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Local Correction of Mod(k) Lists

I. J. Davis and D. J. Taylor

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

A mod(K) list is a robust double-linked list in which each back
pointer has been modified so that it addresses the kth
previous node. This paper presents a new algorithm for
performing local correction in a mod(k = 3) list. Given the
assumption that at most two errors are encountered during
any single correction step, this algorithm performs correc-
tion whenever possible, and otherwise reports failure. The
algorithm generally reports failure only if both pointers
addressing a specific node have been damaged, causing
this node to become disconnected. However, in a mod(3)
structure one specific type of damage that causes discon-
nection is indistinguishable from alternative damage that
does not. This also causes the algorithm to report failure.

1. INTRODUCTION

A modified (k), or mod (k), storage structure [1, 2, 8] is
a circular double-linked list of nodes, in which each
node contains a forward pointer that links it to the next
node, and a back pointer that links it to the kth previous
node. A particular instance of a mod(k) structure
consists of k consecutive header nodes, whose ad-
dresses are known, and all nodes reachable by following
pointers from these header nodes. These header nodes
are contained within the double-linked list of nodes, and
are the only nodes in the instance when the instance is
empty. Each node within an instance contains an
identifier whose value uniquely identifies the instance to
which the node belongs. A count of the number of non-
header nodes within an instance is stored in one of the
header nodes of the instance. An error is an incorrect
value in a single pointer, identifier, or count component
[9].

Although a mod(k) structure contains considerable
redundancy, a small number of well-chosen errors can
produce an instance which is not correctable [10].
However, if we assume that erroneous components are
distributed fairly evenly throughout the instance being
corrected, a large number of errors can potentially be
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corrected. It is this assumption which is exploited by a
local correction procedure [5, 6, 13, 14].

A local correction procedure visits all of the compo-
nents of a storage structure instance in some determinis-
tic order, by following pointers from the headers of the
instance, and corrects errors when these are first
encounted. Having ensured that a component is correct,
this component becomes frusted. Errors are identified
and corrected by examining previously trusted compo-
nents, and at most some constant number of potentially
erroneous untrusted components. This bounded set of
untrusted components forms a Jocality which is assumed
to contain at most some constant number of errors.
Informally, these are the constraints that are imposed on
a local correction procedure. More precise characteriza-
tions of such procedures [3] are too complex to be
attempted here.

The local correction procedure described in this paper
operates under the assumption that at most two errors
occur in any locality. When presented with a set of
header nodes, it proceeds backwards from these header
nodes through the mod(k) instance, iteratively attempt-
ing to identify the correct address of the previous node.
This previous node is called the target.

Having established the location of the target, the back
pointer that should address this target can be corrected,
as can the forward pointer and identifier in this target.
Having performed any necessary corrections, these
components become trusted, and the target node be-
comes the /Jast trusted node. Alternatively, having
established that no correct pointer addresses the target, it
can be reported that the target node is disconnected.

2. TERMINOLOGY

Nodes will be labeled N and subscripted by the correct
forward distance from them to the last trusted node. The
last trusted node is therfore Ny, while earlier trusted
nodes have negative subscripts. The target node is
always V.

Back pointers will be labeled b and forward pointers f
with subscripts indicating the correct distance spanned
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by these pointers. Pointers will be prefixed by the node
in which they reside, or by extension a path that
addresses them. When appropriate, superscripts will
indicate the number of consecutive occurrences of a
pointer type within a path. N,-by/N,,,*f1 represents
exactly one of N,-b, and N, f;. Figure 1 illustrates
this notation, by showing a locality in a mod (k) list.

When explicitly discussing the k& header nodes these
will be labeled H. In a correct instance, H;-fy = H;_,
for k > i > 0. If the instance is not empty, then Hy- f;
addresses the first non-header node, and H,- b the last
non-header node. Otherwise, in an empty instance,
Hyfi = Hy_yand H;" b, = H;for k > i = 0. This is
illustrated in Figure 2.

