HLSUA
FORUM XLIII
Proceedings

PHOENIX CIVIC PLAZA
PHOENIX, ARIZONA
OCTOBER 5-8, 1986

V7L

The MSQ Database System

I. J. Davis

Department of Physics and Computing
Wilfrid Laurier University
Waterloo, Ontario, Canada

ABSTRACT

MSQ is a database system, developed by Wilfrid Laurier University,
that supports a wide variety of different applications. MSQ runs under the
CP-6 operating system, and combines relational, hierarchical, and network
concepts into an integrated database management system. Records in an
MSQ database are organised into user defined fields, that may be
dynamically created, deleted and modified. Each field in an MSQ record
contains an arbitrary number of subfields.

MSQ supports a powerful (but natural) query language, that allows
records to be efficiently retrieved using multi-key hashing. This query
language allows users to navigate through data in one or more MSQ
databases, by supporting a variant of the classical relational join, and allows
fields to be derived and reported in numerous ways. MSQ supports a large
variety of reporting methods, allowing records to be sorted and reported in
a horizontal, vertical, screen, or many-up label format,

An MSQ database may be accessed and updated concurrently by
many users, either directly, or indirectly via scripts written in MSQ’s query
language. These scripts support input, output, command execution, and
conditional branching, allowing flexible menu driven systems to be easily
implemented. This paper describes these and other features of MSQ.

August 17, 1986

T

The MSQ Database System

1. J. Davis

Department of Physics and Computing
Wilfrid Laurier University
Waterloo, Ontario, Canada

1. History:

In the spring of 1984 Wilfrid Laurier University began migrating its computing
facilities from CP5 to CP6. At that time several departments were using the VIP [1]
database system, which could not easily be converted to run under CP6. As a result
Wilfrid Laurier University decided to develop MSQ. Initially MSQ operated as an
electronic card file system with support for records containing user defined fields. Each of
these fields contained an arbitrary number of subfields, each containing arbitrary data.
MSQ provided facilities to create and selectively update these records, the ability to retrieve
records satisfying specified selection criteria, and allowed the user to report the contents of
these (optionally sorted) records in a wide varicty of formats.

Following MSQ’s initial release, Xerox agreed to purchase certain rights to MSQ, if
MSQ could be upgraded to meet Xerox’s requirements. These requirements included
implementing the necessary locking so that databases could be safely accessed by
concurrent users, and extending the number of records that MSQ supported within any one
database from 10,000 to 1,000,000. These and other modifications were done in early
1985.

In the summer of 1985 Wilfrid Laurier University began investigating how it might
consolidate all of its database requirements under a single database product. Because of
this investigation various limitations of MSQ became apparent, and effort was spent
rectifying these. The most extensive enhancement to MSQ involved implementing a
variant of the classical relational join [2]. This enhancement allows individual MSQ
databases to be used either as electronic card files, or as components of a larger network of
record types.

2. Fields

A user creates a new field within an MSQ database by merely defining it. Each ficld
has numerous optional attributes, which control how data may be entered into the newly
defined field, accessed, and reported. Fields once defined can be safely modified,
renamed, or deleted, since the field definition is essentiaily independent of the data stored
within that definition. The data entered into a field may be single or multi-valued,
optional or mandatory, and may be restricted to being either numeric or a valid date. The
maximum number of decimal places associated with numeric data is also maintained as
part of the field definition. Each field is also assigned an access level, that controls who
may retrieve and update the field.

In addition to fields that contain user data, fields may be defined that contain system
generated time-stamps. These time-stamps may be accessed but not updated by the user.

G9L

A variety of functions exist that allow users to define new virtual fields from existing
fields. Values in these existing ficlds may be combined, subdivided, or extracted in
various ways, and may also be totalled, counted or used in complex numeric expressions.
These resulting derived fields may themselves be used in defining other fields.

