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Predicting performance 

• Operational Analysis: 

– Operational analysis of network models 

 

• Also 

– Markov models 
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150ms 

250μs 

https://www.youtube.com/watch?v=modXC5IWTJI 
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Operational analysis 

• Material drawn from: 

• ACM Computing Surveys 

– Special issue on queuing network models 

– Volume 10, Number 3, September 1978 

– P.J. Denning & J. P. Buzen 

– The operational analysis of network models 

• (Available from the CS446 home page) 
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Basic ABC of quantities 

• A: Total number of [A]rrivals 

• B: Total time system [B]usy 

• C: Total number of [C]ompletions 

• T: Total time spent monitoring above 
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Basic derived quantities 

• Arrival rate λ 

– A/T (arrivals/second) 

• Departure rate X (exit rate) 

– C/T (completions/second) 

• Server utilization U 

– B/T (fraction) 

• Mean service time S per task 

– B/C (seconds/completion) 
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Utilization law 

• Utilization = Completion Rate * Service Time 

• U = B/T = (C/T) * (B/C) = XS 

– Example: 

– 3 jobs per second and each job needs 0.1 secs 

– Utilization of system = 3 * 0.1 = 0.3 (30%) 

– I.E. how much work is done per unit of time 
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Job flow balance assumption 

• Total arrivals = Total Completions 

• Reasonable since (A-C)/C0 as T   

• λ = X 

• U = λS (steady state limit theorem) 

– i.e. Can use arrival rate rather than departure rate 

– Have λ or X  can assume the other is same 
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Generalizing to network 

• Let there be n1 services (servers) 

• Arrival rate λi = Ai/T (at server i) 

• Departure rate Xi = Ci/T (from server i) 

• Server utilization Ui = Bi/T  

• Mean service time Si = Bi/Ci  

• Routing frequency (Cik task goes i  k) 

– qik  = Cik / Ci if i = 1..n 

– q0k  = A0k / A0 if i = 0 
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Observations 

• Ci =  k=0..n Cik       (i=1..n) 

• C0 =  k=0..n Ck0   (completions from system) 

• A0 =  k=0..n A0k   (arrivals at system) 

• X0 =  k=1..n Xk qk0 

– (Output flow law) 

 

•  k=0..n qik  =1 (for each i) 

• Behaves like a probability estimate 
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Queuing at device 

• Wi =  t=0..n queue lth(t) 

– ie. Area under the graph (total job seconds) 

• Qi = Wi / T 

– ie. Average queue length 

• Ri = Wi / Ci 

– ie. mean waiting time at i 

– Also called the response time 

• Qi = Xi Ri   (Little’s law) 

– Qi = Wi / T = (Ci / T) * (Wi / Ci) = Xi Ri  

 

 

 



Example 

• A=7 jobs; B=16 sec; C=10 jobs (3 at start);T=20 secs 

• W=40 job secs;  Q = 40/20 = avg 2 jobs (load = 2.0)  

• R = W/C = 40 / 10 = 4 secs 

• U = B/T  = 16 / 20 = 80% 
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Visit ratios 

• Assuming Xi =  k=0..n X k q ki  

– ie. balanced flow 

• Vi = Xi / Xo = Ci / Co  

– (mean requests per task for i) 

– (mean completions at i per task completion) 

• Xi = Vi Xo   (Forced flow law) 

– Just rearranging above equation 
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Visit ratio example 

• Tasks generate on average 5 disk requests 

• Disk throughput is 10 requests/second 

• What is system throughput.. 
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Answer 

• Tasks generate on average 5 disk requests 

• Disk throughput is 10 requests/second 

• What is system throughput.. 

• Xo = Xi/Vi = 10(request/sec)/5(requests/job) 

• ie.  2 jobs per second 

• N.B.  Using “measured” disk throughput 

• N.B.  All other measures irrelevant…. 
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Interactive Response Time 

• Suppose M users are using terminals 

• Mean wait time per user at terminal R 

• Mean think time per user Z 

• Mean thinking and waiting time (R + Z) 

• (R + Z) Xo = M = mean number of users 

– (by Little’s law Qi = Xi Ri )  

• R = (M/ Xo - Z) 

– (Interactive Response Time Formula) 
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Interactive Response Time 

• R = ( i=1..n Qi)/Xo   

– (eg.  Apply Little’s law to system) 

–   i=1..n Qi  =  i=1..n Wi / T (treat all queues as one)   