One method of attempting to identify the target is to
use votes [3]. Each constructive vote is a function
which follows a path from a trusted node and returns a
candidate node N, for consideration as the target.
Constructive votes are labeled C and distinguished by
subscripts. Each diagnostic vote is a predicate which
when presented with a candidate node N,, assumes that
this candidate is the target node N,, examines a path
proceeding from this candidate, and returns true if this
path appears correct. Diagnostic votes are labeled D,
and also distinguished by subscripts.

A candidate receives the support of each constructive
vote that returns it, and each diagnostic vote which
returns true when presented with it. A weighted vote is
a vote which has associated with it a nonnegative
constant called its weight. The weight assigned to a vote
X will be labeled X. Each candidate receives a vote
equal to the sum of the weights of all votes which
support it. If the candidate is not the target, then it is an
incorrect candidate. Votes are distinct if they cannot

Figure 2. An empty instance of a mod(k = 3) structure.

Figure 1. A correct mod(k) locality.

support the same candidate as a result of using a
common component. The following weighted votes are
used in this paper.

Pointers Compared
Vote followed against
C1 Nl_k'b/{
C,2=<i=<k Nig b fi!
Dl anl NO
D,2=i=<k Ny fimi*! Nioi by

For notational convenience, the set of votes {Cy: 2 < i
< k}, will be referred to as C,. Similarly, the set of
votes {D;: 2 < i < k}, will be referred to as Dj.

3. THEORETICAL RESULTS

It is assumed throughout this section that at most two
errors occur in any single locality, and that the Valid
State Hypothesis [10] holds. This asserts that, in the
absence of errors, identifiers and pointers within the
instance being corrected contain information that differs
from information occurring at the same offset in other
nodes within the node space. Without some assumption
about the number of errors occurring in a locality, and
the number of errors seen when invalid components are
examined, little can be said about the behavior of any
local correction algorithm.

Theorem 1 shows how an algorithm can detect and
correct up to two errors in the empty instance. Subse-
quently, it is assumed that the instance being corrected is
not empty. Theorem 2 establishes some necessary
constraints that weights must satisfy if the target is to
received a vote of at least some constant value, and
incorrect candidates are to receive a vote of at most this
constant value. Throughout this paper, this constant is
arbitrarity assumed to be one-half. Theorem 3 shows
that these constraints are sufficient to ensure that the
target does receive a vote of at least one-half, and to
ensure that incorrect candidates received a vote of at
most one-half, if distinct from the last & trusted nodes.
Theorem 4 identifies voting weights that minimize the
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occasions when the target receives a vote of exactly one-
- half. Theorem 5 specifies when disconnection of the
target can be suspected, and in all but one case
determined. Theorem 6 demonstrates how the target can
be identified in all other cases. Collectively, these
results can be used to construct a simple, efficient
algorithm, presented in Appendix A, that performs local
correction of mod(k = 3) linked lists whenever possi-
ble.

Theorem 1. If an instance of a mod(k = 3) structure
contains at most two errors, it can be determined if this
instance is empty. Having determined that an instance is
empty, any errors in the instance can be trivially
corrected.

Proof. In a mod(k = 3) instance ¥ + 2 = 5
components indicate when the instance is empty. Specif-
ically, the back pointer in each of the k& header nodes
points back zero nodes, the forward pointer in the header
node H, addresses the last header node H,_,, and the
count is zero. For the mod(3) structure, this is shown in
Figure 2. Given at most two errors, the instance is
therefore empty if and only if at least three of these
components indicate that the instance is empty.

Theorem 2. If a connected target is always to receive
a vote of at least one-half, and any incorrect candidate is
always to receive a vote of at most one-half, whenever at
most two errors occurs in any locality within a mod(k =
3) structure, it is necessary that the voting weights
satisfy the following inequalities.

