

Winter 2016
(c) Ian Davis

Predicting performance

- Operational Analysis:
- Operational analysis of network models
- Also
- Markov models

Numbers Everyone Should Know

```
Ll cache reference
Branch mispredict
L) cache reference
Mutex lock/unlock
Main memory reference
Compress 1K w/cheap compression algorithm 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns 250\mus
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CN->Netherlands->CN 150,000,000 ns 150ms
```

https://www.youtube.com/watch?v=modXC5IWTJI

The Operational Analysis of Queueing Network Models*

PETER J. DENNING

Computer Sciences Department, Purdue Unwersity, West Lafayette, Indıana 47907
JEFFREY P. BUZEN
BGS Systems, Inc., Box 128, Lincoln, Massachusetts 01773

Queueing network models have proved to be cost effective tools for analyzing modern computer systems. This tutornal paper presents the basic results using the operational approach, a framework which allows the analyst to test whether each assumption is met in a given system. The early sections describe the nature of queueing network models and their applications for calculating and predicting performance quantities The basic performance quantities-such as utilizations, mean queue lengths, and mean response times-are defined, and operational relationships among them are derived Following this, the concept of job flow balance is introduced and used to study asymptotic throughputs and response times. The concepts of state transition balance, one-step behavior, and homogeneity are then used to relate the proportions of time that each system state is occupied to the parameters of job demand and to device characteristics Efficient methods for computing basic performance quantities are also described. Finally the concept of decomposition is used to sumplify analyses by replacing subsystems with equivalent devices. All concepts are illustrated liberally with examples

Keywords and Phrases balanced system, bottlenecks, decomposability, operational analysis, performance evaluation, performance modeling, queueing models, queueing networks, response times, saturation.

Operational analysis

- Material drawn from:
- ACM Computing Surveys
- Special issue on queuing network models
- Volume 10, Number 3, September 1978
- P.J. Denning \& J. P. Buzen
- The operational analysis of network models
- (Available from the CS446 home page)

Basic ABC of quantities

- A: Total number of [A]rrivals
- B: Total time system [B]usy
- C: Total number of [C]ompletions
- T: Total time spent monitoring above

Basic derived quantities

- Arrival rate λ
- A/T (arrivals/second)
- Departure rate X (exit rate)
- C/T (completions/second)
- Server utilization U
$-\mathrm{B} / \mathrm{T}$ (fraction)
- Mean service time S per task
- B/C (seconds/completion)

Figure 1 Single server queueing system.

Computing Surveys, Vol 10, No 3, September 1978

Utilization law

- Utilization $=$ Completion Rate * Service Time
- $\mathrm{U}=\mathrm{B} / \mathrm{T}=(\mathrm{C} / \mathrm{T}) *(\mathrm{~B} / \mathrm{C})=\mathrm{XS}$
- Example:
- 3 jobs per second and each job needs 0.1 secs
- Utilization of system $=3 * 0.1=0.3(30 \%)$
- I.E. how much work is done per unit of time

Job flow balance assumption

- Total arrivals $=$ Total Completions
- Reasonable since (A-C)/C $\rightarrow 0$ as $\mathrm{T} \rightarrow \infty$
- $\lambda=\mathrm{X}$
- $\mathrm{U}=\lambda \mathrm{S}$ (steady state limit theorem)
- i.e. Can use arrival rate rather than departure rate
- Have λ or X can assume the other is same

Generalizing to network

- Let there be $n \geq 1$ services (servers)
- Arrival rate $\lambda_{i}=A_{i} / T$ (at server i)
- Departure rate $X_{i}=C_{i} / T$ (from server i)
- Server utilization $\mathrm{U}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}} / \mathrm{T}$
- Mean service time $S_{i}=B_{i} / C_{i}$
- Routing frequency $\left(\mathrm{C}_{\mathrm{ik}}\right.$ task goes $\left.\mathrm{i} \rightarrow \mathrm{k}\right)$

$$
\begin{aligned}
& -q_{i k}=C_{i k} / C_{i} \text { if } i=1 . . n \\
& -q_{0 k}=A_{0 k} / A_{0} \text { if } i=0
\end{aligned}
$$

Figure 5. Central server network.