• but Qi /Xo = Vi Ri since 

– Qi   = XiRi    (Little’s law) 

– Xi = Vi X0 (Forced flow law) 

– Qi  = Vi X0 Ri 

• Therefore R =  i=1..n Vi Ri 

– (General response time law: Total delay is sum of 

each delay) 
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Example 1 
• Parameters: 

– Each task generates 20 disk request 

– Disk utilization is 50% 

– Mean service time at disk 25 millisecs 

– 25 terminals (think time is 18 seconds) 

• What is the terminal response time? 
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Example 1 
• Parameters: 

– Each task generates 20 disk request 

– Disk utilization is 50% 

– Mean service time at disk 25 millisecs 

– 25 terminals (think time is 18 seconds) 

• Xo = Xd/Vd= (Ud/Sd)/Vd = (0.5/0.025)/20  

– therefore Xo = 1 job/second 

• R = (M/Xo ) - Z 

– therefore R = (25/1) - 18 = 7 seconds 
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Example 2 
• Parameters: 

– 40 terminals (think time is 15 seconds)  

– Interactive response time is 5 seconds 

– Disk mean service time is 40 milliseconds 

– Each interactive task generates 10 disk I/O 

– Each batch job generates 5 disk I/O 

– Disk utilization is 90% 

• Want to calculate throughput of batch and 

lower bound on interactive response time if 

batch throughput is tripled. 
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Example 2 continued 
• Interactive throughput  

– XI,0 = M/(Z+R) = 40/(15 + 5) = 2 jobs/second 

• Disk j throughput {ie. interactive + batch } 

– Xj = XI,j  + XB,j = Uj /Sj = 0.9/0.040 = 22.5 

requests/second  {by utilization law} 

• XI,j = VI,j  XI,0 = 10 * 2 = 20 req/sec 

–  {by forced flow law} 

• XB,j = Xj – XI,j  = 22.5 - 20 = 2.5 req/sec 

• XB,0 = XB,j / VB,j = 2.5/5 = 0.5 jobs/sec. 
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Example 2 continued 
• Tripling XB,0 = 1.5 batch jobs per second  

• Disk j batch throughput  

– XB,j  = VB,j  * XB,0 = 5 * 1.5 = 7.5 req/sec 

• Maximum completion rate at disk 

– 1/Si = 25 requests/second (1 request = 0.04 sec) 

– XI,j  25 - 7.5 = 17.5 requests/second 

• XI,0 = XI,j / VI,j  17.5/10= 1.75 task/sec 

• RI = (M/XI,0) - Z (40/1.75)-15 = 7.9sec 

– Assuming M,Z,Vi & Si unchanged  
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Example 3 

• System A 

 

• 16 terminals 

• 25 disk I/O per job 

• 80% disk utilization 

• service time 0.042sec 

• Think time 15 secs 

• System B 

 

• 10 terminals 

• 16 disk I/O per job 

• 40% disk utilization 

• service time 0.042sec 

• Think time 15 secs 

What are the response times for the current systems?  

What if A & B’s terminals and software are moved to a 

consolidate system C which uses the same disk drive? 
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Example 3 throughputs 

• Since Ui=XiSi & Xi=ViXo => Xo =Ui/ Vi Si 

 

• XA,0 = .8/(25 * 0.042)  0.77 jobs/sec 

• XB,0 = .4/(16 * 0.042)  0.60 jobs/sec 

 

• Why is XB,0 < XA,0  if  VB,i < VA,i? 

• Because utilization lower, but why is this? 
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Why is utilization 40% 
• Is a higher throughput possible? 

• Minimum R is  Vi Si = 16 * 0.042 = .672 sec 

• Max XB,0 = M/(Z+R) = 10/(15+.672)    

 = 0.638 > 0.6 jobs per sec 

• What is the highest UB,i possible? 

