AT
Vb é

T-CP/38/5//26769

Local Correction of Helix() Lists

IAN J. DAVIS

Reprinted from
IEEE TRANSACTIONS ON COMPUTERS
Vol. 38, No. 5, 1989

718

Abstract—A helix(k) list is a newly defined robust multiply
linuked list having k& pointers in each node. In general, the ith
pointer in each node addresses the ith previous node. However,
the first pointer in each node addresses the next node, rather than
the previous. This paper presents an algorithm for performing
local correction in a helix(k = 3) list. Given the assumption that
at most k errors are encountered during any single correction
step, this algorithm performs correction whenever possible, and
otherwise reports failure. The algorithm generally reports failure
only if all £ pointers addressing a specific node are damaged,
causing this node to become disconnected. However, in a helix(3)
structure, one specific type of damage that causes discornection
is indistingnishable from alternative damage that does not. This
also causes the algorithin to report failure,

Index Terms—Linked lists, local error correction, robust
storage structures, software fault telerance.

I. INTRODUCTION

HELIX(k) storage structure is a circular multiply-linked
A list of nodes, in which each node contains £ pointers. In
general, the ith pointer in each node links that node to the ith

.previous node. However, the first pointer in each node

addresses the next node, rather than the previous (Fig. 1).
A particular instance of a helix(k) structure consists of &
consecutive ieader nodes whose addresses are known, and all
nodes reachable by following pointers from these header
nodes. These header nodes are contained within the muitiply
linked list of nodes, and are the only nodes in the instance

‘when the instance is empty (Fig. 2). Each node within an

instance contains an identifier whose value uniquely identifies
the instance to which this node belongs. A count of the
number of nonheader nodes within an instance is stored in one
of the header nodes of the instance. An error is an incorrect
value in a single pointer, identifier, or count component.
Although a helix{k) structure contains considerable redun-
dancy, a small number of well-chosen errors can produce an
instance which is not correctable [7]. However, if we assume
that erroneous components are distributed fairly evenly
throughout the instance being corrected, a large number of
errors can potentially be corrected. It is this assumption which
is exploited by a local correction procedure [4], [5], {8], [9].
A local correction procedure visits all of the componenis of
a storage structure instance in some deterministic order, by
following pointers from the headers of the instance, and
corrects errors when - these are first encountered. Having

Manuscript received September 10, 1986; revised September 28, 1987 and
April 22, 1988.

The auther is with the Department of Computer Science, University of
Waterloo, Waterloo. Ont., Canada N2L 3Gi.

IEEE Log Number 8826769.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1939

Local Correction of Helix(k) Lists

TAN J. DAVIS

Fig. 1. Pointers used in a correct helix(3) locality.

f, and by,

Fig. 2. An empty instance of a helix(k = 3} structure.

ensured that a component is correct, this component becomes
trusted. Errors are identified and corrected by examining
previously trusted components, and at most some constant
number of potentially erroncous untrusted components. This
bounded set of untrusted components forms a /ocality which is
assumed to contain at most some constant number of errors.
Informally, these are the constraints that are imposed on a
local correction procedure. More precise characterizations of
such procedures [3] are too complex to be attempted here.

The local correction procedure described in this paper
operates under the assumption that at most & errors occur in
any locality. When presented with a set of header nodes whose
addresses are known, it proceeds backwards from these header
nodes through the helix(k = 3) instance iteratively attempting
to identify the correct address of the previous node. This
previous node is called the farget.

Having established the location of the target, back pointers
that should address this target can be corrected, as can the
forward pointer and identifier in this target. Having performed
any necessary corrections, these components become trusted,
and the target node becomes the /ast trusted node. Alterna-
tively, having established that no correct pointer addresses the
target, it can be reported that the target node is disconnected.

II. NoraTion

Nodes will be labeled N and subscripted by the correct
forward distance from them to the last trusied node. The last
trusted node is therefore Ny, while earlier irusted nodes have
negative subscripts. The target node is always V.

