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Error Correction 

in 

Robust Storage Structures

ABSTRACT 

The need to develop reliable computer systems is of paramount 

importance in many endeavours. To achieve this goal all aspects of 

software and hardware engineering must be made independently and 

collectively as reliable as possible by all means available to the system 

architect. Almost all computer systems make extensive use of data 

structures, and it is therefore appropriate to ask how data structures 

can be made as reliable as possible. 

Previously, global and local constraints were imposed on the 

distribution of errors in storage structures, and results developed which 

indicated when such constrained errors were correctable. Algorithms 

were then developed which corrected these classes of errors. 

This dissertation shows that, under a potentially larger class of 

errors, correctable errors can be distinguished from errors which are 

not correctable. Guidelines are then presented for identifying this 

larger class of errors. Using these guidelines, a number of new 

correction algorithms are developed which perform correction 

whenever possible and otherwise report failure. 

This dissertation also significantly extends the theory of local error 

correction; presents four new locally correctable tree structures; and 

uses mathematical models to describe the expected behaviour of local 

correction procedures operating on arbitrary and specific storage 

structures. 
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You smug-faced crowd with kindling eye 

Who cheer when soldier lads march by 

Sneak home and pray you' II never know 

The hell where youth and laughter go. 
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Chapter I 

Introduction 

1.1. Preamble 

Many engineering and scientific endeavours currently being undertaken depend 

critically on the correct behaviour of computer hardware and software 

[1, 2, 8, 24, 33, 45, 77,113,136]. However, modern computer hardware and software 

are inherently very complex and thus subject to error from numerous sources 

[22, 54, 137, 139]. Some of these errors can be avoided by careful design 

[13, 26, 90], development [12, 23, 48, 92,107], testing and periodic maintenance, but 

others will still occur [ 52, 53, 81, 98, 99]. 

If the occurrence of an error is not detected promptly then this error may cause 

a series of further errors which collectively result in a catastrophic failure. It is 

therefore desirable that errors be detected. Having detected an error (or collection 

of errors) some intelligent response must be made, if the consequences of this error 

are to be minimized. In many systems the best strategy is to report failure and enter 

a "down" state cleanly but rapidly [110]. However, in other systems such an 

approach is not viable, since entering a down state is itself a catastrophic failure. In 

such systems, errors must be contained, diagnosed, and, whenever possible, removed 

[5, 6, 96,104]. 

Much research has been conducted into methods of protecting computer systems 

against hardware errors [32, 37, 60-62, 101]. These methods tend to use massive 

amounts of redundant hardware [10, 28, 87, 97, 130] to detect faulty circuits, and to 

predict the behaviour of a correct system. In some systems, redundant components 

also provide standby spares for critical components. Such techniques have also been 

proposed by many as a means of improving the reliability of software 

[4, 31, 69,103], but some recent studies suggest that these techniques may be less 

1 



2 

useful than anticipated [7, 38, 70, 71]. This is because independently developed 

versions of software often contain similar types of faults, which collectively mask the 

presence of errors. At a higher level of abstraction, information is often protected 

by using error-correcting codes. Many good codes are known that support detection 

and correction of a wide variety of errors [55, 64, 78, 88,100]. Attempts have also 

been made to formally prove that hardware and software correspond to their 

intended design [65, 83, 134], but these attempts have met with limited success 

[44,115, 116]. More recently, programming languages have been designed that 

assist in the development of reliable software [34, 82, 86,112,114,135]. None the 

less, faults still occur. In desperation, some researchers have attempted to verify 

hardware and software by resorting to studies of its empirical behaviour, or by 

attempting to predict remaining faults by extrapolating from previously discovered 

faults. 

The above techniques for coping with occasional errors achieve success by 

masking faults that might lead to failure, rather than by removing observed errors. 

If computer systems containing faults or developing errors must function correctly 

over an unbounded period of time, then periodically any errors that have been 

detected must be removed. Diagnosing erroneous hardware and software, while 

potentially tedious, is not generally difficult if one has tools that allow the behaviour 

of isolated sets of components to be monitored. This is because most hardware and 

software operates in a deterministic manner, producing definable outputs from given 

inputs. Having diagnosed the cause of an error, faulty hardware can be replaced 

and faulty software corrected. 

Faults in hardware and software may introduce errors into data structures. 

These errors are very much harder to diagnose, simply because data structures 

change over time, and can continue to appear correct even when they contain errors. 

Historically, designers have therefore tended to use backups and some form of 

recovery log to provide protection against data structure errors 

[25, 73,127,131,133]. 

Unfortunately, the costs associated with backing up data structures are very high 

[27, 29, 85,109,117]. Backups consume vast amounts of potentially valuable 
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storage. Backing up entire file systems usually involves suspending other ongoing 

computer activities for a considerable period of time, while any attempt to perform 

concurrent backups introduces severe scheduling and administrative problems, 

particularly in distributed systems. Recovery • logs are produced concurrently with 

other ongoing activities, and therefore present fewer administrative problems than 

backups. However, recovery logs can also consume vast amounts of online storage, 

particularly if these logs are themselves to be protected against occasional errors. 

The logic needed to produce recovery logs is normally quite complex and therefore 

subject to error. In addition, this logic may, as a result of dramatically increasing 

the amount of input/output being performed within a computer system, seriously 

degrade the performance of that computer system. 

Difficulties also arise when attempting to use backups to restore data to a 

correct state. It normally takes considerable time to coordinate such activities, and 

recovery, once initiated, often uses critical computing resources for a considerable 

period of time. Following the completion of all recovery activities, the status of the 

restored data remains very much in doubt. This is because the restored data is very 

dependent on the correctness of backups, recovery Jogs, and, perhaps most 

importantly, the recovery procedures used. Unfortunately, since such recovery 

procedures circumvent the need for error diagnosis, it is generally quite hard to 

ensure that all errors have been removed by the recovery procedure and that no new 

errors have been introduced. Often no effort is made to verify the correctness of the 

restored data and this naturally invites disaster. 

Many users therefore endeavour to repair damaged data structures by guessing 

at the appropriate set of corrections [9, 11, 35, 93] and use backups only as a last 

resort. In desperation, others attempt this after discovering that backups have failed 

[132]. After a while the techniques used in·making such guesses become formalized 

and embedded in "scavenger" programs that perform error detection and, when 

requested, automatic error correction [46, 50, 75, 84, 94,106]. 

Clearly, we cannot expect scavenger programs to correct or even detect all 

errors. A small number of well chosen errors can undermine the behaviour of 

almost any conceivable scavenger. Conversely, a large number of errors can make 
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any intelligent response impossible, either by destroying all meaningful data, or by 

altering this data so that it becomes grossly misleading. However, these problems 

can be minimized by ensuring that system designers develop data structures and 

scavengers in parallel, and use all of the redundancy present in the design of the data 

structures when designing scavenger programs. 

1.2. Robust storage structures 

Designers of robust storage structures are very ambitious, and arguably 

foolhardy, individuals. They seek to develop structures which are competitive with 

existing storage structures and algorithms which can correct unspecified errors in 

these structures [17, 43, 49,128]. In order to be competitive with existing structures, 

robust storage structures must be easy to implement, use and update, and must make 

efficient use of both space and time [56]. Correction algorithms should also be 

efficient in both space and time, and should have a proven ability to perform 

correction under a large class of errors. In addition, they. should be capable of 

reporting failure, with high probability, when uncorrectable errors are encountered; 

otherwise, there is a considerable risk that unexpected errors will cause correction 

algorithms to introduce new errors into already erroneous structures. 

A major problem besets the designer of a robust storage structure. Adding 

useful redundancy to an existing storage structure is difficult. This redundancy is 

only useful if it allows an, as yet unknown, algorithm to perform error detection, or 

preferably error correction, in an intelligent manner. Ideally, the designer would be 

given an exact specification for the desired behaviour of the correction algorithm, 

and then would be able to determine easily the optimal method of achieving this 

behaviour by carefully inserting redundancy into the structure being corrected. 

As a first step towards meeting this goal, a number of related issues must be at 

least partially resolved, before we can even envision what such a specification might 

contain, how it might assist in the development of a robust storage structure, and 

how it might be used to verify that the resulting storage structure was in some sense 

optimal. 
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1) Give.n that a correction algorithm will necessarily be unable to correct all errors,

what are the specifications that a correction algorithm should operate under?

Specifications challenge designers to meet certain desirable goals, and are

necessary if algorithms are to be formally shown to be correct. However, these

specifications also blinker. designers, and may (if poorly constructed) encourage

them to reject excellent methods of protecting structural data against errors,

simply because these methods violate some unimportant detail of the

specification. Thus the specifications and goals of error correction must be

constantly reviewed and. improved upon whenever possible.

2) In order for a correction algorithm to be viable, it must be capable of deducing

from damaged instances what the most appropriate response to this damage is.

However, unless some assumptions are made about the nature of the errors

introduced into the instance, this is impossible. One simplifying assumption is

that errors are independent and uniformly distributed. This assumption is

attractive since it allows many correction algorithms to be developed that have

good theoretical behaviour. However, such simplifying assumptions are hardly

realistic, and it is therefore essential that the behaviour of detection and

correction algorithms be studied when operating on more realistic types and

distributions of errors [ 47, 67].

3) The above is obviously important if one wishes to design good robust storage

structures, but provides no indication of how such robust storage structures are

to be developed. There is therefore a need to develop theoretical guidelines

[105, 122, 123], indicating the properties that robust storage structures must

have if they are to facilitate certain types of error correction. This would allow

designers to easily reject inappropriate designs for robust storage structures, thus

concentrating their efforts on those that appeared most promising.

4) Having developed a robust storage structure and an associated correction

algorithm which has a provable behaviour under a certain class of errors, the

nature of the robust storage structure should be carefully reviewed, and

additional properties of this structure identified. This is an important activity,

since it may reveal that the structure is more robust than first believed, or that
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the structure can be corrected more efficiently or accurately using techniques 
not originally considered when designing the structure to meet a particular 
specification. 

5) There is also a need to develop a variety of different robust storage structures,
so that these can be evaluated and compared with existing storage structures. It
is hoped that in the process new ideas and better methods of introducing

redundancy into storage structures will be discovered.

6) The evaluation of robust storage structures and their associated corr�ction
routines has historically involved empirical studies, in which the size of the
instance being corrected, and the distribution of errors within this instance were
carefully controlled. There is a need to develop statistical models which provide
an approximate indication of the likelihood of correction when these carefully

controlled parameters vary. Such models would, if reasonably accurate, provide

a much better indication of the expected behaviour of correction algorithms,

and would allow more reasonable comparisons to be made between different

robust storage structures and associated correction algorithms.

Previous research conducted into robust storage structures is reviewed in

Chapter 2. Chapter 3 and Chapter 4 propose goals for error correction which are 

more general than those previously considered, and contain a number of theoretical 

results which may be used to determine when these goals can be achieved. Using 

these theoretical results, new correction algorithms are presented in Chapter 5 and 

Chapter 6, for various regular linked list structures, which would appear to be 

significantly better than previous correction algorithms proposed for similar 

structures. Three new robust tree structures are presented in Chapter 7, and in 

Chapter 8 mathematical models are developed which allow robust storage structures 

to be compared and analyzed very much more easily than was previously possible. 
Finally, in Chapter 9 conclusions are drawn and further avenues for research 

suggested.



Chapter II 

Background 

2.1. Terminology 

For our purposes a data structure [121] is an abstract organization of data that 

allows units of data to be stored, accessed, and manipulated in a meaningful and 

useful way. A storage structure is a data structure design, and describes the type of 

nodes used to support the data structure, and the relationships between these nodes. 

A storage structure encoding defines one implementation of a storage structure, and 

thus specifies the components that exist within each node type, their representation 

and interpretation. A particular instance of a storage structure encoding is defined 

by the storage structure encoding to which it belongs, and by the header nodes that 

allow access to this instance. Finally, an instance state consists of all components 

(and associated values) currently occurring within that instance. 

Storage structures typically contain several types of components. For example, 

identifier components explicitly establish the type of a node in a storage structure 

encoding, and identify the instance to which this node belongs. Pointer components 

establish access paths to nodes, typically by containing the address of these nodes. 

Tag components explicitly define the interpretation of other components in the 

instance. Key components explicitly define relationships between nodes in the 

instance. Count components explicitly define the number of nodes in an instance, 

the number of keys in a node, etc. Checksum components contain code words that 

facilitate error detection and/or correction of other components. Finally, data 

components contain information which, with respect to the storage structure 

specification, may be arbitrary. 

Obviously, we may protest that data components contain values which are not 

arbitrary, but rather themselves highly structured. However, should we choose to 
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accept this position, then we must either append to our specification of the storage 

structure the rules which data components satisfy, or must abandon the concept of an 

all-inclusive structural specification. In the former case such components no longer

contain arbitrary values and therefore cease to be data components, while in the

latter case our specification ceases to be authoritative and therefore becomes of little

theoretical use.

Because data components may contain arbitrary values with respect to the 

storage structure specification, this storage structure specification cannot, in 

isolation, be used to correct or even detect errors in data components. Without loss 

of generality, we will therefore assume that storage structures contain no data 

components. Using this assumption it should be clear that a storage structure 

instance contains no detectable errors if and only if it is consistent with its structural 

specification. 

Having developed techniques for ensuring that structural components of a 

storage structure are correct, we may then cease to assume that this storage structure 

contains only structural components. However, if we wish this structure to remain 

robust, we must then devise means of protecting data components against error, by 

using internal or external information not contained in the structural specification. 

2.2. Previous research 

Historically, robust storage structures and their associated error detection and 

correction routines were developed in an ad hoc manner. The need to develop good 

specifications for the behaviour of correction algorithms was first addressed by Dr. 

Taylor in his Ph.D. dissertation [118] in which he established some preliminary 

guidelines for the requirements to be imposed on algorithms that attempted 

structural error correction. These guidelines had many similarities with goals long 

considered desirable in coding theory, and resulted in some similar theories. 

However, the idea of applying such guidelines in the development of robust storage 

structures was a monumental step forward, and provided the foundation on which all 

subsequent research into robust storage structures has been built. 
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The early specifications for the behaviour of correction algorithms required that 

these algorithms be able to correct some small maximum number of errors in any 

instance being examined, by making some essentially realistic assumptions about the 

nature of the data memory space containing the erroneous instances [19,119,120]. 

Algorithms that met these specifications were called "global correction algorithms", 

while those that performed correction by examining only components reachable from 

the headers of an instance were considered "reasonable". 

As part of his Ph.D. dissertation [18] Dr. Black expanded upon Dr. Taylor's 

work by developing theories pertaining to "macro" changes that modified entire 

nodes, and introduced new results pertaining to the robustness of composite storage 

structures. He also applied axiomatic descriptions to storage structures [36, 51, 89], 

and catalogued the properties of existing storage structures [14, 15]. Towards the 

end of his thesis he presented a very interesting alternative specification for the 

behaviour of correction algorithms, which required that correction algorithms be able 

to correct an unbounded number of errors in a storage structure, if these errors were 

in some sense sufficiently distant from each other. This led to the development of a 

formal specifications for "local detection" and "local correction" procedures [20]. 

This collective body of theory pertaining_ to error correction led to the creation 

of a number of new robust storage structures and associated correction procedures 

[76,108,111,138], many of which [16, 95,124] were incorporated into a complex 

control system called "ISSS" [128]. When incorporated into this control system, data 

structures could be deliberately seeded with errors using a number of different 

techniques, and the behaviour of various algorithms which operated on these data 

structures then studied empirically. 

2.3. System model 

The system model [118] used to study robust implementations of data structures 

assumes that all storage structure instances reside in a common data memory space 

that is distinct from the control memory space used to support the operating system, 

to store executing programs, and to contain their associated working storage, 

registers, etc. This data memory space may be resident in main memory, or may be 
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represented on disc or other peripheral devices. It may even be distributed among 

different devices and/or machines. 

The data memory space comprises words of memory of some arbitrary fixed 

size. The number of words within this data memory space is finite, but very large. 

Each word in this data memory space has a distinct address, and contains in any

given data memory state exactly one value. 

Within this data memory space, storage structure instances may exist that each

have a varying number of data nodes that are accessed via paths leading from some

fixed set of header nodes. Each node is assumed to occupy some contiguous set of

words within the data memory space, whose location is externally known if and only

if the node is a header node. Internally, a uniquely identifying node name or

number defines the location of each node. No word in a correct memory state

occurs in more than one node, and typically all words in a correct data memory

space occur in exactly one node. 

Initially it is assumed that the data memory space contains some set of correct 

instance states. Instances may be changed by procedures which update these 

instances. Words in the data memory space may also be changed as a consequence 

of hardware, software, or other types of fault. If a word is assigned an incorrect 

value because of a fault, then it becomes erroneous. It remains erroneous until such 

time as it no longer contains an incorrect value. Although errors may be removed 

by faults, or by subsequent updates to the instances containing these errors, we 

obviously cannot rely on correction of errors by such means. 

We will therefore periodically execute detection procedures which attempt to 

verify the correctness of the storage structure instances being examined. These 

procedures may be invoked as part of a preventative maintenance program, possibly 

occurring after each update, or may be specifically invoked when errors are detected 

by ( or suspected in) concurrently executing software that manipulates these 

structures. Such procedures will also typically be executed following externally 

observable malfunctions, such as system failures. 
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When detection procedures report the presence of errors, it becomes the 

responsibility of a correction procedure both to correctly diagnose the nature of the 

errors observed, and, when appropriate, to remove these errors. Often the activities 

of detection and correction are closely associated and therefore integrated into a 

single procedure, which performs detection and potentially correction. 

Generally, correction algorithms should only modify words in the data memory 

space when they have good reason to believe that this will reverse previously 

introduced erroneous changes. Otherwise the execution of such algorithms can be 

expected to introduce additional erroneous changes into the storage structure 

instance being examined, making subsequent correction very much harder, or 

impossible, to achieve. 

While many processes are potentially concurrently accessing and updating 

instances of storage structures in the data memory space, it is assumed that a 

procedure attempting to detect or correct errors in the data memory space can use 

locking or other techniques to ensure that the instance currently being examined is 

not concurrently being updated. Thus the behaviour of these algorithms can be 

investigated in isolation, and the correctness of the structures being examined 

defined, either by reference to a detection procedure [118], or by presenting 

axiomatic specifications [18, 51]. 

Clearly, the system model described above is invalid in most computer systems, 

for a number of reasons. Typically, no data memory space exists for the exclusive 

purpose of representing all instances of storage structures, and such memory spaces 

as exist may vary in size. In virtual memory spaces, distinct words can cease to have 

. distinct addresses, as a result of errors in the underlying mapping that supports these 

data memory spaces, and this can also occur as a result of hardware error. In most 

data . memory spaces, a certain amount of duplication occurs, either in cache 

memory [63] or on peripheral devices, and therefore a single word in the data 

memory space may be capable of observably containing more than one value. 

Finally, in applications where reliable file structures might reasonably be used, we 

can expect to find hardware assuming some of the responsibility for detecting and 

correcting errors in the data memory space. 
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The assumption that detection and correction procedures observe .instances in 

the data memory space which are not concurrently being updated, is also somewhat 

unrealistic in the presence of arbitrary errors, since such procedures may themselves 

inadvertently examine instances which they have not locked against concurrent 

access. Even when all instances are locked against concurrent access it is still possible 

for words to be occasionally changed as a result of faults. In cases where this might 

otherwise be of concern, we can assume that algorithms preserve their own sanity by 

rigorously examining each word in the data memory space at most once. 

2.4. Crash recovery 

It is often assumed that the robustness of a storage structure is merely a 

function of the amount of redundancy contained within that storage structure, and 

that the study of robust storage structures is therefore solely concerned with 

maximizing the robustness of useful storage structures, while minimizing the amount 

of data redundancy used. 