Cl=D1=C_b=D—0=1/4 (1)
Ci+D;<1/4, for 2<i<k )

i—1

EDs , for3=i<k €))

On

3o

Proof. Damaging any two of {Nyj_p by, N;'fi,
N, fi, Ny+ by} causes the corresponding two votes in the
set {Cy, Dy, Cy, Dy} to fail to support the target. This
leaves only the other two votes supporting the target.
Damaging two of {Nj_p by, Np-fi, No'fi, Ny by}
appropriately causes the corresponding two votes in the
set {Cy, Dy, Cy, Dy} to support an incorrect candidate
N,,. Since the target is required to receive a vote of at
least one-half, and incorrect candidates are required to
receive a vote of at most one-half, it follows that any pair
of the above votes must necessarily have weights that
sum to one-half. Solving gives C; = Cy = D; = Dy =
1/4.

Suppose that N;_;* by is damaged, for some 2 < i <
k. Then the target loses the support of votes C; and D;. If
C; and D; had weights that summed to more than one-
quarter, the target would be left receiving a vote of less
than one-half when N f; was also damaged. Since it is
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required that the target receive a vote of at least one-half,
it is therefore necessary that C; + D; < 1/4,for2 < i
< k.

Now suppose that N;f] is damaged, for some 3 <
=< k. Then the target loses the support of all votes
Cicj<i and D, ;<; ;. If these votes had weights that
summed to more than one-quarter, the target would
again receive a vote of less than one-half when N;-f;
was also damaged. Thus, it it neccessary that

i—1

k
2 E <1/4, for3=i<k.

Theorem 3. If no more than two errors occur in any
locality within a mod(k = 3) structure, the instance
being corrected is not empty, forward pointers are
corrected when this first becomes possible, and votes are
modified so that they do not support any of the last k
trusted nodes, then the constraints imposed on voting
weights in Theorem 2 ensure that (1) the target receives
a vote of at least one-half, and (2) incorrect candidates
receive a vote of at most one-half.

Proof of (1). Since the instance is not empty, the
target is distinct from the last £ trusted nodes. Thus,
modifying votes so that they cannot support any of the
iast & trusted nodes leaves the vote for the target
unchanged. Since &, = D, = &, = D, = 1/4,
damaging any of {N;_ by, Ni*fi, Novfi, Ni-by/
Neit fl} removes a vote of one-quarter from the target.
Since C; + D; < 1/4 for 2 < i < k, damaging any
other back pointer in the locality removes a vote of at
most one-quarter frorn the target. Since /_ G+ b

< 1/4 for 3 < i < k, damaging any other forward
pomter in the locahty removes a vote of at most one-
quarter from the target. When multiple errors occur in
the locality, the target loses the support of at most those
votes containing errors. Thus, if two errors occur in the
locality the target loses the support of at most two sets of
votes each having weights that sum to at most one-
quarter. Since all weights sum to one, the target
therefore receives a vote of at least one-half.

Proof of (2). Suppose that C| supports an incorrect
candidate N,, which is therefore distinct from the last k¥
trusted nodes. Then N;_ - b, contains an error. Ny _;* by
is distinct from N, - b, since N, is not a trusted node, and
inductively N;_;- b, is distinct from N;-b; for 0 = i =
2 — k. Thus, an error in N;_; - b, causes only C; to
support N,. Thus, C; is distinct from all other votes.

Suppose that D; and some C,.;< support N, as a
result of both using N,,- f;. Then N, f; addresses the last
trusted node. If forward pointers have been repaired as
early as possible, at least the last (k — 1) forward
pointers in the trusted set are correct, since (k — 1)
forward pointers can be corrected in the headers during
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initialisation. All pointers followed by C;, after C; uses
N, fi, are therefore correct. This implies that C;
supports one of the last & trusted nodes—a contradiction.
Thus, D; is distinct from C,.