Observations

- $\mathrm{C}_{\mathrm{i}}=\sum_{\mathrm{k}=0 . . \mathrm{n}} \mathrm{C}_{\mathrm{ik}} \quad(\mathrm{i}=1 . . \mathrm{n})$
- $\mathrm{C}_{0}=\sum_{\mathrm{k}=0 . \mathrm{n}} \mathrm{C}_{\mathrm{k} 0}$ (completions from system)
- $\mathrm{A}_{0}=\sum_{\mathrm{k}=0 . . \mathrm{n}} \mathrm{A}_{0 \mathrm{k}} \quad$ (arrivals at system)
- $X_{0}=\Sigma_{k=1 . . n} X_{k} q_{k 0}$
- (Output flow law)
- $\Sigma_{\mathrm{k}=0 . \mathrm{n}} \mathrm{q}_{\mathrm{ik}}=1$ (for each i)
- Behaves like a probability estimate

Queuing at device

- $\mathrm{W}_{\mathrm{i}}=\Sigma_{\mathrm{t}=0 . \mathrm{n}}$ queue $\operatorname{lth}(\mathrm{t})$
- ie. Area under the graph (total job seconds)
- $\mathrm{Q}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}} / \mathrm{T}$ queue behaviour
- ie. Average queue length
- $\mathrm{R}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}} / \mathrm{C}_{\mathrm{i}}$
- ie. mean waiting time at i
- Also called the response time

- $\mathrm{Q}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}} \quad$ (Little's law)
$-\mathrm{Q}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}} / \mathrm{T}=\left(\mathrm{C}_{\mathrm{i}} / \mathrm{T}\right) *\left(\mathrm{~W}_{\mathrm{i}} / \mathrm{C}_{\mathrm{i}}\right)=\mathrm{X}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}}$
(c) Ian Davis

Figure 8. Example of a device's operation.

- $A=7$ jobs; $B=16 \mathrm{sec} ; \mathrm{C}=10$ jobs (3 at start) $; \mathrm{T}=20$ secs
- $\mathrm{W}=40$ job secs; $\mathrm{Q}=40 / 20=\operatorname{avg} 2$ jobs (load $=2.0$)
- $\mathrm{R}=\mathrm{W} / \mathrm{C}=40 / 10=4 \operatorname{secs}$
- $\mathrm{U}=\mathrm{B} / \mathrm{T}=16 / 20=80 \%$

Visit ratios

- Assuming $X_{i}=\sum_{k=0 . . n} X_{k} q_{k i}$
- ie. balanced flow
- $\mathrm{V}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} / \mathrm{X}_{\mathrm{o}}=\mathrm{C}_{\mathrm{i}} / \mathrm{C}_{\mathrm{o}}$
- (mean requests per task for i)
- (mean completions at i per task completion)
- $\mathrm{X}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} \mathrm{X}_{\mathrm{o}} \quad$ (Forced flow law)
- Just rearranging above equation

Visit ratio example

- Tasks generate on average 5 disk requests
- Disk throughput is 10 requests/second
- What is system throughput..

Answer

- Tasks generate on average 5 disk requests
- Disk throughput is 10 requests/second
- What is system throughput..
- $\mathrm{X}_{\mathrm{o}}=\mathrm{X}_{\mathrm{i}} / \mathrm{V}_{\mathrm{i}}=10$ (request $/ \mathrm{sec}$) $/ 5$ (requests $\left./ \mathrm{job}\right)$
- ie. 2 jobs per second
- N.B. Using "measured" disk throughput
- N.B. All other measures irrelevant....

Interactive Response Time

- Suppose M users are using terminals
- Mean wait time per user at terminal R
- Mean think time per user Z
- Mean thinking and waiting time $(\mathrm{R}+\mathrm{Z})$
- $(R+Z) X_{o}=M=$ mean number of users
- (by Little's law $Q_{i}=X_{i} R_{i}$)
- $\mathrm{R}=\left(\mathrm{M} / \mathrm{X}_{\mathrm{o}}-\mathrm{Z}\right)$
- (Interactive Response Time Formula)

Interactive Response Time

- $\mathrm{R}=\left(\sum_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{Q}_{\mathrm{i}}\right) / \mathrm{X}_{\mathrm{o}}$
- (eg. Apply Little's law to system)
$-\Sigma_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{Q}_{\mathrm{i}}=\sum_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{W}_{\mathrm{i}} / \mathrm{T}$ (treat all queues as one)
- but $\mathrm{Q}_{\mathrm{i}} / \mathrm{X}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}}$ since
$-\mathrm{Q}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}}$ (Little's law)
$-\mathrm{X}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} \mathrm{X}_{0}$ (Forced flow law)
$-\mathrm{Q}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} \mathrm{X}_{0} \mathrm{R}_{\mathrm{i}}$
- Therefore $\mathrm{R}=\sum_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{V}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}}$
- (General response time law: Total delay is sum of each delay)

Example 1

- Parameters:
- Each task generates 20 disk request
- Disk utilization is 50%
- Mean service time at disk 25 millisecs
- 25 terminals (think time is 18 seconds)
- What is the terminal response time?

