
Winter 2016 (c) Ian Davis 1

Winter 2016 (c) Ian Davis 2

Predicting performance

• Operational Analysis:

– Operational analysis of network models

• Also

– Markov models

Winter 2016 (c) Ian Davis 3

150ms

250μs

https://www.youtube.com/watch?v=modXC5IWTJI

Winter 2016 (c) Ian Davis 4

Winter 2016 (c) Ian Davis 5

Operational analysis

• Material drawn from:

• ACM Computing Surveys

– Special issue on queuing network models

– Volume 10, Number 3, September 1978

– P.J. Denning & J. P. Buzen

– The operational analysis of network models

• (Available from the CS446 home page)

Winter 2016 (c) Ian Davis 6

Basic ABC of quantities

• A: Total number of [A]rrivals

• B: Total time system [B]usy

• C: Total number of [C]ompletions

• T: Total time spent monitoring above

Winter 2016 (c) Ian Davis 7

Basic derived quantities

• Arrival rate λ

– A/T (arrivals/second)

• Departure rate X (exit rate)

– C/T (completions/second)

• Server utilization U

– B/T (fraction)

• Mean service time S per task

– B/C (seconds/completion)

Winter 2016 (c) Ian Davis 8

Winter 2016 (c) Ian Davis 9

Utilization law

• Utilization = Completion Rate * Service Time

• U = B/T = (C/T) * (B/C) = XS

– Example:

– 3 jobs per second and each job needs 0.1 secs

– Utilization of system = 3 * 0.1 = 0.3 (30%)

– I.E. how much work is done per unit of time

Winter 2016 (c) Ian Davis 10

Job flow balance assumption

• Total arrivals = Total Completions

• Reasonable since (A-C)/C0 as T  

• λ = X

• U = λS (steady state limit theorem)

– i.e. Can use arrival rate rather than departure rate

– Have λ or X can assume the other is same

Winter 2016 (c) Ian Davis 11

Generalizing to network

• Let there be n1 services (servers)

• Arrival rate λi = Ai/T (at server i)

• Departure rate Xi = Ci/T (from server i)

• Server utilization Ui = Bi/T

• Mean service time Si = Bi/Ci

• Routing frequency (Cik task goes i  k)

– qik = Cik / Ci if i = 1..n

– q0k = A0k / A0 if i = 0

Winter 2016 (c) Ian Davis 12

Winter 2016 (c) Ian Davis 13

Observations

• Ci =  k=0..n Cik (i=1..n)

• C0 =  k=0..n Ck0 (completions from system)

• A0 =  k=0..n A0k (arrivals at system)

• X0 =  k=1..n Xk qk0

– (Output flow law)

•  k=0..n qik =1 (for each i)

• Behaves like a probability estimate

queue behaviour

0

1

2

3

4

5

6

0 4 8 12 16 20
Time

Queue

length

Winter 2016 (c) Ian Davis 14

Queuing at device

• Wi =  t=0..n queue lth(t)

– ie. Area under the graph (total job seconds)

• Qi = Wi / T

– ie. Average queue length

• Ri = Wi / Ci

– ie. mean waiting time at i

– Also called the response time

• Qi = Xi Ri (Little’s law)

– Qi = Wi / T = (Ci / T) * (Wi / Ci) = Xi Ri

Example

• A=7 jobs; B=16 sec; C=10 jobs (3 at start);T=20 secs

• W=40 job secs; Q = 40/20 = avg 2 jobs (load = 2.0)

• R = W/C = 40 / 10 = 4 secs

• U = B/T = 16 / 20 = 80%

Winter 2016 (c) Ian Davis 15

Winter 2016 (c) Ian Davis 16

Visit ratios

• Assuming Xi =  k=0..n X k q ki

– ie. balanced flow

• Vi = Xi / Xo = Ci / Co

– (mean requests per task for i)

– (mean completions at i per task completion)

• Xi = Vi Xo (Forced flow law)

– Just rearranging above equation

Winter 2016 (c) Ian Davis 17

Visit ratio example

• Tasks generate on average 5 disk requests

• Disk throughput is 10 requests/second

• What is system throughput..

Winter 2016 (c) Ian Davis 18

Answer

• Tasks generate on average 5 disk requests

• Disk throughput is 10 requests/second

• What is system throughput..

• Xo = Xi/Vi = 10(request/sec)/5(requests/job)

• ie. 2 jobs per second

• N.B. Using “measured” disk throughput

• N.B. All other measures irrelevant….

