Volume
10
Number
3

September
1978

G.S. Graham

P.J. Denning
J. P. Buzen

C. A. Rose

K. M. Chandy
C. H. Sauer

J. P. Buzen
Y. Bard

J. W. Wong

R. R. Muntz

Winter 2016 (¢) Ian Davis

Predicting performance

* Operational Analysis:

— Operational analysis of network models

e Also

— Markov models

Winter 2016 (¢) Ian Davis

Numbers Everyone Should Know

Ll cache reference
Branch mispredict
L7 cache reference
Mutex lock/unlock

Main memory reference

Compress 1K w/cheap compression algorithm 3,
Send 2K bytes over 1 Gbps network 20,
Read 1 MP sequentially from memory 250,
Round trip within same datacenter 500,
Disk seek 10,000,
Read 1 MB sequentially from disk 20,000,
Send packet CA->Netherlands->CA 150,000,

0.5 ns

5
5

25
100
000
000
000
000
000
000
000

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

ns

https://www.youtube.com/watch?v=mod XC5IWTJI

Winter 2016 (¢) Ian Davis

250us

150ms

The Operational Analysis of Queueing Network Models*

PETER J. DENNING
Computer Sciences Department, Purdue University, West Lafayette, Indiana 47907

JEFFREY P. BUZEN
BGS Systems, Inc., Box 128, Lincoln, Massachusetts 01773

Queueing network models have proved to be cost effective tools for analyzing modern
computer systems. This tutonial paper presents the basic results using the operational
appmach a framework which allows the analyst to test whether each assumption is met
in a given system. The early sections describe the nature of queueing network models and
their applications for calculating and predicting performance quantities The basic
performance quantities—such as utilizations, mean queue lengths, and mean response
times—are defined, and operational relationships among them are derived Following this,
the concept of job flow balance is introduced and used to study asymptotic throughputs
and response tumes. The concepts of state transition balance, one-step behavior, and
homogeneity are then used to relate the proportions of time that each system state 15
occupied to the parameters of job demand and to device charactenstics Efficient methods
for computing basic performance quantities are also described. Finally the concept of
decomposition is used to simphfy analyses by replacing subsystems with equavalent
devices. All concepts are illustrated liberally with examples

Keywords and Phrases- balanced system, bottlenecks, decomposability, operational
analysis, performance evaluation, performance modeling, queuemg models, queueing
networks, response times, saturation,

Winter 2016 (¢) Ian Davis

Operational analysis

e Material drawn from:

 ACM Computing Surveys
— Special 1ssue on queuing network models
— Volume 10, Number 3, September 1978
— P.J. Denning & J. P. Buzen

— The operational analysis of network models

* (Available from the CS446 home page)

Winter 2016 (¢) Ian Davis

Basic ABC of quantities

B

. Total number of [A]rrivals

—~

I'otal time system [BJusy

B

I'otal number of [Clompletions

= Q%2

la

['otal time spent monitoring above

Winter 2016 (¢) Ian Davis

Basic derived quantities

* Arrival rate A
— A/T (arrivals/second)

* Departure rate X (exit rate)
— C/T (completions/second)

 Server utilization U
— B/T (fraction)

* Mean service time S per task
— B/C (seconds/completion)

Winter 2016 (¢) Ian Davis

queue

B, T
FIGURE 1 Single server queueing system.

Computing Surveys, Vol 10, No 3, September 1978

Winter 2016 (¢) Ian Davis

Utilization law

« Utilization = Completion Rate * Service Time
« U=B/T=(C/T) * (B/C)= XS
— Example:

— 3 jobs per second and each job needs 0.1 secs
— Utilization of system =3 * 0.1 = 0.3 (30%)

— ILE. how much work is done per unit of time

Winter 2016 (c) Ian Davis 9

Job flow balance assumption

 Total arrivals = Total Completions

* Reasonable since (A-C)/C—0asT —
e =X

* U =AS (steady state limit theorem)

— 1.¢. Can use arrival rate rather than departure rate

— Have A or X can assume the other 1s same

Winter 2016 (c) Ian Davis 10

Generalizing to network

» Let there be n>1 services (servers)

* Arrival rate . = A/T (at server 1)

* Departure rate X.= C./T (from server 1)

* Server utilization U, = B./T

* Mean service time S, = B./C.

* Routing frequency (C, task goes 1 — k)
—q, =C, /C ifi=1.n
—qu = Ay /A 1f1=0

Winter 2016 (¢) Ian Davis 11

Xo

Ficure 5 Central server network.