This attitude is overly simplistic. Many factors determine the robustness of a 

storage structure. Obviously the type and frequency of errors that occur in a storage 

structure have a profound effect on the robustness of this storage structure. In 

particular, if most data structure errors occur as a result of instantaneous system 

crashes, then much can be accomplished by controlling the order in which updates 

are performed. 

Although crash recovery is not addressed in this dissertation, by assigning a 

partial ordering to the sequence in which updates are applied to disc, some structures 

can be made crash resilient, without significantly degrading system performance. In 

particular, the logic that updates the Unix file system can ensure that this file system 

contains no structural errors following instantaneous system crashes [39]. 

This technique has also been used to show that a variety of linked-list structures 

can be made crash recoverable, and that these structures can be corrected by using 

existing local correction algorithms [125]. 
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The possibility for performing crash recovery in binary trees has also been 

considered. In [129] it has been shown that existing global correction routines can 

perform crash recovery in some binary trees, if these binary trees are updated in a 

specific sequence using non-standard and somewhat inefficient update techniques. 

This paper assumes that correction algorithms have no knowledge of the method 

used to update such structures, Obviously, crash recovery of binary trees can be 

accomplished very much more simply and efficiently if such an assumption is not 

made. 



Chapter III 

Global correction 

3.1. Introduction 

This chapter explores how data memory spaces might be corrected when they 

contain at most some small bounded number of errors. After introducing some new 

notation and terminology, the previous body of theory that pertains to this problem 

is reviewed. This previous research attempts to identify the maximum number of 

errors which can necessarily be corrected in a data memory space containing some 

set of instances, and then, assuming that at most this number of errors occurs, 

suggests various methods of performing correction. 

It is then suggested that correction algorithms might be able to tolerate more 

errors in the data memory space than allowed for by previous theories, if correction 

algorithms were designed so that they distinguished between correctable and 

uncorrectable sets of errors. After establishing bounds on the maximum number of 

errors that can be tolerated, if global correction is to be performed whenever 

possible, we present a new selective global correction algorithm which either corrects 

two errors in a mod(2) double-linked list or reports that these two errors have 

disconnected the structure. 

3.2. Notation and terminology 

When errors are introduced into words of the data memory space, a new corrupt 

data memory state is produced. Any instance containing one or more such errors is 

also considered corrupt. Corrupt instances which contain detectable errors will be 

considered incorrect. Otherwise they continue to appear correct. In a corrupt 

instance the header nodes can by assumption be located, but other structural 

information becomes suspect. In particular, data nodes belonging to the original 
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correct instance may become disconnected if all paths from the header nodes of this 
instance that correctly lead to these data nodes are damaged, while other arbitrary 
nodes may erroneously appear to be part of the corrupt instance. The state of an 
incorrect instance is therefore subjective. However, when the addresses of the 
header nodes of an incorrect instance are presented to an arbitrary deterministic 
algorithm, P, this algorithm examines, and possibly updates, a specific collection of 
words. These words constitute the state of the incorrect instance as observed by P,

and when interpreted are referred to as components. 

We will be primarily interested in the instance states xi, x2, etc. observed by a 

procedure, P, when the addresses, Hx, of the headers of an arbitrary instance, X,

are presented to this procedure. It is stressed that although x1 and x2 represent 

different instance states, x1 and x2 have the same header nodes. 

A correct instance state x; will be denoted by x{, and the set of all correct 

instance states of X by xc. A specific data memory state containing an instance state 
x; will be denoted by [x;]m · As observed in [118] the procedure P cannot distinguish 

between the memory state [x;]m and the memory state [x;] n , since P examines only 

components in x;. The collection of memory states that P cannot distinguish from 

[xiJm form an equivalence class and will be denoted by [x;]. A small example 

clarifying this notation is presented in Figure 3.1. 

The distance d([x;]m ,[x
j
]n) between two arbitrary memory states [x;]m and [x

j
]n 

is simply the number of words in these two data memory states that differ. 
Generalizing, the distance d([x;] ,[x

j
]) between two non-empty sets of memory states 

[x;] and [x
j
] is the minimum distance between any [x;Jm and any [x

j
ln • If 

d([x;]m ,[x
j
])=d([x;],[x

j
]) then [x;]m is a closest member in [x;] to [x

j
]. Finally, if 

O<d([x;] ,[x
j
])<d([xd ,[x

j
]) for all xk ;,fx

j 
then [x;] is closest to [x

j
]. Note that there 

may be more than one set (or members of a set) of data memory states, which are 
closest to another set of data memory states, and that the distance between sets of 
data me!Ilory states is zero if and only if these sets contain some common member. 
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Node Id Ptr Ptr 

0: 

1: 

2: 

3: 

4: 

5: 

6: 

-1

?

-1

-1

?

-1

?

2 3 

? ? 

5 0 

0 5 

? ? 

3 2 

? ? 

The memory states [xf] 

Figure 3.1. An instance state and the memory states containing it 

3.3. Connection 

We will consider an arbitrary word occurring in x{ to be erroneous in [x
i
h if the 

value of this word is different in x{ and [x
j
h• A correct instance state, x{, whose 

header node addresses are known, remains connected in [x
j
h, if the address of each 

word in x{ can be determined without examining any erroneous words in [x
i
h• 

Similarly, x{ remains connected in x
i 

if x{Cx
i 

and all words in x{ can be located in 

x
i 

without examining any erroneous words in x
i

. Finally, if all members of xc 

remain connected in the data memory space, when at most n errors are introduced 

into the data memory space, then X is n-connected. 

It should be noted that if x{ remains connected in x
i 

and an arbitrary error (with 

respect to x{) is removed from x
j
, producing xk> then x{ remains connected in xk. 

Header 
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Example 3.1 

Consider a circular linked list having a single header node. Every node in this 

list contains n forward pointers, which correctly address the next node in the list. 

For simplicity, assume that nodes contain no other components. If the structure 

contains at most n-1 errors then every node in this structure contains at least one 

correct pointer. Thus, this structure can be traversed by an algorithm which 

examines no erroneous components. Therefore the structure is (n-1)-co{!nected. 

However, the structure is not n-connected, since n errors can disconnect any non­

null instance of this structure. Now consider placing m >n errors into m distinct 

nodes of some instance state, x{, of this storage structure, producing the corrupt 

instance state x
j

. If n >2 then x{ necessarily remains connected in xj, as justified

above. Otherwise, x{ remains connected in x
j 

if and only if x
j 

contains a single error 

and this error occurs in the pointer which correctly contains the header address, Hx . 

3.4. Valid State Hypothesis 

In any data memory state containing no errors it will be assumed that the Valid 

State Hypothesis holds. This asserts [18,118] that for any word w belonging to a 

correct data memory state: 

a) If w can be. interpreted as a node identifier of an arbitrary instance state x{,

then w contains none of the set of node identifier values for X unless w is a

node identifier component of x{.

b) If w can be interpreted as a pointer component of an arbitrary instance state x{,

then w contains the address of no node in x{ unless w is a pointer component of

Any data memory state satisfying the Valid State Hypothesis is valid. The 

subset of the set of data memory states [x{] which are valid when assumed to contain 

only x{ will be denoted by [x{]v . When the data memory state contains more than

one instanc� state we will say that [x{]v is valid ( or satisfies the Valid State

Hypothesis) with respect to x{. Similarly, a single memory state [x{] m E[x{]v will be
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denoted by [x{]!. It is stressed that [x{],:; is not necessarily valid, since a data 

memory state is valid if and only if it is valid with respect to all instance states 

contained within it. Indeed, if x{ contains a header node of some other instance, Y,

then no member of [x{]' is valid, since Y is necessarily invalid in [x{]. Additional 

examples of invalidity are presented later in Example 3.2. 

If r<min(d([x{]' ,[xf])) for all x{ and xf satisfying x{;,i,xf, then the instance Xis

r-detectable. Similarly, if r<min (d([x{]' ,[xf]')) for all x{ and xf satisfying x{;,i,xf,

then the instance X is r-absolute-detectable. These and other properties become

exact, if they are maximal. When all instances of a storage structure have a

particular property, as is typically the case, the storage structure also has this 

property [118]. 

3.5. Reasonable procedures 

Two types of procedure will be of particular importance to us. A detection 

procedure, P1, when presented with the addresses, Hx , of the headers of an arbitrary 

instance, X, on which it has been designed. to operate, and a data memory state 

[x;]m, determines if x;Exc . A correction procedure, P2, when presented with the

same information, either attempts to transform [x;]m into some suitable [xf]:, or

reports that it is unable to perform this transformation. 

Unfortunately, determining that [xflnE[xf]', involves examining every

component in the data memory state. This is obviously not very desirable when 

attempting to correct isolated storage structure instances, since it implies that the 

correction time will be dependent on the size of the data memory state, rather than 

the size of the instance being corrected, which may possibly be very small. In 

addition, algorithms that examine the entire data memory state will almost certainly 

require that this data memory space be in a quiescent state, even though most 

instances will be correct, and thus potentially modifiable. 

It therefore seems appropriate to develop reasonable algorithms [118] which,

when presented with the header node addresses, H x, of x;, locate all other nodes of 

x; by using pointers occurring in x;, which form paths from these header nodes. 
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Although a reasonable algorithm operating on a corrupt data memory state may 

continue to observe instances, x;, whose size is bounded only by the size of the data 

memory space, we will endeavour to design reasonable algorithms which display this 

behaviour only when certain assumptions about the nature of errors encountered are 

violated. In this chapter, it will be assumed that reasonable algorithms operate on 

instances that contain some bounded number of errors. When nodes within these 

instances contain node identifiers, this implies [118] that reasonable algorithms need 

traverse at most some bounded number of nodes not present in the original instance 

being corrected. 

3.6. Seeming validity 

Although we wish to develop correction procedures which exploit violations of 

the Valid State Hypothesis, reasonable algorithms cannot by their nature determine 

if [xJ]. is valid. However, a reasonable correction algorithm operating on [x;]m may 

be able to determine that some other data memory state [xJ]. contains violations of 

the Valid State Hypothesis with respect to xJ, even though reasonable algorithms 

that operated on [xJ]. can not. This is because x; may contain nodes not in xJ, 

whose component values violate the Valid State Hypothesis with respect to xJ when 

occurring in [xJ] •. 

We will consider [xJ]. to be seemingly valid with respect to an instance state x;, 

if violations of the Valid State Hypothesis with respect to xJ do not occur, or can be 

detected in [xJJ. only by examining components neither in x; nor xJ. When the 

context is clear we will denote a seemingly valid data memory state [xJ]. by [xf]., 

the class of seemingly valid data memory states containing xJ by [xf], and the class 

of all data memory states which are seemingly valid with respect to X; by [xcv]. 

If components in xJ violate the validity of xJ, then serious problems arise. This 

is because d([x;],[xf]) and d([x;],[xf]v) are undefined for all x;, since 

[xf]=[xJJ"=0. Fortunately, if any correct instance state, xJ, was not seemingly 

valid with respect to itself, then this would contradict our assumption that a data 
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memory state containing no errors is valid, since a correct data memory state 
containing xf is not valid. Therefore, we may assert that any xf is seemingly valid 

with respect to itself. 

Example 3.2 

Consider the data memory state, [xfh, presented previously in Figure 3.1. This 

data memory state contains three violations of the Valid State Hypothesis. The first 
word in node 4 contains the value -1 which, in this example, is the correct node 
identifier value for xf and the second and third words in node 6 contain the value O 

which, when interpreted as a pointer, is the address of the header node of xf.

However, a reasonable algorithm examining xf will observe none of these violations. 

Thus [xfh is seemingly valid with respect to xf.

Now change one pointer in xf so that it addresses node 4, node 6, or node 1, 

producing the data memory state [x2Ji. Then, provided that x2 contains at least one 

of the words (described above) that violates the validity of [xfh, any algorithm 

which transforms [x2Ji back into [xf]i, as a result of examining x2, can observe that 

[xf]i violates the Valid State Hypothesis. Thus [xfh is not seemingly valid with 

respect to x2.

3.7. Correction procedures 

Ideally, a reasonable correction procedure, P, attempting to correct an instance 
state x1 residing in a data memory state [x1Ji, would determine the class of data 

memory states [x2•] that was observably closest to [x1Ji. If two or more such classes 

existed the correction procedure should report failure, since the appropriate 
correction would be ambiguous. Similarly, if x1 was disconnected with respect to 

some unknown instance state xf and d([x1],[xfl•)<d([x1],[x:f']) then P should report 

failure, since the original correct instance might have become disconnected. 
Otherwise, the erroneous data memory state [x1Ji should optionally be transformed 

into the closest correct and seemingly valid data memory state [x2•Ji. 
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Unfortunately, such a strategy seems very difficult to implement efficiently, or 

even effectively. Allowing arbitrary errors to occur greatly increases the complexity 

involved. in determining the nature of those errors. The search for the nearest 

correct instance suggests that we must perform some form of exhaustive search. In 

addition, we must use some form of deductive reasoning to deduce when the nearest 

correct instance may have become disconnected, within the observed instance state 

x1. Since the size of x1 is objective only with respect to a given algorithm, algorithms 

which perceive the size of x1 to be large may be more successful at detecting 

violations of the Valid State Hypothesis with respect to xf. than those that perceive x1

to be small. Thus even the notion of an ideal reasonable correction algorithm 
becomes cloudy. 

As an alternative strategy, it seems appropriate to assume that some maximum 

number of errors, n, occurs, and to consider an instance state, x1, correctable if there 

exists exactly one [xf.v ] for which d([xiJ,[xf.v])<,,. The instance state x1 is· 

correctable by a reasonable algorithm if xf. remains connected in x1. If all instance 

states of X containing at most n errors are correctable by a reasonable algorithm, 
then the instance X is n-correctable [118]. 

Consider introducing errors into some [x[J:1' producing [x2Ji, and then presenting 

Hx to a reasonable correction algorithm, P. If P introduces no new errors into the 

data memory space, then P tolerates the set of errors in x2• Otherwise, P is misled

by the set of errors in x2. If P can determine the location of an error in x2, then P 

identifies this error. Finally, if P can identify all erroneous components in x2 , which 

occur in x[, and determine their correct value in x[, then P can correct the errors 

introduced into x[. 

Lemma 3.1 

d([x;]m ,[xJ]v) >d([x;],[xJ]v) >d([x;],[xJ']) >d([x;J,[xJ]). 
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Proof 

Since [x;]
m

E[x;] and [xJ]v C[xJ"]C[xJ] the inequalities follow immediately. ■ 

Lemma 3.2 

If [xJ"Ji is seemingly valid with respect to x;, then d([x;],[xj"])=d([x;],[xJ]v). 

Proof 

The proof corresponds closely to the proof of Theorem 4.2.1. presented in 

[118]. However, the claim made in this earlier theorem is incorrect. 

If some member in [xj"] which is closest to [x;] is also a member of [xJ]v then 

the result follows immediately. So assume otherwise. Then every member in [xJ"] 

which is closest to [x;] violates the validity of xJ. These violations must occur in 

words belonging to neither x; nor xf since all data memory states in [xJ"] are 

seemingly valid with respect to both x; and xJ. But this implies that these violations 

can be removed from some data memory state [xJ"Ji which is closest to [x;], 

producing some [xf]2 which is as close to [x;] as [xJ"]. This contradicts the assertion 

that every member in [xj"] which is closest to [x;] violates the validity of xJ. ■ 

As observed in [118], d([x;],[xf]) will be less than d([x;],[xj"]) whenever 

components occurring in x; but not in xf violate the validity of xJ. Thus, the 

minimum number of changes needed to transform a damaged instance of a storage 

structure into a correct instance may be less than the number needed to cause the 

observed damage in a correct and valid instance. 

Correction algorithms that ignore observable violations of the Valid State 

Hypothesis and merely convert an incorrect instance into the nearest correct instance 

lying within some number of changes of the incorrect instance, cannot always 

perform correction when the number of errors exceeds half the exact detectability of 

the storage structure, since under at least one choice of errors the damaged instance 

is, by definition of detectability, correctable in more than one way. 



23 

However, as shown in [118], correction algorithms which convert examined 

instances of a storage structure into a correct instance by considering how the 

damaged instance may hav.e arisen in a data memory state assumed to satisfy the 

Valid State Hypothesis, may be able to guarantee correction even.when the number 

of errors anticipated exceeds half the detectability of the storage structure being 

corrected. 

Lemma 3.3 

If xf and Xj are contained in x2 then d([xf]v ,[xflv)<d([xf]v ,[x2])+d([x2],[xflv ). 

Proof 

Suppose that there exists no [x2J i which is closest to both [xf]v and [xflv . Then 

since any two members of [x2] differ only in the components not contained in x2, and 

xf is contained in x2, any member [x2h which is closest to [xf]v must contain words 

outside x2 which violate the validity of xf. But these words do not occur in xf, and 

therefore can be changed so that they violate the validity of neither xf nor xf, 

contradiction. Thus there exists some [x2Ji which is closest to both [xf]v and [xflv. 

Let [xf][ be such that d([xf][,[x2Ji)=d([xf]v ,[x2Ji) and let [xfl[ be such that 

d([xfl[,[x2J i)=d([xf]" ,[x2Ji). Then, since the distance function is a metric when 

applied to individual data memory states 

d([xf]" ,[xfl v) < d([xf][,[xfl[) < d([xf][,[x2Ji) + d([x2Ji ,[xfl[) = 

d([xf]v ,[x2]) + d([x2l,[xflv). 

Counterexample 3.1 

[118], 

■

It is not necessarily the case that d([xf]V,[xflv)<d([xf]V,[x2])+d([x2],[xflv). 

For example, let x2=xf. Then d([xf]v ,[x2])+d([x2],[xflv)=d([xf],[xf]") which, as 

already observed, may be less than d([xf]" ,[xfl v). 
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Theorem 3.1 

If a storage structure is c-connected, r-absolute-detectable and n-min(c, [r /2 j )

then the storage structure is n-correctable.

Proof 

Consider introducing at most n errors into some correct and valid instance state
[xf]v producing the instance state [x2]. Then, since the storage structure _ is
c-connected, for c >n, there exists a reasonable procedure which observes an
instance state x2 containing all of the components in xf.

Suppose that x2 is not n-correctable. Then there exists some xf;,6xf satisfying
d([x2J,[xf•])<n <c which therefore remains connected in some suitably chosen x2
satisfying the above. By Lemma 3.2, d([x2],[xf"])=d([x2],[xf]") and
d([x2J,[xf•])=d([x2],[xj]•). Therefore, by Lemma 3.3, d([xf]• ,[xf]")<

d([xf]v ,[x2])+d([x2J,[xflv)=d([xf"],[x2])+d([x2J,[xfv])<2*n <2* [r /2 j<r. But the
storage structure is at least r-absolute-detectable, contradiction. Therefore, x2 is
correctable. ■

This theorem is similar to Theorem 4.3.3 presented in [118] and reproduced as
Theorem 4.3 in [121]. However, the earlier theorem had a procedural proof and
required that all nodes contained node identifiers. Because this theorem has a proof
which is not procedural, this theorem does not require that all nodes contain node
identifiers.

Example 3.3 

Consider a standard circular double-linked list, having an identifier component
in each node, but no count. Within a non-empty instance of such a structure an
arbitrary number of consecutive nodes can be deleted, by changing a forward and
backward pointer appropriately. The resulting structure contains no detectable
errors, implying that the structure is at most 1-detectable. However, a single error,
in either an identifier component or a pointer component, can always be corrected.

--
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In the former case, all pointers · appear ·correct, implying that the identifier 

component is in error. In the latter case, the erroneous pointer either addresses a 

node having an incorrect .identifier component or, when assumed to be correct, 

causes at least one node having a correct identifier to become disconnected, in 

violation of the Valid State Hypothesis. The described structure is therefore exactly 

!-detectable and !-correctable. 

