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ABSTRACT
Data cleaning has played a critical role in ensuring data
quality for enterprise applications. Naturally, there has been
extensive research in this area, and many data cleaning algo-
rithms have been translated into tools to detect and to pos-
sibly repair certain classes of errors such as outliers, dupli-
cates, missing values, and violations of integrity constraints.
Since different types of errors may coexist in the same data
set, we often need to run more than one kind of tool. In this
paper, we investigate two pragmatic questions: (1) are these
tools robust enough to capture most errors in real-world data
sets? and (2) what is the best strategy to holistically run mul-
tiple tools to optimize the detection effort? To answer these
two questions, we obtained multiple data cleaning tools that
utilize a variety of error detection techniques. We also col-
lected five real-world data sets, for which we could obtain
both the raw data and the ground truth on existing errors.
In this paper, we report our experimental findings on the
errors detected by the tools we tested. First, we show that
the coverage of each tool is well below 100%. Second, we
show that the order in which multiple tools are run makes
a big difference. Hence, we propose a holistic multi-tool
strategy that orders the invocations of the available tools
to maximize their benefit, while minimizing human effort
in verifying results. Third, since this holistic approach still
does not lead to acceptable error coverage, we discuss two
simple strategies that have the potential to improve the sit-
uation, namely domain specific tools and data enrichment.
We close this paper by reasoning about the errors that are
not detectable by any of the tools we tested.

1. INTRODUCTION
In the last two decades there has been intensive research

in developing data cleaning algorithms and tools [10,11,14,
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19, 29]. With the increasing prevalence of data-centric ap-
proaches to business and scientific problems with data as a
crucial asset, data cleaning has become even more impor-
tant. Hence, it is important to study the effectiveness of
the available error detection solutions (both as industry-
strength tools and academic prototypes) in solving real-
world cleaning problems.

1.1 The Current State
Available data cleaning solutions and tools belong to one

or more of the following four categories:

• Rule-based detection algorithms [1,6,15,16,25,33] that
can be embedded into frameworks, such as Nadeef [8,
23], where a rule can vary from a simple “not null”
constraint to multi-attribute functional dependencies
(FDs) to user-defined functions. Using this class of
tools, a user can specify a collection of rules that clean
data will obey, and the tool will find any violations.

• Pattern enforcement and transformation tools such as
OpenRefine, Data Wrangler [21] and its commer-
cial descendant Trifacta, Katara [7], and DataX-
Former [3]. These tools discover patterns in the data,
either syntactic (e.g., OpenRefine and Trifacta) or
semantic (e.g., Katara), and use these to detect errors
(cells that do not conform with the patterns). Trans-
formation tools can also be used to change data rep-
resentation and expose additional patterns.

• Quantitative error detection algorithms that expose
outliers, and glitches in the data [2, 9, 28,32,34].

• Record linkage and de-duplication algorithms for de-
tecting duplicate data records [13, 26], such as the
Data Tamer system [30] and its commercial descen-
dant Tamr. These tools perform entity consolidation
when multiple records have data for the same entity.
As a side effect of this process, conflicting values for
the same attribute can be found, indicating possible
errors.

When considering these tools, several challenges have
emerged. Most notably:

1. Synthetic data and errors. Most cleaning algorithms
have been evaluated on synthetic or real-world data
with synthetically injected errors. While these might
be appropriate for testing the soundness of the algo-
rithm [4], the effectiveness of any given tool to detect



errors “in the wild” is unclear. The lack of real data
sets (along with appropriate ground truth) or a widely
accepted cleaning benchmark makes it hard to judge
the effectiveness of existing cleaning tools. It is equally
difficult to reason about the use cases where a given
tool should be employed without real-world data.

2. Combination of error types and tools. Real-world data
usually contains multiple types of errors. Moreover,
the same error might be findable by more than one
type of tool. For example, an error might be part of
conflicting duplicate records and violate an integrity
constraint at the same time. Considering only one
type of algorithm in any study misses an opportunity
to accumulate evidence from multiple tools.

3. Human involvement. Almost all practical tools involve
humans, for example, to verify detected errors, to spec-
ify cleaning rules, or to provide feedback that can be
part of a machine learning algorithm. However, hu-
mans are not free and enterprises often impose a hu-
man budget to limit the cost of a cleaning project.
Since errors detected by different tools overlap, order-
ing the application of these tools to minimize total
human involvement is an important task that requires
assessing the interaction among tools.

1.2 Our Evaluation Methodology
To shed light on the current state of data cleaning tools,

we embarked on an experimental endeavor to address the
above challenges. Specifically, we assembled a collection of
real-world data sets (Section 2) that represent the multi-
ple kinds of dirty data one finds in practice. Several of these
data sets are proprietary and were obtained under NDA (non
disclosure agreement) restrictions. While this prevents us
from publishing them as a benchmark, it was important to
our study to work with as many real-world data sets as pos-
sible. We also obtained full or partial ground truth for each
data set, so we can judge the performance and capabilities
of available error detection tools.

We have also selected a collection of data cleaning tools
(Section 3). These tools were chosen because, in aggregate,
they are capable of detecting the error types (Section 2.1)
found in practice, namely pattern violations, constraint vi-
olations, outliers, and conflicting duplicates. Note that in
this study, we are interested in the automatic error discov-
ery and not in automatic repair, since automatic repairing
is rarely allowed in practice.

We have systematically run all the tools on all data sets
and in this paper we report results (precision and recall)
based on the ground truth (Section 4). Each tool has been
configured in a best-effort fashion (e.g., by iteratively choos-
ing good parameters or by defining a reasonable set of qual-
ity rules). In all cases we used the capabilities that the
tool provided, and did not resort to heroics, such as writing
data-set specific Java code.

While we did our best in using a tool, we can still miss er-
rors that can be otherwise captured if the right configuration
(e.g., more rules, more patterns, or better tuned parameter
values) were used. To capture this phenomena, we intro-
duce the notion of upper-bound recall, which is an estimate
for the maximum recall of a tool if it has been configured
by an oracle. Since we do not have an oracle and cannot
optimally configure a tool, we use the known ground truth

to estimate the upper-bound recall as follows. We first clas-
sify the remaining errors that are not detected by the tools
based on their type. Then, any error whose type matches
the type that is detectable by a given tool is counted to-
wards the recall of that tool. For example, if the ground
truth revealed an error that can be captured by defining a
new functional dependency, we count this error towards the
upper-bound recall of the rule-based tool.

With the above considerations in mind, we aim to answer
the following questions:

1. What is the precision and recall of each tool? In other
words, how prevalent are errors of the type that are
covered by each tool?

