A Locally Correctable AVL Tree

1. J. Davis

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

Classical binary search trees are not robust, since single errors
are often undetectable. Several methods of adding redundancy to
binary trees have been proposed that allow a small constant number
of errors to be corrected in the resulting structure. This paper
presents a method of adding redundancy to an AVL tree that allows
the resulting structure to be corrected whenever a small constant
number of correct components exist within the vicinity of each error
encountered. The expected number of random errors that can be
corrected therefore increases as the structure grows. Insertion,
deletion, and retrieval continue to be logarithmic operations, while
correction can be accomplished in linear time, using logarithmic
space.

1. Introduction

A binary tree is a storage structure which allows rapid retrieval
of data. The structure comprises a collection of nodes that each
contain two link pointers and a key. Each node with the exception
of the header node is addressed by exactly one link residing in its
parent node. Obviously, since the structure is finite, some links are
unused. These links generally contain some special value indicating
that they are null. In a binary search tree the keys within the
structure are arranged in such a way that all keys reached by
following a “left” link out of any node are smaller than the key
recorded in that node, while all keys reached by following a “right”
link are larger than this key.

Classical binary trees are not robust. FErrors in keys are
undetectable, unless these errors affect the key ordering, while
errors in non-null links disconnect the structure {9]. A number of
binary trees have been proposed that allow a limited number of
errors to be detected and corrected, by performing a global
examination of the erroneous storage structure instance
{1,6,7,8,11,14]. We do not permit such global examinations of
the structure. Instead all components in the storage structure are
visited in some order, and corrected if necessary as encountered,
before being considered trusted. Each erroneous component is
identified and corrected by examining previously trusted
components and at most some constant number of potentially
erroneous untrusted components. This bounded set of untrusted
components forms a localiry, which is assumed to contain at most
some constant pumber of errors. Informally, these are the
constraints that are imposed on a local correction procedure. More
precise characterisations of such procedures [2] are too complex to
be attempted here.

2. Proposed structure

In a height balanced (AVL) binary tree, the heights of the left
and right subtrees below any node differ by at most one [S]. An
identifier exists in each node which indicates the current direction
of any such imbalance in the two subtrees below this node. Because
the tree is height balanced, expected retrieval times are reduced,
and worst case insert and delete operations remain logarithmic.

0731-3071/87/0000/0085$01.00 © 1987 IEEE

85

The AVL tree structure being considered will be made more
robust by adding additional redundancy to the nodes of the
structure. In addition to the height balancing information present
in each node identifier, each node identifier will also contain two
flags explicitly identifying the location of null links within this
node. Each node will also contain an arc pointer, that ensures that
the tree is 2-connected. If desired, keys may also be protected by
associating checksums with them.

Nodes will be labelled N and distinguished by subscripts. Left
links will be labelled /, right links r, and arcs a. Arbitrary links
will be labelled ¢. Identifiers will be labelled id. Components will
be prefixed by the node in which they reside, or by extension a path
that addresses them. The symbol @ will be used to denote null
pointers. Null pointers contain some value that indicates that they
address no node.

Let the header node be labelled Ny;. Then within a correct

structure all pointers in the header address the root node if this
exists. Links address child nodes as expected, and arc pointers form
a cyclic single linked list which links nodes in the order defined by
the following node traversal:

Visit(Ny)
K Ngr#g {

Traverse(N) {
I NI Visit(N-1)
Visit(Ng-r) I N-rzg Visit(N-r)
Traverse(Ngr) If N-I¢ Traverse(N-1)
} If N-rgy Traverse(N-r)

Fig 1. Arc traversal order in the proposed tree

Fig 2. An example of the proposed AVL tree

3. Global characteristics

The structure described above has the following global
characteristics. It can be traversed using either the links or the arcs
and is thus 2-connected. It can be reconstructed by either using
correct links, or by using correct arcs and identifiers, even if
identifiers do not contain height balance information. The structure
is therefore 2-determined {10]. We will show that the structure can
be corrected when at most one error occurs in every bounded
correction locality even if height balance flags are absent. The
structure is therefore I-locally-correctable, and thus trivially both
1-local-detectable and I-correctable. However, without these flags
certain pairs of changes within subtrees are undetectable, as shown
in figure 3, since they leave the structure appearing internally to be
correct. Thus, if height balance flags are absent, this structure is
unusual since it has exactly the same detectability, local
detectability, correctability, and local correctability.