Example 1

- Parameters:
- Each task generates 20 disk request
- Disk utilization is 50%
- Mean service time at disk 25 millisecs
- 25 terminals (think time is 18 seconds)
- $\mathrm{X}_{\mathrm{o}}=\mathrm{X}_{\mathrm{d}} / \mathrm{V}_{\mathrm{d}}=\left(\mathrm{U}_{\mathrm{d}} / \mathrm{S}_{\mathrm{d}}\right) / \mathrm{V}_{\mathrm{d}}=(0.5 / 0.025) / 20$
- therefore $\mathrm{X}_{\mathrm{o}}=1$ job/second
- $\mathrm{R}=\left(\mathrm{M} / \mathrm{X}_{\mathrm{o}}\right)-\mathrm{Z}$
- therefore $\mathrm{R}=(25 / 1)-18=7$ seconds

Example 2

- Parameters:
- 40 terminals (think time is 15 seconds)
- Interactive response time is 5 seconds
- Disk mean service time is 40 milliseconds
- Each interactive task generates 10 disk I/O
- Each batch job generates 5 disk I/O
- Disk utilization is 90%
- Want to calculate throughput of batch and lower bound on interactive response time if batch throughput is tripled.

Example 2 continued

- Interactive throughput

$$
-\mathrm{X}_{\mathrm{I}, 0}=\mathrm{M} /(\mathrm{Z}+\mathrm{R})=40 /(15+5)=2 \mathrm{jobs} / \text { second }
$$

- Disk j throughput $\{$ ie. interactive + batch $\}$
$-X_{j}=X_{I, j}+X_{B, \mathrm{j}}=U_{\mathrm{j}} / S_{\mathrm{j}}=0.9 / 0.040=22.5$
requests/second $\{$ by utilization law\}
- $\mathrm{X}_{\mathrm{I}, \mathrm{j}}=\mathrm{V}_{\mathrm{I}, \mathrm{j}} \mathrm{X}_{\mathrm{I}, 0}=10 * 2=20 \mathrm{req} / \mathrm{sec}$
- \{by forced flow law\}
- $\mathrm{X}_{\mathrm{B}, \mathrm{j}}=\mathrm{X}_{\mathrm{j}}-\mathrm{X}_{\mathrm{I}, \mathrm{j}}=22.5-20=2.5 \mathrm{req} / \mathrm{sec}$
- $X_{B, 0}=X_{B, \mathrm{j}} / V_{B, \mathrm{j}}=2.5 / 5=0.5 \mathrm{jobs} / \mathrm{sec}$.

Example 2 continued

- Tripling $X_{B, 0}=1.5$ batch jobs per second
- Disk j batch throughput
$-\mathrm{X}_{\mathrm{B}, \mathrm{j}}=\mathrm{V}_{\mathrm{B}, \mathrm{j}} * \mathrm{X}_{\mathrm{B}, 0}=5 * 1.5=7.5 \mathrm{req} / \mathrm{sec}$
- Maximum completion rate at disk
$-1 / \mathrm{S}_{\mathrm{i}}=25$ requests $/$ second $(1$ request $=0.04 \mathrm{sec})$
$-\mathrm{X}_{\mathrm{I}, \mathrm{j}} \leq 25-7.5=17.5$ requests/second
- $\mathrm{X}_{\mathrm{I}, 0}=\mathrm{X}_{\mathrm{I}, \mathrm{j}} / \mathrm{V}_{\mathrm{I}, \mathrm{j}} \leq 17.5 / 10=1.75 \mathrm{task} / \mathrm{sec}$
- $\mathrm{R}_{\mathrm{I}}=\left(\mathrm{M} / \mathrm{X}_{\mathrm{I}, 0}\right)-\mathrm{Z} \geq(40 / 1.75)-15=7.9 \mathrm{sec}$
- Assuming M,Z, V_{i} \& S_{i} unchanged

Example 3

- System A
- 16 terminals
- 25 disk I/O per job
- 80% disk utilization
- service time 0.042 sec
- Think time 15 secs
- System B
- 10 terminals
- 16 disk I/O per job
- 40% disk utilization
- service time 0.042 sec
- Think time 15 secs

What are the response times for the current systems? What if A \& B's terminals and software are moved to a consolidate system C which uses the same disk drive?