2. How many errors in the data sets are detectable by
applying all the tools combined?

3. Since human-in-the-loop is a well accepted paradigm,
how many false positives are there? These may well
drain a human effort budget and cause a cleaning effort
to fail. Is there a strategy to minimize human effort
by leveraging the interactions among the tools?

1.3 Main Findings
Based on our experiments, we draw three conclusions:

• Conclusion 1: There is no single dominant tool. In
essence, various tools worked well on different data
sets. Obviously, a holistic “composite” strategy must
be used in any practical environment. This is not sur-
prising since each tool has been designed to detect er-
rors of a certain type. Moreover, empirical evaluation
with multiple real data sets show that the distributions
of errors types vary significantly from one data set to
another.

• Conclusion 2: By assessing the overlap of errors de-
tected by the various tools, it is possible to order the
application of these tools to minimize false positives
(and hence user engagement). Due to the large vari-
ance in quality from data set to data set, this ordering
strategy must be data set specific. We present a com-
posite tool with these characteristics in Section 3.5.2
and its experimental evaluation in Section 4.5.2.

• Conclusion 3: The percentage of errors that can be
found by the ordered application of all tools (the com-
bined overall recall) is well less than 100%. In Sec-
tion 4, we report our experimental results to find ad-
ditional errors. These focus on type-specific cleaning
tools, such as an address cleaning service and the pro-
cess of enrichment, which is to search for additional
attributes and values that can assist in the cleaning
operation. Even with the addition of a type-specific
address tool and enrichment, we show that there is
still a need to develop new ways of finding data errors
that can be spotted by humans, but not by the current
cleaning algorithms.

Section 5 closes the paper with conclusions and sugges-
tions for future work.

2. DATA ERRORS AND DATA SETS
In this section, we first discuss the type of errors that are

reported in this paper. We then describe the real-world data
sets that we used.



Figure 1: Error type taxonomy

2.1 Types of Data Errors
There have been several surveys on classifying data er-

rors [6, 17, 19, 24, 29]. Rahm et al. [29] and Kim et al. [24]
look at data errors from the perspective of how the errors
were introduced into the data. Hellerstein et al. [17] fol-
low on the same line when considering numerical data and
surveying quantitative data cleaning approaches [17]. Ilyas
et al. [19] consider errors as violations of qualitative rules
and patterns, such as denial constraints [6]. We adopt a
taxonomy that covers all the error types mentioned in these
surveys.

We define an error to be a deviation from its ground truth
value. More formally, given a data set, a data error is an
atomic value (or a cell) that is different from its given ground
truth. Figure 1 illustrates the four types of errors that are
used in this study, which are classified as either quantitative
or qualitative ones.

1. Outliers include data values that deviate from the
distribution of values in a column of a table.

2. Duplicates are distinct records that refer to the same
real-world entity. If attribute values do not match, this
could signify an error.

3. Rule violations refer to values that violate any kind
of integrity constraints, such as Not Null constraints
and Uniqueness constraints.

4. Pattern violations refer to values that violate syn-
tactic and semantic constraints, such as alignment, for-
matting, misspelling, and semantic data types.

Note that our categorization does not perfectly partition
errors since some errors may fit into more than one category.
Also, our categories are not necessarily exhaustive. Instead,
they mainly serve the purpose of categorizing errors that are
detectable from available real-world data sets.

2.2 Data Sets
We conducted our experiments on several real-world data

sets that were provided by various organizations. Table 1
lists these data sets along with the number of rows, number
of columns, and whether we have full or partial ground truth
for each data set. Additionally, the corresponding ratio of
erroneous cells range from 0.1% to 34% across the data sets.
The types of errors found in each data set are given in Ta-
ble 2. We see that the four error types are prevalent across
all data sets with the exception of the Animal data set not
having outliers and only MIT VPF and BlackOak having
duplicates. In the rest of this section, we give details about
each data set including the data quality issues that we found
and how we obtained ground truth.

(1) MIT VPF
The MIT Office of the Vice President for Finance (VPF)
maintains several finance databases, one of which is related

Table 1: Experimental data sets
data set # columns # rows ground truth Errors

MIT VPF 42 24K 13k (partial) 6.7%
Merck 61 2262 2262 19.7%
Animal 14 60k 60k 0.1%
Rayyan Bib 11 1M 1k (partial) 35%
BlackOak 12 94k 94k 34%

to procurement. This procurement database contains in-
formation about vendors and individuals that supply MIT
with products and services. Whenever MIT executes a pur-
chase order, a new entry with details about the contracting
party is added to the vendor master data set. This record
contains identification information, such as name, address,
and phone numbers, semi-automatically generated business
codes depending on the contract type, and meta-data, such
as creation date and creator. The ongoing process of adding
new entries introduces duplicates and other data errors. A
particular case of errors relates to inconsistent formatting.
For example, addresses with formats that deviate from the
USPS address standard are considered erroneous values that
need to be fixed, e.g., addresses that contain “Street” or
“Str” instead of “ST”. Similar rules apply for phone num-
bers and company names. Furthermore, contact informa-
tion for suppliers changes over time, as suppliers move, get
acquired, or introduce new branches. This introduces addi-
tional errors, which must be removed.

To obtain ground truth for this data set, employees of
VPF manually curated a random sample of 13,603 records
(more than half of the data set) and marked erroneous fields.
Most of the errors affected address and company names and
included missing street numbers, wrong capitalization, and
attribute values that appear in the wrong column.

(2) Merck
Merck provided us with a data set that describes IT services
and software systems within the company that are partly
managed by third parties. Each system is characterized by
several attributes, such as location, number of end users,
and level of technical support that has been agreed on, e.g.,
seven days a week or 8x5 hours. The data set is used for
optimization purposes. In particular, Merck is interested
in identifying opportunities to decommission a service or to
downsize the level of support. The data set has 68 different
attributes but is very sparse.

Most errors in this data set consist of columns that are not
consistently formatted – due to different parties introducing
the information in the database. Merck provided the custom
cleaning script that they used to produce a cleaned version
of the data set. We used this version as ground truth. The
script applies various data transformations that normalize
columns and allow for uniform value representation. We
used this script to help us in formulating rules and transfor-
mations for our cleaning tools. Some of the transformations
happen invisibly as side effects of other operations. For ex-
ample, one of the functions that normalizes the retirement
date of a software system also changes the encoding of miss-
ing values to “NA”. Hence, we can only capture a subset of
the rules and transformations by examining the script.