Now suppose that D; and some D, ;.4 support N, as
a result of both using N, f). Since the instance being
examined is not empty, some other distinct error must
exist in components used by D; in supporting N,, for D;
to use V,,* f. After using N, f1, D; can follow at most (k
— 1) forward pointers. Thus, D; addresses one of the
trusted nodes N, through N;_,. Since D; supports N,
N,;_ ;" b, must also address this node. No error can exist
in N;_;* b, since two distinct errors exist in pointers
followed by D;, and N;_;* by is distinct from both of
these pointers. Since the instance is not empty, N;_;* b,
therefore points back between 1 and (kK — 2) nodes. But
N;_ by correctly points back k& nodes—a contradiction.
Thus D, is distinct from D,.

The above demonstrates that C; and D, are distinct
from all other votes. If C; and D; support N,, they
contain two distinct errors, and these errors cause no
other vote to support N,,. In this case, N, receives a vote
of one-half, since C;, = D, = 1/4. If neither C, nor D,
support N,, then N, receives a vote of at most one-half,
since Cy = Dy = 1/4. Thus, if N,, is to receive a vote of
more than one-half, it must receive the support of one of
C, or Dy, and a single independent error must cause N,
to receive the support of votes that sum to more than
one-quarter.

If a single error occurs in a back pointer N;_ ;- by, for
some 2 < i < k, then C; and D; may support N, but no
other vote can, since back pointers within the locality are
distinct. Such an error cannot cause NN, to receive a vote
of more than one-quarter, since we require that C; + D;
< 1/4,for2 =i < k.

So suppose that a single error in a forward pointer
N, fi causes votes supporting N, to sum to more than
one-quarter. Then it must cause some Cy<;<x, and some
D, ;< to support N,, since Cy = D, = 1/4. Since N,
is correctly addressed by the path used by C;, N, lies
within the instance. If N, lies outside the instance, and
the Valid State Hypothesis holds, then inductively no
correct path from N, addresses a node within the
instance. But the path used by D; in supporting N,
correctly passes through N, which lies within the
instance. Thus, N, lies within the instance.

Since an error occurs in N,-fi, N, is not one of the
last (k — 1) trusted nodes. Since D; correctly passes
through N, f] in supporting N,;, and N, is not one of the
last k trusted nodes, N, lies strictly between N, and Nj,.
Since C; supports N, but follows only forward pointers
after using the erroneous N, f) pointer, N, lies between
Ny and N,—a contradiction. Thus, no single error can
cause NN, to receive a vote of more than one-quarter.

I. J. Davis and D. J. Taylor

Theorem 4. If weights satisfying the requirements of
Theorem 2 are used, then in a2 mod(k = 3) structure
damaging two of {N;_,-by, Ni-fi, Na-fi, Ni-by/
Ni,1°f1} causes the target to receive a vote of one-half.
In a mod(3) structure damaging two of {N_,-b3, N_;-b;,
Ny bs, Ny f1} also causes the target to receive a vote of
one-half, The weights C; = Dy = 1/4, C, = Dy = 3/
16; and C3 = Dy = 1/16, satisfy the requirements of
Theorem 2, and ensure that the target receives a vote of
more than one-half in all other cases.

Proof. For an error to remove a vote of one-quarter
from the target, it must damage all nonzero votes in one
of the expressions in Theorem 2 that sum to one-quarter.
The target receives a vote of exactly one-half when two
errors are introduced into the locality, and each indepen-
dently removes a vote of one-quarter from the target.
Because C; = D, = C;, = Dy = 1/4, damaging any
two of {Nl—k'bk’ N1 '_f], Nz'fl, Nl‘bk/Nk_H'ﬂ} there-
fore removes a vote of one-half from the target.