Back pointers will be labeled & and forward pointers f with
subscripts indicating the correct distance spanned by these
pointers. Pointers will be prefixed by the node in which they
reside, or by extension a path that addresses them. When

0018-9340,89/0500-0718%C1.00 © 1982 IEEE

DAVIS: LOCAL CORRECTION OF HELIX(k) LISTS

appropriate, superscripts will indicate the number of consecu-
tive occurrences of a pointer type within a path.

One method of attempting to identify the target is to use
votes [3]. Each constructive vote is a function which follows
a path from a trusted node and returns a candidate node N,, for
consideration as the target. Constructive votes are labeled C
and distingnished by subscripts. Each diagnostic vote is a
predicate which when presented with a candidate node N,
assumes that this candidate is the target node Ny, examines a
path proceeding from this candidate, and returns true if this
path appears correct. Diagnostic votes are labeled D and also
distinguished by subscripts.

A candidate receives the support of each constructive vote
that returns it, and each diagnostic vote which returns true
when presented with it. Each candidate receives a vote equal
to the number of votes supporting it. If the candidate is not the
target, then it is an incorrect candidate.

The following votes are used in this paper:

Path Compared to
Vote followed node or path

Ci 1= i <k N—i‘bi-f-l

Ci Ny g by fy

D, Ny fi No
D,2=i<k N, b; Ny bi 1
Dy N, by No by by

The node addressed by Ny-b,- f; is also considered to be a
candidate, even if this node is addressed by no constructive
vote. Given that at most k errors occur in any locality, this
ensures that some pointer correctly addressing the target lies
within the locality being considered, unless the target is
disconnected. Note that in a helix(3) structure (Fig. 1) Ny- b,
is the only backpointer addressing N, that is not used by any
constructive vote. For helix(k = 4) structures, other backpoin-
ters have this property and can be used instead of Ny- b, if sq
desired.

ITI. THEORETICAL RESULTS

It is assumed throughout this section that at most k errors
occur in any single locality, and that the Valid State
Hypothesis [7] holds. This asserts that, in the absence of
errors, identifiers and pointers within the instance being
corrected contain information that differs from information
occurring at the same offset in other nodes within the node
space. Without some assumption about the numbers of errors
occurring in a locality, and the number of errors seen when
invalid components are examined, little can be said about the
behavior of any local correction algorithm.

Theorem 1 shows how an algorithm can detect and correct
up to k errors in the empty instance. Subsequently, it is
assumed that the instance being corrected is not empty. Under
this assumption, Theorem 2 shows that the target receives at
least & votes, and that incorrect candidates receive at most &
votes, if distinct from the last k trusted nodes. Theorem 3

719

specifies when disconnection of the target can be suspected
and, in all but one case, determined. Theorem 4 demonstrates
how the target can be identified in all other cases. Collectively,
these results can be used to construct a simple, efficient
algorithm, that performs local correction whenever possible.

Theorem 1I: If an instance of a helix(k=3) structure
contains at most k errors, it can be determined if this instance
is empty. Having determined that the instance is empty, any
errors in the instance can be trivially corrected.

Proof: Consider a correct empty instance of a he-
lix(k = 3) structure (Fig. 2). Since the pointers in a helix(k)
structure form a circular multiply-linked list, and an empty
instance contains only the k header nodes that define this
instance, the by pointers in each of the & header nodes point
back zero nodes, while the b, _; pointers in each of these &
header nodes point forward one node. In addition, the f;
pointer in the earliest header node addresses the last header
node, and the count is zero.

Now consider a correct nonempty instance of a helix(k = 3)
structure. The only component described above that remains
unchanged is the b,_, pointer in the earliest header node,
which always correctly addresses the last header node. At least
2k + 1 components therefore contain values which can
independently be used to determine if the instance is empty.
Since at most k£ of these components contain errors, the
majority of these 2k + 1 components remain correct. A
helix(k = 3) instance containing at most k errors is therefore
empty if and only if at least ¥ + 1 of the above components
confirm this. O

Theorem 2: If r = k errors occur in any locality within a
helix(k=3) structure, the instance being corrected is not
empty, and votes are modified so that they do not support any
of the last & trusted nodes, then a) the target receives at least
2k — r = k votes, and b) incorrect candidates receive at most
r < k votes.

