
DataXFormer: A Robust Transformation Discovery
System

Ziawasch Abedjan∗ John Morcos† Ihab F. Ilyas† Mourad Ouzzani‡ Paolo Papotti‡ Michael Stonebraker∗
∗MIT CSAIL {abedjan,stonebraker}@csail.mit.edu
†University of Waterloo {jmorcos,ilyas}@uwaterloo.ca

‡Qatar Computing Research Institute, HBKU {mouzzani,ppapotti}@qf.org.qa

Abstract—In data integration, data curation, and other data
analysis tasks, users spend a considerable amount of time
converting data from one representation to another. For example
US dates to European dates or airport codes to city names.
In a previous vision paper, we presented the initial design of
DataXFormer, a system that uses web resources to assist in
transformation discovery. Specifically, DataXFormer discovers
possible transformations from web tables and web forms and
involves human feedback where appropriate. In this paper, we
present the full fledged system along with several extensions. In
particular, we present algorithms to find (i) transformations that
entail multiple columns of input data, (ii) indirect transformations
that are compositions of other transformations, (iii) transfor-
mations that are not functions but rather relationships, and
(iv) transformations from a knowledge base of public data. We
report on experiments with a collection of 120 transformation
tasks, and show our enhanced system automatically covers 101
of them by using openly available resources.

I. INTRODUCTION

When integrating data from multiple sources there is often
a need to perform transformations. These transformations
entail converting a data element from one representation to
another, e.g., unit, currency, and date format conversions, or
generating a semantically different but related value, e.g.,
airport code to city name, or ISBN to book title. Consider
the simple scenario of Figure 1 where we are integrating two
tables containing information about soccer players. We can
quickly notice differences in how data is represented in each
table. First, one table records player height in meters while
the other uses feet and inches. Second, one table stores league
and team symbol while the other records team name. Both
require transformations. While the first transformation can be
computed via a formula, the second requires looking up a
dictionary or other data sources.

The Web contains huge amounts of data that can be used
as a reference for these transformations. However, it is clearly
very tedious for a human to construct such transformations
manually, which is one of the reasons why data analysts
spend the overwhelming majority of their time “massaging”
their data into usable form. Discovering transformations on
demand requires a concentrated effort of engineers and domain
experts to identify the relevant web sources, understand the
relationships among their attributes, and write programs that
convey this information in the target table [1]. We aim to
support the user by automatically discovering transformations
given some input and output examples.

In our initial paper, we showed how to explore web
tables and web forms to discover transformations [2]. We

Lastname	 Team	 League	 Teamname	 HT	 Height	

Neuer	 FCB	 Bundesliga	 FC	 Bayern	 Munich	 6’1’’	 1.93	

Messi	 FCB	 La	 Liga	 ?	 1.70	

Pirlo	 Juve	 Serie	 A	 ?	 5’10’’	 	 ?	

Ronaldo	 ?	 Real	 Madrid	 6’4’’	 	 	 ?	

Name	 Team	 Height	 League	

Messi	 FCB	 1.70	 La	 Liga	

Neuer	 FCB	 1.93	 Bundesliga	

Pirlo	 Juve	 Serie	 A	

Lastname	 Teamname	 HT	

Neuer	 FC	 Bayern	 Munich	 6’4’’	

Ronaldo	 Real	 Madrid	 6’1’’	

Pirlo	 5’10’’	

Source 1 Source 2

Fig. 1: Values transformation is a critical activity when inte-
grating different sources of data.

used a large corpus of web tables to find the desired user
transformations. For static cases, such as converting airport
codes to city names, web tables are a useful information
source since there are several such conversion tables on the
Web. For finding time-varying transformations, such as Euros
to Dollars, there are several web forms that will perform
them. More recently, we have made our system available on
http://www.dataxformer.org and presented a demo at SIGMOD
2015 [3]. Consequently, we have expanded our collection of
transformation tasks from 50 to 120. Our initial prototype cov-
ered only 52% of the transformation tasks. This is especially
due to the limited types of transformations that were supported,
focusing only on functional 1-to-1 relationships, while the
extended workload contains non-functional and multi-column
transformations. Also, our previous approach was limited to
the discovery of transformations that appeared in the same
table. Thus, we substantially improved DataXFormer and
were able to increase its coverage to 84%, which is a significant
improvement. In this paper, we present the full-fledged system
with a focus on algorithms for web tables and the study of
the capabilities and the limits of these tables for data transfor-
mation discovery. We should note that in practice, our system
can be deployed either following the SaaS model on the cloud,
where DataXFormer runs as a service on the cloud with
a RESTful interface, or on-premise, where DataXFormer
runs on the enterprise computing infrastructure. We begin in
Section II with a detailed specification of the transformation
problem and the overall architecture of DataXFormer with a
brief description of previously introduced components. In the
following sections, we introduce our new algorithms that are

the main contributions of this paper:

• We introduce a general algorithm for discovering
tables that contain the desired transformations (Sec-
tion III). The new algorithm uses an inductive ap-
proach to expand the set of web tables that might
match the user’s request and allows multiple attributes
as input values.

• We present an efficient approach to discover suitable
join attributes in web tables and hence to identify
multi-hop transformations (Section III-C).

• We show how the above algorithms can be adapted
to find non-functional mappings, for example the
transformation from a soccer team to all of its players,
with minimal user verification efforts (Section IV).

• We show how to extend DataXFormer to search
knowledge bases (KBs) [4] for transformations that are
not covered by web tables or web forms (Section V).

Finally, we present a comprehensive evaluation in Sec-
tion VI where we report on experiments with a collection
of 120 transformation tasks, and show that our enhanced
system finds 101 of them, with high accuracy. A discussion
of related work (Section VII) and future directions of research
(Section VIII) conclude the paper.

II. PROBLEM STATEMENT AND OVERVIEW

In this Section, we give the problem statement for trans-
formation discovery, describe the targeted types of transforma-
tions, and present the overall architecture of DataXFormer.

A. Problem Statement

The example-driven transformation discovery problem can
be defined as follows: Given a set of n example pairs E =
{(x1, y1), . . . , (xn, yn)} that satisfy some hidden relationship
R, along with a set of query values Q, we want to find
all yq such that (xq ∈ Q, yq) is a pair drawn from the
same relationship R. A pair (xi, yi) ∈ E represents the
transformation of xi into yi.

Some transformations, such as in feet to meters (see Fig-
ure 1), are syntactic and can be computed by directly applying
a program or a formula to the input values [5], [6]. Other
transformations, that we classify to belong to the larger class
of semantic transformations, cannot be guessed by the input
values. They require lookups in some reference data expressing
a relationship among the attributes of interest.

Transformations can be many-to-one (functional), e.g., zip
code to city, or many-to-many (non-functional), e.g., books to
authors. Figure 2 illustrates different types of transformations
based on our running example. Input values can also be
composed of multiple attributes as in our example in Figure 2
with x1=“FCB, Bundesliga”.

Most existing techniques [4], [7]–[12] that have been
proposed to produce a transformation leading to yq values can
be described as a two-stage approach: (1) explicitly model the
relationship R between the given xi’s and yi’s, and (2) use R
to query the available corpus to produce the instances of yq .
Unfortunately, the first step suffers from serious drawbacks:

xq	 yq	
5’10’’	 ?	

6’4’’	 ?	

…	 ?	

xi	 yi	
6’1’’	 1.93	

xq	 yq	
FCB	 La	 Liga	 ?	

Juve	 Serie	 A	 ?	

…	 …	 ?	

xi	 yi	
FCB	 Bundesliga	 FC	 Bayern	 Munich	

xi	 yi	
FC	 Bayern	 Munich	 Neuer	

xq	 yq	
FC	 Bayern	 Munich	 ?	

?	

…	

Real	 Madrid	
	

?	