Example 3 throughputs

- Since $\mathrm{U}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \mathrm{S}_{\mathrm{i}} \& \mathrm{X}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} \mathrm{X}_{\mathrm{o}}=>\mathrm{X}_{\mathrm{o}}=\mathrm{U}_{\mathrm{i}} / \mathrm{V}_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}$
- $\mathrm{X}_{\mathrm{A}, 0}=.8 /(25 * 0.042) \approx 0.77 \mathrm{jobs} / \mathrm{sec}$
- $\mathrm{X}_{\mathrm{B}, 0}=.4 /\left(16^{*} 0.042\right) \approx 0.60 \mathrm{jobs} / \mathrm{sec}$
- Why is $\mathrm{X}_{\mathrm{B}, 0}<\mathrm{X}_{\mathrm{A}, 0}$ if $\mathrm{V}_{\mathrm{B}, \mathrm{i}}<\mathrm{V}_{\mathrm{A}, \mathrm{i}}$?
- Because utilization lower, but why is this?

Why is utilization 40%

- Is a higher throughput possible?
- Minimum R is $\mathrm{V}_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}=16 * 0.042=.672 \mathrm{sec}$
- $\operatorname{Max} \mathrm{X}_{\mathrm{B}, 0}=\mathrm{M} /(\mathrm{Z}+\mathrm{R})=10 /(15+.672)$

$$
=0.638>0.6 \text { jobs per sec }
$$

- What is the highest $\mathrm{U}_{\mathrm{B}, \mathrm{i}}$ possible?
- $\mathrm{U}_{\mathrm{i}}=\mathrm{X}_{\mathrm{o}} \mathrm{V}_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}=0.638^{*} 16 * 0.042=42.8 \%$
- So in essence we can't do enough work at 10 terminals to keep the drive busy, given the 15 second think time.

Example 3 response times

- Since $\mathrm{R}=\left(\mathrm{M} / \mathrm{X}_{0}\right)-\mathrm{Z}$
- $\mathrm{R}_{\mathrm{A}}=(16 / 0.77)-15=5.779 \mathrm{sec}$
- $\mathrm{R}_{\mathrm{B}}=(10 / 0.60)-15=1.666 \mathrm{sec}$
- Fraction of I / O performed by A

$$
\begin{gathered}
-\mathrm{X}_{\mathrm{A}, \mathrm{i}} \mathrm{~T} /\left(\mathrm{X}_{\mathrm{A}, \mathrm{i}}+\mathrm{X}_{\mathrm{B}, \mathrm{i}}\right) \mathrm{T}=\mathrm{X}_{\mathrm{A}, \mathrm{i}} /\left(\mathrm{X}_{\mathrm{A}, \mathrm{i}}+\mathrm{X}_{\mathrm{B}, \mathrm{i}}\right) \\
=\mathrm{U}_{\mathrm{A}, \mathrm{I}} /\left(\mathrm{U}_{\mathrm{A}, \mathrm{i}}+\mathrm{U}_{\mathrm{B}, \mathrm{i}}\right)=80 / 120=2 / 3 \\
- \text { since } \mathrm{X}_{\mathrm{i}}=\mathrm{U}_{\mathrm{i}} / \mathrm{S}_{\mathrm{i}} \& \mathrm{~S}_{\mathrm{A}, \mathrm{i}}=\mathrm{S}_{\mathrm{B}, \mathrm{i}}
\end{gathered}
$$

Example 3 consolidate machine

- $\mathrm{U}_{\mathrm{A}, \mathrm{i}}+\mathrm{U}_{\mathrm{B}, \mathrm{i}}=0.8+0.4=1.2=120 \%>100 \%$
- Can assume $\mathrm{U}_{\mathrm{C}, \mathrm{i}} \approx 100 \%$
- Therefore $\mathrm{X}_{\mathrm{C}, \mathrm{i}} \approx 1 / \mathrm{S}_{\mathrm{i}}=1 / .042=24 \mathrm{IO} / \mathrm{sec}$
- $\mathrm{X}_{\mathrm{A}, \mathrm{i}}=24 *(0.8 /(0.8+0.4))=(2 / 3)=16 \mathrm{IO} / \mathrm{sec}$
- $\mathrm{X}_{\mathrm{B}, \mathrm{i}}=24 *(0.4 /(0.8+0.4))=(1 / 3)=8 \mathrm{IO} / \mathrm{sec}$
- $\mathrm{X}_{\mathrm{A}, 0}=\mathrm{X}_{\mathrm{A}, \mathrm{i}} / \mathrm{V}_{\mathrm{A}, \mathrm{i}}=16 / 25=.64 \mathrm{jobs} / \mathrm{sec}$
- $X_{B, 0}=X_{B, I} / V_{B, i}=8 / 16=.5$ jobs $/ \mathrm{secs}$