Fig 3. A pair of undetectable changes in N,,-a and N,-r

Given that node identifiers do contain height balance flags, the
structure is 2-detectable since any undetectable transformation of
the instance requires at least three changes, and certain sets of three
changes are indeed undetectable as shown in figure 4.

Fig 4. Three undetectable changes in Ny+l, Ny-r and Ny-a.

4. Local correction

The task of performing local correction can be divided into two
cooperating sub-tasks. Firstly, a local detection procedure must
exist, which when presented with the headers of a structure to be
corrected, traverses the components of this instance in some
deterministic order, by using values in the components already
visited, and detects any single erroneous component after examining
at most some bounded number of additional correct components.
Having determined that an error exists in some bounded set of
untrusted components called a locality, a correction procedure must
identify the erroneous component and its correct value by using only
components already seen by the detection procedure. Then having
corrected this error, detection and correction can be repeated, until
no more errors exist in the structure being corrected.

86

Since a correct storage structure can be traversed in the same
sequence by using either arcs or links, any single error in a pointer
will cause the resulting traversals to differ. Thus the local detection
procedure can detect single errors in pointers if it can perform both
traversals in parallel, while examining at most some bounded
number of new components during each step of this parallel
traversal.

The only possible traversal using arcs is to follow the single
linked list formed by these arcs. Each step of this traversal involves
examining one new arc. Following the same traversal using links is
considerably mnore complex, but still involves examining at most a
bounded number of new components at each step, as justified
below.

Suppose that we have arrived at some non-null link N,-c and
wish to identify the non-null link N, -c=N,-c-a so that we can
proceed to the next step of the traversal. Then, as shown in figure
5, at most four new null links will be examined before it is
determined that N, has no children or grandchildren that might
contain this link. The search for this link then continues by
proceeding up the tree from N,, until we arrive at a node N, having
N, in its left subtree. Since the tree is balanced, the node addressed
by N,-r exists and therefore contains the next two links in the
ordering. If this node is a leaf node then two further null links will
be encountered, before repeating the ascent of the tree from N,
until we encounter some N, having N, in its left subtree. Because
the tree is balanced, the node addressed by N,-r exists and has at
least one child. Thus in the worst case we will encounter a seventh
null link N,-r-/, before encountering the non-null link N,-r-r.
Conversely, if no further non-null link exists, then during one of the
two ascents up the tree the header node will be encountered,
signalling that the traversal is complete.

(ﬁd{ %
RIE

Fig 5. Maximum null links ¢ between N, -¢ and N,,-¢

-
-

&

Having detected a discrepancy between arcs and links as a result
of performing the above parallel traversal, any single error causing
this discrepancy must occur in the last arc examined, or in the links
examined during the last two steps of the parallel traversal, since
either a null link encountered in the previous step of the traversal
erroneously contained the same value as the desired link, or some
error was encountered during the current step of the traversal.

Since we know that a single error exists in the above
components we can assume that no error occurs in a bounded
number of other new components that the correction procedure
wishes to examine, and which the detection procedure has therefore
been instructed to include in the locality, following the detection of
an error. Identifying null links that contain erroneous values and
non-null links that have erroneously become null is therefore trivial

R - AN - SO, SUET. - SN - SRR - SR SV SO SN . SR, - YRR - SO JTPURE S SO TR 2N SR S

. AN S S

R SR S S

since node identifiers contain flags indicating the location of null
links within these nodes. Correcting such links is also trivial since
null links correctly contain a known value, and non-null links
correctly contain the same value as the last arc examined.

So assume that null links within the locality being corrected
contain no errors, and that non-null links appear non-null even if
erroneous. Then the error within this locality must occur either in
the last arc examined, or in the non-null link that was expected to
contain the same value as this last arc. Having determined the
location of this error it can be trivially corrected since these two
pointers agree when correct.

If the erroneous pointer addresses a non-existent node this can
be detected when we attempt to access this node. Similarly if the
erropeous pointer addresses a node outside of the instance being
corrected, this can be detected by examining the identifier in this
node.