?	

…	

...	 …	 Functional Transformations
 (one to one, many to one)

Non-Functional Transformations
(one to many, many to many)

Multi-attribute Single attribute

E:

Q:

A B	 C
E:

Q:

E:

Q:

Fig. 2: A: Functional single-attribute transformation: inches
to meters. B: Functional multi-attribute transformation: team
abbreviation, league to team name. C: Non-functional trans-
formation: team name to team players.

Modeling the explicit relationship R, either as a query [8]–
[10], [12] or as a mapping [4], [7], [11], is a hard problem
since it requires to discover exact matchings and mappings
among the sources [13], [14]. Moreover, these techniques often
assume the availability of well curated resources, which is
almost never true. In contrast, most useful transformations are
usually scattered among multiple resources, such as web tables
and automatically generated knowledge bases that contain
errors or do not carry any schema information. Therefore,
we propose an example-driven technique for searching and
pruning available resources to find the desired transformation
results and by doing so, we avoid the task of explicitly
modeling the relationship between the available examples.

B. Challenges

Discovering transformations by example on large scale web
data poses several unique challenges:

1) Crawling, indexing, and querying the web resources:
Every resource type poses specific technical challenges
in terms of data collection, storage, and indexing because
of the web scale.

2) Complex latent search: Using the examples to locate rel-
evant resources that encode the same hidden relationship.
On the one hand, requiring a resource to contain all of
the examples at once, e.g., as a conjunctive query, leads
to very limited recall, since it is rare that one resource has
all the examples. On the other hand, using small subsets
leads to resources that encode different relationships due
to the ambiguous values that refer to different real-world
entities, e.g., “Rome” and “Paris” match both cities and
restaurants, or that express more than one relationship,
e.g., “(Messi,La Liga)” matches relationships debutIn and
topScorerIn, but these two relationships return different
league values for input value “Ronaldo”.

3) Indirect transformation: transformations may not be found
directly in any given web resources but may still be
uncovered through joins.

4) Ambiguity in non-functional transformations: The num-
ber of transformation results might vary for each input
value. We have to incorporate an efficient way of super-
vision to identify false transformations results.

5) Integration of other systems: Plugging external tools as
additional providers require to adapt our problem speci-
fication to existing query interfaces.

In the next Section, we give an overview of
DataXFormer and discuss how it tackles the above
challenges by using new efficient algorithms with best
practice ideas and involving the user or expert into the
discovery process.

Solution Presenter

Form Retrieval

Wrapper Generator

Web
Tables

Table Query
Adapter

Transformation task: Examples (xi,yi) ∈E, values xq∈Q, [headers hx,hy]

The Web

Table
Filter

Augment

Form Query
Adapter

E
valuation

Refinement

Ranked transformations with scores

Candidate
Tables

Wrapped
Forms

Direct
Transformer

Indirect
Transformer

Relationship
Finder

Index

Forms Tables

HITs Query
Adapter

Crowd

Combiner

C
om

plem
entary subsystem

s Experts

Fig. 3: DataXFormer architecture

C. System Overview

Figure 3 illustrates the architecture of DataXFormer.
Subsystems are deployed for each type of resources with
the goal of discovering transformations. Web tables cover the
largest set of semantic transformations among the different
resources as they explicitly contain the desired transformations
and allow to discover multi-attribute and non-functional map-
pings. Web forms can only be used through the accessible input
fields but proved to be very effective at covering single attribute
transformations that (i) are based on a specific formula, such
as fraction to decimal, (ii) are time-dependent, such as USD to
EUR, or (iii) have an infinite domain size, such as long/lat to
location. As we will see in Section V, we also exploit KBs to
extend the coverage of our system.

DataXFormer consumes a transformation task in the
form of n example pairs (xi, yi) ∈ E along with a set
of m query values xq ∈ Q, and relevant column headers
hX1

, . . . , hXk
and hY , when available. It simultaneously sub-

mits this task to each subsystem. In turn, each subsystem
first applies a filter step that leverages the given examples
to identify the most relevant resources, e.g., tables and web
sites, and then applies a refine step to resolve ambiguities and
contradicting results. The user can interact with the system
to validate intermediate results or wrap web forms [3]. Once
transformation results have been retrieved and scored, success-
ful transformation results, if not already present as a full table,
are stored as new tables in the web tables subsystem.

DataXFormer also uses expert sourcing for validation
and creation of functional transformations [2]. We use the same
approach for validating composite and many-to-many relation-
ships. Experts can also be involved in finding transformations
for cases where the other resources fail.

Web Tables The web tables subsystem discovers transforma-
tions by searching for tables that contain the given examples.

The intuition is that these candidate tables containing example
transformations from E might also contain possible results
for the remaining input values xq ∈ Q. The table retrieval
algorithm retrieves candidate tables by using an inverted index
that maps each cell value to its table and column identifiers.
Candidate results are then analyzed by the refinement com-
ponent, which verifies the mappings in each candidate table
with respect to the given examples. The web tables subsystem
discovers functional multi-column, and non-functional trans-
formations, as discussed in Sections III and IV, respectively.

Web Forms We use the same web form subsystem presented
in our demonstration [3]. Therefore, we only give a brief
overview of the subsystem in this section. A web form is a
user interface on a website that allows user-interaction through
different fields and buttons. As with web tables, we assume
a web form is relevant if it covers some of the n example
transformations. There are two main challenges in using web
forms: (1) as there is no common repository of web forms,
we have to look for them through billions of web pages;
and (2) any new web form appears to us as a black box.
This means that an invocation strategy (i.e., wrapper) has
to be developed to use the form for producing the desired
transformations. It has been shown [15] that both tasks are very
hard, even with human intervention. We tackle these challenges
by using search engines and a web browser simulator that
allows to analyze the HTML code of a form. The user
is involved whenever any of the tasks fail. DataXFormer
maintains a local repository of previously used web forms.
The repository is organized as a document store where each
document represents one wrapper. If the system fails to find
a relevant form in the repository, it uses a search engine to
find forms online. By examining the search engine results,
DataXFormer identifies candidate forms. Then, for each
candidate form, we generate a “wrapper” to be able to query
the form and to obtain the transformation values. In case the
system fails to generate a wrapper or to find the relevant form,
the user can be involved [3]. The wrapped forms are tested
using the input examples and are evaluated based on their
coverage in the evaluation step. Candidate web forms are then
queried using the input values from Q.

Complementary sources DataXFormer can be extended by
additional resources, such as knowledge bases, text documents,
or code repositories. We have presented ideas on how to
involve the crowd in our vision paper [2], and we show in
Section V how to use knowledge bases as a complementary
resource for transformation discovery.

In this paper, we shed light on the coverage and trans-
formation quality achieved by the subsystems for web forms,
web tables, and knowledge bases, and explain their strength
and weaknesses for the transformation discovery use case.

III. SINGLE-COLUMN TO MULTI-COLUMN
TRANSFORMATIONS

The general workflow of the table subsystem for finding
functional transformations is to discover tables that cover a
subset of input values in Q. As mentioned in Section II-B, one
of the key challenges is to decide when a table is relevant to the
transformation task based on the given example pairs in E. The

tableid	 colid	 rowid	 term	 term	
tokenized	

1	 1	 1	 FRA	 fra	

1	 1	 2	 JFK	 j-	

…	 …	 …	 …	 ….	

3	 2	 1	 Dallas	 dallas	

….	 …	 …	 …	 ….	