MSQ also supports joined fields. Such fields are completely defined by their
parameters. These parameters consist of a field name whose values are used as search
keys, a field in an arbitrary MSQ database whose values are to be matched against this key
field, and a field (or joined field) from this same arbitrary database whose values are to be
retrieved whenever a match occurs.

3. Example
Consider a student database that uses the following fields :
Field Description
Id Single valued positive numeric value identifying student.
Full-name This is derived from the fields Prefix, First-name, Last-name
Spouse The identifier of this studént’s spouse.
Friends The identifier of this student’s known friends.

Highschool The institute that the student attended.

This database, and a related institute database contain:

Sample data in student database
1d Full Name Spouse | Friends | Highschool
1 Mr Joe Little | 2 3 CH
2 Mrs | Jane Little | 1 3 C.T
3 Miss | Mary | Small 1 C.H
2
Sample data in institute database
1d Name Address
C.H | Collegiate High School 41 Underhill Road
Andover
Ontario
C.T | Central Technical School | 39 Uppermill Drive
Norunder
Manitoba

Suppose that the record pertaining to “Mr. Joe Little” has been selected from the student
database. Then the joined fields listed below, return the indicated values.

Join Field Data returned

spouse—id . full-name Mrs. Jane Little
ouse—id friends—sid last-name Small
highschool—vinstitute :id.name Collegiate High School
highschool—highschool full-name | Mr. Joe Little

Miss. Mary Small

These values appear to reside in the record pertaining to “Mr. Joe Little”. They can be
used to assist in sorting and the production of any report. The only distinction that MSQ
makes between a genuine field within a record, and a derived field, such as one produced
by using a relational join, is that the latter may not be directly updated. Thus, for
example, the derived field full-name that is produced by the function $CONCAT(prefix *. *
first_name ’ * last_name) cannot be directly updated. Instead users must modify prefix,
first-name, and last-name appropriately.

4. Record selection

MSQ provides a user friendly syntax that allows users to select records based on the
contents of specified fields within these records. The value of fields can be compared
against given values for equality, inequality, and range.! The various criteria involved in
such selection are combined using “and”, “or”, and “not” in the normal manner.
Brackets may also be used. The resulting relational expression may be used either as part
of an MSQ command that operates on records, or may be used to specifically select
records, omit records, keep records from a previously selected set, or include new records
in a previously selected set.

Tests for equality (and inequality) may freely use wildcarding. A 7 appearing
anywhere within a word is interpreted as zero or more characters within that word;
otherwise, it is interpreted as zero or more words. Additional “?’s immediately following
a “?” may be used if necessary to indicate the exact number of characters or words being
wildcarded. Less obviously, MSQ also treats blanks as wildcards that match any sequence

of punctuation symbols, avoiding many of the problems that punctuation might otherwise
cause.

In addition to allowing relationships that depend on the contents of a field, MSQ also
allows relationships that depend on the number of values occurring in a field, or the size of
these values. MSQ also allows relationships to be restricted to specified subfields within

fields, or to unspecified subfields occurring at the same subficld offset within different
fields.

1 MSQ is not case sensitive unless specifically requested to be by the user.

99L

5. Access methods

Each MSQ record is assigned a unique numeric key which provides direct access to
that record. This key is stored as a value in a special field, allowing users to access records
rapidly by key, while conforming to the standard selection syntax. When users do not
explicitly provide the record keys, MSQ must itself determine these values. To assist in
this process users may associate secondary indices with fields. Two distinct types of
secondary index are supported, both of which utilise hashing rather than inverted indices.
A third access method that does use indexing is currently being developed. These
secondary indices facilitate rapid retrieval of data, even when wildcarding is used.

The first type of hashing that can be applied to a field examines each word of data
stored in this field and, based on the start character and length of each word, groups the
record containing this word, with other records containing words in this field with the same
start character and length.