Winter 2016 (¢) Ian Davis

12

Observations

* =2 .,Cx (=l.n)
e C,=2,.,.C, (completions from system)
e A,=2,.,.A, (arrvals at system)
* X0~ 2 1.0 Xk ko
— (Output flow law)

* 2 .9y =1 (for each 1)
» Behaves like a probability estimate

Winter 2016 (c) Ian Davis 13

Queuing at device

W.=2 _, queue Ith(t)
— 1e. Area under the graph (total job seconds)

_ behavi
Qi Wi / T queue behaviour

— 1e. Average queue length

S oo

— Queue
Ri R Wi / Ci Iengthg
— 1€. mean waiting time at 1 :

— Also called the response time ° * " ¥ P

Q.=X. R, (Little’s law)
-Q=W,/T=(C,/T)*(W,;/C) =X, R

Winter 2016 (¢) Ian Davis

14

Example

n (1)

O - N W s ;O
T R T T |

i T VR B Rl e (e
0 5 10 i5 20

Ficure 8. Example of a device’s operation.

« A=7jobs; B=16 sec; C=10 jobs (3 at start);T=20 secs
« W=40 job secs; Q=40/20=avg 2 jobs (load = 2.0)
« R=W/C=40/10=4 secs

« U=B/T =16/20=80%

Winter 2016 (¢) Ian Davis

15

Visit ratios

* Assuming X; =2, , X q
— 1€. balanced flow

« V.=X./X =C,/C,
— (mean requests per task for 1)

— (mean completions at 1 per task completion)

« X.=V. X (Forced flow law)

— Just rearranging above equation

Winter 2016 (¢) Ian Davis

16

Visit ratio example

» Tasks generate on average 5 disk requests
» Disk throughput 1s 10 requests/second
* What is system throughput..

Winter 2016 (¢) Ian Davis

17

Answer

» Tasks generate on average 5 disk requests

» Disk throughput 1s 10 requests/second

* What is system throughput..

« X = X/V.=10(request/sec)/5(requests/job)
* 1e. 2 jobs per second

* N.B. Using “measured” disk throughput

* N.B. All other measures irrelevant.. ..

Winter 2016 (c) Ian Davis 18

Interactive Response Time

* Suppose M users are using terminals

* Mean wait time per user at terminal R

* Mean think time per user Z

* Mean thinking and waiting time (R + Z)

* (R+Z7) X, =M = mean number of users
— (by Little’s law Q. = X. R.)

« R=(M/X,-7)

— (Interactive Response Time Formula)

Winter 2016 (¢) Ian Davis

19

Interactive Response Time

* R=(2 ., Q)X

— (eg. Apply Little’s law to system)

- 2., ,Q =2 _, W./T (treat all queues as one)
* but Q./X_=V.R.since

— Q, = X.R, (Little’s law)

— X, =V, X, (Forced flow law)

~Q-V,X,R
 Therefore R=% _, V. R

— (General response time law: Total delay 1s sum of
cach delay)

Winter 2016 (c) Ian Davis 20

Example 1

* Parameters:
— Each task generates 20 disk request
— Disk utilization 1s 50%
— Mean service time at disk 25 millisecs
— 25 terminals (think time 1s 18 seconds)

* What 1s the terminal response time?

Winter 2016 (¢) Ian Davis

21

Example 1

* Parameters:
— Each task generates 20 disk request
— Disk utilization 1s 50%
— Mean service time at disk 25 millisecs
— 25 terminals (think time 1s 18 seconds)

.« X =X /V,=(U/S,)/V,=(0.5/0.025)/20
— therefore X = 1 job/second

« R=(M/X,)-Z
— therefore R = (25/1) - 18 =7 seconds

Winter 2016 (¢) Ian Davis

22

Example 2

* Parameters:
— 40 terminals (think time 1s 15 seconds)
— Interactive response time 1s 5 seconds
— Disk mean service time 1s 40 milliseconds
— Each interactive task generates 10 disk I/O
— Each batch job generates 5 disk I/0
— Daisk utilization 1s 90%

* Want to calculate throughput of batch and
lower bound on 1nteractive response time 1f
batch throughput 1s tripled.

Winter 2016 (c) Ian Davis 23

Example 2 continued
* Interactive throughput
— X0 = M/(Z+R) = 40/(15 + 5) = 2 jobs/second
* Disk j throughput {ie. interactive + batch }

- X=X, + X5,;=U,;/§,=0.9/0.040 = 22.5
requests/second {by utilization law}

* X, =V Xi,=10*2=20req/sec

— {by forced flow law}
¢ Xp; =X —X;; =22.5-20=2.5req/sec
* Xpo= Xg;/ Vg;=2.5/5=0.5 jobs/sec.