Alternatively observe that, when transforming some instance state [.i:f]v into 

some distinct instance state [x:flv, at least five changes are required to add or delete 

nodes from the instance, at least six changes are required to reorder nodes within the 

instance, and at least eight changes are required to replace nodes within the instance 

with nodes from outside the instance. The storage structure is therefore 4-absolute­

detectable [120], and thus, by Theorem 3.1, !-correctable. 

3.8. Selective correction 

Historically, correction algorithms have been required to correct all errors 

introduced into a data structure under some given assumption about the nature of 

the errors introduced into that structure. Correction algorithms have therefore been 

developed that have essentially undefined behaviour when the number of errors 

encountered exceeds the number for which correction is certain. This is unfortunate, 

since it avoids the need to address a number of important issues. 

What types of error should a global correction algorithm be expected to tolerate? 

How might a correction algorithm identify the location of these errors and in 

particular determine when these errors cause disconnection? How might a correction 

algorithm correct these types of error whenever possible? How might a correction 

algorithm determine that the assumptions under which it is operating have been 

violated, and what ought it to do in all of the above cases? 

We begin addressing these issues by considering the types of error which a 

global correction algorithm might be expected to tolerate. Firstly, it seems 

appropriate to continue to demand that global correction algorithms have no a priori

knowledge about the cause of errors, and thus can make no assumption about the 

distribution of the errors observed. Secondly, it seems appropriate 10 continue to 
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anticipate that at most some number of errors occur globally within the structure 

being corrected. It only remains to determine the number of errors that such a 

correction algorithm should be able to tolerate, while either performing correction or 

alternatively reporting that correction is impossible. In this latter case, the correction 

algorithm may optionally correct some of the errors in the instance, but is not 

permitted to introduce new errors into the instance being examined. 

Consider allowing an increasing number of errors to be introduced into. correct 

instances of an arbitrary storage structure. When at most some some small number 

of errors is allowed to occur, which may possibly be zero, all damaged instances 

remain both connected and closer to the original correct instance than to any other 

correct instance. When more errors are allowed to occur, all damaged instances may 

continue to be correctable, because they remain connected and are closer to one 

correct and valid instance than any other. When further errors are allowed to occur, 

some new damaged instance states may be created which are uncorrectable, either 

because they have become disconnected, or because they may be derived from two 

or more distinct but correct and seemingly valid instances. Finally, if we allow 

sufficient errors· to occur, it becomes possible for damaged instances that were 

previously correctable to now be derived from more than one correct and seemingly 

valid instance, and thus to cease to be correctable. 

Given that we wish to correct errors whenever possible, it therefore seems 

appropriate to assume that the maximum number of errors that can occur is one less 

than the number of errors needed to invalidate the assertion that some erroneous 

instance is correctable. A storage structure will therefore be considered n-selective­

correctable, if all instances which are correctable by a reasonable procedure when 

fewer than n errors occur in the instance continue to be correctable when at most n 

errors are assumed to occur. 

Thus, formally, a storage structure X is n-selective-correctable if, for all X; and 

all xJ remaining connected in X; which satisfy d([x;],[xf])<n, either there exists

some x{e/axJ such that d([x;],[x{'])<d([x;],[xj']) or for all x{e/axJ d([x;],[x{'])>n. 
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An n-selective global correction routine, when operating on an instance 

containing at most n errors, must correct all correctable instances, and tolerate all 

other incorrect instances. Typically we will require that these routines be reasonable, 

and operate on storage structures which are at least n-selectively correctable. We 

will expect these algorithms to explicitly report when correction is not possible, and 

to further indicate the cause of failure. Failure may occur because the instance 

being corrected appears disconnected, capable of being corrected in more than one 

way, or to contain more errors than have been assumed to have occurred. The 

decision to report failure in each of these cases can be justified on the grounds that it 

allows a more appropriate correction technique (such as resorting to backups, or 

more global correction routines) to then be applied. 

We now establish various bounds on the selective correctability of an arbitrary 

robust storage structure, and then discuss how exact values can be determined for 

specific storage structures. Finally, in Section 3.10, we discuss how these bounds can 

assist in the development of n-selective global correction routines. 

Lemma 3.4 

Let a storage structure instance X be at least c-correctable, at most r-detectable, 

and exactly n-selective-correctable. Then c<n<r. 

Proof 

Since the storage structure is at least c-correctable, all instance states containing 

at most c errors are correctable. Thus the structure is at least c-selective-correctable . 

Consider some x{ residing in a valid data memory state which can be converted into 

some distinct xf by applying r+l changes. Such an instance state must exist since 

the storage structure instance is at most r-detectable. All correct instances are 

0-correctable, since distinct correct instances must differ, but x{ is not (r+l)­

correctable since it lies r+l changes from xJ. Thus the storage structure instance X

is at most r-selective-correctable. ■
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Example 3.4 

It seems clear that many storage structures will have exactly the same 
correctability and selective correctability. To show that there also exist storage 
structures·which are exactly n-correctable, n-detectable, and thus, by Lemma 3.4, 
n-selective correctable, consider a circular linked list X having n pointers per node,
with fixed pointer distances (d1,d2 , · · · ,dn), satisfying ld;l=l for 1 <i<n.

Since at least 3n changes are required to reorder nodes within this structure, at 
least 2n changes are required to replace nodes in this structure with nodes from 
outside the structure, and at least n changes are required to delete or add nodes to 
the structure the structure is (n-1)-detectable, by Theorem 8 of [120]. 

Now consider the minimum number of changes needed to transform an 
arbitrary correct and valid instance state [xf]•, into a distinct correct and valid 
instance state [xi]•. At least 2n changes are needed to reorder or replace nodes in 
[xf]• as justified above. However, at least 2n changes are now also needed to add 
nodes to or delete nodes from [xf]•. The structure is therefore (2n-1)-absolute­
detectable. Since n pointers address each node, the structure is (n-1)-connected. 
The structure is therefore, by Theorem 3.1, (n-1)-correctable. 

Theorem 3.2 

If a storage structure is r-detectable, and n= [r /2 l, then the structure is at least 
n -selective-correctable. 

Proof 

Consider a correct and valid data memory state, [xf][, which has been 
transformed into a corrupt data memory state, [x2Ji, by applying at most 11-l 
changes, and assume that x2 is correctable. 

Then, since the storage structure is r-detectable, 
d([xf]• ,[x2Ji) + d([x2Ji,[xj]) > d([xf]' ,[xfl) > r+l, for all xJ,t,xf. Thus, 
d([x2J i ,[xfl)>d([xf]' ,[xfl)-d([xf]• ,[x2Ji)>(r+l)-(n-l)=r+2-[r /2 � lr /2 j +2>11 
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for all [xj],i[x{]. Therefore, x2 remains correctable when at most n errors are 
assumed to occur. ■ 

Counterexample 3.2 

It should not be assumed in the above that [x2Ji is necessarily correctable when 
d([x{]v ,[x2

Ji)<n. Consider for example a mod( 4) double-linked list [ 40] that has 
been altered to have two identifiers per node. This structure has four consecutive 
header nodes, a forward pointer in each node which addresses the next node, a back 
pointer in each node that points back four nodes, and a count in one of the header 
nodes within the instance. The storage structure is 5-detectable, and therefore, by 
Theorem 3.2, 3-selective-correctable. It is however only 1-correctable, since two 
changes can disconnect a node. 

Lemma 3.5 

If a storage structure is exactly r-detectable, as demonstrated by a sequence of 
r+l changes to a correct and valid instance state, x8, which produce instance states 
x1, x2, . . .  , x,, x;+1, and x8 remains connected in x1, for O<i<r+l, then the storage 
structure is exactly n-selective-correctable for n = r r /2 l 

Proof 

Let m = lr /2 j. Then 
r+l-lr/2 ]= fr/2 �l=n+l>m. Since x8 remains connected in Xm , Xm is therefore 
m-correctable but not n+l-correctab)e. Thus the storage structure is at most
n-selective-correctable. However, by Theorem 3.2, the storage structure is at least
n-selective-correctable. Thus the storage structure is exactly n-selective-correctable.
■
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Corollary 3.1 

If a global examination of the data memory space is allowed, and the absolute 

detectability of a storage structure is r, then the absolute selective correctability of 

that storage structure is exactly [r /2 l-

Theorem 3.3 

If d([x[]v ,[x2]i)<n, d([x2]i ,[xj"])<n for some xf;,!,xj, and xf remains connected 

in x2, then the structure is at most n-selective-correctable. 

Proof 

The proof proceeds by induction. In the base case, n=l so d([x[]V,[x2]i)<1 and 

d([x2] i,[x{v])<1, implying that the detectability of the storage structure is at most 1. 

Thus, by Lemma 3.4, the structure is at most 1-selective-correctable. 

So assume that the selective correctability is at most k-1 whenever 
d([xf]v ,[x2Ji)<k-l and d([x2J i,[x{v])<k-l. Consider the case when 

d([xf]" ,[x2Ji)<k. 

Consider correcting one of the errors in x2, producing the data memory state 

[x4Ji, and let xgv be the nearest corrupt but correct and seemingly valid instance to 

[x4Ji. This is shown in Figure 3.2 below. Since xf remains connected in x2, xf 

remains connected in x4. Since one of the errors in x2 (with respect to xf) has been 

removed in and 

If d([x2]i,[xj"])<k-2 then d([x4]i ,[xj"])<k-1, implying by the inductive 

assumption that the structure is at most (k-1)-selective-correctable. 

If d([x2J i ,[x{v])=k-1 then d([x4]i ,[x{v])<k. If d([x4]i,[xgv])<k-1 then the 

structure is at most (k-1)-selective-correctable by the inductive assumption. So 

assume that d([x4J i ,[xs"]) > k-1. Then, d([x4]i,[x[]v) <k-1 < d([x4]i,[xgv]) <

d([x4]i,[xt])<k, implying that d([x4]i ,[xgv])=k. This implies that x4 is correctable 
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when at most k-1 errors are assumed to occur, but not when k or more errors are 
assumed to have occurred. Thus the structure is at most (k-1)-selective-correctable. 

Finally, suppose that d([x2Ji,[xt])=k. If d([x4J i ,[xgv])<k-1 then the instance 
is at most (k-1)-selective-correctable by our inductive assumption. So assume that 
d([x4Ji,[xgv])>k. Then d([x4J i,[xf]v)<k-l < d([x4J i ,[xgv])< d([x4J i ,[xjv])<k+l. 
This implies that x4 is correctable when k-1 errors are assumed to occur, but not 
when k+ 1 errors are assumed to occur. Thus the structure is at most k-selective-
correctable. 

<k+i.--' - , 
, 

,, 
, 

[xgv] 
, 

<k-1 ,-f <k [xf]'---=------- [x4Ji -- [x2h ----=------[xiv]

Figure 3.2. Effect of correcting an error in x2 producing x4 

Corollary 3.2 

■

If d([xf]v ,[x2Ji)<n, d([x2J i ,[xjv])<n for some xf,=xj, and xf remains connected 
in X2, then the storage structure is at most (11-l)-selective-correctable. 

3.9, Calculating the maximum selective correctability 

While the above results establish bounds on the value of the selective 
correctability of a storage structure, they do not necessarily identify the maximum 
value of the selective correctability of an arbitrary storage structure. Often the 
easiest way to identify the exact selective correctability of a storage structure is to 
assume that it has the minimum possible value subject to the above bounds, and then 
to present an example showing that this value is also maximal. 
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In general, however, the selective correctability can only be determined by 

carefully considering how successive changes introduced into instances of a storage 

structure affect the apparent _minim um distance between correct and seemingly valid 

instances. Since this distance is reduced only by changes that disconnect nodes, it is 

appropriate to assume that changes that disconnect nodes are applied first. 

Example 3.5 

Consider again the helix(3) multi-linked list. Such a structure is 2-connected, 

2-correctable, 6-detectable, and 10-absolute-detectable. Since it is 6-detectable, it is

at least 3-selective-correctable. Consider introducing errors into the three pointer

components in some node N1 in the instance. Since the instance is 6-detectable and

these errors do not cause disconnection, these errors can be corrected. However, if

it is assumed that 4 errors may have occurred, then alternatively N1 may not belong

to the instance being corrected, contain a corrupt identifier, and be addressed by

three incorrect pointers within the instance which should correctly address a common

disconnected node. Thus the structure is exactly 3-selective-correctable.

Now consider the following modifications to this structure. Firstly, we will 

remove the count, thus producing a structure that is 5-detectable, since six changes 

can delete an arbitrary number of consecutive nodes. Secondly, we will require a 

correct structure to contain some number of nodes that is a multiple of three. This 

makes it harder for less than six changes to disconnect a node and yet produce a 

instance that is close to some corrupt but correct and seemingly valid instance. 

Finally, we will artificially increase the number of changes needed to exchange nodes 

in the instance with nodes outside the instance, by placing 5 independent node 

identifiers in each node. 

The structure remains at least 3-selective-correctable, since it is 5-detectable. 

However 3 changes can no longer both disconnect a node and be part of those 

changes that constrain the detectability of the structure. Disconnecting three 

consecutive nodes, or some multiple thereof, requires six changes, no subset of 

which disconnects any node. Although one or two nodes can be disconnected using 

less than six changes, deleting or adding additional nodes so that the structure 
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continues to contain some multiple of three nodes, requires more than five changes. 

This is because each node added or deleted contains five node identifiers. Finally, if 

nodes are reordered, or nodes within the instance ·replaced by the same number of 

nodes outside the instance then at least 11 changes are required. This rather bizarre 

structure is 5-selective-correctable, even though the structure is exactly 5-detectable, 

and only 2-correctable. Thus it is possible to reduce the detectability of a structure 

while increasing its selective correctability. 

3.10. Using the selective correctability 

Having identified some lower (and ideally maximal) bound on the selective 

correctability of a structure, which is greater than the correctability of the structure, 

this bound can be used to assist in the development of an n-selective global correction 

routine, which behaves at least as well as historical global correction routines 

operating on the same structures. 

Suppose that an arbitrary storage structure is n-selective-correctable, and that 

nodes within this structure contain node identifiers. Consider a reasonable algorithm 

that is trying to correct some corrupt data memory state [x2Ji. Then, as 

demonstrated in [118], a reasonable algorithm exists which can (by performing an 

exhaustive search) identify (whenever it exists) some xf having the property that xf 

remains connected in some suitably chosen x2, and d([x2],[xf])=r<,z. Having found 

such an [xf] it is possible to identify within the subjective set of components forming 

x2 , the number of additional changes s needed to apparently preserve the Valid State 

Hypothesis when transforming some member of [x2] into a.member of [xf"]. Thus it 

is possible for a reasonable algorithm to determine if there exists some xf which 

remains connected in x2 such that d([x2],[xf"])=r+s<,, [118]. 

Theorem 3.3 ensures that there exists at most one xf having the above 

properties. Thus if such an xf is discovered, and it is assumed that at most n errors 

occur within the instance being corrected, then the appropriate correction involves 

reversing the r<n errors that have been introduced into xf to produce x2. It should 

be noted that the s components that violate the Valid State Hypothesis cannot be 
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corrected by the algorithm that corrects x2, since it cannot determine the correct 

values of components that lie outside of xf'. However, having detected such 

violations of the Valid State Hypothesis, these violations may potentially be removed 

by correcting other instances within the data memory state. 

So, suppose that the reasonable algorithm discovers no [xf'Ji for which 

d([xz],[xfv] i)<n. Then the reasonable algorithm next searches for some [xfvh for 

which d([x2] ,[xf"l z)=n.

If no [xflz is discovered which has the property that d([x2],[xflz)=n, then either 

[x2Ji has become disconnected with respect to all correct instances lying within n 

changes of x2, or no such correct instance exist. Therefore, the appropriate action is 

to report failure. 

Alternatively, if for all xf satisfying d([x2],[xf])=n, d([x2],[x['])>n, then an 

attempt must be made to remove violations of the Valid State Hypothesis, by 

correcting other instances, before possibly making further attempts to correct x2•

Finally, if some xf satisfies d([x2],[xf'])=n then the reasonable algorithm 

should continue to search for some [x5vh1t[xfv] having the property that 

d([x2],[xjv])=n. If such an [xj"h is discovered then the algorithm should report that 

the desired correction is ambiguous, before terminating correctly. 

If none of these events occurs then the reasonable algorithm has discovered 

exactly one class of data memory states [xf"] that remain connected in x2, having the 

property that d([xf]v,[x2])=n. By the corollary to Theorem 3.3, no other [xj"] exists 

which lies closer to [x2]. However, it is possible that x2 may be disconnected with 

respect to some xL and d([x2],[xj"])=n. Thus it is necessary to determine if any 

such [xjv] exists. If such an xjv may exist, then the reasonable algorithm should 

report that it cannot determine whether x2 has become disconnected with respect to 

the initial correct and valid instance. Otherwise, the reasonable correction algorithm 

should perform correction by converting [x2] to [xfv]. 
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Although one might envision reasonable global selective correction algorithms 

displaying the necessary intelligence to identify when it was possible that some 

invisible fragment of [xfv] has become disconnected in [x2], it is more efficient to 

provide these algorithms with some description of the set of [x;] which lie exactly n 

changes from two correct and seemingly valid instance states, exactly one of which 

has become disconnected in x;. Typically, either no such [x;] exist, or there are few 

types of errors that produce such [x;] and these have been identified when 

determining the upper bound on the selective correctability of the storage structure 

X. 

Similarly, it is typically far better to provide global selective correction 

algorithms with some efficient algorithm which allows them to identify when some 

[xf"] remains connected in x2, and has the property that d([xf]v ,[x2])<n than to 

require that these algorithms consider the set of all possible sets of at most n errors 

that may have been introduced into the instance state x2 • 

Example 3.6 

Consider a mod(2) double-linked list. This structure [ 40] has two consecutive 

header nodes, a forward pointer in each node, a back pointer in each node that 

points back two nodes, a count in one of the header nodes, and a node identifier in 

each node. Since at least 7 changes are needed to reorder nodes within this instance, 

at least 5 changes are needed to replace nodes within the instance with nodes outside 

the instance, and at least 4 changes are needed to delete nodes from or add nodes to 

the instance, the instance is exactly 3-detectable. By Theorem 3.2, it is therefore at 

least 2-selective-correctable, and by closer examination exactly 2-selective­

correctable. 

We will assume that at most two errors occur in an instance state, x2 , and 

selectively correct these errors by using a number of different correction routines. 

Each routine will maintain a small table of nodes addressed by pointers in x2 which 

contain node identifiers of x2, but which currently are not known to belong to the 

instance being corrected. Having accomplished correction, each node remaining in 
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this table will be considered to contain an error, since it contains an invalid node 

identifier. Each correction routine will undo any changes applied and report failure. 

if more than two errors are observed by it. 

We will first attempt correction using any of the mod(2) local correction 

algorithms described in [ 40]. If local correction succeeds then we must ensure that 

we have not applied two changes to the data memory state [x2Ji converting it into a 

member of [xf"] when [x2Ji also lies two changes from some member of [xf•], 

satisfying xf ;i,xf. This only occurs if xf is damaged so that a back pointer in some 

node N _1 addresses N2 rather than N1 and the forward pointer in N2 addresses No

instead of N 1, as shown in Figure 3. 3. Correction is therefore aborted if ( as a result 

of performing local correction) we correct a back pointer which appears to point back 

one node, and reduce the count by 1. Otherwise, since local correction is successful, 

the correction algorithm terminates normally. 