Proof of a): Since the instance is not empty, the target is
distinct from the last & trusted nodes. Thus, modifying votes
so that they cannot support any of the last & trusted nodes
leaves the vote for the target unchanged. In a correct nonempty
instance, each vote supporting the target uses distinct pointers.
Since r pointers are assumed to be damaged, at most r votes
can fail to support the target. The others 2k — r votes must
therefore continue to support the target. L]

Proof of b): Each vote supporting an incorrect candidate
N, contains at least one error. If N, is to receive more than r
votes as a result of r errors, then at least one of the votes
supporting N, must contain only errors present in other votes
that also support N,.

If a shared error occurs in a forward pointer, then it must be
shared by D; and Cy, since no other vote uses a forward
pointer. Since D; supports N,, the pointer N, f; addresses
Ny. Since Cy shares the pointer N,,- f; with D it supports the
node that this pointer addresses. Therefore, C, supports Ng.
But N, is trusted and thus receives no votes, contradiction.

The only error in a back pointer that could be shared by
votes, supporting an incorrect candidate N,, must occur in the
by pointer used by Dy, since all other back pointers used
either occur at different offsets, or originate in nodes that are

720
bk
§ s
&
Dy

Fig. 3. Configuration if Cy_» and D, share by_;.

b2

Fig. 5. Configuration if Dy_, and Dy share by_,.

known to be distinct. This error can be shared with at most one
of Cy_ (Fig. 3), D;_, (Fig. 4), and when k = 4 D;_, (Fig.
5), since no other vote uses a by_; pointer. For this shared
error to cause N, to receive more than r votes as a result of 7
errors, no vote supporting N, may contain more than one
error.

If C,_, and Dy both use the erroneous pointer Ny _¢* by 1,
and the instance being corrected is not empty, then Dy contains
at least two errors since Ny b, incorrectly addresses N,_. If
D, _, and D, both use the erroneous pointer Ny* by _1, then Dy
contains at least two errors since Ny b, incorrectly addresses
itself. Finally, if D;_, and Dy both use the erroneous pointer
N,*bi_1, then at least one of Ny by and N, b, must be in
error since they originate in distinct nodes, but address a
common node.

Since at most one error can be shared by two votes
supporting an incorrect candidate N,, and then only if some
vote supporting N, contains at least two errors, N, receives at
most r votes when r errors are introduced into any locality.[]

Theorem 3: In a helix(3) structure, changing N, f; to
address N,, and the other two pointers correctly addressing N,
so that they address N, is indistinguishable from damage that
causes N_; by and Ny b, to address V|, and Ny b; to address
N,. Thus, it cannot always be determined if the target is
connected. However, if nodes contain identifier components,
and at most k errors occur in any locality, then in all other
cases it can be determined if the target is connected.

Proof: If all k pointers correctly addressing the target
have become damaged, then the target is disconnected.
Otherwise, since at most k errors occur in any locality, the
target is connected, and either supported by one of the
constructive votes, or addressed by the path Ny b, fi.

If no candidate receives k or more votes, then the target
must be disconnected, since Theorem 2 ensures that the target
receives at least k votes. Conversely, if any candidate receives
more than k votes, this must be the target. So assume that
some candidate receives k votes and no candidate receives
more than this. Then either this is the only candidate or

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. §, MAY 1989

multiple candidates exist. These cases are addressed sepa-
rately.

Single Candidate: If only one candidate N, exists, and this
candidate is the target node N, then only diagnostic votes
contain errors, implying that N,_ ;- by is correct. Conversely,
if N, is not the target, the path Np* b, f; and all paths used by
constructive votes incorrectly address N, and thus contain
errors. Since only k errors occur in the locality, each path
contains one error and the error in the path Ny-b,- fi also
occurs in the path N, ; by f; used by C;. Thus, Ny fi
contains an error but once again N,_ - by does not.

Since N, ;- by is correct and addresses V,, it can easily be
determined if N, = N,. Similarly, since at most k errors occur
in any locality, N, must have an undamaged identifier field,
allowing it to be easily determined if N, lies outside the
instance being corrected. Finally, it can easily be determined if
N, is one of the last k trusted nodes. In any of the above cases,
N, is clearly not the target node Ni.