(3) Animal
The animal data set was provided by scientists at UC Berke-
ley who are studying the effects of firewoood cutting on



Table 2: Error types found in each data set
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small terrestrial vertebrates. Each record contains infor-
mation about the random capture of an animal, including
the time and location of the capture, properties such as tag
number, sex, weight, species, and age group, and a field indi-
cating whether the capture is the first capture of the animal.
The data set was collected from 1993 to 2012.

Each capture was recorded on paper first, and then man-
ually entered into spreadsheets. Thus, errors such as shifted
fields and wrong numeric values were introduced to the data
set. The scientists identified and corrected several hundreds
erroneous cells in the data set. We use the manually cleaned
data set as ground truth.

(4) Rayyan Bib
Rayyan1 is a system built at QCRI to assist scientists in
the production of systematic reviews [12]. These are litera-
ture reviews focused on a research question, e.g., is vitamin
C good for a cold [18], and identify and synthesize all re-
search evidence relevant to that question. For each review,
Rayyan’s users start by searching multiple databases, e.g.,
MEDLINE and EMBASE, using multiple queries. They
then consolidate their search results into long lists (from
100’s to 1000’s) of references to studies that they feed to
Rayyan. Rayyan is used to select the relevant studies and
perform other analysis for their reviews.

Since these references are coming from multiple sources
and some users may manually manipulate these citations,
the data is prone to errors. To obtain ground truth, we man-
ually checked a sample of 1,000 references from Rayyan’s
database and marked erroneous cells. These references
contain tens of columns, such as article title, journal title,
journal abbrevation, language, and journal issn. There are
many missing values and inconsistencies in the data, such
as journal title and journal abbrevation being switched and
author names found within the journal title.

(5) BlackOak
BlackOak Analytics is a company that provides entity res-
olution solutions. They provided us with an anonymized
address data set and its dirtied version that they use for
evaluation. The errors are randomly distributed and affect
the spelling of values, their formatting, completeness, and
field separation. We purposely included this data set to
study the difference in error detection performance between
real-world address data sets and a synthetic data set.

3. DATA CLEANING TOOLS
In selecting the data cleaning tools, we made sure that

they cover all the error types described in Section 2.1. These
tools include publicly available tools and commercial prod-
ucts to which we had access to or their community versions.

1rayyan.qcri.org

Table 3: Coverage of error types by the tools
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Our choices are listed in Table 3 together with the types of
errors they were designed to find. For some error-types we
picked multiple tools that focus on different subtypes of a
given error type. For instance, Katara focuses on the dis-
covery of semantic pattern violations while wrangling tools
focus on syntactic pattern violations. In describing the tools
below, we explain in details the choice of each specific tool.

In order to mitigate the risk of a suboptimal tool config-
uration and insufficient rules in the case of rule-based tools,
we used an iterative fine-tuning process for each tool. Specif-
ically, we compared the initially detected errors with the
ground truth and adjusted the tool configuration or the rules
accordingly to improve performance. We also examined the
undetected errors and counted those that could have been
captured by a tool, under the optimal configuration, as “de-
tectable”. These detectable errors are then counted towards
the recall upper bound of that tool.

Next, we will present to apply the tools individually, fol-
lowed by combination approaches to improve performance.

3.1 Outlier Detection
Outlier detection tools detect data values that do not fol-

low the statistical distribution of the bulk of the data. We
interpret these values as data errors.

Tool 1: dBoost
dBoost [27] is a novel framework that integrates several
of the most widely applied outlier detection algorithms:
histograms, Gaussian and multivariate Gaussian mixtures
(GMM) [5]. Histograms create a de facto distribution of
the data without making any assumption a priori by count-
ing occurrences of unique data values. Gaussian and GMM
assume that each data value was drawn from a normal dis-
tribution with a given mean and standard deviation or with
a multivariate Gaussian distribution, respectively.

One key feature of dBoost is that it decomposes run-on
data types into their constituent pieces. For example, date
is expanded into month, day and year, so that each can be
analyzed separately for outliers. To achieve good precision
and recall, it is necessary to configure the parameters of the
different outlier detection methods: number of bins and their
width for histograms, and mean and standard deviation for
Gaussian and GMM.

3.2 Rule-based Error Detection
Rule-based data cleaning systems rely on data quality

rules to detect errors. Data quality rules are often expressed
using integrity constraints, such as functional dependencies
or denial constraints [6]. A violation is a collection of cells
that do not conform to a given integrity constraint. A data
error is a cell from a constraint column that is involved in a
violation. Intuitively, in order to resolve a violation, at least
one cell involved in the violation must be changed.



Tool 2: DC-Clean
We use the tool DC-Clean that focuses on denial constraints
(DCs) [6] and DCs subsume the majority of the commonly
used constraint languages. For a given data set, we design a
collection of DCs to capture the semantics of the data. For
example, for the animal data set, one of the DCs states that
“if there are two captures of the same animal indicated by
the same tag number, then the first capture must be marked
as original”. We report any cell that participates in at least
one violation as erroneous.

3.3 Pattern-based Detection
In our evaluation, we include five pattern-based detec-

tion tools: (1) OpenRefine, an open source data wrangling
tool; (2) Trifacta, the community version of a commercial
data wrangling tool; and (3) Katara [7], a semantic pattern
discovery and detection tool. OpenRefine and Trifacta
provide different exploration techniques that we can use to
discover data inconsistencies. When applied on our data
sets, both tools subsume errors that can be captured by
most existing ETL tools. In fact, we were able to confirm
this statement by running two popular ETL tools, namely
(4) Knime and (5) Pentaho. Finally, while OpenRefine
and Trifacta focus on syntactic patterns, Katara focuses
on semantic patterns matched against a knowledge base.

Tool 3: OpenRefine
OpenRefine is an open source wrangling tool that can di-
gest data in multiple formats. Data exploration is performed
through faceting and filtering operations. Faceting resembles
a grouping operation that lets look at different kinds of ag-
gregated data. The user specifies one column for faceting
and OpenRefine generates a widget that shows all the dis-
tinct values in this column and their number of occurrences.
The user can also specify an expression on multiple columns
for faceting and OpenRefine generates the widget based on
the values of the expression. The user can then select one or
more values in the widget and OpenRefine filters the rows
that do not contain the selected values.

Data cleaning uses an editing operation. The user edits
one cell at a time, and can also edit a text facet and all the
cells consistent with this facet will be updated accordingly.
For example, in the Rayyan Bib data set, by faceting on the
language column, we have two facets ‘eng’ and ‘English’ oc-
curring 110 and 3 times, respectively, exposing a consistency
problem. The users can also cluster the cells in a column
and then edit the cells in each cluster to a consistent value.
Finally, the users can highlight the cells in a column using
the Google refine expression language (GREL) 2.