This type of hashing is very effective when retrieving text containing many words, or
when retrieving text distinguishable by the first character. However, it is of no use when
all values start with the same character, and are of the same length. Consider for example
a field that contains recent dates. All start with 1972 and are the same length. To
overcome this limitation users may alternatively elect to hash by a specified number of
character positions rather than just the first. This type of hashing gives very much faster
retrieval when fields contain only a few words, but becomes inefficient when fields contain
many words.

When one or more words within such a hashed field are required, MSQ first
establishes the superset of records possibly containing the desired data, and then eliminates
false drops by serially scanning the preselected records. For example, if book-title is hashed
by first character and length, and published is hashed on the first three characters, then the
query select when book-title is like "WOM??N IN ACT? and published 1985, results in MSQ
using its secondary indices to immediately determine the set of records containing a book-
title with a five letter word starting with ‘W’, a two letter word starting with ‘I’, and a
three or more letter word starting with ‘A’. Similarly, the sets of records containing
published beginning with ‘1’, continuing with ‘9’, and containing an ‘8’ in the third position
of some word are also each established. Finally, the boolean ‘and’ of all these sets is
determined, resulting in a very small set of potentially valid records. These Temaining
records are then scanned serially to eliminate such possible titles as 'ACTIONS OF
WOMEN IN LOVE’ published in 1983.

Secondary indices are also used when relational joins are performed. When a
relational join is used to retrieve data, MSQ internally generates the query (or queries)
needed to obtain the records containing the desired data. Thus list friends—» id full-name
causes MSQ to obtain the list of friends for each record selected, then to request those
records containing an identifier matching any one of these friends, and then to retrieve the
desired names of these friends. When joined fields are used as part of a query, MSQ stilt
uses secondary indices but in a slightly different manner. For example, suppose that the
command Select friends— id.last-name like Joe is issued. MSQ first establishes the
identifier of each record containing the name Joe. It then selects all records having a value
in the friends field matching any one of these identifiers.

The records associated with each hash set are represented internally by a fixed length
G:Emvm and stored in a relative file, allowing rapid retrieval. Users have a great deal of

2 MSQ automatically extends the size of bitmaps whenever necessary.

control over the number of such bitmaps stored and thus the storage space required by
these secondary indices. Commands within MSQ allow the statistical distribution of
records in these hashed sets to be reported, and to be fine tuned, if desired. Commands
are also available that allow the values in these bitmaps to be verified following system
crashes, and corrected when erroneous.

6. Reports

MSQ provides a variety of reporting facilities and options, allowing numeric values
and dates to be displayed in over one hundred styles, with support for currency, ten digit
precision, hours, minutes, etc.

For an easily read report, the user can select two types of horizontal listing. For
business reports, data can be output in a columnar format with user defined titles,
headings, control breaks, and totalling. Output that exceeds the column width can be
truncated, or wrapped across lines on either character or word boundaries. For interactive
work users can request screens containing both user specified text and data. MSQ
automatically creates multiple screens across the page, if the output platen width is large
enough, allowing many-up labels to be produced.

Records can be sorted in ascending or descending sequence using up to ten fields as
sort keys. Sorting may be based on specific subfields within each field, or may result in a
“sort explosion” when the fields used contain multiple subfields. By default sorting is not
case sensitive, and may optionally be applied to fields from which all punctuation has been
removed.

Various additional reports can be produced that provide statistics about the data
retrieved. The frequency with which values occur in a field or collection of fields can be
reported in a variety of ways, as can the widths of these values. Statistics can also be
obtained about values occurring in specified fields. These statistics include maximum,
minimum, average values, as well as standard deviation of values etc. All statistics are
calculated using twenty digit precision.

7. Update

Records are generally examined interactively and modified using standard line editing
facilities, subfield by subfield. The selected records may be presented for update in any
sorted sequence, as may the fields or subfields that the user wishes to update. Fields
within each record may either be modified serially, or in parallel. New subfields can be
inserted at any point within a sequence of subfields, and old subfields joined or divided.