Winter 2016 (c) Ian Davis 24

Example 2 continued
* Tripling X, = 1.5 batch jobs per second
 Disk j batch throughput
— Xg; = Vg; * Xpe=5* 1.5="7.5req/sec
« Maximum completion rate at disk

— 1/S, = 25 requests/second (1 request = 0.04 sec)
— X; £25-7.5=17.5 requests/second

* X=X/ V;<17.5/10=1.75 task/sec

* R;=(M/X,,) - Z=(40/1.75)-15 = 7.9sec
— Assuming M,Z,V. & S. unchanged

Winter 2016 (c) Ian Davis 25

Example 3

System A

16 terminals

25 disk I/O per job
80% disk utilization
service time 0.042sec
Think time 15 secs

* System B

* 10 terminals

* 16 disk I/O per job

* 40% disk utilization
 service time 0.042sec
e Think time 15 secs

What are the response times for the current systems?
What if A & B’s terminals and software are moved to a
consolidate system C which uses the same disk drive?

Winter 2016

(¢) Ian Davis 26

Example 3 throughputs

e Since U=XS.& X=VX =>X =U/V.S.
¢ Xuo=.8/(257*0.042) = 0.77 jobs/sec
¢ Xgo=.4/(16 *0.042) = 0.60 jobs/sec

* Whyis X, <X,, 1f V5;<V,/?
* Because utilization lower, but why 1s this?

Winter 2016 (c) Ian Davis 27

Why 1s utilization 40%
* Is a higher throughput possible?
e Minnmum R 1s V. S.=16 * 0.042 = .672 sec
* Max X3, = M/(Z+R) = 10/(15+.672)
=(0.638 > 0.6 jobs per sec
* What is the highest U ; possible?
e U.=X_,V.S5.=0.638%16%0.042 = 42.8%

* So 1n essence we can’t do enough work at
10 terminals to keep the drive busy, given
the 15 second think time.

Winter 2016 (c) Ian Davis 28

Example 3 response times

* Since R=(M/X,) -Z
* R, =(16/0.77)-15=35.779 sec
* R;=(10/0.60) - 15 =1.666 sec

* Fraction of I/O performed by A
— X T/ (X T X)T = X/ (X + Xp))
= U,/ (Uy; + Uy, =80/120 = 2/3
—since X; = U/S; & S, ; = Sg;

Winter 2016 (¢) Ian Davis

29

Example 3 consolidate machine

* Uy; T Up;=08+04=1.2=120% > 100%

* Can assume Ug; = 100%

 Theretore X.; =~ 1/5;= 1/.042 = 24 10/sec

* Xui =24 *(0.8/(0.8+0.4)) = (2/3) = 16 10/sec
* Xp; =24 *(0.4/(0.8+0.4)) = (1/3) = 810/sec
* Xao = Xai/ Vi = 16/25 = .64 jobs/sec

* Xgo = X5/ Vg; = 8/16 =.5 jobs/secs

Winter 2016 (c) Ian Davis 30

Example 3 response times
* SinceR=(M/X,)-Z
* R, =(16/.64)-15=10 secs
* Ry =(10/.5) -15= 5 secs

* N.B. M is not 16+10 because looking at the
throughputs X, , and X, separately. We are
viewing each subsystem as a closed system.

Winter 2016 (c) Ian Davis 31

The useful equations
« Utilization law (Very useful)
—U=X.S, {U=A S 1fassume A. = X. }
« Little’s law
- Q=X R,
* Forced flow law (Very useful)
- X= Vi X,
* General response time law
-R=2,_,., ViR
 Interactive response time law (Very useful)
~R=(M/X,)-Z

Winter 2016 (c) Ian Davis 32

Bottleneck analysis
* Let N be the number of tasks/jobs running
« what happens as N increases
* Assuming V. & S. remain unchanged then:
— X./X,=V./V, and U./U,=V.S./V, S, unchanged
* Device i 1s saturated 1f U.= 100%

* Since U./U, constant as N—oo U. increase
by the same fraction when N —->N+1

* The device with largest U. (or equivalently
the largest V. S.) will be the first to saturate.

Winter 2016 (c) Ian Davis 33

Bottleneck response time

* Response time obviously a minimum when
only one task.

* Inthis case R,=2X. V.S,

 System saturation N * occurs when N forces
some task to be queued at some device b.

s U1 =X S,=1=2 X,V S,=1=

« X,=1/V,S,

+ N*=R_X,=R./V,S,

« M =N"+Z/V,_S, will saturate the system.