Example 3 response times

- Since $R=\left(M / X_{0}\right)-Z$
- $\mathrm{R}_{\mathrm{A}}=(16 / .64)-15=10 \operatorname{secs}$
- $\mathrm{R}_{\mathrm{B}}=(10 / .5)-15=5 \operatorname{secs}$
- N.B. M is not $16+10$ because looking at the throughputs $X_{\mathrm{A}, 0}$ and $\mathrm{X}_{\mathrm{B}, 0}$ separately. We are viewing each subsystem as a closed system.

The useful equations

- Utilization law (Very useful)

$$
-\mathrm{U}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}} \quad\left\{\mathrm{U}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}} \text { if assume } \lambda_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}\right\}
$$

- Little's law

$$
-Q_{i}=X_{i} R_{i}
$$

- Forced flow law (Very useful)

$$
-X_{i}=V_{i} X_{o}
$$

- General response time law

$$
-\mathrm{R}=\sum_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{~V}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}}
$$

- Interactive response time law (Very useful)
$-\mathrm{R}=\left(\mathrm{M} / \mathrm{X}_{0}\right)-\mathrm{Z}$

Bottleneck analysis

- Let N be the number of tasks/jobs running
- what happens as N increases
- Assuming $\mathrm{V}_{\mathrm{i}} \& \mathrm{~S}_{\mathrm{i}}$ remain unchanged then:
$-\mathrm{X}_{\mathrm{i}} / \mathrm{X}_{\mathrm{k}}=\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{k}}$ and $\mathrm{U}_{\mathrm{i}} / \mathrm{U}_{\mathrm{k}}=\mathrm{V}_{\mathrm{i}} \mathrm{S}_{\mathrm{i}} / \mathrm{V}_{\mathrm{k}} \mathrm{S}_{\mathrm{k}}$ unchanged
- Device i is saturated if $\mathrm{U}_{\mathrm{i}}=100 \%$
- Since $\mathrm{U}_{\mathrm{i}} / \mathrm{U}_{\mathrm{k}}$ constant as $\mathrm{N} \rightarrow \infty \mathrm{U}_{\mathrm{i}}$ increase by the same fraction when $\mathrm{N} \rightarrow \mathrm{N}+1$
- The device with largest U_{i} (or equivalently the largest $\mathrm{V}_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}$) will be the first to saturate.

Bottleneck response time

- Response time obviously a minimum when only one task.
- In this case $\mathrm{R}_{\mathrm{o}}=\Sigma_{\mathrm{i}} \mathrm{V}_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}$
- System saturation N^{*} occurs when N forces some task to be queued at some device b.
- If $\mathrm{U}_{\mathrm{b}}=1 \Rightarrow \mathrm{X}_{\mathrm{b}} \mathrm{S}_{\mathrm{b}}=1 \Rightarrow \mathrm{X}_{0} \mathrm{~V}_{\mathrm{b}} \mathrm{S}_{\mathrm{b}}=1 \Rightarrow$
- $\mathrm{X}_{0}=1 / \mathrm{V}_{\mathrm{b}} \mathrm{S}_{\mathrm{b}}$
- $\mathrm{N}^{*}=\mathrm{R}_{\mathrm{o}} \mathrm{X}_{0}=\mathrm{R}_{\mathrm{o}} / \mathrm{V}_{\mathrm{b}} \mathrm{S}_{\mathrm{b}}$
- $\mathrm{M}=\mathrm{N}^{*}+\mathrm{Z} / \mathrm{V}_{\mathrm{b}} \mathrm{S}_{\mathrm{b}}$ will saturate the system.