Tool 4: Trifacta
Trifacta is the commercial descendant of DataWran-
gler [22]. It can predict and apply various syntactic data
transformations for data preparation and data cleaning.
For this study, we use the available community version of
Trifacta. Using Trifacta, one can apply business and
standardization rules through the available transformation
scripts. For exploratory purposes, Trifacta applies a fre-
quency analysis to each column to identify the most and

2https://github.com/OpenRefine/OpenRefine/wiki/
GREL-String-Functions

least frequent values. Additionally, Trifacta shows at-
tribute values that deviate strongly from the value lengths
distribution in the specific attribute. Furthermore, Tri-
facta maps each column to the most prominent data type
and identifies values that do not fit the data type.

Tool 5: Katara
Katara relies on external knowledge bases, such as
Yago [31], to detect and correct errors that violate a seman-
tic pattern [7]. Katara first identifies the type of a column
and the relationship between two columns in the data set
using a knowledge base. For example, the type of column
A in a table might correspond to type Country in Yago and
the relationship between columns A and B in a table might
correspond to the predicate HasCapital in Yago. Based on
the discovered types and relationships, Katara validates
the values in the table using the knowledge base and human
experts. For example, a cell “New York” in column A is
marked to be an error, since it is not a country in Yago.

Tool 6: Pentaho
Pentaho3 provides a graphical interface where the data
wrangling process can be orchestrated through creating a
directed graph of ETL operations. Any data manipulation
or rule validation operation can be added as a node into the
ETL pipeline. It provides routines for string transformation
and single column constraint validation.

Tool 7: Knime
Knime4 focuses on workflow authoring and encapsulat-
ing data processing tasks, including curation and machine
learning-based functionality in compassable nodes. Similar
to Pentaho, the curator orchestrates multiple ETL work-
flows to clean and curate the data, but the rules and the
procedure has to be specified. The significant difference of
Pentaho w.r.t. OpenRefine and Trifacta is that the user
has to know exactly what kind of rules and patterns need to
be verified, since both Pentaho and Knime do not provide
ways to automatically display outliers and type mismatches.

3.4 Duplicate Detection
If two records refer to the same real-world entity but con-

tain different values for an attribute, it is a strong signal
that at least one of the values is an error.

Tool 8: Tamr
Tamr is a tool with industrial strength data integration al-
gorithms for record linkage and schema mapping. Tamr is
based on machine learning models that learn duplicate fea-
tures through expert sourcing and similarity metrics. It is
the commercial descendant of the Data Tamer system [30].

3.5 Combination of Multiple Tools
The first problem in trying to use multiple independent

tools is how to properly combine them. A simple option is
to run all tools and then apply a union or min-k strategy. A
more sophisticated solution is to have users manually check
a sample of the detected errors, which can then be used to
guide the sequence of multiple tool invocation.

3http://www.pentaho.com
4http://www.knime.com/



3.5.1 Union All and Min-k
We consider two simple strategies: (i) Union all takes

the union of the errors emitted by all tools, and (ii) Min-k
considers as errors those errors detected by at least k-tools
while excluding those detected by less than k tools.

3.5.2 Ordering Based on Precision
The simplest way to involve users, when combining differ-

ent tools, is to ask them to exhaustively validate the union
of the outputs. This is prohibitively expensive given the hu-
man effort of validating the large number of candidate errors.
For example, for the BlackOak data set, a user would have
to verify the 982,000 cells identified as possibly erroneous
to discover 382,928 actual errors. Obviously, results from
tools with poor performance in error detection should not
be evaluated. We thus present a sampling-based method to
select the order in which available tools should be evaluated.

Cost model. The performance of a tool can be measured by
precision and recall in detecting errors. Unfortunately recall
can be computed only if all errors in the data are known,
which is impossible when we execute the detection tools on a
new data set. However, precision is easy to estimate, and is
a proxy for the importance of a tool in the detection process.
Suppose the cost of having a human check a detected error is
C and the value of identifying a real error is V. Obviously, the
value should be higher than the cost. Hence, P ∗ V > (P +
N) ∗ C, where P is the number of correctly detected errors
and N is the number of erroneously detected errors (false
positives). We can rewrite the inequality as: P/(P +N) >
C/V. If we set a threshold σ = C/V, we conclude that any
tool with a precision below σ should not be run, as the cost
of checking is greater than the value obtained. While this
ratio is domain dependent and unknown in most cases, it
is natural to have large V values for highly valuable data.
With the corresponding small σ all tools will be considered,
thus boosting the recall. On the other hand, if the C is high
and dominates the ratio, we save cost by focusing only on
the validation of tools that are very precise, compromising
recall. For each tool, we estimate its precision on a given
data set by checking a random sample of the detected errors.

Intuitively, we can run all the tools with a precision larger
than the threshold and evaluate the union of their detected
error sets. However, the tools are not independent since
the sets of detected errors may overlap. We observed that
some tools are not worth evaluating even if their precision is
higher than the threshold, since the errors they detect may
be covered by other tools with higher estimated precision
(which would have been run earlier).

Maximum entropy-based order selection. Based on
the above observations, we discuss a composite strategy that
takes into account the ratio between the total cost and the
total obtained value. Following the Maximum Entropy prin-
ciple [20], we design an algorithm that assesses the esti-
mated precision for each tool. Furthermore, our algorithm
estimates the overlap between the tool results. As high en-
tropy refers to uncertainty, picking the tool with the highest
precision achieves best entropy reduction. It works in the
following four steps.

S1. [Run individual tool.] Run all the tools on the entire
data set and get their detected errors.

S2. [Estimate precision by checking samples.] For each
tool, estimate its precision by verifying a random sample of

its detected errors with a human expert, which can be used
to estimate the precision of each tool.

S3. [Pick a tool to maximize entropy.] To maximize the
entropy, among all tools not yet considered, it picks the one
with the highest estimated precision (> σ) on the sample,
and verifies its detected errors on the complete data set that
have not been verified before.

S4. [Update and iterate.] Since errors validated from step
S3 may have been detected by the other tools, we update
the precision of the other tools and go to S3 to pick the next
tool, if there are still tools with estimated precision > σ.

In Section 4.5.2, we show that regardless of each tool’s
individual performance, the proposed order reduces the cost
of manual verification with marginal reduction of recall.

4. EXPERIMENTS
We performed extensive experiments for each combina-

tion of tool and data set. For the MIT VPF and Rayyan
Bib data set, we applied each tool only on the sample with
ground truth. This showed the behavior of each tool and
the types of errors each is able to detect on each data set.
We report the metrics we used in Section 4.1, the tuning
we performed for every tool in Section 4.2, and the degree
of user-involvement in Section 4.3. This process was time-
consuming, and different configurations might lead to differ-
ent performance results. We show in Section 4.4 the results
we obtained and put the numbers in context w.r.t. the four
different types of errors presented in Section 2.1.