Winter 2016 (c) Ian Davis 34

Markov models

* System viewed as a set of states S,...S_, S |

* S,1s start state, and S, final state

* Probability p, transition between S. and S,

* Probabilities constant for lifetime of model
* 2Py =1

N =1 (Once finished keep finishing)

Winter 2016 (c) Ian Davis 35

Markov modelling goals

* Determine probability of entering S,

* Determine expected number of transitions
before arriving 1n state S.

* Flag certain state transitions as significant

* Counting achieved by multiplying state
transition probability by dummy variables

Winter 2016 (¢) Ian Davis

Markov modelling reduction

For all 1

Jk reduce multiple transitions S.— S,

— Sum the probabilities of each such transition

Select S.: S, does not move directly to S,

Eliminate S. from the model using:

— For all

When a

' h,k:S,— S.— S, add S,— S, with p, ..p;,
| states loop eliminate p..1f 1 # -1

— For all

| k#1 p,=p,« 1/(1-G) where G generating

function describing p..

Termin

Winter 2016

ate when have G for S;— S,

(c) Ian Davis 37

Why 1/(1-G)

* We can go through the loop 0 to oo times
e Each time with probability G

* Sum these probabilities
_ GO+ G+ G2+ G+ GG
~1 +G _|_G2_|_G3_|_G4...Goo:X
~X*G+1=X
1=(1-0G)*X
~X=1/(1-G)

Winter 2016 (¢) Ian Davis

38

Use of generating function

* Set all dummy variables of no interest to 1

 Probability that variable x visited ‘n’ times:

— Expand G as polynomial 1n x
— Coefficient associated with X" is probability

e Probability at most ‘n’ 1s sum of first n+1
coefficients etc.

Winter 2016 (¢) Ian Davis

39

Markov example 1

* Software accesses a disk drive and a tape

— accesses the disk drive S,with probability 0.2

— accesses the tape drive S,with probability 0.1

— Access pattern 1s independent of history

« Markov model:

— S5,
—S,—S5,]

00;=0.2 S,—3,
n,,=0.2 S,—S, 1

— S,—S]

Winter 2016

D0,=0.1

0;,=0.

0, =0.2 5,—S,

0,,=0.1

(¢) Ian Davis

S;—>S.| Po.
LS, >SS, p,.

S,—S, p-.

40

Add in dummy variable

* Let d count disk accesses and t tape accesses

* Markov model:
— S,—S, py;=0.2d S,—S, p,=0.1t S;—S_ p,.,= 0.7
- S,—S, p,,=0.2d S-S, p,,=0.1tS,—>S, p,,=0.7
- S,—S, p,,=0.2d S,—S, p,,=0.1t S,—>S, p,,=0.7
* Eliminating S;—S,and S,—S,:
- S,—S, p,,=0.2d S,—S, p,,=0.1t S;,—>S_, p,.,=0.7
- S,—S, p,,=0.1t(1/1-0.2d) S,—>S_, p,.,,= 0.7(1/1-0.2d)
- S,—8S, p,,=0.2d(1/1-0.1d) S,—>S_, p,.,= 0.7(1/1-0.1d)

Winter 2016 (c) Ian Davis 41

e Eliminating S;:
— S;—S, poi*P1y T Py, = -2d * L 1t(1/1-.2d) + .1t
—§,5S. py=0.2d * 0.7(1/1-0.2d) + 0.7
— 8,58, p, *p,, = .2d(1/1-.1d) * .1¢(1/1-.2d)
~ 8,58, p,, =.7(1/1-.1d)
 Eliminating S, — S,

= S,S ,p,, = (1/1 -.2d(1/1-.1d) * .1t(1/1-.2d))
*7(1/1-.1d)

Winter 2016 (¢) Ian Davis

42

* Eliminating S, computing S,—S, i.e. G:
Doy Dot T Doy = (2d%.1t(1/1-2d)+.1t) * (1/1 -
2d(1/1-.1d) * 1t(1/1-.2d)) *.7(1/1-.1d) + .7
— S—S, pp,=-1t S;—>S_, p,.,= .7
~§,5S, p,=1t(1/1-2d) S,—>S , p,, = .7(1/1-.2d)
~ 8,58, p,;=.2d(1/1-.1d) S,—S p, = .7(1/1-.1d)

Winter 2016 (c) Ian Davis 43

In Practice

* Write a program (or ask me for one)
— Input
e state transitions

e probabilities * dummy

— Output G

* In a format usable by Maple (or whatever)

* Solve questions of interest using Maple etc.