4	 2	 4	 Hessen	 hessen	

tableid	 colid	 header	

1	 1	 Code	

1	 2	 Loca>on	

…	 …	 …	

4	 1	 apc	

4	 2	 Loca>on	

…	 ….	 …	

tableid	 url	 >tle	 ini>al	
weight	

1	 www..	 World	
airports	

0.8	

2	 hHp…	 -‐	 0.5	

3	 hHp…	 airports	 0.5	

…	 …	 …	 0.5	

Cells

Tables Columns

term	
tokenized	

tableid	 colid	 rowid	 term	

ber	 1	 1	 5	 BER	

ber	 2	 1	 4	 BER	

ber	 4	 1	 2	 BER	

berlin	 1	 2	 5	 Berlin	

…	 …	 …	 …	 …	

ord	 1	 1	 3	 ORD	

Projection on Cells:
Sort order from left to the right

Fig. 4: Schema for storing web tables in a column-store
showing an airport code to country example

next challenge is that most tables in the corpus have few rows
(on average 12). In a scenario with a small number of examples
(xi, yi) and a much larger set Q, the system may fail to find the
latter by looking only at the relevant tables. Finally, different
resources might support different output values for the same
xq ∈ Q. Thus, we need a scoring system that incorporates
confidence scores for resources and transformation results.

Given these challenges, our solution is based on an in-
ductive filter and refine approach that leverages intermediate
results in multiple iterations. This way DataXFormer finds
more tables on the fly by extending the set of the given
transformation examples with promising intermediate results.
In the following, we first discuss the index structure and the
filtering mechanism and how they can be easily generalized
for multi-column input values. Then we discuss the inductive
approach and the accompanying refine process to consolidate
transformation results.

A. Indexing Web tables

Traditional keyword search applications rely on predefined
foreign key relationships and specialized indexes that require
domain knowledge and context information. Since web tables
are heterogeneous, differ in schema and size, and oftentimes
lack column labels, we store them in the most general way.
Ideally, we require to have an index on all possible input values
to find relevant tables. In our previous paper, we compared the
storage of web tables as documents to a universal main table in
a column store [2]. The later storage scheme, described below,
turned out to be the most efficient option.

Relation Cells in Figure 4 represents every cell of a web
table by a tuple with the IDs for table, column and row,
along with the tokenized, stemmed form of its value. We also
maintain additional metadata for each table, such as column
headers, source URL, title, and an initial weight expressing its
authoritativeness. The initial weight influences the confidence
score we compute to rate transformation results.

We store the web tables in a multi-node Vertica instance.
Vertica employs projections (sorted views) on tables in place of

indexes. While the table itself is a projection that is stored as
depicted in Figure 4, we use another projection on relation
Cells sorted on the tokenized values. The two projections
allow us to swiftly retrieve relevant table IDs for tokenized
input examples, and to easily load the content of a table based
on its table and column IDs. An additional trie index allows
fuzzy matching when the given transformation examples and
the values in the database differ with a small edit-distance.

B. Querying Web Tables

While the index on input values enables the system to
retrieve all tables that contain a specific value, it is important
to filter irrelevant tables as early as possible. This is crucial
as we are working on millions of tables, which means that
we want to retrieve only those tables that contain a relevant
subset of examples in E. Our original prototype was optimized
to identify tables with two columns that contain at least τ
of the given example pairs (xi, yi) ∈ E. In our previous
experimental study on 50 transformation tasks, τ = 2 proved to
be a reasonable filter for avoiding irrelevant tables and meeting
a sweet spot in terms of precision/recall [2].

SELECT colX1.tableid, colX2.colid, [colX2.colid,…], colYid
FROM

 (SELECT tableid, colid
 FROM Cells
 WHERE term_tokenized IN (X1)

 GROUP BY tableid, colid
 HAVING COUNT(DISTINCT tokenized) >= tau) AS colX1,

 [(SELECT tableid, colid
 FROM Cells

 WHERE term_tokenized IN (X2)
 GROUP BY tableid, colid
 HAVING COUNT(DISTINCT tokenized) >= tau) AS colX2, ...]
 (SELECT tableid, colid

 FROM Cells
 WHERE term_tokenized IN (Y)
 GROUP BY tableid, colid
 HAVING COUNT(DISTINCT tokenized) >= tau) AS colY

WHERE colX1.tableid = colY.tableid

 [AND colX1.tableid = colX2.tableid AND ...]
 AND colX1.colid <> colY.colid
 [AND colX1.colid <> colX2.colid AND colX2.colid <> colY.colid
 AND ...]

Fig. 5: Black: code for finding single column input values.
Blue: Additional code needed for composite input values.

The universal main table structure enables us to submit
only one query for the retrieval of all tables that contain at least
τ of the input/output pairs. The query in Figure 5 joins two
subqueries, one to find the columns that contain the X values
and another to identify the columns that contain the Y values,
where a column is uniquely identified using the table and
the column IDs. By comparing the table IDs, DataXFormer
retrieves only column pairs that appear in the same table. The
result of the query is a set of triples, each comprising a table
ID and two column IDs. To maximize coverage, we tokenize
and stem every value x and y from the input.

Using the above query skeleton, adapting the table re-
trieval component for multi-attribute input values xi =

X1, X2, . . . , Xk is straightforward. We simply extend the
query with more subqueries; one for each additional input
column. The extensions are outlined by means of square
brackets and blue color. For every additional input column,
the query has to generate a subquery and additional checks in
the WHERE clause. The checks in the where clause enforce
that the discovered columns in the web tables are different
from each other. While identifying candidate tables this way
is very fast, we still need to make sure that the identified tables
contain the example values in the appropriate rows.

The cost of processing the above query increases with
the number of examples. This issue becomes pertinent as we
follow an inductive approach. After a filter-refine iteration,
we use the retrieved intermediate results to find additional
tables that eventually cover the remaining xq ∈ Q. Since not
every intermediate result is correct, they do not necessarily
contribute to the recall of our system. Additionally, querying
for a large number of examples hurts the performance without
a significant gain. We therefore limit the set of intermediate
results to the top k based on confidence scores that we compute
and update after each filter-refine iteration.

C. Joining tables

In the previous subsection, we only addressed the discovery
of tables that maintain both the input and the output values
of a transformation example. We refer to the strategy based
on this assumption as direct transformations. However, the
actual transformation input and output columns could reside
in different tables and be linked through other columns not
provided in the transformation task. This can happen if the
tables have a foreign key relationship or an inclusion depen-
dency through two columns that share some values Z. We
deem transformations that were discovered based on joined
tables as indirect transformations. Unfortunately, we do not
have complete knowledge of the underlying schema, therefore
we cannot rely on existing algorithms, such as [16]–[18], that
rely on specialized indices, predefined foreign key-primary key
relationships, or meta-data information and dependencies.

To find the transformation result in this scenario, it is
necessary to join at least two tables and align the input and
output values accordingly. However, a brute-force search of
all possible inclusion dependencies among all web tables that
contain the actual input values X would be prohibitive. This
problem is even more striking when more than one table has to
be joined to link an example input value x to its output value
y. Accordingly multiple intermediate inclusion dependencies
lists Z1, Z2, . . . , Zk have to be discovered to serve as join
attributes. Our intuition to reduce the search space, without
missing useful joins for the transformation at hand, is to require
that the values zq (i) are functionally dependent on the input
values xq , and (ii) functionally determine the transformation
results yq , simultaneously.