After the analysis in isolation, we then report in Sec-
tion 4.5 the insights we obtained from the experiments on
different tool combinations. Finally, we analyze the remain-
ing errors and compute the recall upper-bound in Section 4.6.
This analysis motivates two possible extensions, namely,
domain-specific data cleaning tools and enrichment, which
we discuss in Sections 4.7 and 4.8, respectively.

4.1 Evaluation Metrics
To show the effectiveness of the different tools, we measure

their accuracy in finding potential errors using precision and
recall, defined as follows. Given a data set D and its cleaned
version G, we define the function diff as diff(G,D) = E, as
the set of all erroneous cells in D. Furthermore, for each
tool T , let T (D) be the set of cells in D marked as errors
by T . We define precision P of a tool as the fraction of cells
that are correctly marked as errors and the recall R as the
fraction of the actual errors that are discovered by tool T :

P =
|T (D) ∩ E|
|T (D)| R =

|T (D) ∩ E|
|E|

Note that for the rule-based and duplicate detection sys-
tems, we identify inconsistencies that typically involve mul-
tiple cells while only one of the cells might actually be a true
error. In our study, we mark all attribute values involved in
an inconsistency as errors, thus favoring recall at the cost of
precision. To aggregate P and R we use the harmonic mean
or F-measure as F = 2(R× P )/(R+ P ).

4.2 Usage of Tools
As noted earlier, for each tool, we use all of its features on

a best effort basis using expert knowledge of the data sets.
However, we do not write user-defined programs for any of
the tools.



Table 4: Data quality rules defined on each data set

Data set Rule Type Number Examples
MIT VPF FD 3 Zip code → State; EIN → Company name

DC 5 Phone number not empty if vendor has an EIN; Either street field or PO field must be filled
Merck Check 14 Support level should not be null; Employer status should be either Y,N, or N/A
Animal FD 2 Tag → Species; FD:Tag→A/S-2

DC 2 For any two captures of the same animal with same Tag and ID), the second
capture must be re-capture

Rayyan Bib Check 14 journal ISSN should not be null; author should not be null
FD 9 journal abbreviation →journal title; journal abbreviation → journal ISSN
DC 1 No two articles are allowed to have the same title

BlackOak FD 5 Zip code → State; Zip code→ City

Table 5: Error detection performance of each tool on each data set

MIT VPF Merck Animal Rayyan Bib BlackOak
P R F P R F P R F P R F P R F

DC-Clean 0.25 0.14 0.18 0.99 0.78 0.87 0.12 0.53 0.20 0.740 0.549 0.630 0.46 0.43 0.44
Trifacta 0.94 0.86 0.90 0.99 0.78 0.87 1.0 0.03 0.06 0.714 0.591 0.647 0.96 0.93 0.94
OpenRefine 0.95 0.86 0.90 0.99 0.78 0.87 0.33 0.001 0.002 0.947 0.603 0.737 0.99 0.95 0.97
Pentaho 0.95 0.59 0.73 0.99 0.78 0.87 0.33 0.001 0.002 0.717 0.584 0.644 1.0 0.66 0.79
KNIME 0.95 0.59 0.73 0.99 0.78 0.87 0.33 0.001 0.002 0.717 0.584 0.644 1.0 0.66 0.79
Gaussian 0.07 0.07 0.07 0.19 0.00 0.01 0 0 0 0.412 0.131 0.199 0.91 0.73 0.81
Histogram 0.13 0.11 0.12 0.13 0.02 0.04 0 0 0 0.395 0.164 0.232 0.52 0.51 0.52
GMM 0.14 0.29 0.19 0.17 0.32 0.22 0 0 0 0.534 0.391 0.451 0.38 0.37 0.38
Katara 0.40 0.01 0.02 - - - 0.55 0.04 0.073 0.598 0.393 0.474 0.88 0.06 0.11
Tamr 0.16 0.02 0.04 - - - - - - - - - 0.41 0.63 0.50
Union 0.24 0.93 0.38 0.33 0.85 0.48 0.128 0.575 0.209 0.473 0.850 0.608 0.39 0.99 0.56

dBoost
We applied three algorithms from dBoost: Gaussian, his-
togram, and GMM. All of them require input parameters,
which we chose using the following trial-and-error methodol-
ogy. The Gaussian and GMM approach required the param-
eters mean and standard deviation. The histogram approach
required a value for its bin width. For each data set, we tried
various parameter values and compared the discovered out-
liers with the ground truth for each one. Our final choice
was the parameter values with the highest F-measure score.
For efficiency reasons, we first tuned the parameters on sam-
ples, and then applied the top three discovered parameter
values on the complete data set. The ultimate choice was
the one with the highest F-measure on the complete data
set.

DC-Clean
For the MIT VPF data set, we obtained business rules from
the data owner. We inferred rules for the Merck data set
by examining the cleaning script provided by the data set
owner. The rules were single-column constraints, such as
denial of specific values in a column, functional dependen-
cies, and conditional functional dependencies. In addition
and for each data set, we manually constructed FD rules
based on obvious n-to-1 relationships, such as Zip code →
State. Table 4 illustrates the number of each type of rule
for each data set. As mentioned earlier, we report any cell
that participates in at least one violation to be erroneous.

OpenRefine
Instead of manually checking each attribute value, we ap-
plied OpenRefine’s facet mechanism. The numerical facet
shows the fraction of data cells in a column that are numeri-
cal and their distribution, while text facets show sorted dis-
tinct column values and their frequencies. Furthermore, we
used the transformation engine for detecting values that de-

viate from formatting or single column rules, such as phone
number should not be null or zipcodes consist of zip+4, i.e.,
the basic five-digit code plus four additional digits.

Trifacta
We used Trifacta in a similar manner to OpenRefine for
enforcing formatting and single-column rules. Additionally,
we considered the outlier detection and type-verification en-
gines in Trifacta as additional ways of detecting errors.

Katara
In our Katara implementation [7], cells are verified against
a knowledge base. If a cell is not in the knowledge base, we
declare it to be an error.

Since knowledge bases are inevitably domain-specific, we
manually constructed one for each data set. For example,
for Animal data, the domain experts provided us with a list
of animal species, which were entered into Katara. For ad-
dress data, we created a knowledge base of geographical lo-
cations that contains information about cities, regions, and
countries with different formats and abbreviations. Simi-
larly, we used an ISSN knowledge base for Rayyan Bib data
that contains journal ISSNs, journal names, journal abbre-
viations, journal languages, etc.