Winter 2016 (c) Ian Davis 19

Interactive Response Time

• Suppose M users are using terminals

• Mean wait time per user at terminal R

• Mean think time per user Z

• Mean thinking and waiting time (R + Z)

• (R + Z) Xo = M = mean number of users

– (by Little’s law Qi = Xi Ri)

• R = (M/ Xo - Z)

– (Interactive Response Time Formula)

Winter 2016 (c) Ian Davis 20

Interactive Response Time

• R = ( i=1..n Qi)/Xo

– (eg. Apply Little’s law to system)

–  i=1..n Qi =  i=1..n Wi / T (treat all queues as one)

• but Qi /Xo = Vi Ri since

– Qi = XiRi (Little’s law)

– Xi = Vi X0 (Forced flow law)

– Qi = Vi X0 Ri

• Therefore R =  i=1..n Vi Ri

– (General response time law: Total delay is sum of

each delay)

Winter 2016 (c) Ian Davis 21

Example 1
• Parameters:

– Each task generates 20 disk request

– Disk utilization is 50%

– Mean service time at disk 25 millisecs

– 25 terminals (think time is 18 seconds)

• What is the terminal response time?

Winter 2016 (c) Ian Davis 22

Example 1
• Parameters:

– Each task generates 20 disk request

– Disk utilization is 50%

– Mean service time at disk 25 millisecs

– 25 terminals (think time is 18 seconds)

• Xo = Xd/Vd= (Ud/Sd)/Vd = (0.5/0.025)/20

– therefore Xo = 1 job/second

• R = (M/Xo) - Z

– therefore R = (25/1) - 18 = 7 seconds

Winter 2016 (c) Ian Davis 23

Example 2
• Parameters:

– 40 terminals (think time is 15 seconds)

– Interactive response time is 5 seconds

– Disk mean service time is 40 milliseconds

– Each interactive task generates 10 disk I/O

– Each batch job generates 5 disk I/O

– Disk utilization is 90%

• Want to calculate throughput of batch and

lower bound on interactive response time if

batch throughput is tripled.

Winter 2016 (c) Ian Davis 24

Example 2 continued
• Interactive throughput

– XI,0 = M/(Z+R) = 40/(15 + 5) = 2 jobs/second

• Disk j throughput {ie. interactive + batch }

– Xj = XI,j + XB,j = Uj /Sj = 0.9/0.040 = 22.5

requests/second {by utilization law}

• XI,j = VI,j XI,0 = 10 * 2 = 20 req/sec

– {by forced flow law}

• XB,j = Xj – XI,j = 22.5 - 20 = 2.5 req/sec

• XB,0 = XB,j / VB,j = 2.5/5 = 0.5 jobs/sec.

Winter 2016 (c) Ian Davis 25

Example 2 continued
• Tripling XB,0 = 1.5 batch jobs per second

• Disk j batch throughput

– XB,j = VB,j * XB,0 = 5 * 1.5 = 7.5 req/sec

• Maximum completion rate at disk

– 1/Si = 25 requests/second (1 request = 0.04 sec)

– XI,j  25 - 7.5 = 17.5 requests/second

• XI,0 = XI,j / VI,j  17.5/10= 1.75 task/sec

• RI = (M/XI,0) - Z (40/1.75)-15 = 7.9sec

– Assuming M,Z,Vi & Si unchanged

Winter 2016 (c) Ian Davis 26

Example 3

• System A

• 16 terminals

• 25 disk I/O per job

• 80% disk utilization

• service time 0.042sec

• Think time 15 secs

• System B

• 10 terminals

• 16 disk I/O per job

• 40% disk utilization

• service time 0.042sec

• Think time 15 secs

What are the response times for the current systems?

What if A & B’s terminals and software are moved to a

consolidate system C which uses the same disk drive?

Winter 2016 (c) Ian Davis 27

Example 3 throughputs

• Since Ui=XiSi & Xi=ViXo => Xo =Ui/ Vi Si

• XA,0 = .8/(25 * 0.042)  0.77 jobs/sec

• XB,0 = .4/(16 * 0.042)  0.60 jobs/sec

• Why is XB,0 < XA,0 if VB,i < VA,i?

• Because utilization lower, but why is this?

Winter 2016 (c) Ian Davis 28

Why is utilization 40%
• Is a higher throughput possible?

• Minimum R is Vi Si = 16 * 0.042 = .672 sec

• Max XB,0 = M/(Z+R) = 10/(15+.672)

 = 0.638 > 0.6 jobs per sec

• What is the highest UB,i possible?

• Ui = Xo Vi Si = 0.638*16*0.042 = 42.8%

• So in essence we can’t do enough work at

10 terminals to keep the drive busy, given

the 15 second think time.