X2 

xf

Figure 3.3. The instance x2 lies two changes from both xf and xf 

Conversely, if local correction fails then the locality constraint must have been 

violated, implying that the two errors occur in pointers within a single locality of the 

linked list which correctly would appear as shown in Figure 3.4. 
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Figure 3.4. A mod(2) locality 

We next attempt to perform determining-set correction [18] by assuming that 

the forward pointers are correct, and if this fails, attempt determining-set correction 

by assuming that the back pointers are correct, as shown in Figure 3.5. Since the 

count of the number of nodes in the instance must be correct if two pointers are in 

error, the number of pointers to be followed during these and subsequent correction 

attempts is known. If both of these correction attempts fail then we know that the 

two errors occur in a forward pointer and a back pointer. Thus, the errors occur in 

one of {N_1 ·b2,N1 ·fi}, {N0 ·b2 ,N2 ·Ji}, {N0·b2 ,N1 -J1}, or {N_1 ·b2 ,N2 -J1}. 

Figure 3.5. First method of constructing determining sets 

We next assume that one of two other rather strange determining sets contains 

no errors and attempt correction using each of these determining sets. These two 

determining sets consist of the set of back ·pointers forming a linked list from one of 

the header nodes together with the forward pointers in the nodes that these back 

pointers address; and the same determining set constructed using the other header 

node as shown in Figure 3.6. 
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0 

Figure 3.6. Second method of constructing determining sets 

If this attempt to perform correction fails, then either {N0 ·b2,N1 ·fi} is the pair 

of pointers in error or {N _1 ·b2 ,N2·fi} is the pair of pointers in error and the instance 

is disconnected. In the former case we can construct three determining sets, one of 

which contains no errors, and thus once again correct the two errors in the instance 

being corrected. The three determining sets are constructed by traversing the list 

from a header node by following a back pointer then a forward pointer and then a 

back pointer, and repeating these three steps. Each determining set is constructed 

by beginning at a different step in this sequence as show in Figure 3. 7. 

0 

Figure 3. 7. Third method of constructing determining sets 

If any of the above determining-set correction routines detect at most two errors

then these errors are corrected, prior to the selective correction algorithm 

terminating normally. Otherwise, the correction algorithm reports that the instance

being corrected is either disconnected, or contains more than two errors. 
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The above correction procedure may appear rather cumbersome but can be 

implemented simply and efficiently. Since local correction and determining-set 

correction routines operate in linear time, the overall 2-selective correction algorithm 

also operates in linear time. 



Chapter IV 

Local correction 

4.1. Introduction 

In the previous chapter we have discussed how the introduction of a small 

bounded number of errors into a correct and valid instance might be corrected by a 

global correction routine, and have shown that a larger (but still bounded) number of 

errors can be tolerated in some storage structures if we relax the constraints under 

which a global correction algorithm operates. By requiring that global correction 

algorithms correctly diagnose the nature of the errors encountered, rather than 

necessarily correct all errors encountered, we can often construct algorithms that 

correct a very much larger class of errors than historical correction algorithms, and 

which, in addition, correctly report failure when some types of uncorrectable errors 

are encountered. 

Unfortunately, the number of errors that can be tolerated by these correction 

algorithms typically remains small. This is because a small number of well chosen 

errors can mislead global correction algorithms, simply because the detectability of 

most robust storage structures is small [120]. However, if we assume that erroneous 

components are distributed fairly evenly throughout the instance being corrected, a 

large number of errors can potentially be corrected. It is this assumption which is 

exploited by a local correction procedure [40-42, 124,125]. 

Informally, a local correction procedure visits all of the components of a storage 

structure instance state, x1, in some deterministic order, by following pointers from 

the headers of the instance, and corrects errors when these are first encountered. A 

component becomes trusted once it has been ensured that the component is correct. 

Errors are identified and corrected by examining previously trusted components, and 

at most some constant number of potentially erroneous untrusted components. This 

40 
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bounded set of untrusted components forms a locality which is assumed to contain at 

most some constant number of errors. 

After introducing some notation and terminology, this chapter reviews, revises 

and expands upon the theory of local correction. It is shown that votes cannot 

always be used to develop optimal local correction algorithms and that therefore the 

previous theories pertaining to local correction, which relied on votes, are necessarily 

incomplete. 

The concept of local connection is therefore developed and new results 

presented which establish lower bounds on the local correctability of an arbitrary 

storage structure, given that the local connectivity and local detectability of this 

storage structure are known. 

It is then suggested that local-correction algorithms might be able to tolerate 

more errors in a locality, than allowed for by previous theories, if these local­

correction algorithms were designed so that they distinguished between correctable 

and uncorrectable sets of errors. After establishing bounds on the maximum number 

of errors in a locality that can be tolerated by an algorithm which wishes to perform 

local correction whenever possible, we present in Chapter 5 and Chapter 6 two 

algorithms which use these new bounds to perform selective local correction on 

various multi-linked list structures. 

4.2. Local detection 

A precise characterization of local detection [20] requires that a storage 

structure have associated with it a local-linearisation function, f, which, when 

presented with the data memory state, [x1Ji, and the addresses, Hx , of the header 

nodes of a possibly ill-defined instance state, x1, returns a sequence of possibly 

duplicated ordered pairs, (w;,v;), Each w; describes the node address, offset, and 

thus word location, of a one-word component in [x1Ji, and each v; the value of the 

word representing that component in [x1Ji. In addition, f returns a boolean flag 

indicating if the instance state, x1 , appears correct. 
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For brevity, since the original notation can easily be recovered, we will 

abbreviate f([xi] 1,Hx) to f(x1). Except when relevant, we will also, for 

convenience, ignore the boolean result returned by f. This allows us to use the 

notation f(x1) to denote the sequence of ordered pairs, (w;,v;), produced by f. 

Denote the number of tuples in f(x1) by IJ(x1) I, and the initial subsequence of 

f(x1) containing exactly k tuples by f(x1h, If k<O then f(x1h=0, while if k>IJ(x1) I 

then J(x1h-f(x1) • 

By extension, we will use [f(x1)k] to denote the set of all data memory states in 

which the words described in f(x1h contain the values indicated in f(x1h, Thus, for 

example, d([f(x1)k],[f(x1)])=0, for all k.

An r-local-linearisation function, f, when presented with a data memory state, 

[x1Ji, and the addresses, Hx, of the header nodes of x1 returns a linearisation, f(x1), 

satisfying 

1. Completeness: V xf, [f(xf)]=[xf]. Thus, the linearisation of any correct

instance state, xf, contains exactly those tuples which represent components

occurring in xf.

2. Determinism: satisfying either

IJ(x1)l=IJ(x2)l=k-1, or the k'th ordered pair in both f(x1) and f(x2) describes

the same component. However, the value of this component may differ in the
two linearisations.

3. Locality constraint: 3 k1, such that V x1 V x:f, ei_ther d([f(x1) 1f(x,)l-k),[x:f]v)=0,

or d([f(x1)],[x:f)")>r. Thus, in any linearisation containing at most r errors, all

errors occur in the last k
1 

tuples of the linearisation.

4.-, Detection: If f(x1) contains no erroneous components, then the boolean result 

returned by f indicates that f(x1) appears to contain no errors. Conversely, if 

f(x1) contains between 1 and r erroneous components, then the boolean result 

returned by f indicates that f(x1) contains errors. 



43 

A storage structure is r-local-detectable if it has an r-local-linearisation function. 
We prove, in Lemma 4.2, that the definitions of completeness and locality constraint 

presented here are equivalent to the apparently stronger definitions presented in 
[20]. 

Lemma 4.1 

If X has an r-local-linearisation function then X is at least r-detectable. 

Proof 

Assume, that X is not r-detectable. Then there exists xf, x:f,t:x{, and data 

memory states, satisfying 1 <d([xf]i.[x:f]i)<r. If [xflt is the original correct data 

memory state then f reports that J(xf) appears to contain no errors. Now suppose 

that [x:f]i is the original correct data memory state and that this is transformed into 

[xf]i by the introduction of between 1 and r errors. Then, by detection, J reports 

that J(xf) contains errors, contradiction. Therefore X is r-detectable. ■

Although it was implied in earlier work that an r-local-linearisation function 
could detect up to r errors in the linearisations that it produced, this was not stated, 
and does not follow from completeness, determinism and the locality constraint. For 
example, consider a 1-local-detectable standard double-Jinked list [20]. Change the 
structure by allowing the count to arbitrarily contain one of two distinct values. If 
the count continues to be placed only at the end of a linearisation, then an 
undetectable error can be placed in the count, without violating the locality 
constraint. Thus the structure remains 1-local-detectable according to earlier 
definitions, but is now 0-detectable. 

If f is an r-local-linearisation function,. but not an (r+l)-local-Jinearisation
f[!nction, and J(x1) contains more than r errors with respect to some original correct 

and valid data memory state, then we will say that the locality constraint has been 
violated. If we assume that the locality constraint is not violated, then all ordered 

pairs in J(x1) [J(x,)f-k
r 

are correct. All such ordered pairs will be considered trusted,

while other ordered pairs appearing in J(x1) will be considered untrusted. The set of 
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untrusted ordered pairs in /(x1) will be denoted Uj(f(x1)).

Given the assumption that /(x1) contains between 1 and r errors, it does not 
follow that a component described in an untrusted tuple of /(x1) is necessarily 
incorrect, or even that such a component is potentially incorrect. Because the 
ordered pairs in /(x1) may be duplicated, trusted ordered pairs may also occur in the 
untrusted set of ordered pairs. Less obviously, if for some ordered pair, 
(w;,v;)Ef(x1), all [x:fH satisfying d([x:f]i',[f(x1)])<r, also contain the value ·v; in w;, 
then v; is necessarily the correct value for w1. This is because we are assuming that 
the original data memory state contains only correct instances and is valid, and that, 
regardless of the total number of errors introduced into this original data memory, 
/(x1) contains at most r erroneous components. 

Equivalently, given the assumption that /(x1) contains betv:1een 1 and r errors, 
the last ordered pair in /(x1); may describe an erroneous component if and only if 
there exists some x2

Lemma 4.2 

Given an r-local-linearisation function, f, an r-local-linearisation function, g,

can be constructed which, for any x1 and x:f, produces linearisations satisfying either 

d([g (x1) lg(x,)1-k,J,[x:f]•)=O or d([g (x1) j],[x:f]•)=O, d([g (x1) j+1L[x:f]•)=l and 

d([g(x1)j+k1,[x:f]•)>r, for some j.

That is, informally, given an r-local-linearisation function, /, an r-local­
linearisation function, g, can be constructed which produces linearisations either 
satisfying the locality constraint, or containing some subsequence of at most k

1 

components containing more than r errors, beginning with the earliest erroneous 
component. 
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Proof 

Assume that the function f operates on [xi] 1 • Then the function g simulates J, 

but excludes from the linearisation J(x1) produced by J, any tuple previously emitted

by J.

The linearisation g (x1) describes exactly the components in J(x1). Therefore, 

since f satisfies the completeness and detection properties so does g. The beh_aviour 

of g also satisfies the determinism property. If J(x1) contains more than r erroneous 

components, then so does g(x1). So assume that J(x 1) contains at most r erroneous 

components. Then, by the locality constraint, these erroneous components first 

occur in the last k
1 

tuples of J(x1). Thus, by construction, these erroneous 

components first occur in the last k
1 

tuples of g(x 1). Therefore, g is an r-local­

linearisation function, satisfying the locality constraint for k
g

=k
1

. 

Now assume that g(x1) violates the conclusions of this lemma. Then not all 

errors in g(x1) can occur in the last k
1 

tuples of g(x1), and therefore, since g is a 

linearisation function, g(x 1) contains more than r errors. Let the earliest error in 

g(x1) occur in the last tuple of g(x1);+I· Then, by assumption, g(x1)i+ki contains at

most r errors and lg(x1)l>i+k,. 

Remove all errors occurring in [xi] 1 which do not occur in g(x1);+k,, giving

[x3Ji, and then produce the linearisation g(x3). By determinism, g(x3);+k1=g(x1)i+k,

and lg(x3)l>i+k
1

. Therefore, since the earliest error in g(x3) occurs in g(x3);+i, this 

error occurs in a trusted component of g(x3), even though g(x3) contains at most r 

errors. This implies that g does not satisfy the locality constraint, and is therefore 

not an r-local-linearisation function, contradiction. 

, Thus, the first error in any linearisation produced by_g must lie in a sequence of 

at most k
1 

components, either occurring at the end of the linearisation, or containing 

more than r errors. ■
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4.3. Votes 

When attempting to develop a locally detectable storage structure, three inter­

related issues must be addressed. Firstly, the rules that define the storage structure 

must be established. Secondly, an appropriate local-linearisation function must be 

selected. Finally, this function must be shown to be an r-local-linearisation function, 

for some r which, ideally, is maximal. 

Although the above activities are in practice inter-related, the task of selecting a 

promising local-linearisation function, for any given storage structure, is typically not 

difficult. However, the task of demonstrating that the function is an r-local­

linearisation function, and that r is maximal for this storage structure, is certainly 

not trivial. 

In [20] it was proposed that votes be used to demonstrate that a storage structure 

was r-local-detectable. Let V be a predicate of three arguments, V(f(x1),w;,v), 

where f(x1) is a linearisation produced by a local-linearisation function, f, 

(w;,v;)Ef(x1), and vis a possible value for w;. Then V(f(x1),w;,v) is a vote on w; if, 

assuming that there are no erroneous trusted components, 

1. V does not examine w;.

2. V(f(x1),w;,v;) true implies zero or multiple- errors in w; and untrusted

components of f(x1) examined by V.

3. V(f(x1),w;,v;) false implies one or more errors in w; and untrusted components

of f(x1) examined by V.

The applications of two votes, V1(f(x1),w1 ,v) and V2(f(x1),w;,v), were considered 

distinct, if either the untrusted components used by the two votes were disjoint, or at 

least one of the two votes evaluated false. Two votes, v1 and V2, were considered 

distinct if, for all linearisations, f(x1), all components, w;, and all test values, v, the 

applications of the votes were distinct. 
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An r-detectable substructure instance with principal component w; was defined to 

consist of the components evaluated by r distinct votes, when these votes were 

applied to the principal component w;. The target components associated with w;

were defined to be those untrusted components whose correct value could be 

determined using only the correct value of w;, and possibly other trusted components 

It was then shown [20] that a storage structure was r-local-detectable, . if 

corresponding to every correct instance of the storage structure there was a sequence 

of r-detectable substructure instances satisfying: 

1. The targets of the substructure instances partition the instance, the size of all

such targets being bounded by a constant,

2. The trusted components in each substructure instance appear in targets of

preceding substructure instances, and

3. All other components of each substructure instance appear in targets no later

than the j'th succeeding instance in the sequence, for some constant j.

In [126] it was observed that the above holds even if it is only required that

votes be distinct in correct substructure instances. This is because we can 

mechanically test each substructure instance to ensure that the application of all votes 

within this substructure instance is distinct. If it is determined that this is the case 

then we are satisfying the earlier constraint on votes, and the above statements 

therefore holds. Otherwise, since votes within the substructure instance are not 

distinct, we can conclude that this substructure instance contains error(s), and 

therefore terminate the linearisation in the vicinity of the first error encountered. 

Both of the above results identified sufficient conditions to ensure that a storage 

structure was at least r-local-detectable, but neither provided any evidence to 

indicate whether these conditions were necessary, as well as sufficient. This issue is 

resolved below. 
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Counterexample 4.1 

It is not always possible to use r distinct votes to detect between 1 and r errors 
. in any instance state of an rslocal-detectable storage structure. 

Proof 

Consider a standard linked binary tree, X, in which each node contains a key, a 
left pointer, and a right pointer. In our robust implementation of this tree we will 
ensure that all components are of the same size, and add two additional checksum 
components, producing nodes which contain exactly five components. For 
simplicity, assume that components are represented by 2*b bits. 

Partition the five components in each node of x1 into b disjoint code words of 

ten bits, by selecting two bits from each of the five components, and consider one 
such code word. Treat each pair of bits from a common component as a binary 
value ranging between zero and three, and use an arbitrary perfect Hamming code 
[64, 88] over a Galois field of four elements to checksum the three (two-bit) data 
values, by using the remaining two (two-bit) checksum values. One such code is 
presented in Appendix A2. 

Then, errors in one or two of these five (two-bit) values are always detectable, 
while carefully selected errors in any three of these (two-bit) values transform a 
correct (ten-bit) code word into a different correct (ten-bit) code word [88]. 

Since errors in one or two components within a node are always detectable, but 
errors in three components within a node are not necessarily detectable, the structure 

is exactly 2-detectable. Since we can arrange that our local-linearisation function, f,

visits nodes of this instance in some deterministic order, and emits all components 
within a node when that node is first visited, it follows that the structure is exactly 

2-local-detecta ble.

Now assume that x1 contains errors which affect only one code word in some 

ncide, N0, and further assume that in this erroneous "ode word, containing five 

(two-bit) values, all sets of errors in at most three (two-bit) values are undetectable, 
if suitable errors are also placed in the other two (two-bit) values. Such an x1 can be 
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constructed merely by ensuring that keys are sufficiently variable, and that the data 

memory state is capable of containing some modest collection of nodes. 

Suppose that some vote V1(f(x1),wi,v) uses Jess than three components in No to 

verify the assertion that v is the correct value for the first principal component, wi, 

in N0• Then, V1 can examine at most two of the five (two-bit) values in the 

erroneous code word. Any of the remaining three (two-bit) values can independently 

be assigned an arbitrary value while being contained in a correct code word, 

provided that we also change, if necessary, the other (two-bit) values not examined 

by V 1. In particular, the (two-bit) value contained in w i is not examined by Vi , and

therefore has a correct value which cannot be determined, even if the values 

examined by V1 are correct. This implies that V1 cannot detect some single errors in 

w i, contradiction. 

Thus any vote V1(f(x1),wi ,v) must examine at least three components. 

Therefore any pair of distinct votes V1 and V2 on wi must examine at least six 

components. But, by construction, components not occurring in No cannot assist any 

vote on wi, and, by definition, neither can wi. Thus, there are four components that 

can usefully be examined by votes on wi , and therefore there is only one distinct vote 

on the principal component wi. ■

It is perhaps unfortunate that r-local-linearisation functions cannot always be 

developed that employ the existing theory (or theories) of voting. As indicated in 

(20] the use of votes provides a simple constructive method of establishing lower 

bounds on the local detectability and local correctability of an arbitrary storage 

structure. In addition the use of votes assists in the development of clear, concise, 

local detection and correction procedures. 

However, it is important to recognize that not all storage structures cah use 

votes to arrive at a maximal r-loca!-linearisation function, and that therefore 

hi�torical methods of attempting to establish the local detectability and local 

correctability of a storage structure may not always be appropriate. We therefore 

present some new definitions, and then proceed to establish stronger relationships 



50 

between the local detectability, local connectedness, and local correctability of an 

arbitrary storage structure than presented elsewhere. 

4.4. Local connection 

Let the function, Q
1

, when presented with a linearisation, f(x1), and the 

addresses, Hx, of the header nodes of x1, return a set of ordered pairs, (w;,v;), 

where w; describes the location of a one-word component in [xi]1 , and v; a· possible 

value for this component. We can implicitly assume that Q
1 

is presented with the 

appropriate header addresses, and will therefore use Q
t

CJ(x1)) to denote the set of 

ordered pairs produced when Q
1 

is presented with f(x1).

An r-local-linearisation function, f, is c-local-connected if there exists a 

c-connection function, Q
1

, and associated constant, z
1

, such that V x1 V xf satisfying

1 <d([f(x1)],[xf]v)<c<r:

B. Connection constraint: 3 (w;,v;)Ef(x1) and (w;,v/)EQ
t

Cf(x1)) nJ(xi) such that

vj-:;1:-v;.

Thus, informally, an r-local-linearisation function is c-local-connected if there exists 

a function Q 1, which, when presented with any linearisation f(x1) containing

between 1 and c errors, identifies a bounded set of possible values for specific 

components in [x1Ji, at least one of which is the correct value for an erroneous 

component in f(x1). The function, Q
1

, may return a number of values for a single 

component in [x1Ji, not all of which are necessarily distinct, or necessarily differ 

from the current value of this component. 