So suppose that N, lies within the instance, but has an
address that differs from N,, N;, and each of the last k trusted
nodes. If N, f; contains an error, then this pointer must be
used by Cy since each incorrect pointer in the locality is used
by some constructive vote, but no other constructive vote uses
fi. Since C; contains only this one error and supports N,
N, f; must both occur in and address N, (Fig. 6). This implies
that N, = N,, contradiction. Thus, N, f; is correct.
Conversely, if N, is the target node Ny, then since all of the
diagnostic votes associated with N,_; are damaged, N, fi
contains an error. Thus, N, is the target if and only if N,* fi
contains an error.

The pointer N, -f; cannot address Vg since it is known that
N, receives no diagnostic vote. If this pointer addresses any
other trusted node, then it contains an error since IV, is distinct
from the last k trusted nodes. This pointer also clearly contains
an error it if addresses itself. In any of the above cases, since
N, fi is known to be in error, N, is the target. So assume that
N, f, addresses N, which is distinct from N, and the last k
trusted nodes. Then N, - by is correct since it is distinct from all
of the b, pointers containing errors.

Consider following the path N, fi-bi, and then k& — 1
forward pointers (Fig. 7). If N, fi is correct, then none of
these k — 1 forward pointers can be the erroneous N fi
pointer, since N, is not one of the last £ trusted nodes. Thus,
all k — 1 forward pointers are also correct and form a path
that arrives back at N,,. Conversely, if N,* f; is incorrect, then
N, f; is correct and thus the path followed must either fail to
arrive back at N,,, or, in using N, f; more than once, arrive
back at N, prematurely. Thus, N, is the target if and only if
the above path appears incorrect.

Multiple Candidates: 1f constructive votes agree on a
common candidate, but support a different candidate from that
addressed by Ny b, fi, then the target is connected. Other-
wise, since constructive votes disagree, any candidate N,
receiving k votes must receive at least one diagnostic vote. If
the target is disconnected, then all errors occur in pointers
correctly addressing NV;. Only the diagnostic vote Dy can use
one of these erroneous pointers to support N,. However, this
implies that N, is N,, and that N;- fi addresses Np.

DAVIS: LOCAL CORRECTION OF HELIX(k) LISTS

fy
by

=

Fig. 6. N, f) being used by Cy to support N,.

by
ol
() f

Fig. 7. The path N,- fi-by fi™!

The statement of the theorem has acknowledged that if this
damage occurs in a helix(3) structure, then it cannot be
determined if the target is connected. However, for a helix (k
= 4) structure the pointer N_ ;- b; is unused and thus correct
since k other pointers within the locality are known to be in
error. Since this pointer correctly addresses N,, it can be used
to determine if the candidate receiving k votes is indeed N,. If
it is, then the target is disconnected. Otherwise, this candidate
is the target. O

Theorem 4. If the conditions of Theorem 3 are satisfied,
and it has been determined that the target is connected as
described in Theorem 3, then the target can always be
identified.

Proof: If the target is the only candidate, or receives a
vote greater than any other candidate, then the target is
trivially identifiable. For an incorrect candidate N, to receive
the same vote as the target Ny, both must receive & votes.

Suppose that N;- f contains an error. Then this error must
be used by some vote supporting the incorrect candidate NV,
since otherwise k — 1 errors could cause k votes to support an
incorrect candidate contradicting Theorem 2. The only vote
that can utilize such an error in N;- fi is Cg, and then only if
N,y by erroneously addresses N;. But in this case Ci
contains two errors that are used by no other vote that supports
N,,. This implies that £ — 2 errors cause the remaining £ — 1
votes to support N,. Once again, this contradicts Theorem 2.
Thus, N, f; must be correct.