Markov models

- System viewed as a set of states $S_{0} \ldots S_{n}, S_{-1}$
- S_{0} is start state, and S_{-1} final state
- Probability $p_{i k}$ transition between S_{i} and S_{k}
- Probabilities constant for lifetime of model
- $\sum_{\mathrm{i}=-1 . . \mathrm{n}} \mathrm{p}_{\mathrm{ik}}=1$
- $\mathrm{p}_{-1-1}=1$ (Once finished keep finishing)

Markov modelling goals

- Determine probability of entering S_{i}
- Determine expected number of transitions before arriving in state S_{i}
- Flag certain state transitions as significant
- Counting achieved by multiplying state transition probability by dummy variables

Markov modelling reduction

- For all i,k reduce multiple transitions $\mathrm{S}_{\mathrm{i}} \rightarrow \mathrm{S}_{\mathrm{k}}$
- Sum the probabilities of each such transition
- Select $\mathrm{S}_{\mathrm{i}}: \mathrm{S}_{\mathrm{i}}$ does not move directly to S_{i}
- Eliminate S_{i} from the model using:
- For all h,k : $\mathrm{S}_{\mathrm{h}} \rightarrow \mathrm{S}_{\mathrm{i}} \rightarrow \mathrm{S}_{\mathrm{k}}$ add $\mathrm{S}_{\mathrm{h}} \rightarrow \mathrm{S}_{\mathrm{k}}$ with $\mathrm{p}_{\mathrm{hi}} \mathrm{p}_{\mathrm{ik}}$
- When all states loop eliminate p_{ii} if $\mathrm{i} \neq-1$
- For all $\mathrm{k} \neq \mathrm{i} \mathrm{p}_{\mathrm{ik}}=\mathrm{p}_{\mathrm{ik}} * 1 /(1-\mathrm{G})$ where G generating function describing p_{ii}
- Terminate when have G for $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{-1}$

Why 1/(1-G)

- We can go through the loop 0 to ∞ times
- Each time with probability G
- Sum these probabilities

$$
\begin{aligned}
& -G^{0}+G^{1}+G^{2}+G^{3}+G^{4} \cdots G^{\infty} \\
& -1+G+G^{2}+G^{3}+G^{4} \cdots G^{\infty}=X \\
& -X * G+1=X \\
& -1=(1-G) * X \\
& -X=1 /(1-G)
\end{aligned}
$$

Use of generating function

- Set all dummy variables of no interest to 1
- Probability that variable x visited ' n ' times:
- Expand G as polynomial in x
- Coefficient associated with X^{n} is probability
- Probability at most ' n ' is sum of first $n+1$ coefficients etc.

Markov example 1

- Software accesses a disk drive and a tape - accesses the disk drive S_{1} with probability 0.2
- accesses the tape drive S_{2} with probability 0.1
- Access pattern is independent of history
- Markov model:
$-\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \mathrm{p}_{01}=0.2 \quad \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{02}=0.1 \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{0-1}=0.7$
$-\mathrm{S}_{1} \rightarrow \mathrm{~S}_{1} \mathrm{p}_{11}=0.2 \quad \mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{12}=0.1 \mathrm{~S}_{1} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{1-1}=0.7$
$-\mathrm{S}_{2} \rightarrow \mathrm{~S}_{1} \mathrm{p}_{21}=0.2 \quad \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{22}=0.1 \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{2-1}=0.7$

Add in dummy variable

- Let d count disk accesses and t tape accesses
- Markov model:

$$
\begin{aligned}
& -\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \mathrm{p}_{01}=0.2 \mathrm{~d}_{0} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{02}=0.1 \mathrm{t}_{0} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{0-1}=0.7 \\
& -\mathrm{S}_{1} \rightarrow \mathrm{~S}_{1} \mathrm{p}_{11}=0.2 \mathrm{~d} \mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{12}=0.1 \mathrm{t}_{1} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{1-1}=0.7 \\
& -\mathrm{S}_{2} \rightarrow \mathrm{~S}_{1} \mathrm{p}_{21}=0.2 \mathrm{~d} \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{22}=0.1 \mathrm{t}_{2} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{2-1}=0.7
\end{aligned}
$$

- Eliminating $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{1}$ and $\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2}$:

$$
\begin{aligned}
& -\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \mathrm{p}_{01}=0.2 \mathrm{~d} \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{02}=0.1 \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{0-1}=0.7 \\
& -\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{12}=0.1 \mathrm{t}(1 / 1-0.2 \mathrm{~d}) \mathrm{S}_{1} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{1-1}=0.7(1 / 1-0.2 \mathrm{~d}) \\
& -\mathrm{S}_{2} \rightarrow \mathrm{~S}_{1} \mathrm{p}_{11}=0.2 \mathrm{~d}(1 / 1-0.1 \mathrm{~d}) \mathrm{S}_{2} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{2-1}=0.7(1 / 1-0.1 \mathrm{~d})
\end{aligned}
$$