Pentaho and Knime
We can use ETL tools, such as Pentaho and Knime, in
a similar manner as OpenRefine and Trifacta. However,
we have to model each transformation and validation routine
as a workflow node in the ETL process instead of applying
the rules directly to the data. Both tools provide nodes for
enforcing single column rules and string manipulations. The
final result of the workflows designed in this tool are data
sets where the potential errors have been marked through
transformations.



Table 6: Error detection performance of at least k detection tools on each data set

k MIT VPF Merck Animal Rayyan Bib BlackOak
P R F P R F P R F P R F P R F

1 0.24 0.93 0.38 0.33 0.84 0.47 0.128 0.575 0.209 0.473 0.850 0.608 0.391 0.999 0.56
2 0.48 0.90 0.63 0.889 0.789 0.834 0.241 0.030 0.053 0.650 0.738 0.691 0.553 0.999 0.712
3 0.58 0.41 0.48 0.996 0.787 0.879 1.0 0.001 0.002 0.831 0.599 0.696 0.733 0.979 0.838
4 0.79 0.09 0.16 0.997 0.280 0.438 0 0 0 0.928 0.432 0.590 0.904 0.915 0.909
5 0.76 0.03 0.06 0.993 0.015 0.029 0 0 0 0.969 0.164 0.281 0.972 0.739 0.839
6 0.90 0.00 0.01 1.0 0.000 0.000 0 0 0 0.962 0.032 0.062 0.993 0.437 0.607
7 0.80 0.00 0.00 0 0 0 0 0 0 0.897 0.007 0.014 0.999 0.135 0.237
8 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.013 0.025

Tamr
We used Tamr off-the-shelf and applied several rounds of
training for each data set. Each round labels 100 candidate
duplicate pairs as matching or not-matching. Since we have
ground truth, this labeling can be performed automatically.
After each round we retrain the machine learning algorithms
and compute precision and recall. If they stay stable for
more than two iterations, we stop training and run Tamr
on the whole data set to discover clusters of duplicates. For
each cluster, we identify conflicting fields and mark them as
errors.

4.3 User involvement
In general, the user is involved in four activities:

1. The user configures the tools by declaring and speci-
fying rules and patterns that she is aware of and can
be validated by the given tool.

2. The user performs data exploration to find errors using
Trifacta and OpenRefine.

3. The user validates the result of the error detection
tools. In our experiments, this is needed to compute
the precision and recall.

4. The user has to manually go through the remaining
errors and try to categorize them based on the given
error types. This reasoning allows us to compute the
recall upper bound.

4.4 Individual Tools Effectiveness
In this section we report the performance (precision, re-

call, and F-measure) of each data cleaning tool for all data
sets, and Table 5 summarizes the results. There are sev-
eral observations that we can make. The two data transfor-
mation tools, Trifacta and OpenRefine, have either the
highest or the second highest results with regard to recall
on the MIT VPF, Merck, and BlackOak data sets where
formatting issues mattered most. However, both tools have
poor results on the Animal data set where most errors are
of semantic nature, where the value is syntactically valid
and from the correct domain but wrong with regard to the
ground truth. On all data sets, the results of Trifacta and
OpenRefine subsumed the results of Pentaho and Kn-
ime. This is not surprising as all of these tools provide basic
wrangling capabilities. However, Trifacta and OpenRe-
fine also automatically hint at data type mismatches and
outliers.

The rule based system DC-Clean had comparably good
performance on the Merck, Animal, and Rayyan Bib
data sets in terms of F-measure because the rules in
these data sets covered particular error-prone columns.
DC-Clean,Pentaho,Knime, Trifacta, and OpenRefine
achieved exactly the same precision and recall on the Merck

data set, as all patterns could be translated into DC check
rules. The recall of OpenRefine and Trifacta is higher
on the BlackOak data set since their outlier detection rou-
tines show syntactical problems that could not be antici-
pated with DC rules.

Outlier detection methods do nothing on the Animal data
set, since there are no outliers. In general, outlier methods
performed very poorly on the remaining data sets because
dirty data was typically frequent patterns not anomalies.
Outlier detection would be more effective on high-quality
data sets where errors are rather rare. Katara had fair
precision on the BlackOak data set where location values
could be easily verified via the knowledge base but per-
formed poorly on the real-world MIT VPF data set where
errors were mostly found in address values rather than in
geographic locations.

We ran the duplicate detection tool only on data sets hav-
ing duplicates, i.e., MIT VPF and BlackOak. For MIT VPF,
the tool discovered all existing duplicates. The low precision
and recall reported in Table 5 reflects the fact that most er-
rors are not of type duplicate. In the case of BlackOak, we
found most (but not all) of the duplicates. If all duplicates
would have been found, the recall of exposing errors would
have increased from 63% to 98%, which means that 98% of
the errors in the data set were involved in duplicate records.
The precision would have slightly decreased by 2%.

By comparing the results on MIT VPF and BlackOak, we
clearly see that most of the tools are much more effective
on the synthetic BlackOak data. As a result, future work in
this area should not use synthetic faults.

Also note that no single tool is dominant on all data sets.
Outlier detection algorithms covered shifted values, rules
generally captured inconsistencies among re-occurring val-
ues, while transformation tools covered formatting errors.
Duplicate detection systems were very effective, but only in
data sets where there were a lot of duplicates. Hence, in the
next section we turn to aggregating evidence from multiple
tools.

4.5 Tool Combination Effectiveness
In this set of experiments, we will report the result of

different strategies of combining multiple tools.

4.5.1 Union All and Min-k
The last row in Table 5 lists performance that can be

obtained by the union of all tool outputs. Of course, the
combination of tools achieves better recall than any single
tool, typically above 60% and often much higher.

While the union of all tools results in higher recall than
any single tool, the precision suffers significantly, as the
union of all results increases the set of false positives. In
the particular case of MIT VPF, we can see that the 97%



(a) Merck: 23,049 out of 27,208 errors (b) Animal: 802 out of 1,394 errors (c) Rayyan Bib: 3275 out of 3853 errors

(d) MIT VPF: 36,410 out of 39,158 errors (e) BlackOak: 382,928 out of 383,003 errors

Figure 2: Overlaps of error types: T1: Duplicates, T2: Constraint Violations, T3: Outliers, T4: Pattern Violations

recall holds for 24% precision. To maximize precision, a
natural approach is to use a min-k voting system. Table 6
presents the precision and recall when we require at least
k-tools agree on a cell being erroneous. As expected, by
increasing k, we increase precision but lose recall. We can
further observe that there is no k where the F-measure is
the highest on all data sets. Note that for this and the fol-
lowing experiments, we excluded Pentaho and Knime since
their results were totally subsumed by the results of Open-
Refine and Trifacta, and hence would not contribute to
additional insights.