Since N;- f] is correct we can triviaily identify the target if
N,,- f; does not address Ny. So suppose that N, fi contains an
error that causes it to also address Ny. Since it is known that

APPENDIX A

721

each error in the locality damages a vote correctly supporting
the target, the incorrect candidate N, must be N,. But in this
case the damage to N,- f] implies that N, ;- by is correct and
therefore addresses the incorrect candidate N,. Thus, if both
N fi and N, f; address Ny, then the target is that node not
addressed by N, _ ;- by. (]

IV. CoNCLUSIONS

The above results are the natural progression of ideas first
presented in [4]. This earlier work presented an algorithm that
corrected mod(k) linked lists [1], [2], [6] by using weighted
votes. Mod(k) lists can be derived from helix(k) lists by
replacing all the back pointers in a helix(k) list by a single
pointer addressing the kth previous node. The mod(k)
algorithm is somewhat simpler to implement than the al-
gorithm presented in Appendix A of this paper, but the use of
weighted votes resulted in a proof of correctness that was more
complex than desired.

Empirical results presented in Appendix B suggest that the
algorithm presented in this paper when applied to helix(k)
structures is significantly better than earlier algorithms used to
correct the similar spiral(k) structure [3]. This is hardly
surprising despite the similarities between these two classes of
structure. Earlier algorithms operated under the assumption
that at most £ — 1 errors occurred in any locality of the spiral
(k) structure, and therefore made no attempt to either detect
disconnection or to behave intelligently when k errors oc-
curred in a locality.

Currently, it is unclear how one might evaluate a correction
algorithm, or identify the type of behavior that -could
reasonably be expected from a ‘‘good’’ algorithm. While it
seems reasonable to judge an algorithm on its empirical
behavior, there seems no way-of confidently simulating the
types of unknown error that are likely to be encountered in any
real environment. If anything, the theoretical behavior of a
correction algorithm is of even less use in predicting the
practical usefulness of an algorithm. However, theoretical
results help identify the types of errors that will be corrected
by the algorithm, and may eventually be used to accurately
predict the statistical behavior of correction algorithms. This is
an open and interesting area for research.

PsEUDOCODE FOR CORRECTION ALGORITHM

correct_headers();

/* Terminate if null instance */

for (count =0; count < max_possible; count = count + 1§24

candidates =0;
for (i=0; i<k; i=i+1){
case “i=0": N,=Ny by fi;
case “‘i=k"’: NX=N2*k'bk'f1;
case “‘default:”” N,=N_;"bi,y;
if (N, #any candidate [j}){

/* Apply constructive votes */
/* For simplicity assume N, exists */

Jj=candidates; candidate[j]= N,; vote[/] = 0;candidates = candidates + 1;

3

if (i#0) votel j1=vote[j]+1;

/* N,=candidate[j] */

for (i=0; i <candidates; i=i+1){
N, = candidate{i];
for (j=1; j=k; j=j+1){
case ‘‘j=1:" if (W, fi=Nyp)
case*‘j=k:”’
case ‘‘default:”’

}

if (N bi=Ny by by_1)
if (N bi=Ny biyy)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1989
/* Apply diagnostic votes */
vote[i] = vote[i]+ 1;

vote[i] =vote[i]+1;
vote[i]=vote[i] + 1;

if (N,=N;, for any 0=j=1-k) vote [i]=0;

}
case ‘“‘Only N, has >k votes’’: break;

case ‘“‘Only N, has k votes’”:
if (candidates=1){

if (N, trusted or N, id bad or N,=N,_, b, or N, fi=N,
or Ny fi by f¥~1=N, without cycles) abort(Target disconnected);

}

else if (N, f, =N and N, =N, _¢-by and Ny=Ny_ - by){

if (k=3)

abort(Target may be disconnected);

if (N;,=N_;"b;) abort(Target disconnected);

}
case ‘‘N, and N, have k votes™”:
if (N fi# Ny S
if (Np* f1=No) Ny=Ny;
} else if (Na:‘NZ-k'bk)Na:Nb;

case ‘‘Otherwise’’: abort(Target disconnected);

Ny id=id; Ny fi=Ny;
for (l=2; lsk; i=i+ I)Nl_,'blzNa,
if (N, =last header) correct_count();

}
abort(Algorithm looping};

ArpEnDIX B

EMPIRICAL RESULTS
A. Explanation

This Appendix presents empirical results obtained when
“‘random’’ errors were introduced into instances of a helix(3),
helix(4), spiral(3), and spiral(4) structure. In the spiral(k)
storage structure, each node has k¥ — 1 pointers that address
the next & — 1 nodes, and a kth pointer that addresses the kth
previous node. The spiral(k) structure is identical to the
helix(k) structure in all other respects [3].