- Eliminating S_{1} :

$$
\begin{aligned}
& -\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{01} * \mathrm{p}_{12}+\mathrm{p}_{02}=.2 \mathrm{~d} * .1 \mathrm{t}(1 / 1-.2 \mathrm{~d})+.1 \mathrm{t} \\
& -\mathrm{S}_{0} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{0-1}=0.2 \mathrm{~d} * 0.7(1 / 1-0.2 \mathrm{~d})+0.7 \\
& -\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{21} * \mathrm{p}_{12}=.2 \mathrm{~d}(1 / 1-.1 \mathrm{~d}) * .1 \mathrm{t}(1 / 1-.2 \mathrm{~d}) \\
& -\mathrm{S}_{2} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{2-1}=.7(1 / 1-.1 \mathrm{~d})
\end{aligned}
$$

- Eliminating $\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2}$:

$$
\begin{aligned}
& -\mathrm{S}_{2} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{2-1}=(1 / 1-.2 \mathrm{~d}(1 / 1-.1 \mathrm{~d}) * .1 \mathrm{t}(1 / 1-.2 \mathrm{~d})) \\
& \quad * .7(1 / 1-.1 \mathrm{~d})
\end{aligned}
$$

- Eliminating S_{2} computing $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{-1}$ i.e. G :

$$
\begin{array}{r}
-\mathrm{p}_{02} \mathrm{p}_{2-1}+\mathrm{p}_{0-1}=\left(.2 \mathrm{~d}^{*} .1 \mathrm{t}(1 / 1-.2 \mathrm{~d})+.1 \mathrm{t}\right) *(1 / 1- \\
.2 \mathrm{~d}(1 / 1-.1 \mathrm{~d}) * .1 \mathrm{t}(1 / 1-.2 \mathrm{~d})) * .7(1 / 1-.1 \mathrm{~d})+.7
\end{array}
$$

$$
-\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{02}=.1 \mathrm{t} \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{0-1}=.7
$$

$$
-\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2} \mathrm{p}_{12}=.1 \mathrm{t}(1 / 1-.2 \mathrm{~d}) \mathrm{S}_{1} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{1-1}=.7(1 / 1-.2 \mathrm{~d})
$$

$$
-\mathrm{S}_{2} \rightarrow \mathrm{~S}_{1} \mathrm{p}_{11}=.2 \mathrm{~d}(1 / 1-.1 \mathrm{~d}) \mathrm{S}_{2} \rightarrow \mathrm{~S}_{-1} \mathrm{p}_{2-1}=.7(1 / 1-.1 \mathrm{~d})
$$

In Practice

- Write a program (or ask me for one)
- Input
- state transitions
- probabilities * dummy
- Output G
- In a format usable by Maple (or whatever)
- Solve questions of interest using Maple etc.

Probability of ' n ' disk accesses

- t:=1; taylor(G, d);
- . 7777777778
$+.1728395062$
d + $.03840877915 \mathrm{~d}^{2}+.008535284255 \mathrm{~d}^{3}+$ $.001896729834 \mathrm{~d}^{4}+.0004214955188 \mathrm{~d}^{5}+$ $\mathrm{O}\left(\mathrm{d}^{6}\right)$
- Truncate and set $d=1$ for \leq ' n ' accesses
- Could parameterize $0.2=\mathrm{p}$ and $0.1=\mathrm{q}$ and $0.7=(1-p-q)$

Average number of disk accesses

- Let p_{k} be the probability of exactly k accesses
- $\mathrm{G}=\Sigma_{\mathrm{k}=0 . . \infty} \mathrm{p}_{\mathrm{k}} * \mathrm{~d}^{\mathrm{k}}$
- $\mathrm{G}^{\prime}=\operatorname{diff}(\mathrm{G})$ w.r.t variable d
- $\mathrm{G}^{\prime}=\Sigma_{\mathrm{k}=1 . . \infty} \mathrm{k} * \mathrm{p}_{\mathrm{k}} * \mathrm{~d}^{\mathrm{k}-1}$
$-0^{*} \mathrm{p}(\text { miss })^{*} \mathrm{~d}^{0}+1^{*} \mathrm{p}(\text { once })^{*} \mathrm{~d}^{1}+2 * \mathrm{p}($ twice $){ }^{*} \mathrm{~d}^{2} \ldots$
- Then setting $d=1$ to remove all d
- This becomes average number of disk accesses
- $\mathrm{G}^{\prime}=0.2857142857$ (Average \# disk accesses)