Each subfield is verified at the time of entry and rejected if incorrect. Verification
ensures that a subfield conforms to its field definition, and may optionally constrain its
size. If desired, the data entered may be used to lookup and display arbitrary joined
fields, with successful lookups optionally causing the update to be either accepted or
rejected.

MSQ allows numeric data to be entered in a variety of formats and allows dates/times
to be entered in either numeric format or with the month being entered as a standard three
digit abbreviation. Internally dates are stored as numeric values, which are themselves
always stored as binary words, allowing ten digit accuracy. As each record is updated,
MSQ automatically updates all secondary indices and time-stamps.

L9L

Users occasionally wish to restructure databases so that derived fields are accessed via
different paths, or stored in different ways. This can be accomplished easily, since any
genuine field can be assigned the values present in other genuine or derived fields. This
facility also allows conversion and rescaling of numeric data within any one field.

Because a certain amount of data exchange occurs between MSQ databases, MSQ
provides facilities to dump selected records into a serial file, and subsequently restore the
contents of these records into arbitrary fields in any MSQ database. These facilities are
also useful when reorganising MSQ databases. Any field in the dumped record may be
used to define the key of the record receiving this dumped data. Alternatively, MSQ may
be instructed to generate new records when the restore occurs. When the data being
restored updates an existing record, options exist that allow. this existing record to be
deleted, to be left unchanged, or to be merged with the data being restored.

MSQ interrupts its current activities whenever the break key is pressed. If MSQ is in
the process of updating data it ensures that the data updated is internally consistent before
acknowledging the break. It then informs the user of the number of records updated, and
the last record updated, so that the user can continue later with updates, if required.

8. Synonyms

MSQ allows fields to be assigned an arbitrary number of names and allows any
fragment of an MSQ command to be assigned a synonym. By assigning synonyms to a
command, lengthy commands can be readily invoked. This is particularly important when
generating complex reports or screens where a single command can span many lines.
Synonyms once defined can be edited, renamed, and deleted.

Occasionally a whole sequence of commands is required to be stored and executed as
a single unit. MSQ allows such commands to be stored in external files and executed as a
unit on request. In addition MSQ automatically searches for specially named files of
commands when first invoked, so that any desired initial command sequence can be
executed transparently.

Users often wish to implement a superstructure of user commands, on top of the
natural language facilities provided by MSQ. Typically, administrators wish to develop a
menu driven system applicable to their application, so that the knowledge needed to access
their system is minimal. To support such requirements MSQ provides the ability to output
arbitrary text, and to prompt for input that is subsequently embedded in arbitrary
commands. In addition MSQ provides a simple interpretive language that allows transfer
of control to be based on input, or other parameters. Transfer of control can also be
specifically defined by the user when breaks occur.

A further interface to MSQ is currently being developed, that will allow programs
written in a variety of conventional languages to interact with MSQ. Such a facility is
needed to support non-standard update and reporting requirements that may arise in
complex database systems. Having developed programs that support non-standard
reporting or update requirements, these programs will be invoked from within MSQ by
using special commands, thus integrating their functionality with MSQ’s. Some of these
programs may alternatively be invoked transparently by MSQ, when verifying or
formatting non-standard data fields.

89/

9. Security

MSQ provides various levels of security. CP6 allows files to be assigned access rights,
that restricts their unauthorised use. This facility has been used to allow selective sharing
of MSQ databases, and to assign certain users read only access to MSQ data.

Since the users identification is available as a preset parameter within MSQ,
administrators who are developing a menu driven database system can easily control the
access to their database that is to be allowed by each user. They can if desired prompt for
additional information allowing the identification of distinct individuals sharing common
accounts to be determined. If users are allowed no access to general CP6 facilities, MSQ
can be instructed to perform a line-disconnect following any attempt to exit from MSQ.