The (possibly unknown) erroneous components in any linearisation, f(x1), 

containing between 1 and c errors, whose location and correct value are recorded in 

a 1tuple produced by a connection function, Q
1
, are called principal components of 

Q
t

CJ(x1)), and will be denoted Pi· Clearly, P;EU
1

(f(x1)). It is stressed that this 

definition of principal component supersedes the definition of principal component 



51 

presented in [20], and used earlier in this chapter.
A storage structure is c-local-connected if it has a c-local-connected

linearisation function.

Lemma 4.3 

If an instance, X, has a c-local-connected linearisation function, f, then X has a
c-local-connected linearisation function, g, having a connection function, Qi, which
when presented with a linearisation containing between 1 and c erroneous
components, includes among its principal components the earliest erroneous
component in the linearisation.

Proof 

Without loss of generality, assume that f produces linearisations containing no
duplicated components. We will construct a sequence of components, g(x1), using a
function, g, that is derived from f, and then show that g satisfies the conditions of
this lemma.

The linearisation g(x1) contains as its initial subsequence the linearisation J(x1). 

If f reports that f(x1) appears to contain no errors, then g reports that g(x1) appears
to contain no errors and terminates. Otherwise, g reports the detection of errors.
This ensures that g satisfies the completeness and detection properties of a local­
linearisation function.

So, suppose that f reports that f(x1) contains errors. Then for each
( wi

2
, vi,)EQ

j
(J(x1)) for which there exists a ( wi

2
, vi,')EU 1(f(x1)) satisfying v

i2
,t,vi2

', g
independently changes the value of w

i2 
to vi2

, producing a new instance x1 ,i
2 

and then
uses f to produce a
identifies the set of

new linearisation f(x1 ,· ). For each f(x1 ,·) thus produced, g
•2 •2 

tuples in J(x1 ,i
2

) describing components not already in,\g(x1)

which occur within k
1 

tuples of (w i2,vi2
), and appends these tuples to g(x1), in the

sequence that they appear in f(x1,;2). The above process is repeated recursively,
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those for which 

Upon completion of this process, g(x1) contains a very large but bounded set of 
untrusted tuples, U

g
(g(x1)), beginning with those untrusted tuples in /(x1). In g(x1) 

no tuples contain modified values, since any component modified by g has already 
been added to g(x1) and g(x1) contains no duplicated components. If g(x1) contains 
at most r errors, then so does /(x1), implying that all errors in g(x1) occur in 
untrusted components. Thus g satisfies the locality constraint for some very large 
kg . Finally, g uses only the values of components already in g(x1) when appending 
new components to g(x1), and is deterministic. Thus g is an r-local-linearisation 
function. 

Associate with the local-linearisation function g the connection function 
- u Qg(g(x1))-IQ

i
Cf(xi,iz ... ;))l<z

J
Qf(f(x1,;2 • • •  ;)), Then Qg

(g(x1)) contains a large

but bounded set of elements. Now assume that g(x1) contains between 1 and c<r

errors. Then we wish to prove that (p0 ,v0)EQ
g
(g(x1)), where v0 is the correct value 

for the earliest erroneous component, Po, in /(x1) and thus g(x1). 

Since g (x1) contains c<r errors, /(x1) also contains at most c errors, implying 
that there exists some CP1,v1)EQ1Cf(x1))CQ

g
(g(x1)) such that p1 is the earliest 

principal component of Q
1

(f(x1)), and v1 is its correct value. If p1=p0 then the proof 
is complete. So assume that p1;,fp0•

Then g produces some f(x1 ,;,) in which the error in p 1 has been corrected, but 
the earlier error in Po has not. If /(x1,;2) contained more than c-1 errors, then, by 
the locality constraint and Lemma 4.2, at least c of these errors would occur within 
k

1 
components of p0• But, by construction, each such error therefore occurs in g(x1), 

as does the error in p1, implying that g(x1) contains more than c errors, 
contradiction. Thus f(x1 ,;,) contains between 1 and c-1 erroneous components.
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By iteratively repeating the reasoning applied to f(x1 i ... ; ) to f(x1 1_ • •• ,· ) we 
, 2 J ,-i; /+1 

deduce that g produces some linearisation /(x11_ ... ; ) containing at most c-j
,-i; J+l 

errors. If any such linearisation containing c-j errors included Po as a principal 

component then so would Q8(g(x1)). So assume otherwise. Then g produces some

linearisation containing only the error in Po, since g produces Iinearisations while 

j<c. But Po is therefore a principal component of this linearisation, contradiction. 

Thus Po is a principal component of Q8(g(x1 )). .■

4.5. Local correction 

A local-linearisation function, f, is c-local-correctable [20] if: 

Correction constraint: There exists a c-connection function, P 1, which, when

presented with a linearisation produced by f, emits at most one tuple. Such a 

c-connection function will also be called a c-correction function.

A storage structure is c-local-correctable if it has a c-local-correctable linearisation 

function. 

Since there are a finite number of data memory states, Pf is computable, and 

therefore our definition of local correctability is equivalent to the apparently stronger 

definition of local correctability given in [20], which considered a storage structure to 

be c-local-correctable if there existed an r-local-linearisation function, f, and an 

improvement procedure, P, which could correct at least one error in any 

linearisation, /(x1), containing between 1 and c<r errors. 

Lemma 4.4 

If a storage structure has an r-local-linearisation function, f, and associated 

c-correction function, P 1, then the storage structure has an r-local-linearisation

function, g, and associated c-correction function, P 8, such that whenever g (x1)

contains between 1 and c errors, P 8(g(x1)) is the earliest erroneous component in
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Proof 

By definition, a c-correction function, P 1, is also a c-connection function.

Therefore, using the construction described in Lemma 4.3, we can produce a 

c-connection function, Q
8

, whose principal components include the earliest

erroneous component in g(x1). If g(x1) contains between 1 and c errors, then at 

each step of this construction, P 1, being a correction function, identifies exactly one

principal component of Q
8

, and therefore all tuples in Qg(g(x1)) describe principal

components of Q8(g(x1)). So let P
8
(g(x1))=(p0 ,v0) where Po is the earliest

component in g(x1) for which CPo,vo)EQ
8
(g(x1)). Then P8 satisfies the conditions of

this corollary. ■

Theorem 4.1 

If a storage structure has a 2r-local-linearisation function, f, that is also 

r-local-connected, then the storage structure is at least r-local-correctable.

Proof 

Let the function h behave exactly like the function g, described in Lemma 4.3, 

but internally generate all appropriate linearisations f(x1,;2 __ ;1
) while J<r+l. Then

we wish to show that h has an associated r-local-correction function, Ph . So assume 

that h returns a linearisation, h(x1), which contains between 1 and r errors. 

Using the arguments given in Lemma 4.3, h internally generates some 

linearisation, f(x1; ... ;.), in which all errors occurring in the k1 components 
'2 J 

beginning with the earliest erroneous component, Po in f(x1), have been removed. 

In the linearisation f(x1; ... ; ) therefore, either Po must be trusted, or f must have 
'2 } 

signalled that f(x1; ... 1_) apparently contains no errors. 
'2 J 

Conversely, consider the linearisation, J(x1; ... ,· ), produced by h when lz fails 
'2 ' 

to correct the earliest erroneous component, p0. By determinism, the linearisation, 
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f(x1 ,i, . .. 1,), contains Po, and, since Po remains in error, therefore contains at least 

one error. Suppose that f(x1 1 .... 1 ) contains more than 2r errors. Then, since f 
'2 • 

emits no duplicated components, by the proof of Lemma 4.2, more than 2r errors 
occur in components lying not more than k1 components ahead of Po within 

f(x1,12 .•. 1.). Since the function, h, introduces at most r errors into any linearisation

that it produces, by construction, more than r errors in f(x1,12 . .. ;.) also_ exist in

h (x1). But h (x1) contains at most r errors, contradiction. Thus, f(x1,;
2 
... ·1,)

contains between 1 and 2r errors. By the locality constraint and the detection 
properties, f therefore reports that f(x1 ,;

2 
• • •  1.) contains errors, and places Po and all 

subsequent components in f(x1,12 
.- .. ;.) in U tCf(x1 ,12 ... 1,)).

Thus, if the function h produces an erroneous linearisation h(x1) containing at 

most r errors, then the function Ph(h(x1))=(p0 ,v0) mimics the functions f and h to 

determine the earliest erroneous component Po in h (x1) and its correct value v0•

Specifically, Po is the first component that becomes trusted, or is reported to be 

correct, in some /(x11 ... i.) once h has modified it, and v0 is its modified and now 
'2 , 

correct value. Since the function Ph(h(x1)) exists, the structures on which/ operate 

are r-local-correctable. ■

Example 4.1 

Consider a circular regular multi-Jinked list having f">O forward pointers in each 
node which address the next node, O<h <J back pointers in each node which address 
the previous node, and a single header. Any number of consecutive data nodes in 
such a structure can be deleted by applying f +b changes. Thus the local 
detectability of the structure is at most f+b-1.

Assume that a local correction procedure is traversing this multi-Jinked list 
forwards and has arrived at node No, and wishes to identify the node, N1, which 

follows N0• Let the current set of untrusted components consist of all forward 

pointers in No, and the back pointers in the nodes addressed by these forward 



56 

pointers. Then, provided that the Valid State Hypothesis holds, any set of at most 
J+h-1 errors in this locality is detectable, implying that the structure is exactly 
(J +b-1 )-local-detectable.

Since N1 is addressed by some forward pointer within the· locality, unless all
forward pointers in No are damaged, the linearisation is J-l>(J+b-1)/2 local­
connected. Therefore, by Theorem 4.1, the linearisation is at least 
l(J+b-l)/2 J= r (J+b )/2 �1 locally correctable. 

However, it does not follow that this linearisation is at most ( r+b)/2 �1)­
local-correctable. Suppose that an arbitrary locality contains at most n <J errors. 
Then, since J is (J-1)-local-connected, the node, N1 , that follows No must be 
addressed by some correct pointer in the locality being corrected. 

Let the local correction algorithm consider the possibility that each node 
addressed by a forward pointer in No is N1. When the local correction algorithm 
correctly guesses that N1 follows N0 , it will observe at most n errors in the locality 
being examined, since the locality contains at most n errors. Now suppose that the 
local correction algorithm erroneously guesses that some node Nx follows N0. Then 
all forward pointers in No , all back pointers in N1 , and all back pointers in Nx occur 
in the locality being examined, and by the Valid State Hypothesis, now appear 
incorrect unless they contain errors. This is shown in Figure 4.1. Thus the local 
correction algorithm will conclude that the locality contains at least 2*b+J-n errors. 

Now eliminate any possible ambiguity about the node that correctly follows N0 , 
in a linearisation containing at most n errors, by requiring that n be the largest value 
satisfying n<2*b+J-n, or equivalently n<h+ fJ/2 ].' Then N1 can always be 
uniquely identified. The storage structure is therefore exactly min(J,b+ ff /2 ])-1 
locally correctable. Thus when J>2*b the local correctability of this storage structure 
will exceed half the local detectability of this storage structure by at least lb /2 J. 



57 

I 

0=:0 
b 

Figure 4.1. Pointer changes needed to replace N 1 with N x

The above example demonstrates that we can design storage structures whose 

local correctability exceeds half the detectability of the same storage structure by an 

arbitrary amount. In Chapter 7 it is shown that a robust A VL tree exists, whose 

detectability, local detectability, correctability, and local correctability are all equal. 

Collectively, these examples demonstrate that the Valid State Hypothesis can have a 

profound effect on the relationship between the local detectability and local 

correctability of an arbitrary storage structure. Much which was stressed in Chapter 

3 should therefore be reiterated here. 

Theorem 4.2 

If an r-local-linearisation function,/, has a c-local-correction function, P 1, and

produces linearisations, f(x1), which occur as the initial subsequence of

linearisations, g(x1), produced by an r-local-linearisation function, g, then g has the

c-local-correction function P
g

(g(x1))=P1(f(x1)). Therefore, g is a c-local­

correctable linearisation function.

Proof 

Suppose that g(x1) contains between 1 and c errors. Then, since f(x1) is 

contained in g(x1), f(x1) contains at most c errors. By determinism and

completeness, if f(x1) contains no errors then x1 Exc , implying that g(x1) contains no
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errors, contradiction. Thus J(x1) contains between 1 and c errors. Therefore, since 

f is c-local-correctable, let P j(J(x1))=(w1,v1). 

Define AC[xc]" so that [xflv EA if and only if d([f(x1)J,[xf]")<c. Then the 

component w1 has the value v1 in all [xflv EA, but has value v{ ,;,v1 in both J(x1) and 

g(x1), 

Since g(x1) contains at most c errors, there exists at least one [xJY satisfying 

d([g(x1)l,[xJ]")<c. Since d([f(x1)],[xJ]")<d([g(x1),[xf]v) all such [xJ]"EA. 

Therefore all such [xf]v contain w1 and require that it have the value v1. Thus 

P g(g (x1) )=P f(J(x1)) is a c-local-correction function for g. Therefore, g is c-local­

correctable. ■

Earlier in this chapter we have created new linearisation functions by 
deterministically appending a bounded number of components to erroneous 
linearisations. Similarly, when designing or enhancing local-correction algorithms, 
linearisation functions are often modified so that they add a bounded number of 
additional components to the end of erroneous linearisations. The above theorem is 
important, since it provides a lower bound on the local correctability of these 
resulting linearisation functions. 

4.6. Local-correctable Iinearisations 

A correct linearisation, f(xf), is r-local-correctable if \/ xf ,;, xf, 

d([J(xf)],[xf]v) > r. An erroneous linearisation, satisfying 

O<d([J(x3),[xc]")<r, is r-local-correctable if there exists at least one tuple 

(w;, v/)Ef(x3) and value v;,;,v/, such that \/ x4 satisfying d([f(x3)],[xf])<r, 

(w;,v;)Ef(xi). Linearisations having neither of the above two properties are not 

r-local-correcta ble.
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Lemma 4.5 

A local-linearisation function, f, is r-local-correctable if and only if all J(x1) 

produced by f, satisfying d([J(x1)],[xcy)<r, are r-local-correctable. 

Proof 

Suppose that f is r-local-correctable. Then, by Lemma 4.1, the instance, X, is 
r-detectable and all J(xf) therefore r-local-correctable. Further, since f is· r-local­

correctable, 3 a correction function, P 1, such that for any J(x3) and 'f x.f satisfying 

1 < d([J(x3)],[x.f]") < r, P1(f(x3))=(w;,v;)Ef(x.f), (w;,v/)Ef(x3) and v;,J,v/. Thus, 
if d([J(x3)],[xc]')<r, J(x3) is r-local-correctable. The converse result follows 

similarly. ■

4. 7. Local-correctable instance states

An instance state, x1, residing in the data memory state [xiJ 1=[x1 oh, is c-local-
' 

correctable, with respect to a correction function, P
1

(f(x1,;))=(p1,;,v1,;), if there 

exists a sequence of c-local-correctable linearisations J(x1 0) • • · J(x[ k) satisfying 
' , 

d([J(x1 ,;)l,[x[,d•)<c, for O<i<k, where each J(x1,i+t) is produced from the data 

memory state used to produce J(x1,;), after first changing the value of Pt,i to v1,;.

Suppose that a storage structure, X, has a local-linearisation function, f, which 
is c-local-correctable, and a correction function, P 1, which can be implemented. 

Then we can attempt to correct an erroneous instance state, x1, occurring in a data 

memory state, [x1 ,oh, by using a c-local-correction procedure, '¥, which assumes 

that _ x1 is c-local-correctable. Beginning with [x1 oh, '¥ iteratively produces 
, 

linearisations, J(x1,;), and while P
1

(f(x1,;)) identifies a possible correction, changes

p1; to v1 ;, in the data memory state used to derive J(x1 ;), before producing 
, , , 
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The procedure W terminates successfully once a linearisation containing no 

detectable errors is produced, and reports failure if it is determined that some 

linearisation produced by W contains more than c errors. The instance state, x1,

observed by W comprises exactly those components occurring in some f(x1 ,1). 

Lemma 4.6 

Given a local-correction procedure, W, it is possible to construct ·a local­
correction procedure, <I>, which detects, in those instance states correctable by W, any 
violation of the locality constraint, and which further identifies the subset of instance 
states corrected by W which are seemingly valid with respect to the original incorrect 
instance. 

Proof 

Let <I> simulate W. If W reports failure then so does <I>. Otherwise, since 111 
halts, <I> can identify both the x1 observed by W, and the x{ k that was produced by 111. 

' 

<I> can therefore identify all components in x1 which are either erroneous in x{ k> or 
' 

which violate the validity of xf,k • Therefore <i> can verify that all f(x1 ,;) produced by 

W satisfy the locality constraint with respect to x{,k> and that x{,k is seemingly valid 

with respect to x1• ■

Counterexample 4.2 

Even if a local-correction procedure W, operating on a locally correctable 

instance state, x1, produces a correct and seemingly valid instance state, x:f, there 

may exist some alternative correct and seemingly valid instance state, xj, satisfying 
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Proof 

Consider a regular linked list, xj, containing two forward pointers per node that 

address the next node, and one back pointer per node that addresses the previous 

node in the list. Each node also contains a node identifier. Then, as justified 

earlier, this storage structure is exactly 1-local-correctable. 

Assume that another instance of this storage structure, y.f, occurs in the set of 

data memory states, [x:f ,y,f]'. Link into x:f any m consecutive nodes in y.f producing 

the set of damaged data memory states [x1]. This involves changing two forward 

pointers and a back pointer in x:f, and doing likewise in y.f. Thus 

d([x1] ,[x:f ,y,f]')=6. 

Now consider the behaviour of W when operating on x1. It will observe no 

pointer errors, and will therefore conclude when examining nodes which correctly 

belong to y.f that these nodes contain erroneous node identifiers. Since each such 

identifier will be changed by W, W will produce an instance state x:f satisfying 

d([xi] ,[x:fv])=m. To produce the desired counterexample, set m >6. ■

4.8. Selective local correction 

In Chapter 3· we discussed how the theory of selective correction could be 

applied to global correction, and used as a fundamental concept the notion of a 

correctable instance state. Having now established the concept of a c-local­

correctable linearisation, it seems appropriate to explore how the theory of selective 

correction might be applied to a locally correctable storage structure. 

A storage · structure, X, which is exactly c-local-correctable, is exactly 

s-selective-local-correctable if it has a c-local-linearisation function, f, which

produces linearisations which are either not locally correctable, or are at least 

s-local-correctable, for some s which is maximal. Such linearisation functions will

be termed s-selective-local-correctable linearisation functions. 
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Thus, informally, if X is c-local-correctable and s-selective-local-correctable, 

then X has a local correction procedure which can both correct one error in all 

linearisations containing between 1 and c errors, and can correct one error in all 

locally correctable linearisations containing less than s , errors, even when it is 

assumed that these linearisations may contain up to s errors. 

If we did not require that f be a c-local-correctable linearisation function, then 

it might sometimes be possible to increase the selective-local-correctability of some 

storage structures by using linearisation functions having higher local-detectability 

but not being c-local-correctable. While such linearisation functions may be more 

tolerant of errors, or possibly more successful at correcting errors because they 

employ smaller localities than alternative c-local-correction functions, it seems 

intuitively appealing that s-selective-local-correctable linearisation functions, also be 

c-local-correctable linearisation functions.

Typically, selective-local-correction algorithms will use linearisation functions 

which have larger localities than linearisation functions used by historical local­

correction algorithms, but these selective-local-correction algorithms will be able to 

correct more errors in these larger localities than historical correction algorithms. 

Because of these differences, it should be clear that not all errors correctable by a 

c-local-correction procedure are necessarily correctable by an s-selective-local­

correction procedure. Indeed, since different algorithms may employ different 

local-linearisation functions to assist in performing correction, different s-selective­

local-correction algorithms may have very different characteristics when operating on 

the same erroneous instance state. Obviously, however, our goal is to produce good 

selective-local-correction procedures which correct a larger percentage of errors than 

corresponding local-correction procedures. 