• Ui = Xo Vi Si = 0.638*16*0.042 = 42.8% 

• So in essence we can’t do enough work at 

10 terminals to keep the drive busy, given 

the 15 second think time. 
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Example 3 response times 

• Since R = (M/X0) - Z 

• RA = (16/0.77) - 15 = 5.779 sec 

• RB = (10/0.60) - 15 = 1.666 sec 

• Fraction of I/O performed by A 

– XA,iT / (XA,i + XB,i)T = XA,i/ (XA,i + XB,i) 

     = UA,I / (UA,i + UB.i) = 80/120 = 2/3 

– since Xi = Ui/Si & SA,i = SB,i 
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Example 3 consolidate machine 

• UA,i + UB,i = 0.8 + 0.4 = 1.2 = 120% > 100% 

• Can assume UC,i   100% 

• Therefore XC,i   1/Si = 1/.042 = 24 IO/sec 

• XA,i  = 24 * (0.8/(0.8+0.4)) = (2/3) = 16 IO/sec 

• XB,i  = 24 * (0.4/(0.8+0.4)) = (1/3) =   8 IO/sec 

• XA,0  = XA,i/VA,i = 16/25 = .64 jobs/sec 

• XB,0  = XB,I /VB,i =  8/16  = .5  jobs/secs 

 

 



Winter 2016 (c) Ian Davis 31 

Example 3 response times 

• Since R = (M/X0) - Z 

• RA = (16/.64) - 15 = 10 secs 

• RB = (10/.5)   - 15 =   5 secs 

 

• N.B. M is not 16+10 because looking at the 

throughputs XA,0 and XB,0 separately.  We are 

viewing each subsystem as a closed system.  
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The useful equations 
• Utilization law  (Very useful) 

– Ui = Xi Si  { Ui = λi Si if assume λi = Xi }  

• Little’s law 

– Qi = Xi Ri  

• Forced flow law  (Very useful) 

– Xi = Vi Xo  

• General response time law 

– R =  i=1..n Vi Ri  

• Interactive response time law (Very useful) 

– R = (M/X0) - Z 
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Bottleneck analysis 
• Let N be the number of tasks/jobs running 

• what happens as N increases  

• Assuming Vi & Si remain unchanged then: 

– Xi /Xk=Vi /Vk  and Ui /Uk=Vi Si /Vk Sk unchanged 

• Device i is saturated if Ui = 100% 

• Since Ui /Uk constant as N Ui increase 

by the same fraction when N N+1 

• The device with largest Ui  (or equivalently 

the largest Vi Si) will be the first to saturate.   
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Bottleneck response time 
• Response time obviously a minimum when 

only one task. 

• In this case Ro = i ViSi  

• System saturation N * occurs when N forces 

some task to be queued at some device b. 

• If Ub=1 ⇒ XbSb = 1 ⇒ X0VbSb = 1 ⇒  

• X0 = 1/VbSb 

• N* = Ro X0 = Ro/Vb Sb   

• M  = N* + Z/ Vb Sb will saturate the system. 
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Markov models 

• System viewed as a set of states S0 …Sn, S-1 

• S0 is start state, and S-1 final state 

• Probability pik transition between Si and Sk 

• Probabilities constant for lifetime of model 

•  i=-1..n pik = 1 

•  p-1-1              = 1  (Once finished keep finishing) 
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Markov modelling goals 

• Determine probability of entering Si 

• Determine expected number of transitions 

before arriving in state Si 

• Flag certain state transitions as significant 

• Counting achieved by multiplying state 

transition probability by dummy variables 
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Markov modelling reduction 

• For all i,k reduce multiple transitions Si Sk 

– Sum the probabilities of each such transition 

• Select Si : Si does not move directly to Si 

• Eliminate Si  from the model using: 

– For all h,k : Sh Si Sk add Sh Sk with phi*pik 

• When all states loop eliminate pii if i  -1 

– For all ki  pik = pik * 1/(1-G) where G generating 

function describing pii 

•  Terminate when have G for S0 S-1 

 

 

 



Why 1/(1-G) 

• We can go through the loop 0 to ∞ times 

• Each time with probability G 

• Sum these probabilities 

– G0 + G1 + G2 + G3+ G4 … G∞ 

– 1    + G   + G2 + G3+ G4 … G∞ = X 

– X * G + 1 = X  

– 1 = (1 – G) * X 

– X = 1/(1 - G) 
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Use of generating function 

• Set all dummy variables of no interest to 1 

• Probability that variable x visited ‘n’ times: 

– Expand G as polynomial in x 

– Coefficient associated with Xn is probability 

• Probability at most ‘n’ is sum of first n+1 

coefficients etc.  
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Markov example 1  

• Software accesses a disk drive and a tape 

– accesses the disk drive S1with probability 0.2 

– accesses the tape drive S2with probability 0.1 

– Access pattern is independent of history 

• Markov model: 