Algorithm 1 searches for joinable tables in a breadth-first
manner. The algorithm consumes as input the initial examples
E and the values xq ∈ Q. With each iteration, the indirection
path increases until the maximum length of an indirection
path has been reached, or all xq values have been covered.
The algorithm starts (path = 1) by identifying all tables that
contain the x values of the provided examples (line 4). After

Algorithm 1 tableJoiner
Input: Initial examples E, a set of input values Q, initial tables TE

Output: tables
1: path← 1
2: repeat
3: if path = 1 then
4: TX ← QueryForTables(E.X)
5: TX ← TX \ TE

6: for all T ∈ TX do
7: [Z0, Z2, . . . , Zn]← findJoinColumns(T, E.X)
8: for all Zi ∈ [Z0, Z2, . . . , Zn] do
9: TJ ← findJoinableTables(Zi, E, T)

10: if TJ 6= ∅ then
11: if Tj covers τ(xi, yi) ∈ E then
12: tables.Append(Tj)
13: currentTablePaths.Append(path < T,Zi >)
14: else
15: newTablePaths← ∅
16: for all < Tp, Z >∈ currentTablePaths do
17: TZ ← QueryForTables(Z) \ previously seen tables
18: for all Tz ∈ TZ do
19: Tz ← Tz 1Z Tp

20: [Z0, Z2, . . . , Zn]← findJoinColumns(Tz, Z)
21: for all Zi ∈ [Z0, Z2, . . . , Zn] do
22: Tj ← findJoinableTables(Zi, E, Tz)
23: if Tj 6= ∅ then
24: if Tj covers τ(xi, yi) ∈ E then
25: tables.Append(Tj)
26: newTablePaths.Append(path < Tj , Zi >)
27: currentTablePaths← newTablePaths
28: ClearFrequentedTables(currentTablePaths)
29: path = path+ 1
30: alltablePaths.Append(currentTablePaths)
31: until |path| > maxLength ∨X = scoredAnswers.X

excluding the tables that provide a direct transformation of
(xi, yi) ∈ E, the algorithm checks each remaining table in
TX for potential join columns Zi (line 7). A column can serve
as a join column if a functional dependency X → Zi holds
with regard to the input values E.X that are covered by the
table at hand. This check is performed in findJoinColumns,
which requires a pairwise FD validation test with regard to
the values in other columns. If an FD between the column
that contains our input values X and another column Z in
the current table T holds, we extract the subset of values that
appear in the same rows as our given input values X and call
it Zi. Furthermore, we check whether the cardinality of the
discovered Zi is greater or equal than the corresponding E.Y .
If this is not the case, we know apriori that the functional path
to the transformation result cannot be maintained.

Next the algorithm searches for tables that can be joined
to the current table T based on each of the discovered IND
attributes Zi. If the table also contains correct mappings
to Y , we store the table as a new joined resource table.
findJoinableTables creates and filters joined tables that
maintain the approximate mapping E.X → Z → E.Y for τ
of the examples in E . Next, all joined tables in Tj are checked
for indirect transformations. We store the table that contains
the mapping X → Z if longer paths need to be processed.

In later iterations (path > 0), the procedure is repeated
by starting the search from the most recent set of Z values in
joined tables Tj that were discovered in the previous path.

We treat each set Z as our current set of input values.
This maintains the semantics of the transformation as each
consecutive join maintains the functional dependency. As we
are following a breadth-first traversal of the joinable tables
graph, the set of Z values increases exponentially after each
iteration. Our strategy to reduce the search space is to require
the functional dependency constraint on at least τ of the initial
examples throughout the indirection and no contradiction with
regard to the given examples, as shown in Algorithm 1 (line 6).
The breadth-first approach ensures that DataXFormer finds
transformations from shorter indirections first, which is desir-
able considering that shorter indirection paths might constitute
stronger relations than longer indirection paths.

D. Scoring and Ranking Transformations

In the refine phase, we load the content of each candidate
column pair and check whether the values from a pair (xi, yi)
in the input query appear in the same row in the candidate
table. If τ examples still match after considering the row cor-
respondence of the discovered (xi, yi) pairs, DataXFormer
collects all transformations yq for xq’s that reside in the same
table.

The retrieved tables may provide conflicting answers by
returning different yq values for the same xq input. A naive
reconciliation solution would be to deliver the most frequent
yq for each given xq (majority voting). However, this approach
suffers from its inability to properly score results and tables
while taking into account the iterative nature of the process.
Instead, we propose a solution with the following desiderata:
First, it is necessary to compute confidences scores for the
tables to estimate their authoritativeness and rate their success
in covering examples. Second, as we incorporate results of
previous iterations as additional examples, we also need a
confidence score for those examples. Third, in each iteration
we need to recompute the scores of previously found transfor-
mations. Finally, it should be possible to incorporate additional
score components based on the given dataset, such as schema
similarity, provenance-based scores, or user feedback.

We adopt an iterative expectation-maximization (EM) ap-
proach [19] that incorporates confidence scores. The confi-
dence score of each table, i.e., the probability it provides
a correct answer, is estimated based on the current belief
about the probability of the answers. Initially each table is
assigned with a score based on the number of user examples
it covers and the Jaccard similarity of labels, if available. The
score of the table is weighted with an initial weight, which is
stored in relation Tables, and either has a default value or a
value assigned by an expert. The answer scores are updated
based on the newly computed table scores, and the process
is repeated until convergence is reached, i.e., the sum of all
score changes is below a very small value ε. In the end, for
each value xq ∈ Q, the scores of possible answers form a
probability distribution. The described process works for both
types of functional transformations, i.e., multi-attribute and
single attribute. All components of a multi-attribute input value
have to appear simultaneously to be considered.

Algorithm 2 describes the reconciliation process based on
EM and embedded within the overall workflow of the system’s
filter-refine iterations. The maximization and expectation steps
are described in Algorithms 3 and 4, respectively.

Algorithm 2 Expectation-Maximization

Input: A set of initial examples E = {(x, y), . . .}, input values Q
Output: Scored answers

1: answers← E
2: tables← E
3: finishedQuerying ← false
4: oldA← null
5: repeat
6: if not finishedQuerying then
7: tables← QueryForTables(answers)
8: tables← tables ∪ tableJoiner(answers,Q, tables)
9: for all t ∈ tables do

10: for all answer(xq, yq) ∈ t do
11: if xq ∈ Q then
12: UpdateLineage(t, answer)
13: answers.Add(xq, yq)
14: if not new xq was covered by tables then
15: finishedQuerying ← true
16: UpdateTableScores(answers, tables) //maximization step
17: UpdateAnswerScores(answers, tables) //Expectation step
18: ∆scores =

∑
|answers.score(x, y)− oldA.score(x, y)|

19: oldA = answers;
20: until finishedQuerying ∧∆scores < ε

In each iteration of Algorithm 2, we query for tables using
the new weighted examples (line 7), until no more values in
Q can be covered (lines 6 and 15). We also incorporate in
line 8, tables that we joined on the fly. We treat each joined
table as a table on its own. In line 16, we implement the
maximization step by updating table scores (estimated error-
rates) based on the current belief in the answers (answer
scores). At the bootstrap stage, initial scores are assigned based
on the percentage of user-given examples that were covered
by a table. In each iteration, if new unseen tables are found
in the query, the lineage of the newly found tables and the
answers (transformations) they provide are recorded for later
EM calculations. When updating table or answer scores, it is
necessary to be able to identify which tables contained which
answers. In the expectation step of every iteration, the scores
(i.e., probabilities) of the discovered answers are updated. The
system converges when the total (absolute) change in answer
scores is below a small value ε (line 20).

The score of a table is determined by the ratio of the sum
of the scores of correct examples to the sum of all examples
that are believed to be correct. For examples in the table, we
retrieve the answer score (line 8 in Algorithm 3) computed in
the previous maximization step. Original examples maintain
a score of 1.0 since they are provided by the user. The test
IsMax checks whether the score of the current pair (x, y) is
the pair that has the highest score among all pairs with input
value x. If this is the case, we assume that according to the
current belief (x, y) is a correct mapping and we increment the
counter good with its relative score. Otherwise, we increment
bad by 1. We assign a default score for the example input
values that do not occur in the table, unseenX to estimate
the relevance of the table on these examples. All scores are
weighed with the table prior priort, that is either set by a user
or set to a default value of 0.5.