Internally, each field in an MSQ database is assigned an access level of between 0 and
9. All users are initially assigned an access level of 9 when they first invoke MSQ, but can
change their access level by providing the appropriate password. MSQ will not allow users
to modify fields having an access level smaller than their current access level. MSQ will
allow fields to be read providing that the field being read has an access level which is no
more than one smaller than the users current access level.

Synonyms can only be changed by users whose access level is 2 or smaller. Other
components of the MSQ data dictionary can be modified only by users at access level 1 or
0. All passwords are accessible and modifiable only by a user at access level 0.

The procedure that allows users of one MSQ database to access another is carefully
controlled to avoid security violations. A level 0 user can give a foreign database read and
update access to their database. The foreign database is also provided with some smallest
access level, that it can assume when accessing this database. Any modification to such
access rights are made by this level 0 user,

Records are locked against concurrent writers internally, to avoid update
inconsistencies. Global changes to either the data dictionary, or to the secondary indices
require that the MSQ database be transparently opened for exclusive access. No locks are
placed on records being read, since records are updated atomically.

One further level of security exists, which endevours to protect both users and data
against software failure. Numerous checks are constantly performed to verify that records

10. Technical characteristics

MSQ is a shared processor, that is currently divided into 6 overlays. Upon being
loaded it occupies approximately 42k bytes. However, MSQ makes extensive use of
dynamic memory, and cannot be expected to run satisfactorily in less than 64k, Most
users of MSQ run successfully in less than 128k of memory, but very large databases may

potentially require more. MSQ provides a detailed account of memory usage, when
requested.

The amount of disk space required to store an MSQ database, is dependent both on
the amount of data contained in the data file, and on the number of secondary indices
contained in the hash file. The space occupied by the data file tends to be less than
expected, since conventional storage methods do not support variable length text. The
hash file generally occupies much less space than the data file, unless all fields are heavily
indexed, or large gaps exist in the record keys used.

—8—

MSQ is written entirely in PL/6, and currently consists of more than 19,000 lines of
source code. It uses the parser “PARTRGE” [3], and standard sort facilities. It relies
very heavily on almost all of the facilities provided by the CP6 operating system. MSQ is
accompanied by a short users guide [4], and by a very much larger users reference manual

[5].

11. Conclusions

Prior to the development of MSQ, Wilfrid Laurier was using VIP to support six
different applications. Wilfrid Laurier University is currently using MSQ in more than
seventy five different areas. Xerox is almost certainly using MSQ in many others. At
least fifty users have elected to start using MSQ since its initial release in 1984, and many
more routinely access MSQ databases. Generally, users have found MSQ easy to use, and
effective in meeting their database requirements, even when these users have had little
previous computer experience. Users have been encouraged to submit suggestions on how
MSQ can be improved, and these suggestions have been implemented whenever possible.
Even if this paper were to provide a detailed description of MSQ, it would necessarily be
incomplete. MSQ is constantly being reviewed and enhanced.

Acknowledgements

The author would like to stress that many people contributed to the development of
MSQ. Special thanks are extended to Ejvind Andersen for supervising the development of
MSQ, and for assisting in the design and testing of this product. Thanks are also extended
to Hart Bezner for funding much of the development of MSQ, and to Dave Mathews for
continuing to motivate interest in MSQ and other database products available to the
Wilfrid Laurier community. Finally, I wish to thank Dave Mathews and Carl Seger for
many helpful comments relating to this paper.

References

1. The VIP (Versatile Information Processor) Reference Manual. Comshare, Toronto,
Canada. 06014D. 1981.

2. J. D. Ullman. Principles of Database Systems. Computer Science Press. 1980. (379
pages).

3. The CP6 Monitor Services Reference Manual. Honeywell Information Systems.
CE33-02. 1982.

4. E. Andersen. The MSQ Quick Reference Guide. Wilfrid Laurier University. 1985.
(33 pages).

5. E. Andersen. The MSQ information management system, users guide. Wilfrid
Laurier University. 1986. (100+ pages).