In order to study how different types of errors appear to-
gether in a data set, we analyzed the overlap of discovered
errors. Figure 2 shows for each data set a Venn diagram
where the number in each area represents correctly detected
errors that belong to the overlapping error types. Here T1
corresponds to duplicates, T2 corresponds to constraint vi-
olations, T3 corresponds to outliers (unioning of results of
Gaussian, GMM, and histogram), and T4 corresponds to
pattern violations (unioning results of Trifacta, OpenRe-
fine,Katara). In each data set note there are errors that
belong to multiple error types. Therefore they can be dis-
covered by multiple tools. In MIT VPF for example, outliers
and pattern violations overlap the most; for Merck, Animal,
and Rayyan Bib, constraint violations and pattern viola-
tions overlap the most; while for BlackOak, duplicates and
pattern violations overlap the most.

Comparing the min-k approach results to the Venn dia-
grams note that in data sets where errors infrequently over-
lap, the min-k approach suffers significant loss of recall with
increasing k. This is the case for Animal data where 94%
of the detected errors are detected by a single tool, specif-
ically 87% (701) are constraint violations and 7% (59) are

pattern violations. On the other hand in BlackOak, we see
a strong overlap among tools. For example, 26% (99,959) of
the detected errors belong to all four error types, while only
1.7% (6,632) belong to exactly one error type. Hence, recall
stays above 90% in min-k up to k = 4 and then gradually
decreases for higher k.

The main problem of the min-k approach is that it de-
pends on a manually picked k, which can depend on the
given data set and the set of tools. Therefore, we proposed
(as described in Section 3.5) a different approach that opti-
mizes the accuracy of the tool ensemble through a benefit-
based ordering of tool application.

4.5.2 Ordering based on Benefit and User Validation
For each data set, we randomly sampled 5% of the de-

tected errors for each tool and compared them with ground
truth to estimate the precision of the tool. As noted in Sec-
tion 3.5.2, we should then run the tools with sufficiently high
precision in order. As a baseline, we took the simple union
of all the algorithms, for which all the detected errors need
to be validated. In addition, we varied the threshold σ (see
Section 3.5.2) from 0.1 to 0.5, thereby generating five runs
for each data set. We also depict the result of the simple
union of all the algorithms.

To show the improvement in performance of our algorithm
relative to the baseline, we computed the percentages of de-
tected errors that need to be validated as well as the actual
errors. Figures 3 and 4 show the results. Using our strategy,
a human has to validate significantly fewer detected errors
while losing only a few true errors compared to the union
strategy. In other words, it sacrificed a bit of recall to save
on human engagement. For example, on Merck, when the
threshold for σ is 0.1, a human would need to validate 35%
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Figure 3: The relative ratio of validated errors and true errors of the ordering strategy to those of the simple union strategy
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Figure 4: The absolute precision and recall of the union and the ordering strategy with different thresholds

of the detected errors compared to the union strategy, while
capturing 92% of its true errors. Similar results can be ob-
served for the other thresholds. For MIT VPF, less than
20% of the errors need to be validated for a relative ratio of
true errors above 80%. This is because the ordering strategy
dynamically updates the estimation of the tools’ precision
and drops those tools that have an estimated proportion of
true errors in their non-validated errors below the threshold.

Looking more carefully at each data set, we make the
following observations. For Merck and BlackOak, there are
tools with precision and recall larger than 95% and 78%,
respectively (see Table 5). Once the detected errors for one
of these tools have been validated, the relative benefit for
the other tools becomes so low that they are never used.
For MIT VPF, the scenario is different. One tool performs
very poorly on this data set, reporting lots of detected errors
with very low precision. This tool is immediately filtered by
the lowest threshold (0.1), but the other tools are able to
identify most of its true errors, therefore the results are very
good with a smaller effort.

For Animal, all the tools have an extremely low recall ex-
cept the rule-based tool that has a much larger recall but
with a precision of 0.12 which is the smallest among all the
applicable tools. We thus see a sharp fall in recall when this
tools is discarded starting with threshold 0.2. For Rayyan
Bib, there are neither dominant tools nor extremely low pre-
cision tools. We observe that by increasing the threshold,
the percentage of validated values decreases faster than the
percentage of identified true errors.

In general, the experiments suggest that it is better to
start with a conservative threshold if recall is a priority.
However, if the budget is constrained, the ordering can re-
duce the cost while preserving high coverage in most cases.
This insight is supported by the analysis of how the absolute
precision and the recall change depending on the threshold
values, as reported in Figure 4.

4.6 Discussion and Improvements
In the previous experiments, we reported the recall for

each tool as the number of errors identified by the tool.

Table 7: Remaining errors not detected by the tools

Data set Best effort Upper-bound Remaining
Recall Recall Errors

MIT VPF 0.92 0.98 (+1,950) 798
Merck 0.85 0.99 (+4,101) 58
Animal 0.57 0.57 592
Rayyan Bib 0.85 0.91 (+231) 347
BlackOak 0.99 0.99 75

As discussed in Section 4, we used the tools to the best of
their capabilities based on our expertise on those tools and
configured each tool for each data set individually. Now,
we turn to the recall upper-bound of the tool combinations.
For this purpose, we count the errors of the type that the
tool is built for towards the recall of the tool. For example,
we identified that one additional pattern enforcement rule
can be added and can cover 98% of the remaining errors for
Merck. Similarly, in the Rayyan Bib data set, there are a
series of errors that affect the formatting of page numbers,
e.g., 122-6 is used instead of 122-126. Again those could
be identified through a regular expression in OpenRefine.
The result is a recall upper bound for each data set, noted
in the second column of Table 7.

Table 7 also reports the remaining errors that cannot be
detected by any of the given tools. In MIT VPF, for ex-
ample, the remaining errors refer to wrong addresses or in-
complete company names that cannot be identified by any
of the tools. For BlackOak, the bigger portion of the re-
maining errors relates to wrong or misspelled last names.
The best hope to discover these kinds of errors is to use
domain-specific tools or dictionaries that contain those at-
tribute values. Similarly, the remaining errors in the Animal
data set can only be exposed through an expert or the use of
domain-specific dictionaries. Another set of errors is caused
by the confusion of cities that could not be detected because
of missing context, such as zip codes. In the Merck data set,
the remaining errors refer to random non-repetitive values in
the status column that need manual treatment. In the fol-
lowing, we discuss two possible data cleaning improvements,
namely, domain-specific data cleaning tools and enrichment.