In a mod(3) structure, we require that C, + D,<1/4,
C_'3 + D3 =< 1/4, Cz + C3 =< 1/4, andDz + D3 = 1/4.
Collectively, these inequalities imply that C, + D, =
1/4, and C; + D; = 1/4. Thus, in a mod(3) structure
damaging any two of {N_,-by, N_y-b3, Ny b3, Ni-f1}
also removes a vote of one-half from the target.

Assume that the weights proposed are used. Then the
only equations that sum to one-quarter in Theorem 2 are
those identified above as necessarily summing to one-
quarter. Since C,, C;, Dy, and Dy are each nonzero,
the single errors that cause the target to lose a vote of
one-quarter in a mod(k = 4) structure occur only in
{Ni_k* br, Ni*f1, Nafi, Ny bi/Nieyyfi}

In a mod(3) structure, the single errors that cause the
target to lose a vote of one-quarter occur in {N_;" bs,
N_l'b3, Ng'bg, N] 'fl, Nz'fl, Nl‘b3/N4'f1}. The
target receives a vote of more than one-half when one of
{N2‘f1, Nl'b3/N4'f1} and one of {N_l'b:;, N()'b3} are
damaged. Thus, if the proposed weights are used, then
the target receives a vote of one-half only under the
types of damage suggested.

Theorem 5. In a mod(3) structure, damage that
causes N_ ;- by to address N, and Ny b; to address N,,
is indistinguishable from damage that causes N_;* b; to
address N,, and N, f; to address N,. Thus, it cannot
alway be determined if the target is connected.

However, if the weights proposed in Theorem 4 are
used, nodes contain identifier components, and at most
two errors occur in any locality, then in all other cases it
can be determined if the target is connected.

Proof. If all candidates receive a vote of less than
one-half, then the target must be disconnected, since
Theorem 3 ensures that the target receives a vote of at
least one-half. Conversely, if any candidate receives a
vote of more than one-half this must be the target, since
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Theorem 3 ensures that no incorrect candidate receives
such a vote. So assume that no candidate receives a vote
of more than one-half, but some candidate receives a
vote of exactly one-half. Then either this is the only
candidate or multiple candidates exist. These cases are
addressed separately.

Single candidate: If all constructive votes agree on a
common candidate N,,, and N, receives a vote of one-
half, then N, receives no diagnostic votes. Thus,
either N, is the target and both Ny-f; and N;- b,/
Np.1f1 have been damaged, or Ny _; by, and N, f)
address an incorrect candidate. In either case, the
identifier field in the candidate addressed must be
unchanged, since at most two errors exist in the
locality. Thus, if the node addressed lies outside the
instance, then this can be immediately detected, and
disconnection reported. Suppose instead that N, lies
within the instance. Consider following N,* by f*. If
N, is the target, then since N;- f; and Ny by/ Ny 1/
are damaged and represent the only damage in the
locality, this path must either arrive at some node
other than N,, or arrive back at N, prematurely.
Conversely, if N, is an incorrect candidate, but
clearly not a trusted node since it receives a vote of
one-half, then all pointers used in the above path are
correct. Since N, lies within the instance, this path
must address N, without passing through N,. These
tests can therefore be used to detect disconnection
when all constructive votes agree on a common
candidate.

Multiple candidates: If the target is disconnected and
constructive votes do not all agree on a common
candidate, then N;_;-b; and N, f; must address
distinct incorrect candidates or address no node.
Since it is assumed that some candidate V, receives a
vote of one-half, N, must receive a vote of one-
quarter from diagnostic votes. For N, to receive a
vote of one-quarter from Dy, either N, -by/N, " fi
or both Ny-by and N_{ by/N, r_1-f1 must be
damaged. But these pointers are distinct from
Ni_ b, and N, f;, since N, is not a trusted node.
This implies that three errors exist in the locality
contradicting the assumption that at most two errors
occur in any locality. Thus, the diagnostic vote must
come from D;. For D; to support an incorrect
candidate N,,, N,,-f, must contain an error that causes
it to address Ny. Since N, f; is the only erroneous
forward pointer in the locality, NV,, must be V. Since
N, fi addresses N, Co does not support N,. Thus, C;
does. The statement of the theorem has acknowl-
edged that if this occurs in a mod(3) structure, then it
cannot be determined if the target is connected.