In general, k errors in a spiral(k) structure may cause some
nodes to be reachable only via forward pointers. Unfortu-
nately, in a spiral(3) structure a different set of k¥ = 3 errors
may cause these nodes to be reachable only via back pointers.
Thus, any local correction algorithm that anticipates three
errors in a spiral(3) locality may be unable to perform
correction, even though the structure remains connected. By
using a helix(k = 3) structure this problem is avoided.

Each instance contained 100 consecutively located nodes
plus headers. Increasing number of pointers were randomly
selected from within this instance, and modified by adding or
subtracting a random number between 1 and 10. Because the
instances being considered were small, the probability that
errors caused disconnection was high. Because pointers were
modified by a small amount, the probability that votes
supported common incorrect candidates was high. This

/* N, is the target node N */
/* Assignments may be unnecessary */
/* Terminate successfully */

Appendix therefore presents pessimistic estimates of the
expected behavior of the correction algorithms described in
this paper.

The spiral(3) and spiral(4) instances were corrected using
the spiral correction algorithm described in [3]. This algorithm
uses the following votes to correct up to kK — 1 errors in any
locality. If a single candidate received & + 1 or more votes,
the algorithm concludes that this node is the target. Otherwise,
the algorithm reports failure.

Path Compared
Vote followed to node
C,l=i<k Nivicw b fi
Ck Nl»k'bk
D,1si<k N, f; Ni_;

Unfortunately, since the spiral and helix structures are
different, it was impossible to execute the correction al-
gorithms on the same ‘‘randomly’’ damaged instances. Thus,
the errors applied to each instance were related only by the
above constraints. Each test was performed 1000 times on
each instance before the number of pointers being damaged
was increased. Statistics were collected on the number of times
that each damaged instance remained connected, and was thus

-

DAVIS: LOCAL CORRECTION OF HELIX(k) LISTS

potentially correctable. Statistics were also collected on the
number of times the appropriate algorithm was able to correct
the instance presented to it, and the number of times that each
algorithm was misled into attempting to apply an incorrect
change.

c
o M
® i
r L]
¢ 1
< e
N ¢
e
a
——— Helix(3) connected ~ --u-- Helix(k) algorithm
Spiral{3) connected Spirzl(k) algoritam
Graph 1. Helix(3) results.

c
° ™M
! i
T] N
& E !
t 400 -| . | \ g
: 150 Helix(4) resulis 3 . 4
g |

)

;

;

|

|

)

o L e e e e e e AR e L e s S A

o T T
024 6 810121416 18202224 262830323436 38404244 46 48 50 52 54 56 58 60

Legend:

Helix(4) connected -~ -- - Helix{k} algorithm
Spiral(4) connected e Spiral(k) algorithm

Graph 2. Helix(4) results.

B. Comments

Under the various errors intreduced, the helix(3) structure
remained connected 85 percent of the time and the spiral(3)
structure 84 percent of the time. The helix(4) and spiral(4)
structures remained connected 99 percent of the time.

The helix(3) structure was corrected 54 percent of the time
while the spiral(3) structure was corrected only 36 percent of
the time. Similarly, the helix(4) structure was corrected 83
percent of the time, but the spiral{4) structure only 66 percent
of the time. More informally, in the experiments conducted,
the helix(k} algorithm generally behaved as well as the
spiral{%} correction algorithm, even when the structures that it
was correcting contained an additional ten errors.

Somewhat surprisingly, the helix correction algorithm
attempted more erroneous corrections than the spiral correc-

723

tion algorithm. In the helix(3) structure, 111 erroneous
corrections were attempted compared to 33 in the spiral(3)
structure. Similarly, in the helix(4) structure two erroneous
corrections were attempted compared to none in the spiral(4)
structure. Various factors seem to have contributed to this
discrepancy. Since the spiral correction algorithm failed more
often, it encountered fewer errors, and thus had less opportu-
nity to be misled. In addition, the helix correction algorithm
can be misled when an incorrect candidate receives & votes,
while the spiral correction algorithm can be misled only if
some incorrect candidate received at least & + 1 votes. This
becomes particularly significant when constructive votes
support nodes outside of the instance being corrected. Given
the nature of the diagnostic votes used, and the fact that only
components within the instance are damaged, such nodes
receive no diagnostic votes from the spiral correction al-
gorithm, but can receive up to & — 1 diagnostic votes from the
helix correction algorithm.