Finally, the score of each table is multiplied by a smoothen-
ing factor α slightly less than 1.0 (line 14) to prevent produc-
ing zeroes when calculating answers scores. This factor also

Algorithm 3 UpdateTableScores
Input: answers, tables
Output: estimated table scores

1: for all t ∈ tables do
2: good← 0
3: bad← 0
4: total← 0
5: coveredXs← {} //holds example x’s appearing in t
6: for all answer(x, y) ∈ t do
7: coveredXs← coveredXs ∪ {x}
8: score←GetScore(x, y)
9: if IsMax(score, x) then

10: good← good+ score
11: else
12: bad← bad+ 1
13: unseenX←

∑
x/∈coveredXs∧(x,y)∈answers

max
(
score(x, y)

)
14: SetScore(t,α · priort·good

priort·good+(1−priort)·(bad+unseenX)
)

Algorithm 4 UpdateAnswerScores
Input: answers, tables
Output: estimated answer probabilities

1: for all x ∈ X do
2: A← answers.getAnswers(x)
3: scoreOfNone← 1
4: for all table ∈ answers.getTables(x) do
5: scoreOfNone← scoreOfNone · (1− table.score)
6: for all (x, y) ∈ A do
7: score(x, y) := 1
8: if table supports (x, y) then
9: score(x, y)← score(x, y) · table.score

10: else
11: score(x, y)← score(x, y) · (1− table.score)
12: for all (x, y) ∈ A do
13: score(x, y)← score(x,y)

scoreOfNone+
∑

(x,y)∈A
score(x,y)

represents the uncertainty about the rest of the table, resulting
from the ambiguity in transformations and table dirtiness.

Algorithm 4 shows the expectation step. We make the
simplifying assumption that the error rates of the tables are
independent. Such assumption allows us to calculate the es-
timated probability that a value y is the transformation of a
value x by a simple multiplication. For every value x ∈ Q,
the probability that y is the transformation of x is computed
as the product of the probability of correctness of each table
t that supports (x, y), estimated by the score of the table
score(t), and the probability of each table t′ listing another
value being wrong, estimated as 1−score(t′), where score(t)
is the estimated error rate of the table t (lines 4 to 11).
We also consider the possibility that none of the provided
answers for this x is correct by aggregating scoreOfNone.
The estimated probabilities are then normalized by dividing
them over the sum of the scores of the possible answers as
well as the score of the event that none of the answers are
correct (lines 12 to 13). The scores are normalized to form a
probability distribution, with the highest score being used as
an example for the next iteration, with its probability as the
weight. Recall that table scores are multiplied by α to avoid
zeroes when multiplying probabilities.

IV. FROM N:1 TRANSFORMATIONS TO N:M
RELATIONSHIPS

In functional transformations, the fact that there is only
one correct answer was used to prune many resources based
on the given set of examples E and to keep only the most
likely transformation value yq for an xq . However, in many-
to-many relationships, a newly found y′q can be another correct
mapping. In order to cover many-to-many (i.e., non-functional)
transformations, we have to adapt our scoring system to allow
multiple solutions for one input value, e.g., countries to k
cities. This is particularly hard for two main reasons: We
do not know how many values are correct for a given xq .
Restricting the output to a fixed number of values limits the
recall of the transformation. On the other hand, accepting
all possible mappings will result in extracting relationships
that do not adhere to the actual transformation task. This
easily leads to mixing heterogeneous values in the result.
This of course impacts the precision of the transformation.
We should note that while it is possible to discover more
functional transformations by joining tables on the FD con-
straint (Section III-C), applying indirect transformations for
non-functional transformations would require a completely
different strategy as the pruning strategy via FDs cannot be
adopted. We leave this for future work.

In the following, we discuss two approaches for the gen-
eral n:m mapping problem. The first automatically clusters
mappings into correct or false ones based on their score
distribution. The second, implemented in DataXFormer,
asks the user for feedback on effectively chosen sample results.

A. Automated Clustering

Once the candidate yq values for a xq are retrieved and
scored, one way to identify the set of interest is to use a
threshold. However, we would have to chose an arbitrary
threshold that only holds for some use cases. Another way
is to use clustering to separate yq values with high scores and
yq values with low scores. We start by defining the distance
between two scores as their absolute difference.

Definition 1: Let y1 and y2 be two candidate values for an
input value xq and c a function to get their score, the distance
between x1 and x2 is: D(y1, y2) = |c(y1)− c(y2)|

Two values with high scores are expected to have a smaller
distance between them than the distance between a high-
scoring value and a low-scoring one. Our goal is to obtain
an optimal separation between high- and low-scoring values.

Let H be the set of high-scoring values and L the set
of low-scoring ones. Intuitively, a separation is preferable to
another one if by adding a value x ∈ L to H , the difference
between the sum of pair-wise distances among all values of
H ∪ {x} and the sum of their scores becomes smaller. The
intuition is clarified in the following gain function.

Definition 2: Let S consist of the candidate values for yi ∈
Yq and L be a subset of S. We define the gain of L as the
sum of all scores of elements in L subtracted by the sum of
all score distances among elements in L:

G(L) =
∑
s∈L

c(s)−
∑

1≤j<|L|

∑
j<k≤|L|

D(yj , yk)

We define an optimal separation as the one that maximizes
this function for H . As an optimal separation requires an expo-
nential exploration over the possible subsets, we use a nearest
neighbor chain algorithm for agglomerative clustering [20].
We first order tuples in S in descending order wrt their scores,
and create a cluster for each value. We pick the highest scoring
cluster, and keep adding to it the next value in the order, while
computing the separation gain at each step. We terminate after
reaching a separation where the gain attains a local maximum.
The algorithm requires a linear space and quadratic time (pair-
wise distances) in the number of tuples.

B. Generating Validation Samples for n:m Relationships

The major flaw in the above approach is that it does
not have the opportunity of taking into account any negative
examples that would penalize irrelevant resources and their
candidates. In the absence of any known negative information,
we need to ask the user for feedback. Thus, we extend our
web table system for discovering functional transformations
with a feedback round to the loop. After every iteration, some
mappings are selected for validation, and the user’s feedback
is propagated to prune tables with incorrect mappings. For
this purpose, we slightly modify the formula in line 14 of
Algorithm 3 to:

α · priort · good− 2 · (1− priort) · bad
priort · good+ (1− priort) · (bad+ unseenX)

The variable bad refers to the number of false mappings
contained in a table. To be conservative, this number is
doubled. Whenever the score is negative, we drop the table
completely as a supporting source. The user feedback after
each filter and refine iteration also prevents the system from
using wrong transformation results as examples for the next
iteration. In our experiments, the algorithms usually converged
before the 5th iteration, when asking the user for 10 validations
per iteration.

The challenge is then how to identify the most useful set of
examples for user validation. Similar to any other classification
task, validating a transformation sample can improve the
precision of our approach only if the sample represents the
whole set of discovered transformations. For our approach,
whenever false mappings are retrieved in the filter phase, it is
desirable that some of them appear in the validation sample.
This way, it is possible to identify tables and sources that lead
to false mappings, which are more critical for the quality of
the approach than the confirmation of correct mappings. We
feed these gained insights into the EM model and recompute
the scores of tables and answers. In the following, we compare
different policies for selecting the mappings to validate, with
the goal of maximizing the number of false mappings.

Frequency-based Selection A mapping between two values
can appear in multiple tables. If a mapping has a high
frequency, it co-occurs in several tables given the user-given
examples. The frequency could be considered as a score for the
relevance of identified mappings. Hence, a natural intuition to
identify false mappings for the validation is to expose low-
frequent ones to the user. Of course, this approach might
overlook prominent but irrelevant mappings. Penalizing a rare

mappings does not have a strong effect on the learning process
because it affects only few tables.