Variance in number disk accesses

- $\mathrm{V}($ accesses $)=\mathrm{E}\left(\right.$ accesses $\left.^{2}\right)-\mathrm{E}^{2}($ accesses $)$
$-G^{\prime}=\operatorname{diff}\left(G^{\prime}\right)$
$-\mathrm{G}^{\prime}=\Sigma_{\mathrm{k}=2 . . \infty} \mathrm{k} *(\mathrm{k}-1) * \mathrm{p}_{\mathrm{k}} * \mathrm{~d}^{\mathrm{k}-2}$
$-\quad=\Sigma_{\mathrm{k}=2 . . \infty} \mathrm{k}^{2} * \mathrm{p}_{\mathrm{k}} * \mathrm{~d}^{\mathrm{k}-2}-\Sigma_{\mathrm{k}=2 . . \infty} \mathrm{k} * \mathrm{p}_{\mathrm{k}} * \mathrm{~d}^{\mathrm{k}-2}$
$-\quad=\mathrm{E}\left(\operatorname{accesses}^{2}\right) \quad-\quad \mathrm{E}($ accesses $)$
- So variance $=\left(G^{\prime \prime}+G^{\prime}\right)-G^{\prime} * G^{\prime}$
- Now set d :=1
$-\left(G^{\prime}+G^{\prime}\right)-G^{\prime} * G^{\prime}=0.3673469388$ (Variance)

Detecting uncorrectable error in a Double Linked List

Double-linked list			
This State	Next State	Generating Function	Comments
0	0	$\mathrm{z}(1-\mathrm{p})$	$\mathrm{N}_{\mathrm{x}+1} \cdot \mathrm{~b}_{1}=\mathrm{N}_{\mathrm{x}}$
0	1	p	$\mathrm{N}_{\mathrm{x}+1} \cdot \mathrm{~b}_{1} \neq \mathrm{N}_{\mathrm{x}}$
1	1	$\mathrm{Z}(1-\mathrm{p})$	$\mathrm{N}_{\mathrm{x}-1} \cdot \mathrm{f}_{1}=\mathrm{N}_{\mathrm{x}}$
1	-1	p	$\mathrm{N}_{\mathrm{x}-1} \cdot \mathrm{f}_{1} \neq \mathrm{N}_{\mathrm{x}}$

Probability of a pointer in error is p z is a dummy variable
(c) Ian Davis

VDDL : XOR encoding strategy

Back pointer in every node $\mathrm{N}_{\mathrm{x}} \cdot \mathrm{b} \rightarrow \mathrm{N}_{\mathrm{x}+1} \oplus \mathrm{~N}_{\mathrm{x}-1}=\mathrm{N}_{\mathrm{x}} \cdot \mathrm{v}$
Permits traversal forwards \& backwards using only one pointer Must always remember last two nodes visited Forward pointer now provides additional redundancy

Virtual double-linked list (VDLL)			
0	0	$\mathrm{z}(1-\mathrm{p})$	$\mathrm{N}_{\mathrm{x}+1} \cdot \mathrm{v} \oplus \mathrm{N}_{\mathrm{x}+2}=\mathrm{N}_{\mathrm{x}}$
0	1	p	$\mathrm{N}_{\mathrm{x}+1} \cdot \mathrm{v} \oplus \mathrm{N}_{\mathrm{x}+2} \neq \mathrm{N}_{\mathrm{x}}$
1	1	$\mathrm{z}(1-\mathrm{p})$	$\mathrm{N}_{\mathrm{x}-1} \cdot \mathrm{f}_{1}=\mathrm{N}_{\mathrm{x}}$
1	2	p	$\mathrm{N}_{\mathrm{x}-1} \cdot \mathrm{f}_{1} \neq \mathrm{N}_{\mathrm{x}}$
2	1	$\mathrm{z}(1-\mathrm{p})$	$\mathrm{N}_{\mathrm{x}-1} \cdot \mathrm{v} \oplus \mathrm{N}_{\mathrm{x}-2}=\mathrm{N}_{\mathrm{x}}$
2	-1	p	$\mathrm{N}_{\mathrm{x}-1} \cdot \mathrm{v} \oplus \mathrm{N}_{\mathrm{x}-2} \neq \mathrm{N}_{\mathrm{x}}$

Results for list of 100 nodes

(c) Ian Davis