So suppose that N,/ and N,,-a address different nodes within
the instance being corrected, as shown in figure 6, and let N, be the
node that both should address. Then one further traversal step
using only correct links can be performed, arriving at the node
addressed by N,-c=N,-a. This is because N, either has a right
child addressed by N,-a, or the node correctly addressed by N,/
can be assumed to be a leaf since the tree is balanced. Having
identified the correct value of N,-a, using only correct pointers, we
can identify N, and thus the erroneous pointer, since N, is not N,,,
and no other correct node within the structure contains an arc with
the same value as ¥, .

Fig 6. Possible configurations if left link or arc in error

Now suppose that N,-r and N,,-a address different nodes within
the instance being corrected. If N,/ is null or addresses an internal
node, then the next non-null link N,,-c within the link traversal
does not depend on N,-r, and correction can be performed as
described above.

A problem arises however if N,-r#N,-a and ¥, ! addresses a
leaf node, since in this case determining the correct value of N,,-¢
involves determining the correct value of N,.-r. This occurs for

example if one of the changes depicted in figure 3 occurs.
Fortunately, in this case N,-r correctly addresses a subtree

containing at most three nodes, since the tree is balanced. Thus if
either N, -a or N,-r address a subtree containing more than three

nodes, then the other pointer must be correct. Otherwise, the
algorithm locates the next non-null link N,-c not under N, by

temporarily assuming that N,-r is null. Now locate the node N,
visited last within each subtree, and reject the possitility that N,-r
correctly addresses this subtree if N,-a=N,-c. If neither subtree is
rejected during this process, then both contain &,. Since the two
subtrees are distinct but each contain at most three nodes, one
subtree must contain the single node »,, while the other has as its

root the parent of N,. Thus both N,-a and N,-r correctly address
this larger subtree.

87

5. Tidying up
Having corrected all pointers, identifiers can be corrected.
Correction of the height balance flags in each node can be
accomplished efficiently by using a post-order traversal, if the height
of each left subtree visited is stacked, until the height of the
corresponding right subtree has been established. Correcting the
other information in each node identifier is trivial.

While performing this post-order traversal of the structure, keys
can be locally corrected if desired. Add to each node a checksum
component s which is the same size as the key components, and let
N,,; immediately follow N, within a cyclic post-order traversal.
Ensure during updates that N, s=N,-k+N,1-k, for all N,. Thus if
N,k is inserted, deleted or changed N,-s and N,_;-s must also be
updated. N, is updated anyway, and N,_;-s can be updated by
performing one additional probe. N,k need not be explicitly
retrieved when wupdating N,k since prior to any change
Nyi1k=N,-s—N,-k. Thus keys and checksums can be updated
efficiently.

Since the key in the header is unused it can be assigned some
constant value, and trivially corrected if in error, before being
added to the set of trusted components. The correct values of
successive keys are determined by recognising that N, -k,
N,_1's—N;_1-k and N,-s—N, -k should all agree on the value of
N, -k, and that a single error in any component used by one of these

expressions, leaves the other two expressions agreeing on the correct
value for N,-k. Having used these votes to correct Nk if

necessary, this component and N,_;-k both have trusted values, and
therefore N,_;-s=N,_1-k+N,-k can be corrected if erroneous, before
itself becoming trusted. Once N,k and N, ;s have become
trusted, we iteratively correct N, -k and N,-s, until no more

. untrusted components remain.

6. Conclusions

The above structure is of considerable interest, since no
previously published binary search tree is locally correctable. It is
surprisingly hard to develop binary trees that are easily used,
efficient, and robust. It is even harder to construct such binary
trees which are locally correctable.

The correction algorithm presented in this paper can be applied
to unconstrained binary trees, if it is modified so that it makes no
assumptions about the size of correction localities. Obviously the
resulting algorithm will not perform local correction, but will
continue to behave well on most tree structures. However, as
instances degenerate into structures resembling linked lists with
duplicated forward pointers, the algorithm degenerates into one that
only performs 1-correction.

