initial estimates and the actual values from the query

feedback. In contrast, proactive approaches try to predict,

identify and possibly solve potential problems by doing ad-

ditional work before query execution.

5.1. Reactive Approaches

The first class of reactive approaches reacts to observed

estimation errors by correcting the stored statistics to ben-

efit future queries. The Learning Optimizer (LEO) in DB2

UDB [14] keeps track of actual cardinality values along the

edges of the query plan. These values are compared to the

estimates used by the optimizer. The error is used as an

adjustment factor to correct statistics for future queries. A

slightly different approach [1] uses the error to trigger statis-

tics collection if it exceeds a certain threshold.

However, the current query still suffers from wrong es-

timates. The problem is further magnified in systems with

long-running ad hoc unrelated queries, in which case the ad-

justment in statistics is unlikely to be used by future queries.

The second class of reactive approaches reacts to errors

by re-optimizing the current query. In [9], if the optimizer

decides that the execution plan is suboptimal, it tries to

optimize execution, either by changing the resource allo-

cation or by changing the execution plan and re-executing

the query using the new plan. In Progressive OPtimization

(POP) [11], the optimizer starts with the existing statistics,

and chooses a plan. The optimizer then calculates a validity

range for the cardinality at each step of execution, in which

this plan is still optimal. During execution, if the actual val-

ues are outside the validity ranges, the current plan is not

optimal anymore, and the query is re-optimized.

However, it is hard to collect actual statistics during

query execution without blocking the execution pipeline.

Furthermore, the decision to re-optimize raises a question

whether to reuse the part that has been executed already or

to start execution from the beginning with the new plan.

5.2. Proactive Approaches

Babu et al. [3] proposed an approach that is partly proac-

tive but mostly reactive. This approach is based on the pos-

sible error in the cardinalities at every edge of the query

plan. At each operator, the system computes the possible

range of values for the two input relations to this operator,

getting bounding box. The system maintains three alterna-

tive sub-plans for each operator; ones that are optimal at

the lowest, middle, and highest points in the bounding box.

During execution, the approach is reactive; the system de-

tects the actual cardinality and chooses one of these sub-

plans accordingly if the value is inside the bounding box;

otherwise, it re-optimizes the query. The main problem is

that the three maintained sub-plans do not necessarily cover

the whole spectrum of possible sub-plans, i.e., there could

be another plan that is better than the selected three plans

for a particular input cardinality value.

To the best of our knowledge, the only work that ad-

dresses the issue of choosing which statistics to collect be-

fore query execution – and hence the closest to our work – is

the approach proposed in [6]. It includes a technique to per-

form sensitivity analysis in order to decide which statistics

to collect so that the optimizer will have enough informa-

tion to optimize that query. The idea is to check whether

the currently available set of statistics is sufficient or not. If

not, then collect the most important statistic, and then repeat

the check again until the available statistics are sufficient.

The decision of whether the current set of statistics is suffi-

cient or not is taken by invoking the optimizer twice. In the

first invocation, all unknown selectivities are set to a very

small value ε > 0. In the second invocation, all unknown

selectivities are set to a large value 1 − ε. If the estimated

costs of the two generated plans are within t% of each other

(for a predefined value of t), the current set of statistics is

sufficient. If not, the system identifies the most important

statistic by calling the optimizer again to get an execution

tree based on the current set of statistics, then comparing the

estimated costs of the operators in the tree, assuming that

expensive operators are associated with important statistics.

However, this approach differs from ours in multiple as-

pects. It requires multiple calls to the optimizer for every

statistic, which can be very time-consuming especially for

complex queries, whereas our approach employs a light-



weight sensitivity analysis to limit the overhead. Moreover,

although the framework in [6] can be particularly useful if

most of the tables involved in the query have up-to-date

statistics, it would not be as useful if most of the statistics

are outdated. This is because it decides the importance of

statistics based on the estimated operator cost in the execu-

tion tree that is already built using inaccurate information.

In addition, our approach relies on collecting and reusing

Just-in-Time Statistics that can be query-specific.

Other approaches tackling different aspects of the query

optimization problem include generating robust plans that

are resilient to estimation errors [2], or detecting the corre-

lation in the data to avoid the independence assumption [8].

A different approach makes use of statistics on query ex-

pressions to optimize the whole query [4, 5]. Several efforts

have been proposed to eliminate the independence assump-

tion by estimating the selectivity of a group of predicates

from smaller groups or individual predicates [10, 16].

6. Conclusion and Future Work

Collecting Just-in-Time Statistics guarantees that the op-

timizer has access to statistics that are recent and truly rep-

resentative of the underlying data, including any possible

correlations. The presence of these statistics minimizes

the effect of the optimizer’s uniformity and independence

assumptions, and significantly reduces cost estimation er-

ror. Using this approach is more useful for complex long-

running queries such as the ones used in OLAP and Deci-

sion Support Systems since investing some time to collect

statistics significantly reduces the total query response time.

For future work, we would like to consider a more

sophisticated sensitivity analysis technique to determine

which statistics to collect. It would also be interesting to in-

vestigate methods to further reduce the time spent on statis-

tics collection by integrating catalog statistics with sampled

data, and/or inferring some of the absent statistics.
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