Winter 2016 (¢) Ian Davis

44

Probability of ‘n’ disk accesses

e t:=1; taylor(G, d);

 TTTTTTTTTS +.1728395062 d+
03840877915 d? +.008535284255 d* +
001896729834 d* +.0004214955188 d> +
O(d®)

 Truncate and set d=1 for < ‘n’ accesses

* Could parameterize 0.2=p and 0.1=q and
0.7=(1-p-q)

Winter 2016 (c) Ian Davis 45

Average number of disk accesses

 Let p, be the probability of exactly k accesses
* G=X P " df
« G’ =diff(G) w.r.t variable d
* G =% Lk ¥ p ¥ de!
— 0*p(miss)*d*+1*p(once)*d+2*p(twice)*d>...

— Then setting d = 1 to remove all d

— This becomes average number of disk accesses
« G’ =0.2857142857 (Average # disk accesses)

Winter 2016 (c) Ian Davis 46

Variance 1n number disk accesses

e V(accesses) = E(accesses?) - E?(accesses)
~ G = diff(G")
~ G =5,k * (k1) * py * de?
- =0 K F P * A - B, Sk py * A
— = E(accesses?) - E(accesses)
— So variance = (G’ + G’) - G’* G’
e Nowsetd =1
(G +G) -G’ *G’ = 0.3673469388 (Variance)

Winter 2016 (c) Ian Davis 47

Detecting uncorrectable error

Winter 2016

in a Double Linked List

Double-linked list

This Next Generating Comments

State State Function

0 0 Z(1=p) | Ny by =N,
0 | P N}{—I—l bl F N
1 1 Z(1-p) | Nyg-1; =N,
| -1 P N ti 7+ N

Probability of a pointer in error 1s p
z 1s a dummy variable

(¢) Ian Davis

48

VDDL : XOR encoding strategy

Back pointer in every node N..b - N _, @ N, _,=N..v

Permits traversal forwards & backwards using only one pointer
Must always remember last two nodes visited

Forward pointer now provides additional redundancy

Virtual double-linked list (VDLL)
010 | zZ1-p) | Ny vVONg» =Ny
0|1 |p Neip - VON» # Ny
| 1 Z(l —p) Nx—l . tl N
| 2 p Nx—l . tl == N
2 | 1 Z(1 -p) | Nyg- \@Nx_z = N,
2 | -1 |p Ny_1 - VN, » # Ny

Winter 2016 (c) Ian Davis 49

Results for list of 100 nodes

=T T = T T =T = T = T i |

0 01 02 03 04 05 06 O7 08 09 1 11 12 13 14 1
Probability of error

Lh

Legend:

— Predicted = Vil observed
e Mod(1) Observed

Winter 2016 (¢) Ian Davis

ot o e e s L A et oo i g — e
I I I I B Gk

1 1 1 1 C.____ i b

I I I I o

I I I [A M=
1 1 1 1 I

I I I (| 4

I I I I i

I I I [| W
I l l l f

1 1 1 1 <3 [

I I I 1

I I I -] N
I I I A

I I I 1< e

I I I 1t

I I l =] -
1 1 1 1

I I I 4 w

I — I I 1if

F-——8—-—=-—- == +—-—————- —— ———— = -
1 un 1 1 i

.0 “ “ 7 £

1 = 1 I ki %] -
l o l l v

I - I I e]

I -3 I l §F oI

| 0 I I x P —
I 5 I I 4_4_* r

| | | i i

I b I I nﬂ iy

I = I I e I] -
I e I I | I

I LH) I I g ”

I — 1 I |

1 — 1 1 1 1 =
1 o 1 1 ; 1

| o I I : I e

I H_m_. I 1 > |

1 cas M e e ez o g —— 4 ——— —] =
l = l l I -

| | | | B

I I l I

I I I I 1 =
I l I I

I I I [

| | |

I l [=
I I I I

I l i 1

1 1 ik 1

I I <] e =
I I I 1

I I l o

| I I I

I ! I - I o
I #w\l....nﬂ & I I

I _ g I L I

T I ko il I

I]]

[T T T T T T T T T T T
§ 1y =t 1y [=] e [] Wy [o]
2 = & = —
L | L R | K |

H = | U= e L

d2 13 14 (15

11

09

07 08
Probability of error

06

Legend:

(=

Mod(3) structure
Mod(4) structure

Mod(1) structure

Vdll structure

Mod(2) structure

51

(¢) Ian Davis

Winter 2016