Score-based Selection Following the intuition of relevance in
the frequency-based selection method, one can also incorporate
the actual answer scores that have been computed by the
expectation maximization model in the functional scenario
from Section III-D. Notice that the expectation maximization
model scores tables and their mappings based on the ratio
of existing true and false mappings. Although, in the n:m
scenario, false mappings are not known before the first user
validation, we can still rank the answers by scores because the
coverage of true values affects the score.

Diversified Selection A further intuition to generate a vali-
dation set is to represent as many tables as possible. Thus,
example selection can be modeled as a maximum coverage
problem, where each example is associated with the set of ta-
bles that contain it: given a number of examples (sets) we want
to maximize the number of covered tables (the elements). This
problem is NP-hard, but the simple greedy algorithm has linear
complexity and guaranteed approximation ratio. However, the
maximum coverage strategy is likely to lead to a validation
sample of very frequent mappings that also co-occur in many
tables. This way it is not possible to distinguish tables from
each other. Thus, we prioritize mappings that have a minimum
overlap w.r.t. their containing tables. We extend the problem to
the weighted version, where we want to maximize the number
of covered tables and the number of non-overlapping tables
(the weight). For this purpose, we start with the least frequent
mapping and greedily add mappings that have the least overlap
in tables with the already chosen mappings. The weighted
version of the algorithm maintains the same approximation
ratio of the standard version. In Section VI-C2, we compare
the above proposals and show that the diversified selection
based on minimal overlap yields the best results.

V. COMPLEMENTING APPROACHES

DataXFormer can also be complemented with other
querying systems. A compelling example are alternative sys-
tems that try to discover relationships by mapping relational
tables to knowledge bases. In the following, we outline how
we adapted a data curation system that relies on knowledge
bases for our transformation discovery problem.

Knowledge Bases for Transformations. Human-curated
knowledge bases (KBs) contain high-quality information,
which, intuitively, can lead to high precision in the discovered
yq values even in the presence of one source only. In fact,
differently from the web tables, it is possible to apply discovery
algorithm to explicitly identify the underlying relationship in
terms of the target ontology [4]. An obvious drawback of
knowledge bases is that they usually only cover prominent
head-topic transformations, thus limiting the general coverage.
Moreover, a knowledge base usually suffers from inconsisten-
cies that affect the accuracy of discovered patterns [21].

We leverage recent developments in the discovery of map-
pings between a relation and a KB [4]. This system generates
candidate mappings to express the underlying relationship in
terms of the knowledge base, based on support and internal
coherence. A mapping is a graph whose edges are properties

�(QWLW\�� �(QWLW\��

7\SH��&RXQWU\ 7\SH��&LW\

KDV&DSLWDO

UG
I�W
\S
H

UG
I�W
\S
H

&� &�

UG
IV
�OD
EH
O

UG
IV
�OD
EH
O

&� &�

86$:DVKLQJWRQ�'&

)UDQFH 3DULV

&DQDGD 2WWDZD

*HUPDQ\ %HUOLQ

*UHHFH $WKHQV

Fig. 6: Mapping an input query to a knowledge base

(relationships) in the knowledge base and its internal nodes
are types or placeholders for entities in the knowledge base.
Its end nodes are literals that corresponds to attributes in the
example given as input. A mapping applies to a given example
if (i) there are entities in the KB that align with the connected
types and relationships, and (ii) the corresponding literals at
the end nodes match the values in the example. For example,
consider the relation in Figure 6 reporting a list of countries
with their capitals. On the right hand side of the figure, the
reported mapping holds for the first tuple if there is a triple
(“USA”,hasCapital,“Washington DC”) in the KB.

Two-stage Discovery. Given a trusted KB, in the first step,
we use the given examples to discover the explicit mapping
between the dataset and the KB. As for the matching of the
tables, we are interested in mappings that hold for a minimum
number of examples. It is possible that multiple patterns
apply to the example mappings. In case they have the same
support, we favour more restrictive patterns. Consider again
Figure 6. Assume we have a second relationship hasCity that
matches our examples. hasCity clearly subsumes hasCapital.
If they have the same support (i.e., they are all capitals), we
would prefer the first, which is more restrictive (i.e., has a
lower frequency). In our study we take the top-1 mapping for
functional transformations and use the automated clustering
approach in Section IV for non-functional mappings.

In the second step, the discovered relationship is used for
each xq , e.g., “France”, to find all the yq values related to it
through this mapping in the KB, e.g., “Athens”.

Implementation. For fast navigation and querying of the
KB, triples in DataXFormer are indexed by all components:
subject, object and predicate. Denoting the subject by ‘S’, the
predicate by ‘P’ and the object by ‘O’, the resulting six indices
are SPO, SOP, PSO, POS, OSP, and OPS. Literals always fall
into objects of triples. The main disadvantage of this setting is
that storing a KB takes 6 times its original size, but it allows
fast querying by any part of a triple. Our implementation works
on top of YAGO [22] and DBpedia [23], two general purpose
KBs.

Mapping to curated resources, such as a KB, can return
high quality transformations if the mapping is encoded in the
resource. The problem, however, is coverage, as a general
purpose KB usually only covers head topics, as we show next.

VI. CASE STUDY

To evaluate our system, we collected 120 transformation
tasks from real world users and experts from a data cura-

tion company, more than doubling the size of our previous
study [2]. In the following, we describe our experimental setup,
discuss the coverage of the Web resources, and finally report
the quality of the transformations at the instance level.

A. Experimental Setup

Our evaluation refers to 120 transformation tasks that
comprise 79 functional single column, 10 multi-column, and
31 non-functional transformation tasks. We manually collected
ground truth for each of the tasks with a finite domain, such
as city and zipcode to country, and generated random input
values for formula based transformations, such as fraction to
decimal.

We use the Dresden Web Table Corpus [24], which contains
about 120 millions web tables from about 4 billions web pages.
Additionally, we cleared the tables from all text and comment
columns with more than 200 characters to reduce storage and
runtime. The tables are stored in a four node Vertica DBMS
consuming 700 GB of disk space including all projections. The
knowledge base subsystem, adapted from Katara [4], is tested
on top of the most recent versions of the YAGO and DBpedia
KBs.

We consider two metrics: (i) coverage and (ii) quality. The
coverage refers to the fraction of transformations for which a
system was able to find relevant web tables, web forms, and
mappings with a KB. The quality assesses the correctness and
completeness of a transformation task in terms of precision
and recall.

Fig. 7: The Venn diagram illustrates the number of transfor-
mations covered by each resource

B. Coverage of Web Resources

Figure 7 depicts a diagram on how many of the 120
transformation tasks could be covered by the given resources.
The number of covered transformation tasks are put between
parentheses in front of each resource while the other numbers
show the overlaps. A transformation is deemed to be covered
if our system finds a resource, such as a web table, that can at
least partially solve the task, i.e., there is a table that contains
at least three pairs of input/output values from the ground truth.

As we can see, most of the transformation tasks (76) can
be covered by web tables, followed by KBs and web forms.

Interestingly, the web tables nearly completely subsume the
coverage of the KB subsystem. Only 11 transformations could
be exclusively covered with KBs, including transformations,
such as soccer player to birth place, soccer player to birthdate,
or country to head of state. This is expected since discovering
exact, complex relationships is hard without human supervi-
sion, and the KBs have strong evidence only for head topic
transformations. The web form subsystem covers 28 of the
transformation tasks, all of which are functional single column
transformations, including for example celsius to fahrenheit,
airport code to city, or ip address to domain. Among those
transformation tasks, 14 could only be covered by web forms,
mostly relating to formula based transformations.