Winter 2016 (c) Ian Davis 29

Example 3 response times

• Since R = (M/X0) - Z

• RA = (16/0.77) - 15 = 5.779 sec

• RB = (10/0.60) - 15 = 1.666 sec

• Fraction of I/O performed by A

– XA,iT / (XA,i + XB,i)T = XA,i/ (XA,i + XB,i)

 = UA,I / (UA,i + UB.i) = 80/120 = 2/3

– since Xi = Ui/Si & SA,i = SB,i

Winter 2016 (c) Ian Davis 30

Example 3 consolidate machine

• UA,i + UB,i = 0.8 + 0.4 = 1.2 = 120% > 100%

• Can assume UC,i  100%

• Therefore XC,i  1/Si = 1/.042 = 24 IO/sec

• XA,i = 24 * (0.8/(0.8+0.4)) = (2/3) = 16 IO/sec

• XB,i = 24 * (0.4/(0.8+0.4)) = (1/3) = 8 IO/sec

• XA,0 = XA,i/VA,i = 16/25 = .64 jobs/sec

• XB,0 = XB,I /VB,i = 8/16 = .5 jobs/secs

Winter 2016 (c) Ian Davis 31

Example 3 response times

• Since R = (M/X0) - Z

• RA = (16/.64) - 15 = 10 secs

• RB = (10/.5) - 15 = 5 secs

• N.B. M is not 16+10 because looking at the

throughputs XA,0 and XB,0 separately. We are

viewing each subsystem as a closed system.

Winter 2016 (c) Ian Davis 32

The useful equations
• Utilization law (Very useful)

– Ui = Xi Si { Ui = λi Si if assume λi = Xi }

• Little’s law

– Qi = Xi Ri

• Forced flow law (Very useful)

– Xi = Vi Xo

• General response time law

– R =  i=1..n Vi Ri

• Interactive response time law (Very useful)

– R = (M/X0) - Z

Winter 2016 (c) Ian Davis 33

Bottleneck analysis
• Let N be the number of tasks/jobs running

• what happens as N increases

• Assuming Vi & Si remain unchanged then:

– Xi /Xk=Vi /Vk and Ui /Uk=Vi Si /Vk Sk unchanged

• Device i is saturated if Ui = 100%

• Since Ui /Uk constant as N Ui increase

by the same fraction when N N+1

• The device with largest Ui (or equivalently

the largest Vi Si) will be the first to saturate.

Winter 2016 (c) Ian Davis 34

Bottleneck response time
• Response time obviously a minimum when

only one task.

• In this case Ro = i ViSi

• System saturation N * occurs when N forces

some task to be queued at some device b.

• If Ub=1 ⇒ XbSb = 1 ⇒ X0VbSb = 1 ⇒

• X0 = 1/VbSb

• N* = Ro X0 = Ro/Vb Sb

• M = N* + Z/ Vb Sb will saturate the system.

Winter 2016 (c) Ian Davis 35

Markov models

• System viewed as a set of states S0 …Sn, S-1

• S0 is start state, and S-1 final state

• Probability pik transition between Si and Sk

• Probabilities constant for lifetime of model

•  i=-1..n pik = 1

• p-1-1 = 1 (Once finished keep finishing)

Winter 2016 (c) Ian Davis 36

Markov modelling goals

• Determine probability of entering Si

• Determine expected number of transitions

before arriving in state Si

• Flag certain state transitions as significant

• Counting achieved by multiplying state

transition probability by dummy variables

Winter 2016 (c) Ian Davis 37

Markov modelling reduction

• For all i,k reduce multiple transitions Si Sk

– Sum the probabilities of each such transition

• Select Si : Si does not move directly to Si

• Eliminate Si from the model using:

– For all h,k : Sh Si Sk add Sh Sk with phi*pik

• When all states loop eliminate pii if i  -1

– For all ki pik = pik * 1/(1-G) where G generating

function describing pii

• Terminate when have G for S0 S-1

Why 1/(1-G)

• We can go through the loop 0 to ∞ times

• Each time with probability G

• Sum these probabilities

– G0 + G1 + G2 + G3+ G4 … G∞

– 1 + G + G2 + G3+ G4 … G∞ = X

– X * G + 1 = X

– 1 = (1 – G) * X

– X = 1/(1 - G)

Winter 2016 (c) Ian Davis 38

Winter 2016 (c) Ian Davis 39

Use of generating function

• Set all dummy variables of no interest to 1

• Probability that variable x visited ‘n’ times:

– Expand G as polynomial in x

– Coefficient associated with Xn is probability

• Probability at most ‘n’ is sum of first n+1

coefficients etc.