J. SYSTEMS SOFTWARE 209
1990; 11: 205-214

However, for a mod(k = 4) structure in this case,
Ny_p by is consistent with pointers N,_;- b, and
Nj_ i+ by if and only if disconnection occurs.

Theorem 6. If the conditions of Theorem 5 are
satisfied, and it has been determined that the target is
connected as described in Theorem 5, then the target can
always be identified.

Proof. If the target is the only candidate, or receives a
vote greater than any other candidate, then the target is
trivially identifiable. For an incorrect candidate N, to
receive the same vote as the target, both must receive a
vote of one-half. Theorem 4 has established that the
target receives a vote of one-half only if two of
{Ni_k* by, Ni"fi, Na'fi, Ni*by/Nysy fi} are dam-
aged, or in a mod(3) structure if two of {N_,-b,
N_1-bs, Ny by, Ny f1} are damaged.

Suppose that constructive votes not supporting the
target disagree. Then two distinct pointers used by
correct constructive votes must be damaged. Thus,
either N;_x* by and N, f; are damaged, or in a mod(3)
structure two of {N_, b3, N_,'b3, Ny* by} are dam-
aged. In the first case, the target is disconnected, while
in the second each invalid candidate receives a vote of
less than one-half. Thus, an incorrect candidate N,
receives a vote of one-half only if all constructive votes
not supporting the target support this candidate.

Since N, is an incorrect candidate it must be sup-
ported by at least one constructive vote. Thus, one of
{Ny_i by, N_y* by, Ny by, N>+ f1} must be damaged. If
no other error exists in the locality, then N, receives a
vote of one quarter. Thus, a second error in the locality
must cause additional votes to support N, whose weights
sum to one-quarter.

Suppose that a second error occurs in N;-f;. Then N,
receives a vote of at most one-quarter from constructive
votes, since N;-f; is not used by correct constructive
votes. D; cannot support any candidate, since neither
N, fi nor N, f address N,. Since N, receives a vote of
one-half, all nonzero votes in Dy must therefore support
N,. For this to occur, either N,-b;/N, " f1, or both
Ny biyand N_ b/ Ny 1+ /1 must be damaged. N,* b,
is correct since NN, is not one of the last k trusted nodes,
and only two errors occur in the locality. Ny b, and
N_ - by cannot both be damaged since it is assumed that
an error occurs in Ny - fy. One of {N,, ¢ fi, Npyx-1"/1}
therefore contains an error and is thus one of {N;-fi,
N>-fi}. However, in this case N, b correctly ad-
dresses one of {N;, N,, N3 }. This implies that N,, is one
of the last & trusted nodes, which it is not. Thus, if any
incorrect candidate receives the same vote as the target,
N fi must be correct.

If N,-f does not address N, then since N;-f; must,
the target can be immediately identified. So suppose that
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both N, f; and N,- fi address N,. Since N,,- f] is distinct
from N, f}, it contains an error. Since only two errors
exist in the locality, N, f; must therefore be either N, - f;
or Nis1°fi. N, fi cannot be N,-f; since an erroneous
N, fi addresses N, while an erroneous N,- f; addresses
N,, which is distinct from Ny. Thus, N, fi is Ni.1°f1,
implying that N, is Ny ;. The two errors in the locality
thus occur in Ny, -f; and one of {N| by, N_ by,
Ny by, Nyofi}. Nyby and Ni,'b; are therefore
correct, since Nj.; is not a trusted node. N;-by
therefore addresses the incorrect candidate N;.,.
Ny, 1 by, however, does not address the target, since N,
is not the trusted node N;_,. Thus, if N,-f; and N;-f;
address Ny, the candidate whose back pointer addresses
the other candidate must be the target.