Although the spiral(3) and helix(3) structures are naturally
much more robust than the mod(3) structure, since each node
in a mod(k) structure contains only the two pointers f; and by,
it is of some interest to compare the results presented above
to those presented earlier for the mod{k) correction
algorithm [4]. In order to provide a direct comparison,
instances of the helix(3) and spiral(3) structure containing
more than 30 damaged pointers will be ignored. Under this
scenario, the spiral(3) and helix(3) structures remained con-
nected 98 percent of the time, while the mod(3) structure
remained connected only 55 percent of the time. The helix(3)
instances were corrected 90 percent of the time, the spiral(3)
instances 70 percent of the time, and the mod(3) instances 40
percent of the time. Earlier mod(k} correction algorithms that
did not use the techniques presented in this paper consistently
corrected 26 percent of such damaged mod(k) instances.

ACKNOWLEDGMENT

The author is greatly indebted to his wife, A. R. Crowe, for
the moral, emotional, and financial support that she has
provided through this research. She is responsible for motivat-
ing me to complete this paper, and assisted in reading early
drafts of it. Thanks are also extended to my supervisor, Dr. D.
J. Taylor, for the interest he showed in this research, and for
the numerous enhancements that he made to this paper.
Finally, I would like to thank those individuals who refereed
an earlier version of this paper. Their comments have
contributed greatly to the final format of this paper.

REFERENCES

{11 J. P. Black, D. J. Taylor, and D. E. Morgan, ‘‘An introduction io
robust data structures,”’ in Dig. Papers: 10th Annu. Int. Symp.
Fauly-Tolerant Compui., Cet. 1-3, 1980, pp. 110-112,

[2] ——. ““A compendium of robust data structures,”” in Dig. Papers:
{11th Annu. Int. Symp. Fault-Tolerant Comput., June 24-26, 1981,
pp. 129-131.

{3] J. P. Black and D. J. Taylor, “‘Local correctability in robust storage
structures,”” CS8-84-44, Dep. Comput. Sci., Univ. of Waterloo, Dec.
1984. IEEE Trans. Software Eng., submiited for publication.

{41 L J. Davis and D. J. Tavlor, ‘‘Local correction of mod (k) lists,”” CS-
85-55, Dep. Comput. Sci., Univ. Waterloo, Dec. 1985.

724

[3]
(61

71

(8]
191

1. 1. Davis, ““A locally correctable AVL tree,”” in Dig. Papers: 17th
Int. Symp. Fauli-Tolerant Comput., July 6-8, 1987, pp. 85-88.

S. C. Seth and R. Muralidhar, ‘‘Analysis and design of robust data
structures,’’ in Dig. Papers: 15th Annu. Int. Symp Fault-Tolerant
Comput., June 19-21, 1985, pp. 14-19.

D. J. Taylor, D. E. Morgan, and J. P. Black, ‘‘Redundancy in data
structures: Some theoretical results,”” IEEE Trans. Software Eng.,
vol. SE-6, pp. 595-602, Nov. 1980.

D.J. Taylor and J. P. Black, ‘‘A locally correctable B-tree implementa-
tion,”> Computer J., vol. 29, pp. 269-276, June 1986.

D. J. Taylor and C. J. Seger, ‘‘Robust storage structures for crash
recovery,”” IEEE Trans. Comput., vol. C-35, pp. 288-295, Apr.
1986.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1989

Ian J. Davis received the B.Sc. degree in mathe-
matics and computer science from the University of
London and the M.Sc. degree in computer science
from the University of Toronto., Toronto, Ont.,
Canada.

He has recently completed his Ph.D. in the field
or robust data structures at the University of
Waterloo, Waterloo, Ont., Canada. He is a full time
employee of Wilfrid Laurier University, and is
responsible for the development of a general data-
base system called MSQ which is used in many
different applications.