Lemma 4.7 

If an instance, X, is at least c-local-correctable, at most r-detectable, and 

exactly s-selective-local-correctable then c<s<.r. 
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Proof 

Since X is at least c-local-correctable, there exists a local-linearisation function, 

f, whose linearisations, when containing less than c errors, are c-local-correctable. 

Therefore, s>c. Since X is at most r-detectable, there exists xf and x{,j,xf 

satisfying d([xf]V,[x{])<r+l. The linearisation J(xf) is trivially 0-local-correctable, 

but, by the above, not (r+l)-local-correctable. Therefore s<r. ■ 

Regrettably, we have been unable to prove that the local detectability of. a 

storage structure is at least equal to the selective-local-correctability. Consider, for 

example, a storage structure which is 0-local-correctable, ·r-local-detectable and 

(r+l)-detectable. Then, by the above definitions, correct linearisations are (r+l)­

local-correctable. If no incorrect linearisation is locally correctable, the storage 

structure is therefore (r+l)-selective-correctable. Even if some incorrect 

linearisations are locally correctable, it may be possible to ensure, by using the Valid 

State Hypothesis or otherwise, that all such linearisations are (r+l)-local-correctable. 

However, given the typically large number of such local-correctable linearisations, 

and the requirement that all be (r+l)-local-correctable, it seems unlikely that such a 

perverse storage structure will ever be found. 

Theorem 4.3 

If a storage structure, X, has an r-local-linearisation function, f, and associated 

c-local-correction function, P 1, then the storage structure has an r-local-linearisation

function, h, and associated c-local correction function, Ph , such that all c-local­

correctable linearisations produced by h are also (r-c )-local-correctable.

Proof 

Select some r-local-linearisation function, f, which is c-local-correctable, and 

without loss of generality assume that f emits no duplicate components. Construct 

the c-local-correctable r-linearisation function, h (x1), from the r-local-linearisation 

function f, by using the correction function, P 1, and the sequence of linearisations 

J(x1,o),J(x1,1) · · · J(x1 ,m), where m<c, as described in the proof of Theorem 4.1.
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Thus, while m<c, the construction continues until some f(x1,m) is produced in which 
the earliest modified ordered pair Ph(h(x1))=(p0,v0) is either trusted, or occurs in the 

last k
1 

tuples of a linearisation containing no detectable errors. Denote the initial 

subsequence of f(x1,m) which contains (p0,v0) and the k
1 

or fewer tuples following 

(po,vo) by f(x1,m),. 

Now assume that h(x1) is c-local-correctable. If h(xf) contains no detectable 

errors, then h(xf) is trivially (r-c)-local-correctable. So assume that h(x1) contains 

between 1 and c errors. Then, since h(x1) contains at most c errors and f is a 

c-local-correctable linearisation function, the construction of each /(x1 ,1) is well

defined, and therefore f(x 1 ,m), is well defined. Thus all components in f(x1 ,m), are

contained in h (x1).

So suppose that h(x1) is c-correctable but not (r-c)-local-correctable. Then 

there exists some x:f satisfying c<d([h(x1)],[xf"])<r-c, which either does not 

contain Po, or which requires that Po have the value v0 ;,fv0. In f(x1,m) some ordered 

pair at or before the ordered pair (p0, v0) is therefore erroneous with respect to x:f. 

Since at most m<c components have different values in f(x1 ,m), and h(x1) and all 

components in f(x1 ,m), are contained in h(x1), 

1 <d([f(x1,m ),] ,[x:fv])<d([f(x1 ,m ),J ,[lz (x1)])+d([h (x1)J ,[x:fv])<m +(r-c )<c+(r-c )=r. 

But this implies that, with respect to x:f, f(x1 ,m), contains at most r errors, at 

least one of which either occurs in the trusted tuple (p0, v0) or occurs in some earlier 

trusted tuple. Since this violates the locality constraint, f is not an r-local­
linearisation function, contradiction. Thus the assumption that lz(x1) is not (r-c)­

local-correctable is false, and h (x1) is therefore (r-c )-local-correctable. ■
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Corollary 4.2 

If a storage structure, X, has an r-local-linearisation function, f, which is 
exactly c-local-correctable, and r>2*c+l, then X is at least (c+l)-selective-local­
correctable. 

4.9. Applications 

In Chapter 3 we showed that all instances which were r-global-detectable, were 
fr /2 }selective-correctable, and that therefore we could safely assume that any 

instance which we wished to correct contained up to r r /21 errors, provided that we 
took some care when examining instances that contained exactly r r /21 errors. 

We have now produced a corresponding but weaker result, showing that if a 
storage structure has a c-local-correctable r-local-linearisation function, then it has 
an r-local-linearisation function for which all c-local-correctable instance states 
remain locally correctable even when linearisations are assumed to contain up to 
r-c > r r 12 l errors. 

Superficially, the use of such an r-local-linearisation function in a correction 
procedure may seem rather dubious. Although c-correctable instance states will 
continued to be corrected appropriately, provided that no linearisation contains more 
that r-c errors, such local-linearisation functions are likely to use larger constants to 
define the size of their localities, and these localities are therefore likely to contain a 
larger number of errors. Typically, large numbers of errors do not conspire to 
mislead a correction algorithm, and we would therefore expect such correction 
procedures to be rather conservative. 

However, as with selective global correction, having established that 
linearisations may contain more than c errors, while continuing to support c-local­
correctability, we are free to consider how such linearisations may typically be 
corrected when assumed to contain at most r-c errors, provided that we take care 
to detect uncorrectable linearisations. If we are able to develop strategies for 
correcting the majority of such errors, then we are likely to develop correction 
procedures which perform at least as well as historical local correction procedures. 
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Unfortunately, the majority of existing robust storage structures are not locally 

correctable, and of those which are locally correctable many have r=2*c and thus 

r-c=c. Among the storage structures which are not locally detectable are the

single-linked list [119], the chained and threaded binary tree [122], the mod(2) 

chained and threaded binary tree [111], the chained and threaded B-tree [16], the 

double binary tree [95], and the robust UNIX file structure [108]. 

One of the earliest robust structures to be presented was the double-linked list 

[121], and this is 1-selective-local-correctable, since it is 1-local-detectable, even 

though it is 0-local-correctable. However, erroneous pointers are often not 

correctable, and therefore any selective local correction algorithm operating on an 

erroneous instance of this structure will, at best, tend to correct only identifiers and 

the count. 

Out of the small collection of existing locally correctable storage structures, 

many have the same local-correctability and selective-local-correctability. These · 

structures include the mod(2) linked list [119], the locally correctable B-tree [124], 

the checksummed binary tree presented in Counterexample 4.1, and the locally 

correctable A VL Tree presented in Chapter 7.. 

Fortunately, there are families of robust storage structures which are exactly 

c-local-correctability, and which have s-selective-local-correction algorithms which

can correct almost all linearisations containing at most s=r-c=c+l errors. Indeed, 

some of the structures presented in the next two chapters are always (c+l)-local­

correctable, unless the instance state being corrected has become disconnected. 



Chapter V 

Correcting mod(k) linked lists 

5.1. Regular linked lists 

:Regular linked lists form a very important class of robust storage structures for 

many reasons. They are easily described, implemented, and analyzed, and for this 

reason the properties of robust linked lists are, for the most part, well understood. 

Because regular linked lists are well understood, it is typically easy to find linked lists 

which satisfy predefined .properties, and this makes them ideal candidates for, both 

example, and counterexample. 

The organization of pointers within a regular linked list can be described by a 

vector of pointer distances, since any pointer in any node of a regular linked list 

correctly points forwards or backwards the same distance as any pointer occurring at 

the same offset in any other node within the structure. For conciseness and clarity, 

in this and subsequent chapters, we will therefore describe the organization of the 

pointers of a regular linked list by means of a vector. A single-linked list therefore 

has a ( + 1) pointer structure, while the mod(2) structure presented at the end of 

chapter 3 has a ( + 1,- 2) pointer structure. 

Since we assume that errors affect independent components, the physical 

ordering of pointers within nodes is irrelevant. For definiteness, we may imagine 

that pointers occur in nodes in the order that they are defined within the vector 

describing the pointer structure. Similarly, since we are uninterested in the data 

contained in an arbitrary regular linked list, reversing the sign of all values in a 

vector describing the pointer structure produces a regular linked list structure which 

is essentially unchanged. However, once again for the sake of definiteness, we will 

consider positive pointer distances to point forward the specified number of nodes, 

and negative pointer distances to point back the specified number of nodes. 

67 



68 

Most of the material presented in this chapter has already been published [ 40]. 

5.2. The mod(k) linked list 

A modified(k), or mod(k), linked list storage structure [14, 15,111] is a circular 

double-linked list of nodes, in which each node contains a forward pointer that links 

it to the next node, and a back pointer that links it to the k'th previous node. A 

particular instance of a mod(k) structure consists of k consecutive header nodes, 

whose addresses are known, and aU nodes reachable by following pointers from these 

header nodes. These header nodes are contained within the double-linked list of 

nodes, and are the only nodes in the instance when the instance is empty. Each 

node within an instance contains an identifier whose value uniquely identifies the 

instance to which the node belongs. A count of the number of non-header nodes 

within an instance is stored in one of the header nodes of the instance. An error is 

an incorrect value in a single pointer, identifier, or count component [119]. 

The mod(l) double-linked list is 2-global detectable, 1-global correctable 

[119,120], but not 1-local-correctable [20]. Since the structure is 1-local-detectable, 

it is 1-selective-local-correctable. However, this observation is of little practical 

value, since selective-local-correction algorithms will tend to correct only errors in 

node identifiers and the count. 

The mod(2) regular linked list is 3-global-detectable, 1-global correctable, 

2-selective-global correctable, 2-local-detectable, 1-local-correctable, and 1-selective­

local-correctable. It can be corrected by using the selective-global-correction 

algorithm presented in Chapter 3, or by using at least three seemingly different 

1-local-correction algorithms [20, 40,122]. In [125] it has been shown that local 

correction algorithms operating on mod(k>2) structures can also perform crash 

recovery. 

A mod(k>3) linked list, while remaining exactly 1-local-correctable, is 3-local­

detectable, and thus 2-selective-local-correctable. 

We now develop, by stages, an algorithm which is proven to perform 

2-selective-local-correction on mod(k>3) linked lists. When operating on mod(k>4) 

linked lists, this algorithm either corrects up to two errors in a single correction 
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locality, or reports that the two errors in the locality have disconnected the instance 

being corrected. In a mod(3) linked list one other pair of errors in a single 

correction locality cannot be corrected. 

This algorithm, like its predecessors, proceeds backwards from the header nodes 

of the mod(k>3) instance state, iteratively attempting to identify the correct address 

of the previous node. This previous node is called the target. Because the algorithm 

performs 2-selective-local-correction, we will subsequently assume that this algorithm 

encounters at most two errors in any locality examined by it. We will also assume 

that the Valid State Hypothesis holds. Pseudocode for this algorithm is presented in 

Appendix Bl. 

5.3. Terminology 

Nodes will be labelled N and subscripted by the correct forward distance from 

them to the last trusted node. The last trusted node is therefore No, while earlier 

trusted nodes have negative subscripts. The target node is always N 1• 

Back pointers will be labelled b and forward pointers f with subscripts indicating 

the correct distance spanned by these pointers. Pointers will be prefixed by the node 

· in which they reside, or, by extension, a path that addresses them. When 

appropriate, superscripts will indicate the number of consecutive occurrences of a 

pointer type within a path. Nx·bk/Nx+k·f 1 represents exactly one of Nx·bk and 

Nx+k-f 1. Figure 5.1 illustrates this notation, by showing a locality in a mod(k) list. 

N1·bk No·bk N2-k·bk N1-k·bk 

Nk+1·f1 N 1 ·f 11 Trusted nodes .......................................................... 

Figure 5.1. A correct mod(k) locality 
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When explicitly discussing the k header nodes these will be labelled H. In a 

correct instance H;·/ 1 H;_ 1 for 0<1<.k. If the instance is not empty then H 0-j 1 

addresses the first non-header node,. and H 0 ·b1 the last non-header node. 

Otherwise, in an empty instance, Ho·/ 1 H1_ 1 and H;·b 1 H; for 0<1<.k. This is 

illustrated in Figure 5.2. 

S.4. Votes 

One method of attempting to identify the target is to use votes [20]. In this 

structure, each constructive vote is a function which follows a path from a trusted 

node and returns a candidate node, N n, for consideration as the target. Constructive 

votes are labelled C and distinguished by subscripts. Each diagnostic vote is a 

predicate which when p.resented with a candidate node, Nn, assumes that this 

candidate is the target node, Ni, examines a path proceeding from this candidate, 

a~d returns true if this path appears correct. Diagnostic votes are labelled D, and 

are also distinguished by subscripts. 

A candidate receives the support of each constructive vote that returns it, and 

each diagnostic vote which returns true when presented with it. A weighted vote is a 

vote which has associated with it a non-negative constant called its weight. The 

· weight assigned to a vote X will be labelled X.. Each candidate receives a vote equal 

to the sum of the weights of all votes which support it. If the candidate is not the 

target then it is an incorrect candidate. Votes are distinct if they cannot support the 

same candidate as a result of using a common component. The following votes are 

used in performing 2-selective-local correction on a mod(k>3) linked list. 

Vote Pointers Compared 
followed with 

C1 N1-1·b1 

C;,2<i<.k N b fi-1 i-k· 1· 1 

D1 Nn'ft No 

D;,2<1<.k N b fk-i+l n. k. 1 N;_1·b1 

These votes will be assigned weights later. For notational convenience the set of 
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votes {C; : 2 <i <k}, will be referred to as C0• Similarly, the set of votes 

{D; : 2 <i <k }, will be referred to as D0• 

S.S. Proof of correctness 

Lemma 5.1 

If an instance of a mod(k>3} structure contains at most two errors, it can be 

determined if this instance is empty. Having determined that an instance is empty, 

any errors in the instance can be trivially corrected. 

Proof 

In a mod(k>3) instance k+2>5 components indicate when the instance is 

empty. Specifically, the back pointer in each of the k header nodes points back zero 

nodes, the forward pointer in the header node Ho addresses the last header node 

Hk-l• and the count is zero. For the mod(3} structure, this is shown in Figure 5.2. 

Given at most two errors, the instance is therefore empty if and only if at least three 

of these components indicate that the instance is empty. ■ 

Figure 5.2. An empty instance of a mod(k=3) structure 
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Lemma 5.2 

If a connected target is always to receive a vote of at least one-half, and any 

incorrect candidate is always to-receive a vote of at most one-half, whenever at most 

two errors occur in any locality within a mod(k>3) structure, it is necessary that the 

voting weights satisfy the following inequalities: 

Proof 

k i-1 

3) EC i +ED i < ¼, for 3 < i < k 
j-i j=2 

Damaging any two of {N1-k·bk, N 1·fi, N2-/1, N1·bk} causes the corresponding 

two votes in the set {Ci, Di, C0, D 0} to fail to support the target. This leaves only 

the other two votes supporting the target. Damaging two of {N 1_k·b1, Nn·fi, N 2 ·fi, 

Nn·bk} appropriately causes the corresponding two votes in the set {Ci, Di, Co, D0} to 

support an incorrect candidate N n. Since the target is required to receive a vote of at 

least one-half, and incorrect candidates are required to receive a vote of at most 

one-half, it follows that any pair of the above votes must necessarily have weights 

that sum to one-half. Solving gives C1=Co D 1 D0=¼. 

Suppose that Ni-k-bk is damaged, for some 2<i<k. Then the target loses the 

support of votes Ci and D;. If C; and D; had weights that summed to more than 

one-quarter, the target would be left receiving a vote of less than one-half when 

N1 ·fi was also damaged. Since it is required that the target receive a vote of at least 

one-half, it is therefore necessary that Ci+D;<¼, for 2<i<k. 

Now suppose that Ni·fi is damaged, for some 3<i<k. Then the target loses the 

support of all votes C i5:.i9c and D25,.j5i-l · If these votes had weights that summed to 

more than one-quarter, the target would again receive a vote of less than one-half 
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k i-1 
when N 1 ·J1 was also damaged. Thus it is necessary that :ECj + :ED i < ¼, for 

j=i j=2 

■ 

Lemma 5.3 

If no more than two errors occur in any locality within a mod(k>3) structure; 

the instance being corrected is not empty; forward pointers are corrected when this 

first becomes possible; and votes are modified so that they do not support any of the 

last k trusted nodes, then the constraints imposed on voting weights in Lemma 5.2 

ensure that (1) the target receives a vote of at least one-half, and (2) incorrect 

candidates receive a vote of at most one-half. 

Proof of (1) 

Since the instance is not empty, the target is distinct from the last k trusted 

nodes. Thus, modifying votes so that they cannot support any of the last k trusted 

nodes leaves the vote for the target unchanged. Since C1 D 1=Co Do=¼, damaging 

any of {N 1_k-bk, N 1·fi, N2-/i, N 1·bk/Nk+i·f1} removes a vote of one-quarter from the 

target. Since c,+D,<¼ for 2<i<k, damaging any other back pointer in the locality 
k i-1 

removes a vote of at most one-quarter from the target. Since :EC j +:ED j < ¼ for 
j=i j=2 

3 <i <k, damaging any other forward pointer in the locality removes a vote of at 

most one-quarter from the target. When multiple errors occur in the locality the 

target loses the support of at most those votes containing errors. Thus if two errors 

occur in the locality the target loses the support of at most two sets of votes each 

having weights that sum to at most one-quarter. Since all weights sum to one, the 

target therefore receives a vote of at least one-half. ■ 

Proof of (2) 

Suppose that C 1 supports an incorrect candidate, N n, which is therefore distinct 

from the last k trusted nodes. Then N l-k · bk contains an error. N l-k · bk is distinct 

from Nn·bk since Nn is not a trusted node, and inductively N1-k·bk is distinct from 
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N 1·bk for O>i>2-k. Thus an error in N 1_k-bk causes only C1 to support Nn. Thus 

C 1 is distinct from all other votes. 

Suppose that D 1 and some C2g5Jc support Nn, as a result of both using Nn-ft• 

Then Nn-ft addresses the last trusted node. If forward pointers have been repaired 

as early as possible, at least the last k-1 forward pointers in the trusted set are 

correct, since k-l forward pointers can be corrected in the headers during 

initialisation. All pointers followed by C;, after C; uses N n -Ji, are therefore correct. 

This implies that C; supports one of the last k trusted nodes, contradiction. Thus D 1 

is distinct from C 0• 

Now suppose that D 1 and some D 25:.;5Jc support Nn, as a result of both using 

Nn·f 1• Since the instance being examined is not empty, some other distinct error 

must exist in components used by D; in supporting Nn, for D; to use Nn-ft• After 

using Nn·fi, D; can follow at most k-i forward pointers. Thus D; addresses one of 

the trusted nodes N 0 through Nt-k· Since D; supports Nn, N 1_k-bk must also address 

this node. No error can exist in N 1_k-bk since two distinct errors exist in pointers 

followed by D 1, and N 1_k-bk is distinct from both of these pointers. Since the 

instance is not empty N;-k·bk therefore points back between 1 and k-2 nodes. But 

N 1_k-bk correctly points back k nodes, contradiction. Thus D 1 is distinct from D 0 • 

The above demonstrates that C 1 and D 1 are distinct from all other votes. If C 1 

and D 1 support N n, they contain two distinct errors, and these errors cause no other 

vote to support Nn. In this case Nn receives a vote of one-half, since C1 D 1=¼. If 

neither c1 nor D 1 support Nn, then Nn receives a vote of at most one-half, since 

Co Do=¼. Thus if Nn is to receive a vote of more than one-half, it must receive the 

support of one of C1 or D 1, and a single independent error must cause Nn to receive 

the support of votes that sum to more than one-quarter. 