4. COMPARISONS

A standard double-linked list is not locally correctable
[9] although single errors can be corrected within it [10].
A mod(2) structure is locally correctable, if the structure
is traversed backwards. However, if a single locality
contains two errors, then it may only be possible to
correct these errors by traversing the instance in the
opposite direction. For these reasons, this paper concen-
trated on mod(k = 3) structures.

I. J. Davis and D. J. Taylor

The method presented here for improving the robust-
ness of a double-linked list requires the presence of one
additional identifier component per node, the presence
of (k — 1) additional header nodes, and a count
component. This storage overhead is typically smaller
than that required if error correcting codes are used,
since at least two checksum components are needed to
protect two data components against single errors [4].

The modification to the distance spanned by back
pointers will increase the cost of performing updates in
the proposed structure, and an alternative structure
having two header nodes, an identifier, a forward
pointer, and a virtual back pointer has therefore been
proposed [7]. The virtual backpointer in node N;
contains the exclusive OR of the addresses of N;, ; and
N;_ . The true back pointer can therefore be determined
by performing an exclusive OR of the virtual back
pointer with N;-f. Similarly, the forward pointer N;:f;
can be verified by performing an exclusive OR of the
virtual back pointer with the address of the previous
node. This clever modification to the back pointer
produces a locally correctable structure which is as
strongly connected as a mod(3) structure, and a correc-
tion algorithm which empirically appears to be competi-
tive with historical methods of correcting mod(k)
structures.

Figure 3. Mod(2) results.
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Empirical results presented in Appendix B suggest
that the algorithm presented in this paper is superior to
previous mod(k) local correction algorithms, when
applied to mod(k = 3) structures. Since this algorithm
cannot however correct mod(2) structures, these other
algorithms are still valuable.

5. CONCLUSIONS

The above material provides some constructive founda-
tions for investigating the local correctability of an
arbitrary structure [5]. Locally correctable structures are
desirable for a number of reasons. The expected number
of errors that can be corrected in an instance of such a
structure increases as the instance grows. Local correc-
tion algorithms typically examine a small, bounded,
number of components at each correction step, and
therefore operate in time proportional to the size of the
instance. When this is the case, locks can be used to
allow local error correction to proceed concurrently with
other operations that manipulate the instance being
corrected.

Much remains to be explored. It is currently very
unclear what types of errors occur frequently in data
structures, or how these errors can best be corrected. It
is hard to decide what structural modifications will
facilitate error correction, or to visualize how correction
of these structures can best be undertaken [12]. Having
developed correction algorithms, it is difficult to predict
how effective these algorithms will be, without resorting
to empirical studies. All of these issues are interesting
areas for further research.
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APPENDIX A. PSEUDOCODE FOR CORRECTION ALGORITHM

correct_headers():

/*Terminate if null instance */

for (count = 0; count < max_possible; count = count + 1){

candidates = 0;
for((i=0;i<3;i=1i+4 1){
N, = Nl—k+i'bk'fli_l§
if (N, # any candidate[j]){

/*Apply constructive votes */

/*For simplicity assume N, exists =

J =candidates; candidate[j] = N,; vote[j] = O;
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candidates = candidates + 1;

} /*N, = candidate[/] */
vote[ /] = vote[j] + weight[i]; I*weight[i] = {1/4, 3/16, 1/16} */
)
for ( = 0; i < candidates; / = i + 1){ /*Apply diagnostic votes */

N, = candidate[i];
if (N fi = No)
if (N befi = Ny by)
if (1\’x'bk'f1Z = N_i"by)
it (N = any Nozj> &)

}

case ‘Only N, got vote > 1/2’: break;

vote[i] = vote[i] + 1/4;
vote[i] = vote[i] + 3/16;
vote[i] = vote[i] + 1/16;
vote[i] = 0;

case ‘Only N, got vote of 1/2’:
if (candidates = 1){
a if (N,*id bad or N, by f*¥ ok) abort(Target disconnected);

break;