A variety of other structures have been developed that are
locally correctable [3,4], and a locally correctable B-tree has been
previously presented [12]. We have implemented a very much
simpler unconstrained locally correctable binary tree that includes
two checksum components in each node. By using a generalised
perfect Hamming code, these two checksums allow any single error
in the five components consisting of key, links, and checksums to be
corrected. The resulting structure is very robust when exposed to
certain types of error, but when two or more errors occur in a single
node, erroneous corrections will always occur. This is very
unfortunate since software errors in keys will almost certainly
propagate to associated checksums. An efficient binary search tree
has also been developed that uses one redundant pointer, and
occasionally keys, to perform local correction. This structure is
more efficient than the structure presented here, and much easier to
update, but requires that keys be both ordered, and themselves
locally correctable. Many other designs for locally correctable
binary trees have been considered and subsequently rejected, either
because they were unappealing, or because they contained subtle
flaws.

It is our intention to implement the proposed storage structure,
so that its efficiency, robustness and crash resilience [13] can be
further studied, and compared to the other locally correctable
structures described above. Tt would also be of interest to analyse
the behaviour of the local correction algorithm presented in this

paper, when operating on binary trees having less restrictive height
balance constraints.

7. Acknowledgements

I would very much like to thank my supervisor, Dr. D. 7.
Taylor, for his enthusiastic support of this research, and specifically
for the interest that he showed in this paper. Without his many
helpful comments it would have taken much lenger to complete. T
am also greatly indebted to my wife, A. R. Crowe, for her
emotional support, and for her willingness to continue financing my
research.

References

1. J. P. Black, D. J. Taylor, and D. E. Morgan, A compendium
of robust data structures, Digest of Papers: 11th Annual Int.
Symp. on Fault-Tolerant Computing, pp. 129-131 (24-26 June
1981).

2. J. P. Black and D. J. Taylor, Local correctability in robust
storage structures, CS-84-44, Dept. of Computer Science,
University of Waterloo (December 1984). Submitted to JEEE
Transactions on Software Engineering

3. I J. Davis and D. J. Taylor, Local correction of mod(k) lists,
CS-85-55, Dept. of Computer Science, University of Waterloo
(December 1985).

4. 1. J. Davis, Local correction of helix(k) lists, CS-86-30, Dept.
of Computer Science, University of Waterloo (August 1986).

5. D. E. Knuth, The Art of Computer Programming, vol. 3:
Sorting and Searching, Addison-Wesley, Reading, Mass.
(1973).

6. J. I. Munro and P. V. Poblete, Fault tolerance and storage
reduction in binary search trees, Information and Control
62(2/3) pp. 210-218 (August/September 1984).

7. M. C. Sampaio and J. P. Sauve, Robust trees, Proc. 15th Int.
* Symp. on Fault Tolerant Computing, pp. 23-28 (June 19-21,
1985).

8. S. C. Seth and R. Muralidhar, Analysis and design of robust
data structures, Proc. I5th Ini. Symp. on Fault Tolerant
Computing, pp. 14-19 (June 19-21, 1985).

9. D.J. Taylor, D. E. Morgan, and J. P. Black, Redundancy in
data structures: Improving software fault tolerance, /EEE
Transactions on Software Engineering SE-6(6) pp. 585-594
(November 1980).

10. D. J. Taylor and J. P. Black, Principles of data structure error
correction, IEEE Transactions on Computers C-31(7) pp. 602-
608 (July 1982).

11. D. J. Taylor and J. P. Black, Guidelines for storage structure

error correction, Proc. I5th Int. Symp. on Fault-Tolerant
Computing, pp. 20-22 (June 19-21, 1985).
12. D. J. Taylor and J. P. Black, A locally correctable B-tree

implementation, Computer Journal 29(3) pp. 269-276 (June
1986).

13. D. J. Taylor and C. J. Seger, Robust storage structures for
crash recovery, IEEE Transactions on Computers C-35(4) pp.
288-295 (April 1986).

14. K. Yoshihara, Y. Koga, and T. Ishihara, A robust data
structure scheme with checking loops, Digest of Papers: 13th
Annual Int. Symp. on Fault Tolerant Computing, pp. 241-248
(June 28-30, 1983).

88

B .. SO SR TN S-S . JANPUIUOE SR DI . S 4

L

B S ST - SR S