– S0S1  p01=0.2  S0S2  p02=0.1 S0S-1  p0-1 = 0.7 

– S1S1  p11=0.2  S1S2  p12=0.1 S1S-1  p1-1 = 0.7 

– S2S1  p21=0.2  S2S2  p22=0.1 S2S-1  p2-1 = 0.7 
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Add in dummy variable 

• Let d count disk accesses and t tape accesses 

• Markov model: 

– S0S1  p01=0.2d  S0S2  p02=0.1t S0S-1  p0-1 = 0.7 

– S1S1  p11=0.2d  S1S2  p12=0.1t S1S-1  p1-1 = 0.7 

– S2S1  p21=0.2d  S2S2  p22=0.1t S2S-1  p2-1 = 0.7 

• Eliminating S1S1 and S2S2 : 

– S0S1  p01=0.2d  S0S2  p02=0.1t S0S-1  p0-1 = 0.7 

– S1S2  p12=0.1t(1/1-0.2d) S1S-1  p1-1 = 0.7(1/1-0.2d) 

– S2S1  p11=0.2d(1/1-0.1d) S2S-1 p2-1 = 0.7(1/1-0.1d) 

 

 



Winter 2016 (c) Ian Davis 42 

• Eliminating S1: 

– S0S2  p01*p12  + p02 = .2d * .1t(1/1-.2d) + .1t 

– S0S-1  p0-1 = 0.2d * 0.7(1/1-0.2d) + 0.7 

– S2S2 p21*p12  = .2d(1/1-.1d) * .1t(1/1-.2d) 

– S2S-1 p2-1  = .7(1/1-.1d) 

• Eliminating S2  S2 : 

– S2S-1 p2-1  = (1/1 -.2d(1/1-.1d) * .1t(1/1-.2d)) 

*.7(1/1-.1d) 

 

 



• Eliminating S2  computing S0S-1  i.e. G: 

– p02 p2-1 + p0-1 = (.2d*.1t(1/1-.2d)+.1t) * (1/1 -

.2d(1/1-.1d) * .1t(1/1-.2d)) *.7(1/1-.1d) + .7 

–  S0S2  p02=.1t S0S-1  p0-1 = .7 

– S1S2  p12=.1t(1/1-.2d) S1S-1  p1-1 = .7(1/1-.2d) 

– S2S1  p11=.2d(1/1-.1d) S2S-1 p2-1 = .7(1/1-.1d) 
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In Practice 

• Write a program (or ask me for one) 

– Input  

• state transitions  

• probabilities * dummy 

– Output G 

• In a format usable by Maple (or whatever) 

• Solve questions of interest using Maple etc. 
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Probability of ‘n’ disk accesses 

• t:=1; taylor(G, d); 

• .7777777778          + .1728395062       d + 

.03840877915   d2  + .008535284255   d3  +        

.001896729834 d4  + .0004214955188 d5  + 

O(d6) 

• Truncate and set d=1 for  ‘n’ accesses 

• Could parameterize 0.2=p and 0.1=q and 

0.7=(1-p-q) 
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Average number of disk accesses 

• Let pk be the probability of exactly k accesses 

• G = Σk=0..∞ pk * dk
  

• G’ = diff(G) w.r.t variable d 

• G’ = Σk=1..∞ k * pk * dk-1
  

– 0*p(miss)*d0+1*p(once)*d1+2*p(twice)*d2… 

– Then setting d = 1 to remove all d 

– This becomes average number of disk accesses 

• G’ = 0.2857142857 (Average # disk accesses) 
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Variance in number disk accesses 

• V(accesses) = E(accesses2 ) - E2(accesses) 

– G’’ = diff(G’) 

– G’’ = Σk=2..∞ k * (k-1) * pk * dk-2
  

–           = Σk=2..∞ k
2 * pk * dk-2 - Σk=2..∞ k * pk * dk-2

  

–       = E(accesses2)            -      E(accesses) 

– So variance = (G’’ + G’) – G’* G’ 

• Now set d := 1 

– (G’’ + G’) - G’*G’ = 0.3673469388 (Variance) 



Detecting uncorrectable error  

in a Double Linked List 
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Probability of a pointer in error is p 

z is a dummy variable 



VDDL : XOR encoding strategy 
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Back pointer in every node Nx.b → Nx+1 ⊕ Nx-1 = Nx.v  

Permits traversal forwards & backwards using only one pointer 

Must always remember last two nodes visited 

Forward pointer now provides additional redundancy  



Results for list of 100 nodes 
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