If a single error occurs in a back pointer N1_k-bk, for some 2<.i<.k, then C; and 

D; may support Nn, but no other vote can, since back pointers within the locality are 

distinct. Such an error cannot .cause Nn to receive a vote of more than one-quarter, 
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since we require that C;+D;<¼, for 2<i<k. 

So suppose that a single error in a forward pointer Nx·fi causes votes supporting 

Nn to sum to more than one-quarter. Then it must cause some C299 , and some 

D 2ggc to support Nn, since Co Do=¼. Since Nx is correctly addressed by the path 

used by C;, Nx lies within the instance. If Nn lies outside the·instance, and the Valid 

State Hypothesis holds, then inductively no correct path from N n addresses a node 

within the instance. But the path used by Di in supporting N n correctly passes 

through Nx which lies within the instance. Thus Nn lies within the instance. 

Since an error occurs in Nx-fi, Nx is not one of the last k-1 trusted nodes. 

Since Di correctly passes through Nx·f 1 in supporting Nn, and Nn is not one of the 

last k trusted nodes, N n lies strictly between N x and N 0• Since Ci supports N n but 

follows only forward pointers after using the erroneous N x ·Ji pointer, N n lies 

between No and Nx, contradiction. Thus no single error can cause Nn to receive a 

vote of more than one-quarter. ■ 

Lemma S.4 

If weights satisfying the requirements of Lemma 5.2 are used, then in a 

mod(k>3) structure damaging two of {N 1_k·b1, N 1-/i, N2 ·/i, N 1·bk/Nk+t·fi} causes 

the target to receive a vote of one-half. In a mod(3) structure damaging two of 

{N_2·b3, N_ 1·b3, No·b3, N1-f1}, also causes the target to receive a vote of one-half. 

The weights C1 D 1=¼; C2 Dk=3/16; and C3-Dk_ 1=1/16, satisfy the requirements 

of Lemma 5.2, and ensure that the target receives a vote of more than one-half in 

all other cases. 

Proof 

For an error to remove a vote of one-quarter from the target, it must damage 

all votes with non-zero weights in one of the expressions in Lemma 5.2 that sum to 

one-quarter. The target receives a vote of exactly one-half when two errors are 
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introduced into the locality, and each independently removes a vote of one-quarter 

from the target. Because C1 D1=Co Do=¼, damaging any two of {N1_k-bb N1·/i, 

N 2·Ji, N 1·bk/Nk+i·fi} therefore removes a vote of one-half from the target. 

In a mod(3) structure, we require that C2+D2< ¼; C3+D 3< ¼; C2+C 3< ¼; and 

D 2+D 3< ¼. Collectively these inequalities imply that C2+D 2= ¼, and C3+D 3= ¼. 

Thus in a mod(3) structure damaging any two of {N_2·b3~ N_ 1·b3, N 0 ·b3, N 1·fi} also 

removes a vote of one-half from the target. 

Assume that the weights proposed are used. Then the only _equations that sum 

to one-quarter in Lemma 5.2 are those identified above as necessarily summing to 

one-quarter. Since C2 , C3 , Dk-1' and Dk are each non-zero, the single errors that 

cause the target to lose a vote of one-quarter in a mod(k>4) structure occur only in 

{N1-k·bb N1-/i, N2·fi, N1·bk/Nk+1·fi}. 

In a mod(3) structure the single errors that cause the targ~t to lose a vote of 

one-quarter occur in {N_2·b3, N_1·b3, No·b3, N1·fi, N2·fi, N1·b3IN4-J 1}. The target 
. (__; . 

receives a vote of more than one-half when one of {N2 ·/i, N 1·b3/N4·/ 1} and one of 

{N -l'b 3 , N0 ·b3} are damaged. Thus if the proposed weights are used, then the target 

receives a vote of one-half only under the types of damage suggested. ■ 

Lemma S.S 

In a mod(3) structure, damage that causes N_ 1·b3 to address Ni, and N 0·b3 to 

address N 2 , is indistinguishable from damage that causes N _2 ·b3 to address N2 , and 

N 2 ·Ji to address N 0• Thus it cannot always be determined if the target is connected. 

However, if the weights proposed in Lemma 5.4 are used, nodes contain 

identifier components, and at most two errors occur in any locality, then in all other 

cases it can be determined if the target is connected. 
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Proof 

If all candidates receive a vote of less than one-half then the target must be 

disconnected, since Lemma 5.3 ensures that the target receives a vote of at least 

one-half. Conversely, if any candidate receives a vote of more than one-half this 

must be the target, since Lemma 5.3 ensures that no incorrect candidate receives 

such a vote. So assume that no candidate receives a vote of more than one-half, but 

some candidate receives a vote of exactly one-half. Then either this is the only 

candidate or multiple candidates exist. These cases are addressed separately. 

Single candidate: If all constructive votes agree on a common candidate N n, and N n 

receives a vote of one-half, then N n receives no diagnostic votes. Thus either N n is 

the target and both N1·f1 and N1·bk/Nk+1·fi have been damaged, or N 1_k-bk and 

N2·fi address an incorrect candidate. In either case the identifier field in the 

candidate addressed must be unchanged, since at most two errors exist in the 

locality. Thus if the node addressed lies outside the instance this can be immediately 

detected, and disconnection reported. 

Suppose instead that N n lies within the instance. Consider following N n • bk ·ff. 
If N n is the target, then since N 1 ·Ji and N 1 · bk!N k+l ·Ji are damaged and represent the 

only damage in the locality, this path must either arrive at some node other than Nn, 

or arrive back at Nn prematurely. Conversely, if Nn is an incorrect candidate, but 

clearly not a trusted node since it receives a vote of one-half, then all pointers used 

in the above path are correct. Since N n lies within the instance, this path must 

address N n without passing through N n. These tests can therefore be used to detect 

disconnection when all constructive votes agree on a common candidate. 

Multiple candidates: If the target is disconnected and constructive votes do not all 

agree on a common candidate, then N 1_k-bk and N2·fi must address distinct 

incorrect candidates or address no node. Since it is assumed that some candidate N n 

receives a vote of one-half, N n must receive a vote of one-quarter from diagnostic 

votes. For Nn to receive a vote of one-quarter from D0 , either Nn-bk/Nn+k·fi or both 

N 0·bk and N_ 1·bk/Nn+k-t-fi must be damaged. But these pointers are distinct from 
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N 1_1c·b1c and N2·/i, since Nn is not a trusted node. This implies that three errors 

exist in the locality contradicting the assumption that at most two errors occur in any 

locality. Thus the diagnostic vote must come from D 1. 

For D 1 to support an incorrect candidate Nn, Nn-fl must contain an error that 

causes it to address N0 • Since N2·fi is the only erroneous forward pointer in the 

locality, Nn must be N 2 • Since N 2·fi addresses No, Co does not support N 2 • Thus C 1 

does. The statement of the lemma has acknowledged that if this occurs in a mod(3) 

structure, then it cannot be determined if the target is connected. However, for a 

mod(k>4) structure in this case N 4_1c·b1c is consistent with pointers N 2_1c·b1c and 

N 3_k • b1c if and only if disconnection occurs. ■ 

Theorem 5.1 

If the conditions of Lemma 5.5 are satisfied, and it has been determined that 

the target is connected as described in Lemma 5.5, then the target can always be 
0 identified. 

Proof 

If the target is the only candidate, or receives a vote greater than any other 

candidate, then the target is trivially identifiable. For an incorrect candidate Nn to 

receive the same vote as the target, both must receive a vote of one-half. Lemma 

5.4 has established that the target receives a vote of one-half only if two, of {N1_1c·h1c, 

N1 -/i, N 2·fi, N1 ·b1c!Nk+l ·Ji} are damaged, or in a mod(3) structure .if two of {N _2·b3 , 

N_ 1·b3, N0 ·b3 , N1·/i} are damaged. 

Suppose that constructive votes not supporting the target disagree. Then two 

distinct pointers used by correct constructive votes must be damaged. Thus either 

N 1_1c·b1c and N 2 ·fi are damaged, or in a mod(3) structure two of {N_2 ·b3 , N_ 1·b3 , 

No•b 3} are damaged. In the first case the target is disconnected, while in the second 

each invalid candidate receives a vote of less than one-half. Thus an incorrect 

candidate N n receives a vote of one-half only if all constructive votes not supporting 
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the target support this candidate. 

Since Nn is an incorrect candidate it must be supported by at least one 

constructive vote. Thus one of {N1-k·b1, N_1·b1, No·b1, N2 ·ft} must be damaged. If· 

no other error exists in the locality then Nn receives a vote of one-quarter. Thus a 

· second error in the locality must cause additional votes to support Nn whose weights 

sum to one-quarter. 

Suppose that a second error occurs in N 1 -f 1. Then N n receives a vote of at most 

one-quarter from constructive votes, since N 1 ·ft is not used by correct constructive 

votes. D 1 cannot support any candidate, since neither N 1-J1 nor N 2 ·ft address N 0 . 
/ 

Since Nn receives a vote of one-half, all non-zero votes in Do must therefore support 

Nn. For this to occur either Nn·bk/Nn+k·ft, or both No·bk and N_1·bk!Nn+k-l·ft must 

be damaged. N n ·bk is correct since N n is not one of the last k trusted nodes, and 

only two errors occur in the locality. N 0·bk and N_ 1·bk cannot both be damaged 

since it is assumed that an error occurs in N1-f1- One of {Nn+k·ft, Nn+k-1·ft} 

therefore contains an error and is thus one of {N1·Ji, N2 -J1}. However, in this case 

Nn·bk correctly addresses one of {Ni, N 2, N3}. This implies that Nn is one of the last 

k trusted nodes, which it is not. Thus if any incorrect candidate receives the same 

vote as the target, N 1 · ft must be correct. 

If Nn·f 1 does not address N 0, then since N 1-J1 must, the target can be 

immediately identified. So suppose that both N1-J1 and Nn·f 1 address N 0. Since 

Nn·f 1 is distinct from N1·J1 it contains an error. Since only two errors exist in the 

locality, Nn-ft must therefore be either N2-f1 or Nk+t-ft• Nn-ft cannot be N2·f 1 since 

an erroneous Nn·f 1 addresses N 0 while an erroneous N 2·ft address Nn, which is 

distinct from N 0. Thus Nn·ft is Nk+t·fi, implying that Nn is Nk+l· The two errors in 

the locality thus occur in Nk+t·ft and one of {N 1_k·b1, N_1·b1, No·b1, N2 ·ft}. N 1·bk 

and Nk+t·bk are therefore correct, since Nk+l is not a trusted node. N 1·bk therefore 

addresses the incorrect candidate Nk+l· Nk+ 1·bk however does not address the 

target, since Nn is not the trusted node Nt-k· Thus if Nn·f 1 and N 1·ft address N 0, 
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the candidate whose back pointer addresses the other candidate must be the target. ■ 

S.6. Comparisons 

The method presented here for improving the robustness of a standard double­

linked list requires the presence of one additional identifier component per node, the 

presence of k-1 additional header nodes, and a count component. This storage 

overhead is typically smaller than that required if error correcting codes are used, 

since at least two checksum components are needed to protect two data components 

against single errors [21]. 

The modification to the distance spanned by. back pointers will increase the cost 

of performing updates in the proposed structure, and an alternative structure having 

two header nodes, an identifier, a forward pointer, and a virtual back pointer has 

therefore been proposed [80]. The virtual backpointer in node N; contains the 

exclusive OR of the addresses of N 1+1 and N;_ 1• The true back pointer can therefore 

be determined by performing an exclusive OR of the virtual backpointer with N;·/ 1. 

Similarly, the forward pointer N;-/ 1 can be verified by performing an exclusive OR 

of the virtual backpointer with the address of the previous node. This clever 

modification to the backpointer produces a locally correctable structure which is as 

strongly connected as a mod(3) structure, and a correction algorithm which is 

competitive with historical methods of correcting mod(k) structures. 

Empirical results presented in Appendix Cl suggest that the 2-selective-local­

correction algorithm presented here is superior to previous mod(k) local correction 

algorithms, when applied to mod(k>3) structures. The results of using mathematical 

Markov models, justified in Chapter 8 and presented in Appendix F, reinforce the 

results presented in Appendix Cl. However, since this selective-local-correction 

algorithm cannot correct mod(2) structures, these other algorithms are still valuable. 



Chapter VI 

Correcting helix(k) linked lists 

6.1. Motivation 

In Chapter 5 we presented an algorithm which performed 2-selective-local­

correction on mod(k>3) linked lists. It is naturally of interest to ask if we can 

develop selective-local-correction algorithms for more complex linked-list structures 

having k pointers per node, particularly since the spiral(k>3) structure [20] which 

has k pointers per node, has been shown to be exactly (k-1)-local-correctable. 

A spiral(k>3) regular linked list is similar to a mod(k) linked list but has the 

pointer structure ( + 1,+ 2 ... + k-1,-k), while the helix(k>3) linked list has the 

pointer structure ( + 1,-2 ... -k+ 1,-k). It has been shown in [126] that by 

traversing these structures backwards, each structure has 2k distinct votes on the 

location of the target node, k of which are constructive. Therefore, as justified in 

[20], these storage structures are at least (2k-1)-local-detectable. Since 2k locally 

undetectable changes can replace a node in such a list with one occurring at some 

distant point in the linked list (which therefore already has the correct node 

identifier) these structures are exactly (2k-1)-local-detectable. Thus they are 

k-selective-local-correcta ble. 

The spiral(3) linked list has one unfortunate property. Having elected to 

traverse a spiral(3) list either forwards or backwards it is possible to insert 3 errors 

into the list which makes the chosen traversal method fail, even though all nodes can 

be reached by traversing the linked list in the opposite direction. The helix(3) 

structure was developed specifically to avoid this problem, and when generalized 

became the helix(k>3) structure. 

81 
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The rest of this chapter concentrates on the helix(k>3) linked list, and on 

developing a k-selective-local-correction algorithm for this structure. This algorithm, 

like the spiral(k) local-correction algorithm, proceeds backwards from the header 

nodes of the instance state, iteratively attempting to identify the correct address of 

the previous node. 

Because the algorithm performs k-selective-local-correction, we will 

subsequently assume that this algorithm encounters at most k errors in any locality 

examined by it. We will also assume that the Valid State Hypothesis holds. 

Pseudocode for this algorithm is presented in Appendix B2. Most of the 

material presented in this chapter has already been published [41]. 

6.2. Votes 

The helix(k) local-correction algorithm uses the following unweighted votes: 

Vote Path Compared with 
followed .. node or path 

c,,1<i<k N_;·b;+1 

Ck N2-k·bk·f1 

D1 Nn·f1 No 

D;,2<i<k Nn·b; No·b;+1 

Dk Nn·bk No·b2·bk-1 

The node addressed by N0·b2·ft is also considered to be a candidate, even if this 

node is addressed by no constructive vote. Given that at most k errors occur in any 

locality, this ensures that some pointer correctly addressing the target lies within the 

locality being considered, unless the target is .disconnected. Note that in a helix(3) 

structure, No·b 2 is the only backpointer addressing N 2 that is not used by any 
,-

constructive vote. This is shown ii'l Figure 6.1. For helix(k>4) structures other 

backpointers have this property and can be used instead of N 0·b2 if so desired. 
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Figure 6.1. Pointers used in a correct helix(3) locality 

6.3. Proof of correctness 

Lemma 6.1 

If an instance of a helix(k>3) structure contains at most k errors, it can be 

determined if this instance is empty. Having determined that the instance is empty, . 

any errors in the instance can be trivially corrected. 

Proof 

Consider a correct empty instance of a helix(k>3) structure, shown in Figure 

6.2. Since the pointers in a helix(k) structure form a circular multiply-linked list, 

and an·empty instance contains only the k header nodes that define this instance, the 

bk pointers in each of the k header nodes point back zero nodes, while the bk-l 

pointers in each of these k header nodes point forward one node. In addition the / 1 

pointer in the earliest header node addresses the last header node, and the count is 

zero. 

Now consider a correct non-empty instance of a helix(k>3) structure. The only 

component described above that ;e.mains unchanged is the bk-l pointer in the earliest 

header node, which always correctly addresses the last header node. At least 2k+l 

components therefore contain values which can independently be used to determine 

if the instance is empty. Since at most k of these components contain errors, the 

majority of these 2k+l components remain correct. A helix(k>3) instance 

containing at most k errors is therefore empty if and only if at least k+l of the above 
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Figure 6.2. An empty instance of a helix(k=3) structure 

Lemma 6.2 
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• 

If r<.k errors occur in any locality within a helix(k>3) structure, the instance 

being corrected is not empty, and votes are modified so that they do not support any 

of the last k trusted nodes, then (a) the target receives at least 2k-r>k votes, and (b) 

incorrect candidates receive at most r<.k votes. 

Proof of (a) 

Since the instance is . not empty, the target is distinct from the last k trusted 

nodes. Thus, modifying votes so that they cannot support any of the last k trusted 

nodes leaves the vote for the target unchanged. In a correct non-empty instance 

each vote supporting the target uses distinct pointers. Since r pointers are assumed 

to be damaged, at most r votes can fail to support the target. The other 2k-r votes 

must therefore continue to support the target. ■ 



85 

Proof of (b) 

Each vote supporting an incorrect candidate Nn contains at least one error. If 

N n is to receive more than r votes as a result of r errors, then at least one of the 

votes supporting N n must contain only errors present in other votes that also support 

Nn. 

If a shared error occurs in a forward pointer then it must be shared by D 1 and 

Ck, since no other vote uses a forward pointer. Since D 1 supports Nn, the pointer 

N n ·f 1 addresses N 0 . Since Ck shares the pointer N n ·Ji with D 1 it supports the node 

that this pointer addresses. Therefore Ck supports N 0 • But N 0 is trusted and thus 

receives no votes, contradiction. 

The only error in a back pointer that could be shared by votes supporting an 

incorrect candidate Nn, must occur in the bk-l pointer used by Dk> since all other 

back pointers used either occur at different offsets, or originate in nodes that are 

known to be distinct. This error can be shared with at most one of Ck_ 2 , Dk-l and 

(when k>4) Dk_ 2, since no other vote uses a bk-l pointer. These possibilities are 

shown in Figure 6.3, Figure 6.4, and Figure 6.5. For this shared error to cause Nn 

to receive more than r votes as a result of r errors, no vote supporting N n may 

contain more than one error. 

If C k- 2 and Dk both use the erroneous pointer N 2-k · bk-l • and the instance being 

corrected is not empty, then Dk contains at least two errors since N0 ·b2 incorrectly 

addresses N 2_k• If Dk_ 2 and Dk both use the erroneous pointer N 0 ·bk-1' then Dk 

contains at least two errors since N 0 ·b2 incorrectly addresses itself. Finally, if Dk-l 

and Dk both use the erroneous pointer Nn·bk-l• then at least one of N 0·bk and Nn·bk 
~ . 

must be in error since they originate in distinct nodes, but address a common node. 

Since at most one error can be shared by two votes supporting an incorrect 

candidate Nn, and then only if some vote supporting Nn contains at least two errors, 

Nn receives at most r votes when r errors are introduced into any locality. ■ 



Lemma 6.3 

Figure 6.3. Configuration if Ck_2 and Dk share bk-t

Figure 6.4. Configuration if Dk-l and Dk share bk-l 

Figure 6.5. Configuration if Dk_2 and Dk share bk-l
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In a helix(3) structure, changing N2 -j1 to address No, and the other two pointers 

correctly addressing N1 so that they address N2, is indistinguishable from damage 

that causes N_1·b3 and N0 ·b2 to address Ni, and N0·b3 to address N2. Thus it cannot

always be determined if the target is connected. However, if nodes contain 

identifier components, and at most k errors occur in any locality, then in all other 

cases it can be determined if the target is connected. 