Figure 7 also illustrates the difference in coverage between
DataXFormer and its previous version. The new system
covers 35 more transformations. In particular, 28 transforma-
tions are covered by means of the newly proposed approaches,
namely, indirect discovery, multi-column, and non-functional
transformations, and 11 with the addition of a KB system.
Transformations that could not been covered by any of our web
resources, included English to German, sentence to language,
text to encoding, Gregorian to Hijri, car plate to details,
company to Bloomberg id, bank to country, bank+city to swift,
bank to city,bank to swift code, for which we could find a web
form but could not wrap the web form with our system.

TABLE I: Coverage by transformation type

Approach # tables forms KB Joined
coverage

Single Column 79 50 (63%) 28 (23%) 17 (22%) 68 (86%)
Multi Column 10 7 (70%) 0 0 7 (70%)
Non-functional 31 19 (61%) 0 17 (55%) 25 (81%)
Total 120 76 (63%) 28 (23%) 34 (28%) 101 (84%)

Table I shows the coverage with regard to the transfor-
mation task type. While multi-column tasks could only be
covered by the new web tables subsystem, non-functional
transformations could be covered by both the tables and
the KB subsystems. Compared to the its original version,
DataXFormer now also covers one more functional trans-
formation by means of its indirect transformation algorithm.
The transformation Unesco site to country did not appear in
any web table explicitly, but could be covered by joining
two tables, each containing one side of the transformation,
on columns with country ISO codes. We report the indirection
result with max path length of 1. Our studies showed that
allowing a path length higher than 1 did not improve the
results. At the same time, the runtime was strikingly high.
While the algorithm runs a couple of minutes for path length
1, it takes several hours for path length 2.

C. Transformation Quality

We measure the quality of each transformation result
w.r.t. precision and recall. In our previous study, we reported
experiments on the effects of the threshold τ and of the number
of examples n [2]. The main insight is that τ = 2 leads
to the highest harmonic mean (F-Measure) of precision and
recall on our workload. Threshold τ = 1 leads to more false
positives, resulting in low precision, while higher values for
τ penalizes the recall. We found that the average precision is
above 90% for any number of examples n, while the recall

increases steadily with higher values, e.g., 32% for n = 2,
70% for n = 5, and 80% for 20 to 40 examples.

In this paper, we discuss the performance of each subsys-
tem on functional transformations. We then show the impact of
different example selection strategies for semi-automatic dis-
covery of non-functional transformations. For all the following
experiments, we set τ = 2 and n = 5.

TABLE II: Average precision and recall of each subsystem

Subsystem Precision Recall #
Web tables 0.80 0.76 57
Web forms 0.96 0.83 28
KB 0.32 0.19 17
best 0.87 0.76

1) Functional Transformations: Table II illustrates the av-
erage precision and recall values for all functional transforma-
tions that were partially covered by the respective subsystem.
For all the experiments, we used 5 randomly chosen transfor-
mation examples from the available ground truth. Surprisingly,
the KB subsystem shows worse performance than the web
tables and web forms subsystems. There are several reasons
for this result. First of all, KBs can suffer from incompleteness
and inconsistencies in the use of the relationships, e.g., the
properties location and locationCity are used interchangeably
for the same semantics [21]. In addition, the same property
might have values with completely different semantics, e.g.,
location might point to a city, a region, or even a country. This
ambiguity may lower the recall, as the property path would not
always lead to the desired transformation.

Aggregating the precision and recall of the best compo-
nent for a specific transformation results in 87% precision
and 76% recall. A web form usually yields high precision
results as the corresponding transformation tasks implement a
formula, which always returns the correct transformation upon
a successful wrapping. Web tables yield very high results on
tasks where the complete domain of the transformation fits in
few overlapping tables. For example, there are single tables
that contain transformations, such as university to state (0.93
Pr/0.93 Re), or airport code to city (1.0 Pr/0.80 Re).

TABLE III: Majority voting vs. EM propagation system

Method Precision Recall F-Measure
Majority voting 0.56 0.68 0.66
EM model 0.80 0.76 0.78

Table III compares the EM scoring model against a major-
ity voting approach that scores answers by their frequency. The
table denotes the average precision and recall over all func-
tional transformations and shows that EM model significantly
improves the performance over a naive voting approach.

TABLE IV: Average precision and recall of web tables algo-
rithms for functional transformations

Algorithm Precision Recall #
Direct single column 0.83 0.76 49
Direct multi column 0.95 0.67 7
Indirect single column 0.79 0.56 14

Table IV additionally breaks down the results based on the
approach that is applied to solve the task. For this experiment,

TABLE V: Average precision and recall of different ap-
proaches for the non-functional transformations

Approach Precision Recall FMeasure
supervised

Frequency based (least) 0.82 0.57 0.67
Frequency based (most) 0.69 0.62 0.66
Score based 0.72 0.62 0.67
Diversified (coverage) 0.84 0.56 0.67
Diversified (least overlap) 0.86 0.58 0.69

unsupervised
Automated clustering 0.45 0.25 0.3
Bayesian network 0.35 0.63 0.45
KB 0.3 0.25 0.27

we run our system twice for each covered single column
transformation task: first considering only direct transforma-
tions and then considering only joined tables. As expected,
the indirect transformation approach yields poorer precision
and recall results if performed in isolation. Therefore, the best
way for finding useful transformations is to try to find direct
mappings first, and then to turn to indirect transformations for
covering values from Q that have not been covered.

2) Non-Functional Mappings: We study the impact of 3
supervised and 3 unsupervised methods for the non-functional
transformations. In particular, we use the unsupervised clus-
tering and the supervised selection strategies over the web
corpus from Section IV-B, the unsupervised KB subsystem,
and a state of the art approach based on Bayesian networks
for discovering set of values from web resources [25]. In
particular, the Bayesian approach learns true positive and false
negative rates of sources by sampling from skewed Beta and
Bernoulli distributions, but does not assume any ground truth
as input. Therefore, we adapted it to incorporate the given
examples as true facts without sampling their probability.

Table V reports averaged results for every method on the
subset of 31 non-functional transformations that were covered
by that subsystem. Each transformation was executed with 3
supervised iterations. In each iteration, the user validated 10
example results. The strategy for diversified example selection
based on minimal overlap yields the best results. The bad
recall performance of the clustering approach is caused by the
exclusion of supposedly wrong results (false negatives) as it
does not allow rare correct transformations to be captured in
the results. Despite the examples, the inherent assumption of
global truth of prior distributions in the Bayesian approach
leads to arbitrary samples of truth probabilities that over-
estimate the rating of a table leading to low precision but
relatively high recall. The approaches on top of web tables
outperform the KB approach in terms of precision, because
ambiguities and inconsistencies in KBs are present also in the
non-functional scenario.

Figure 8 shows why the approach based on minimal overlap
yields the best results. It selects on average more incorrect
examples, which can be flagged as wrong transformations by
the user and ultimately lead the algorithm to assign correct
scores to the sources. At the same time, it affects more tables
with its maximization effort than the approach that selects the
least frequent or least scored transformation results.

Figure 9 shows the effect of the number of iterations on
the transformation quality with the diversification strategy. At

0	 2	 4	 6	 8	 10	

Diversified	 (min.	
overlap)	

Frequency	 based	
(most)	

Frequency	 based	
(least)	

Score	 based	

Diversified	 (max.	
set	 cover)	

Correct	 Wrong	

Fig. 8: The average ratio of correct and wrong transformations
selected by the strategies for user-verification.

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

1	 2	 3	 4	 5	
supervised	 Itera-ons	

Pr	 (before)	 Pr	 (a6er)	 	 R	 (before)	 R	 (a6er)	

Fig. 9: Average precision and recall of DataXFormer before
and after validating 10 examples per iteration.

each iteration the user validated 10 examples. The plot shows
that the precision increases with the validation after each step.
However, we notice a diminishing return in this gain, because
we quickly reach enough information to make a decision. At
the same time, the recall of the system slightly increases at
each iteration. We achieved similarly results when running the
same experiment with 20 validation examples per iteration.