Winter 2016 (c) Ian Davis 40

Markov example 1

• Software accesses a disk drive and a tape

– accesses the disk drive S1with probability 0.2

– accesses the tape drive S2with probability 0.1

– Access pattern is independent of history

• Markov model:

– S0S1 p01=0.2 S0S2 p02=0.1 S0S-1 p0-1 = 0.7

– S1S1 p11=0.2 S1S2 p12=0.1 S1S-1 p1-1 = 0.7

– S2S1 p21=0.2 S2S2 p22=0.1 S2S-1 p2-1 = 0.7

Winter 2016 (c) Ian Davis 41

Add in dummy variable

• Let d count disk accesses and t tape accesses

• Markov model:

– S0S1 p01=0.2d S0S2 p02=0.1t S0S-1 p0-1 = 0.7

– S1S1 p11=0.2d S1S2 p12=0.1t S1S-1 p1-1 = 0.7

– S2S1 p21=0.2d S2S2 p22=0.1t S2S-1 p2-1 = 0.7

• Eliminating S1S1 and S2S2 :

– S0S1 p01=0.2d S0S2 p02=0.1t S0S-1 p0-1 = 0.7

– S1S2 p12=0.1t(1/1-0.2d) S1S-1 p1-1 = 0.7(1/1-0.2d)

– S2S1 p11=0.2d(1/1-0.1d) S2S-1 p2-1 = 0.7(1/1-0.1d)

Winter 2016 (c) Ian Davis 42

• Eliminating S1:

– S0S2 p01*p12 + p02 = .2d * .1t(1/1-.2d) + .1t

– S0S-1 p0-1 = 0.2d * 0.7(1/1-0.2d) + 0.7

– S2S2 p21*p12 = .2d(1/1-.1d) * .1t(1/1-.2d)

– S2S-1 p2-1 = .7(1/1-.1d)

• Eliminating S2  S2 :

– S2S-1 p2-1 = (1/1 -.2d(1/1-.1d) * .1t(1/1-.2d))

*.7(1/1-.1d)

• Eliminating S2 computing S0S-1 i.e. G:

– p02 p2-1 + p0-1 = (.2d*.1t(1/1-.2d)+.1t) * (1/1 -

.2d(1/1-.1d) * .1t(1/1-.2d)) *.7(1/1-.1d) + .7

– S0S2 p02=.1t S0S-1 p0-1 = .7

– S1S2 p12=.1t(1/1-.2d) S1S-1 p1-1 = .7(1/1-.2d)

– S2S1 p11=.2d(1/1-.1d) S2S-1 p2-1 = .7(1/1-.1d)

Winter 2016 (c) Ian Davis 43

In Practice

• Write a program (or ask me for one)

– Input

• state transitions

• probabilities * dummy

– Output G

• In a format usable by Maple (or whatever)

• Solve questions of interest using Maple etc.

Winter 2016 (c) Ian Davis 44

Winter 2016 (c) Ian Davis 45

Probability of ‘n’ disk accesses

• t:=1; taylor(G, d);

• .7777777778 + .1728395062 d +

.03840877915 d2 + .008535284255 d3 +

.001896729834 d4 + .0004214955188 d5 +

O(d6)

• Truncate and set d=1 for  ‘n’ accesses

• Could parameterize 0.2=p and 0.1=q and

0.7=(1-p-q)

Winter 2016 (c) Ian Davis 46

Average number of disk accesses

• Let pk be the probability of exactly k accesses

• G = Σk=0..∞ pk * dk

• G’ = diff(G) w.r.t variable d

• G’ = Σk=1..∞ k * pk * dk-1

– 0*p(miss)*d0+1*p(once)*d1+2*p(twice)*d2…

– Then setting d = 1 to remove all d

– This becomes average number of disk accesses

• G’ = 0.2857142857 (Average # disk accesses)

Winter 2016 (c) Ian Davis 47

Variance in number disk accesses

• V(accesses) = E(accesses2) - E2(accesses)

– G’’ = diff(G’)

– G’’ = Σk=2..∞ k * (k-1) * pk * dk-2

– = Σk=2..∞ k
2 * pk * dk-2 - Σk=2..∞ k * pk * dk-2

– = E(accesses2) - E(accesses)

– So variance = (G’’ + G’) – G’* G’

• Now set d := 1

– (G’’ + G’) - G’*G’ = 0.3673469388 (Variance)

Detecting uncorrectable error

in a Double Linked List

Winter 2016 (c) Ian Davis 48

Probability of a pointer in error is p

z is a dummy variable

VDDL : XOR encoding strategy

Winter 2016 (c) Ian Davis 49

Back pointer in every node Nx.b → Nx+1 ⊕ Nx-1 = Nx.v

Permits traversal forwards & backwards using only one pointer

Must always remember last two nodes visited

Forward pointer now provides additional redundancy

Results for list of 100 nodes

Winter 2016 (c) Ian Davis 50

Winter 2016 (c) Ian Davis 51