}

if (N, fi = Noand N, = Ny_pbeand N, = Ny_y by f1){
if (k = 3) abort(Target may be disconnected);
if (Ma_ibrfi = N;_i by) abort(Target disconnected);

}

case ‘Only N, and N, got vote of 1/2:
if (Vo fi # Np i)
if (Vo fi = No) Ny = Ny;
} else if (Nb'bk = Na) Na = Nb;

case ‘Otherwise’: abort(Target disconnected);

Ni_g by = Ng; Nyrid = id; N, f; = Np;
if (N, = last header) correct_count();

}
abort(Algorithm looping);

APPENDIX B. EMPIRICAL RESULTS

B.1. Explanation

This appendix presents empirical results obtained when
“‘random’’ errors were introduced into a mod(2) struc-
ture, a mod(3) structure, and a mod(4) structure. Each
instance contained 100 consecutively located nodes plus
headers. Increasing numbers of pointers were randomly
selected from within this instance, and modified by
adding or subtracting a random number between 1 and
10.

For the mod(2) instance, correction was attempted
using a historical mod(k) local correction algorithm*,

* This algorithm uses the voting scheme €, = C, = D; = 1/3, and
always corrects one error in this smaller locality, within any mod(k =
2) structure.

/*N, is target node N, */
/*Assignments may be unnecessary *]
/*Terminate successfully */

the mod(2) local correction algorithm presented in
Taylor and Black [11], and the spiral local correction
algorithm presented in Black and Taylor [3]. For the
mod(3) and mod(4) instances, correction was attempted
using the mod(k) local correction algorithm, and the
local correction algorithm presented in this paper.

The mod(2) results, shown in Figure 3, are of some
general interest, but do not directly pertain to the
algorithm presented in this paper. They do, however,
pertain to the mod(k) algorithm against which our
algorithm is compared, and provide evidence that this
comparison is appropriate. Mod(3) results are shown in
Figure 4 and mod(4) results in Figure 5.

Each algorithm was executed on exactly the same
“‘randomly’’ damaged instances. Each test was per-
formed 100 times before the number of pointers being
damaged was increased. Statistics were collected on the
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number of times that the damaged instance remained
connected, and was thus potentially correctable. Statis-
tics were also collected on the number of times each
algorithm was able to correct the structure, and the
number of times that each algorithm was misled into
attempting to apply an incorrect change.

Because the instances being considered were small,
the probability that errors caused disconnection was
high. Because pointers were modified by a small
amount, the probability that votes supported common
incorrect candidates was high. This appendix therefore
presents pessimistic estimates of the expected behavior
of the mod(k) correction algorithms described in this

paper.
B.2. Comments

Under the various errors introduced, the mod(2) struc-
ture remained connected 44% of the time, the mod(3)
structure 55% of the time, and the mod(4) structure 60 %
of the time. The historical mod(k) correction algorithm

I. J. Davis and D. J. Taylor

corrected 26% of errors regardless of the structure
presented to it.

Superficially, it appears that the local correction
algorithm presented in this paper should correct more
errors in a mod(k = 4) structure than in a mod(3)
structure. However, the locality, in which it is assumed
that at most two errors occur, is smaller in a mod(3)
structure than in a mod(k = 4) structure, and this
becomes significant when many errors are introduced
into the instance being corrected. It is therefore not
surprising that this algorithm corrected 40% of errors in
mod(3) instances, and 38% of errors in mod(4) in-
stances.

The statistics presented above are very dependent on
the number of errors introduced into the instance, the
type of error introduced, and the size of the instance
being damaged. However, these statistics provided some
assurance that the algorithm presented in this paper is
indeed superior to algorithms previously presented,
when applied to a mod(k = 3) structure.