VII. RELATED WORK

There have been several attempts to tame the difficult task
of transformation discovery [5], [6], [26]. Singh et al. [26]
propose an approach for semantic string transformations,
which is then implemented in MS Excel. While their approach
combines syntactic and semantic transformations, it is limited
to tasks where the tables containing the desired transformations
are known a priori and are only very few, mostly 1 or 2 ac-
cording to their benchmark. Similarly, Kandel et al. [6] support
a language for the transformations involving manipulation of
the data in the current relation. Our approach instead identi-
fies transformations from a huge corpus of tables, requiring
handling noise and ambiguity from these tables. Arasu et
al. [5] address the problem of resolving abbreviations by string
matching techniques. We discover this kind of transformations
by explicitly looking them up in web tables.

Research on web tables has mostly focused on issues
related to search, extraction, and integration [27], [28]. Web
tables have been also regarded as a large repository for
knowledge discovery. For example, InfoGather [29] addresses
entity augmentation by searching for related attributes of given
entities. It precomputes and indexes all inclusion dependencies

to directly find overlapping tables. In our scenario with more
than 100 million tables and usually missing schema, it is
not feasible to discover and store all the possible inclusion
dependencies. Instead, we discover overlapping columns at
runtime. Furthermore, our system provides significant exten-
sions through the various types of transformations.

Another line fo related research relates to providing infor-
mation retrieval capabilities over structured databases. Most of
the proposals [8]–[12] focus on efficiently generating candidate
networks of joined tuples to form answers to a keyword query.
In some of these systems, such as [16], [18], specialized
indices or predefined foreign key-primary key relationships are
used to prune the space of candidate results. Others assume
the availability of context information [30] or meta-data and
dependencies among keywords [17]. However, we are not
interested in tuple networks, but rather in tables with columns
covering most of the example transformations and the input
values to be transformed. Since we do not have a complete
knowledge of the underlying schema, our approach depends on
instance matching (for web tables and KBs) and on discovering
needed meta-data (for web forms).

Finally, we are the first to address the problem of dis-
covering transformations for sets of entities; a task that is
more challenging than simply discovering a unique target
value. Identifying the entities in a set can be seen as an
enumeration query in an open-world context. This problem has
been tackled in the context of crowdsourcing [31] and truth
discovery [25]. However, the crowdsourcing solution cannot
be directly applied to our setting as they assume clean data.
As we have shown in the experiments, the truth discovery
algorithm makes strong assumptions on the prior distributions
of the latent variables, while we do not make such assumption
and we are still able to achieve better results.

VIII. CONCLUSION

This paper presents a full fledged system for transformation
discovery. In particular, we focus on how our system fully
exploit web tables to discover multi-column, non-functional,
and indirect transformations. A comprehensive study based
on 120 transformation tasks demonstrates the usefulness of
our system. and shows the strength and weaknesses of each
resource type for a transformation task. Future work requires
reasoning on filtering transformations within a resource. Cur-
rently, we do not reject subsets of a table but only a table as
a whole. An example-based approach combined with outlier
detection and String pattern analysis could make the resource
discovery more fine-granular. Furthermore, the discovery of
transformation results through text analysis is an interesting
and promising challenge.

REFERENCES

[1] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise
data analysis and visualization: An interview study,” IEEE Trans. Vis.
Comput. Graph., vol. 18, no. 12, pp. 2917–2926, 2012.

[2] Z. Abedjan, J. Morcos, M. Gubanov, I. Ilyas, M. Stonebraker, P. Papotti,
and M. Ouzzani, “DataXFormer: Leveraging the web for semantic
transformations,” in CIDR, 2015.

[3] J. Morcos, Z. Abedjan, I. Ilyas, M. Stonebraker, P. Papotti, and
M. Ouzzani, “DataXFormer: An interactive data transformation tool,”
in SIGMOD, 2015.

[4] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and
Y. Ye, “Katara: A data cleaning system powered by knowledge bases
and crowdsourcing,” in SIGMOD, 2015, pp. 1247–1261.

[5] A. Arasu, S. Chaudhuri, and R. Kaushik, “Learning string transforma-
tions from examples,” PVLDB, vol. 2, no. 1, pp. 514–525, 2009.

[6] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interac-
tive visual specification of data transformation scripts,” in CHI, 2011.

[7] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan, “Designing and
refining schema mappings via data examples,” in SIGMOD, 2011.

[8] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: A system for
keyword-based search over relational databases,” in ICDE, 2002.

[9] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, P. Parag,
and S. Sudarshan, “Banks: Browsing and keyword searching in rela-
tional databases,” in VLDB, 2002, pp. 1083–1086.

[10] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword search in
relational databases,” in VLDB, 2002, pp. 670–681.

[11] L. Qian, M. J. Cafarella, and H. V. Jagadish, “Sample-driven schema
mapping,” in SIGMOD, 2012.

[12] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik, “Discov-
ering queries based on example tuples,” in SIGMOD, 2014, pp. 493–
504.

[13] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching,
ten years later,” PVLDB, vol. 4, no. 11, pp. 695–701, 2011.

[14] A. Das Sarma, X. Dong, and A. Halevy, “Bootstrapping pay-as-you-go
data integration systems,” in SIGMOD, 2008, pp. 861–874.

[15] L. Barbosa and J. Freire, “An adaptive crawler for locating hidden-web
entry points,” in WWW, 2007, pp. 441–450.

[16] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “Objectrank:
Authority-based keyword search in databases,” in VLDB, 2004.

[17] S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado, and Y. Vele-
grakis, “Keyword search over relational databases: a metadata ap-
proach,” in SIGMOD, 2011, pp. 565–576.

[18] J. Feng, G. Li, and J. Wang, “Finding top-k answers in keyword search
over relational databases using tuple units,” TKDE, vol. 23, no. 12, pp.
1781–1794, 2011.

[19] A. P. Dawid and A. M. Skene, “Maximum likelihood estimation of
observer error-rates using the em algorithm,” Applied statistics, pp. 20–
28, 1979.

[20] F. Murtagh, “Clustering in massive data sets,” in Handbook of massive
data sets. Springer, 2002, pp. 501–543.

[21] Z. Abedjan, J. Lorey, and F. Naumann, “Reconciling ontologies and the
web of data,” in CIKM, 2012, pp. 1532–1536.

[22] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic
knowledge,” in WWW, 2007, pp. 697–706.

[23] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann, “Dbpedia - a crystallization point for the web of data,”
Web Semantics, vol. 7, no. 3, pp. 154–165, Sep. 2009.

[24] J. Eberius, M. Thiele, K. Braunschweig, and W. Lehner, “Top-k entity
augmentation using consistent set covering,” in SSDBM, 2015.

[25] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han, “A bayesian
approach to discovering truth from conflicting sources for data integra-
tion,” PVLDB, vol. 5, no. 6, pp. 550–561, 2012.

[26] R. Singh and S. Gulwani, “Learning semantic string transformations
from examples,” PVLDB, vol. 5, no. 8, pp. 740–751, 2012.

[27] M. J. Cafarella, A. Halevy, and N. Khoussainova, “Data integration for
the relational web,” PVLDB, vol. 2, no. 1, pp. 1090–1101, Aug. 2009.

[28] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu, R. Xin,
and C. Yu, “Finding related tables,” in SIGMOD, 2012, pp. 817–828.

[29] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri, “Infogather:
Entity augmentation and attribute discovery by holistic matching with
web tables,” in SIGMOD, 2012, pp. 97–108.

[30] R. Pimplikar and S. Sarawagi, “Answering table queries on the web
using column keywords,” PVLDB, vol. 5, no. 10, pp. 908–919, 2012.

[31] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar, “Crowd-
sourced enumeration queries,” in ICDE, 2013, pp. 673–684.