Table 8: Cleaning addresses with AddressCleaner

Data set Precision Recall Union Recall
MIT VPF 0.71 0.68 0.95
BlackOak 0.72 0.61 0.999

4.7 Domain Specific Tools
For the MIT VPF and BlackOak data sets, we can use an

address verification tool, AddressCleaner5, that matches
any given address to the best address in its database and
formats it uniformly. The API reads an address string and
returns a JSON object with the matched address and ad-
ditional components, such as longitude/latitude coordinates
and zip+4 values. Since the free service has access limita-
tions, we could only apply it on a 1000 row sample of MIT
VPF and BlackOak.

Table 8 lists the precision and recall of AddressCleaner
on each data set and its contribution to the combined recall
of all tools. The recall of this tool alone can be at most
67% on MIT VPF and 61% on BlackOak since the service
applies only on fields referring to address, city, state, and
zip code. Limiting the dataset to only those columns the re-
call on both datasets exceeds 97%. Interestingly, Address-
Cleaner does not have 100% precision, which is due to
wrong zip+4 determinations, which occur if the address is
too ambiguous or if different representations of neighbor-
hood areas are present. For example, Jamaica Plain and
Boston are both valid city representations for the same ad-
dress. The inclusion of the AddressCleaner to the tool
union slightly increases the combined recall on both data
sets, with 2 and 13 new errors detected for MIT VPF and
BlackOak, respectively. However, we can see that general-
purpose tools cover a significant portion of the errors in these
data sets. Therefore, the added utility of a domain specific
tool is questionable on our study data sets.

4.8 Enrichment
Some strategies for error identification fail because of a

lack of evidence. In particular, rule-based systems and du-
plicate detection strategies would benefit from additional
attributes that can be utilized for new rules or for further
disambiguation of entities. Naturally, a promising direction
is to first enrich a given data set by adding more attributes
to each record that are obtained from other data sources.
Additional data sources can be relational web tables from
the public internet or corporate knowledge or databases. We
show the benefit of data enrichment using a straightforward
approach.

For the MIT VPF and BlackOak data sets, we obtained
additional tables from the data owners that could be joined
to the dirty tables we had. Using this technique, we manu-
ally enriched the original data sets with additional columns.
We only used columns that did not introduce additional du-
plicate rows. As a result, the results below are a best case
scenario. In the case of BlackOak, we appended three more
columns that included the person name, address information
and the date of birth in a different representation. Using
these 3 columns, we defined four more functional dependen-
cies. In the case of MIT VPF, we appended seven more
columns by joining the vendor master table with another

5Anonymized by authors.

Table 9: Precision and Recall after enrichment

Data set Rule-based Duplicates
P R P R

MIT VPF (+6%) 0.31 (+6%)0.20 (+2%) 0.18 (+1%) 0.03
BlackOak 0.46 0.43 0.41 (+5%) 0.68

table called Remit-To-Address. These seven attributes con-
tained additional address data that we were able to compare
with the address of the same company in our data set using
seven new DCs. Moreover, the added attributes can be used
to assist with duplicate detection.

Table 9 shows the impact of the new rules and the im-
provement in duplicate detection in the two data sets. Du-
plicate detection leads to 5% better recall on BlackOak
because Tamr found more duplicate pairs that contained
conflicting values. In the case of MIT VPF, however, no
additional improvement was seen, because Tamr already
found all the duplicates prior to the enrichment process.
Rule-based error detection did not improve the results on
BlackOak, since all new rules overlapped with previously
defined ones. On the other hand, MIT VPF clearly bene-
fited from the new rules, which exposed 32 more errors and
generated higher precision and recall. In summary, targeted
enrichment has the potential to improve the performance of
duplicate detection and rule-based systems.

5. CONCLUSION AND FUTURE WORK
In this paper, we assembled a collection of real-world data

sets that exhibit most of the errors found in practice as well
a collection of data cleaning tools that have the potential
to detect the various types of errors. We performed an ex-
tensive empirical study by running each tool on each data
set and reported on its best possible performance. We also
examined how combinations of these tools can improve per-
formance. Our experimental results led us to the following
conclusions: (1) There is no single dominant tool for the
various data sets and diversified types of errors. Single tools
achieved on average 47% precison and 36% recall (Table 5),
showing that a combination of tools is needed to cover all
the errors. (2) Picking the right order in applying the tools
can improve the precision and help reduce the cost of vali-
dation by humans. As shown in Figure 4, compared to the
simple union of all tools, a benefit-based ordering algorithm
achieved 28% average precision gain with only 3.5% average
recall loss on all the data sets when the threshold was 0.1.
(3) Domain specific tools can achieve high precision and re-
call compared to general-purpose tools, achieving on average
71% precision and 64% recall, but are limited to certain do-
mains (Table 8). (4) Rule-based systems and duplicate de-
tection benefited from data enrichment. In our experiments,
we achieved an improvement of up to 10% more precision
and 7% more recall (Table 9).

There are several promising future directions:

(1) A holistic combination of tools. We showed that
there is no single dominant data cleaning tool for all data
sets and blindly combining tools will likely decrease preci-
sion. Our ordering algorithm is a start in this direction.
However, new holistic approaches to combining tools may
be able to perform even better.

(2) A data enrichment system. The more knowledge
and context available for a data set, the easier it is to expose



erroneous values. While we showed some improvements us-
ing enrichment, it was applied in an ad-hoc way. More work
is needed on how to enrich the data set with data from an
added data source that would be most useful for data clean-
ing. In particular, we need to find automatic approaches
to enrichment via corporate knowledge bases. Furthermore,
data sets with public information, such as the Rayyan Bib
data set, could be enriched through web tables and other
open data. For example the attributes journal title and
journal abbreviation, which suffer from missing values, can
be enriched through tools, such as DataXFormer [3], by look-
ing for semantic transformations of journal title to its ab-
breviation.

(3) A novel interactive dashboard. Throughout this pa-
per, it is clear that user engagement is central to any data
cleaning activities. At the same time, such engagement is
costly and must be comensurate with the potential benefit
from cleaning. It is therefore crucial to devise novel inter-
active dashboards to help users better understand the data
and be efficiently involved in the data cleaning process.

(4) Reasoning on real-world data. Analysis of synthetic
errors is important for testing the functionality of a single
tool but it does not help to identify the usefulness of a tool
in the real-world. We believe that it is vital to shift the focus
from optimizing single error-type tools towards creating end-
to-end data quality solution for real-world data sets.
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