87 

Proof 

If all k pointers correctly addressing the target have become damaged then the 

target is disconnected. Otherwise, since at most k errors occur in any locality, the 

target is connected, and either supported by one of the constructive votes, or 

addressed by the path No·b2·fi. 

If no candidate receives k or more votes then the target must be disconnected, 

since Lemma 6.2 ensures that the target receives .at least k votes. Conversely, if any 

candidate receives more than k votes this must be the target. So assume that some 

candidate receives k votes and no candidate receives more than this. Then either 

this is the only candidate or multiple candidates exist. These cases are addressed 

separately. 

Single candidate: If only one candidate N n exists, and this candidate is the target 

node Ni, then only diagnostic votes ctmtain errors, implying that N 2_k-bk is correct. 

Conversely, if Nn is not the target, the path N 0·b 2·fi and all paths used by 

constructive votes incorrectly address N n and thus contain errors. Since only k errors 

occur in the locality, each path contains one error and the error in the path N 0 ·b2 ·J1 

also occurs in the path N 2_k-bk·fi used by Ck. Thus N2 -J1 contains an error but once 

again N 2_k-bk does not. 

Since N 2_k-bk is correct and addresses N 2, it can easily be determined if Nn N 2. 

Similarly, since at most k errors occur in any locality, Nn must have an undamaged 

identifier field, allowing it to be easily determined if N n lies outside the instance 

being corrected. Finally, it can easily be determined if N n is one of the last k trusted 

nodes. In any of the above cases Nn is clearly not the target node N 1• 

So suppose that N n lies within the instance, but has an address that differs from 

N 2, Ni, and each of the last k trusted nodes. If N n -ft contains an error, then this 

pointer must be used by Ck since each incorrect pointer in the locality is used by 

some constructive vote, but no other constructive vote uses / 1. Since Ck contains 

only this one error and supports Nn, Nn·fi must both occur in and address N 2, as 
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shown in Figure 6.6. This implies that Nn N2, contradiction. Thus Nn ·fi is correct. 

Conversely, if N n is the target node N 1, then since all of the diagnostic votes 

associated with N n=l are damaged N n ·f 1 contains an error. Thus N n is the target if 

and only if N n ·Ji contains an error. 

Figure 6.6. Nn ·fi being used by Ck to support Nn 

The pointer N n ·Ji cannot address NO since it is known that N n receives no 

diagnostic votes. If this pointer addresses any other trusted node then it contains an 

error since N n is distinct from the last k trusted nodes. This pointer also clearly 

contains an error if it addresses itself. In any of the above cases, since N n ·Ji is 

known to be in error, Nn is the target. So assume that Nn ·fi addresses Nx which is 

distinct from N n and the last k trusted nodes. Then N x • bk is correct since it is 

distinct from all of the bk pointers containing errors. 

Consider following the path N n ·Ji ·bk> and then k-1 forward pointers, as shown

in Figure 6. 7. If N n ·ft is correct then none of these k-1 forward pointers can be the 

erroneous N2-j1 pointer, since Nn is not one of the last k trusted nodes. Thus all k-1

forward pointers are also correct and form a path that arrives back at N n. 

Conversely, if N n -f 1 is incorrect then N 2 · fi is correct and thus the pa th followed must 

either fail to arrive back at N n , or, in using N n ·Ji more than once, arrive back at N n 

prematurely. Thus N n is the target if and and only if the above path appears 

incorrect. 

= 
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Multiple candidates: If constructive votes agree on a common candidate, but 

support a different candidate from that addressed by N 0 ·b2·fi then the target is 

connected. Otherwise, since constructive votes disagree, any candidate Nn receiving 

k votes must receive at least one diagnostic vote. If the target is disconnected, then 

all errors occur in pointers correctly addressing N 1• Only the diagnostic vote D 1 can 

use one of these erroneous pointers to support Nn. However, this implies that Nn is 

N2 , and that N2-J1 addresses N0. 

The statement of the lemma has acknowledged that if this damage occurs in a 

helix(3) structure, then it cannot be determined if the target is connected. However, 

for a helix(k>4) structure the pointer N _1 ·b3 is unused and thus correct since k other 

pointers within the locality are known to be in error. Since this pointer correctly 

addresses N 2 it can be used to determine if the candidate receiving k votes is indeed 

N 2• If it is, then the target is disconnected. Otherwise,- this candidate is the target. ■ 

Theorem 6.1 

If the conditions of Lemma 6.3 are satisfied, and it has been determined that 

-the target is connected as described in Lemma 6.3, then the target can always be 

identified. 

Proof 

If the target is the only candidate, or receives a vote greater than any other 

candidate, then the target is trivially identifiable. For an incorrect candidate N n to 

receive the same vote as the target Ni, both must receive k votes. 
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Suppose that N 1·ft contains an error. Then this error must be used by some 

vote supporting the incorrect candidate Nn, since otherwise k-1 errors could cause k 

votes to support an incorrect candidate, contradicting Lemma 6.2. The only vote 

that can utilize such an error in N1·f 1 is Ck> and then only if N 2_k.bk erroneously 

addresses N 1• But in this case Ck contains two errors that are used by no other vote 

that supports Nn. This implies that k-2 errors cause the remaining k-1 votes to 

support Nn. Once again this contradicts Lemma 6.2. Thus N 1·f 1 must be correct. 

Since N 1 · ft is correct we can trivially identify the target if N n -f 1 does not 

address N0• So suppose that N n ·ft contains an error that causes it to also address N0• 

Since it is known that each error in the locality damages a vote correctly supporting 

the target, the incorrect candidate, Nn, must be N 2• But in this case the damage to 

N2-j 1 implies that N2_k ·bk is correct and therefore addresses the incorrect candidate 

Nn. Thus if both N 1·ft and Nn·ft address No then the target is that node not 

■ 

6.4. Conclusions 

The above results are the natural progression of ideas first developed in Chapter 

4 and Chapter 5 .. The helix(k) selective-local-correction algorithm, presented in 

Appendix B2, is slightly longer than the mod(k) selective-local-correction algorithm, 

presented in Appe'ndix Bl, but somewhat easier to prove correct. 

Empirical results, presented in Appendix C2, suggest that the helix(k) 

selective-local-correction algorithm is significantly better than the spiral(k) local­

correction algorithm [20], when operating on comparable structures. This is hardly 

surprising, since the spiral(k) local-correction algorithm assumes that at most k-1 

errors occurred in any locality, and therefore makes no attempt to either detect 

disconnection or to behave intelligently when k errors occur in a correction locality. 



Chapter VII 

· Locally correctable trees

7.1. Introduction 

A binary tree is a storage structure which allows rapid retrieval of data. The 

structure consists of a collection of nodes that each contain two link pointers, and a 

key. Each node with the exception of the header node is addressed by exactly one 

link residing in its parent node, and is considered to be a child of this parent node. 

Obviously, since the structure is finite, some links are unused. These links typically 

contain some special value indicating that they are null. A full node has two 

children, an incomplete node has one child, and a leaf node has no children. In a 

binary search tree the keys within the structure are arranged in such a way that all 

keys reached by following a "left" link out of any node are lexicographically smaller 

than the key recorded in this node, while all keys reached by following a "right" link 

are larger than this key. 

Classical trees are not robust. Errors in keys are undetectable, unless these 

errors affect the key ordering, while errors in non-null links disconnect the structure 

[119]. A number of binary trees have been proposed that allow a limited number of 

errors to be detected and corrected, by performing a global examination of the 

erroneous storage structure instance [15, 95,108,111, 123, 138]. 

In this chapter we will consider what are perhaps the three most widely used 

tree structures having no previously known corresponding locally-correctable robust 

tree structure, and will present 1-local-correctable versions of each of these three 

structures. These structures are in order, the binary search tree, the A VL tree, and 

the m-ary trie. The 1-local-correctable A VL tree was first presented in [42]. A 

1-local-correctable checksummed binary tree has already been described in Chapter

4, and two 1-local-correctable B-trees are described in [80, 124]. 

91 
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All of the trees presented in this chapter have nodes which contain a node 

identifier, two link components, a key component, and one additional arc pointer 

component. The arc pointer performs two functions. Firstly, . it ensures that the 

structures containing it are 1-connected. Secondly, it assists in developing structures 

which are 1-locally-correctable. When key ordering· is actively• used to assist in 

performing local-correction, we will ensure that keys are themselves locally­

correctable, by placing one additional t:hecksum component in each node. 

Nodes will be labelled N and distinguished by subscripts. Each tree will have 

one header node, denoted NH· Left links will be labelled l, right links r, and arcs a. 

Arbitrary links will be labelled c, and keys k. Identifiers will be labelled id, and 

checksums, when present, s. Components will be prefixed by the node in which 

they reside, or by extension the path that addresses them. The symbol 0 will be 

used to denote null pointe.rs. 
'J 

7 .2. A sibling-linked search tree 

7.2.1. Description 

Let the left link, right link, and arc pointer, in the header node NH of a sibling­

linked tree, all address the root node in the tree. If no root node exists then these 

three pointers are null. 

Consider a full node in a standard binary tree. We can increase the number of 

paths to each child node, by arranging that the arc pointer in each child node 

addresses the sibling node. 

Now consider an incomplete node, N x, in a standard binary tree. One link in 

this node addresses the child of this node, while the other is null. We can increase 

the number of paths to this single child by arranging that both links in Nx address 

this single child, provided that we either flag the location of the null link in the 

identifier component of N x, or are willing to use the key in both N x and the child 

node to determine if this is a left child node or a right child node. Arc pointers in 

solitary child nodes address the parent node. 
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Finally, include in each node a checksum component of the same size as the key 

component, which will be used to ensure that keys and checksums are themselves 

locally-correctable. Collectively, the above describes the organization of a sibling­

linked tree. 

Figure 7.1. An example of the sibling-linked search tree 

7 .2.2. Local correction 

Correction proceeds by selecting some node, Nx , which is addressed by a trusted 

pointer, but whose components are untrusted. By examining a small number of 

untrusted components, which are collectively assumed to contain at most one error, 

the correct values of both links in this node can be deduced. These can then be 

corrected if necessary, as can the arcs in the nodes that they address. This process 

continues until all pointers are trusted. 

Correction is accomplished by guessing that Nx is a leaf node, an incomplete 

node, or a full node. When full, we further guess which of the two links is correct. 

Associated with each of these four guesses are two pseudo-votes, shown in Figure 

7.2. 
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CORRECT 1ST VOTE 2NDVOTE 

� 

Figure 7 .2. Pseudo votes used in the sibling-linked tree 
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When guessing that the node Nx is a leaf, the votes are Nx·l=0 and Nx·r=0-

When guessing that a node has only one child, the votes are Nx·l Nx·r and either 

Nx·l·a Nx or Nx·r·a Nx · When guessing that Nx·l correctly addresses one of two

children below Nx, the votes are Nx·l·a Nx·r and Nx·l·a·a Nx·l. Similarly, when

guessing that Nx·r correctly addresses one of two children below Nx the votes are 

Nx·r·a Nx·l and Nx·r·a·a Nx·r. 

If no errors exist in the locality examined, then a cursory examination of the 

votes employed reveals that correct guesses will receive two votes, and other guesses 

will receive no vote. If one error exists in the locality examined, then no guess will 

receive two votes, and guesses which receive no votes must be incorrect. Therefore, 

if only one guess receives a vote, then this guess must be correct, allowing the single 

error in the locality to be corrected. Otherwise, additional effort is needed in order 

to identify the correct guess. 

If Nx·l or Nx ·r fails to address a node in the memory space, or addresses the 

previously identified sibling of Nx, then this link in error. Given the assumption that 

only one error occurs in any locality, such errors can be trivially corrected. It will 

therefore subsequently be assumed that such errors have not occurred. 

Suppose that we add a bounded number of additional components to the locality 

being examined, when this locality is discovered to contain an error. If the locality 

constraint continues to be satisfied, then these additional components contain no 

errors. Thus if any pointer in the locality addresses a node with an invalid node 

identifier, then by adding these identifiers to the locality, the local-correction 

procedure can conclude that the pointer addressing this invalid node identifier is in 

error, and can therefore be corrected. So assume otherwise. 

If any of the· guesses receiving one vote suggests that N x has two child nodes, N
Y

and Nz , where Nz Ny·a, then add Nx·k, Ny·k, and Nz·k to the locality. Since we 

assume that the locality constraint continues to be satisfied, none of these three keys 

is in error. Because keys in a binary search tree are ordered, we can conclude that 

this guess is incorrect if these three keys have an illegal Jordering. Such a guess can 

also obviously be rejected if Nx is the header node of the instance, or if either Ny or 
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Nz is a direct ancestor of Nx. Otherwise, N
y 

and Nz must be correctly ordered 

siblings, and this guess therefore correct. 

Once it has been established that N
x is not a full node, eliminate any guess that 

suggests that it might be. If only one guess now receives a vote then this guess must 

be correct. Otherwise, the two remaining guesses are that Nx is a leaf node, and 

that N
x 

has one child. This occurs if and only if one of the links in Nx is null, and 

the other addresses a node N
y
, satisfying N

y
·a=N

x . We have previously ensured that 

N
y 

is not the sibling node of Nx. Thus, since N
y
·a-Nx, N

y 
is the only child of N

x . 

7 .2.3. Correcting keys 

Having corrected the pointers in the instance, the keys and identifiers can be 

corrected by using their associated checksums. It may seem unreasonable to correct 

keys and identifiers after pointers have been corrected, and yet base the correction 

of pointers in part on these potentially erroneous keys and identifiers. However, if 

anything, it is our assumption that no locality contains more than one error that is 

unreasonable. If this assumption holds, then the only keys and identifiers that are 

examined during the correction of pointers are necessarily correct. 

Initially, when designing the storage structure, some cyclic ordering is associated 

with the nodes in the tree. One satisfactory choice is to use a pre-order traversal. 

Such an ordering places a parent node before its left child and the left child before 

the right child, assuming that both such nodes exist. This particular ordering allows 

the node following any node to be located simply and efficiently. The successor of 

the last node in the ordering is defined to be the header. 

Let the node N
x
+l follow the node Nx within this ordering, and let the 

checksum, N
x
·s, satisfy Nx

·s N
x
_1·k+N

x
·k, for all Nx · Thus if any N

y
·k is inserted,

or updated, N
y
·s and N

y
+i·s must also be updated. N

y 
is updated anyway, and the 

above ordering ensures that N
y
+i·s can be updated by performing one additional 

probe. N
y
-l need never be retrieved since, prior to any change, N

y
_1·k--N

y
·s-N

y
·k. 

Thus keys and checksums can be inserted and updated efficiently. 

-
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Initially, since the key in the header is known, this component is corrected if in 

error and then added to the set of trusted components. The correct value of each 

successive key is determined iteratively by using Nx ·k, Nx·s-Nx-i·k and 

N x+l · s-N x+l · k as votes [20] that agree if and only if they evaluate the correct value 

for Nx·k. Having corrected Nx ·k if necessary, Nx·k becomes trusted. Since Nx_1 ·k is 

also trusted, Nx·s can now be corrected if incorrect before also becoming trusted. 

Correction is complete when all links, arcs, identifiers, keys, and checksums have 

been thus corrected. 

7 .3. A robust A VL tree 

7 .3.1. Description 

In a height-balanced (A VL) binary tree, the heights of the left and right 

subtrees below any node differ by at most one [72]. An identifier exists in each 

node which indicates the current direction of any such imbalance in the two subtrees 

below this node. Because the tree is height-balanced, expected retrieval times are 

reduced, and worst case insert and delete operation times are logarithmic. 

The A VL tree structure being considered will be made more robust by adding 

additional redundancy to the nodes of the structure. In addition to the height 

balancing information present in each node identifier, each node identifier will also 

contain two flags explicitly identifying the location of null links within the node. 

Each node will also contain an arc pointer. If desired, keys may be protected by 

associating checksums with them, as described above. 

Within a correct structure all pointers in the header node, Nn , address the root 

node if this exists. Links address child nodes as expected, and arc pointers form a 

cyclic single linked list which links nodes in the order defined by the following node 

traversal: 



Visit(Nn) 

If Nn ·r#-0 { /* Not null*/ 

Visit(Nn·r) 

Traverse(N H • r) 

} 

Traverse(N) { 

} 

If N ·l#-0 Visit(N ·l) 

If N ·r#-0 Visit(N ·r) 

If N ·l#-0 Traverse(N ·/) 

If N · r #-0 Traverse(N · r) 

Figure 7 .3. Arc traversal order in the A VL tree 

Figure 7 .4. An example of the proposed A VL tree 

98 
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7 .3.2. Global characteristics 

The structure described above has the following global characteristics. It can be 

traversed using either the links or the arcs and is thus 1-connected. It can be 

reconstructed by either using correct links, or by using correct arcs and identifiers, 

even if identifiers do not contain height-balance information. The structure is 

therefore 2-determined [122]. We will show that the structure can be corrected when 

at most one error occurs in every bounded correction locality even if height-balance 

flags are absent. The structure is therefore 1-locally-correctable, and thus trivially 

both 1-local-detectable and 1-correctable. However, without these flags certain pairs 

of changes within subtrees are undetectable, as shown in Figure 7.5, since they leave 

the structure appearing internally to be correct. Thus, if height balance flags are 

absent, this structure is unusual, since it has exactly the same detectability, local 

detectability, correctability, and local correctability. 

Figure 7.5. A pair of undetectable changes in Nw ·a and Nx ·r 

Given that node identifiers do contain height balance flags, the structure 1s 

2-detectable since any undetectable transformation of the instance requires at least

three changes, and certain sets of three changes are indeed undetectable as shown in 

Figure 7.6. 
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Figure 7. 6. Three undetectable changes in NH · I, NH · r and NH · a

7 .3.3. Local correction 

When correct, the A VL tree can be traversed in the same sequence by either 

following the single-linked list formed by the arcs, or by traversing the links that 

form the tree. Each step of the arc traversal involves examining one new arc. 

Following the same traversal using links is considerably more complex, but still 

involves examining at most a bounded number of new components at each step, as 

justified below. 

Suppose that we have arrived at some non-null link Nx ·c and wish to identify 

the non-null link N
m 

·c=N x ·c ·a so that we can proceed to the next step of the 

traversal. Then, as shown in Figure 7. 7, at most four new null links will be 

examined before it is determined that Nx has no children or grandchildren that might 

contain this link. The search for this link then continues by proceeding up the tree 

from Nx, until we arrive at a node Ny having Nx in its left subtree. Since the tree is 

balanced, the node addressed by Ny ·r exists and therefore contains the next two links 

in the ordering. If this node is a leaf node then two further null links will be 

encountered, before repeating the ascent of the tree from Ny until we encounter 

some Nz having Ny in its left subtree. Because the tree is balanced, the node 
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addressed by N
z

·r exists and has at least one child. Thus in the worst case we will 

encounter a seventh null link N z · r · l, before encountering the non-null link N 
z 

· r · r. 

Conversely, if no further non-null link exists, then during one of the two ascents up 

the tree the header node will be encountered, signalling that the traversal is 

complete. 

,, 

,, 

,, 

Figure 7.7. Maximum null links 0 between Nx ·c and N
m

·c 

Having detected a discrepancy between arcs and links as a result of performing 

the above parallel traversal, any single error causing this discrepancy must occur in 

the last arc examined, or in the links examined during the last two steps of the 

parallel traversal, since either a null link encountered in the previous step of the 

traversal erroneously contained the same value as the desired link, or some error was 

encountered during the current step of the traversal. 

Since we know that a single error exists in the above components we can assume 

that no error occurs in a bounded number of other new components that the 

correction procedure wishes to examine, following the detection of an error. 
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Identifying null links that contain erroneous values and non-null links that have 

erroneously become null is therefore trivial since node identifiers contain flags 

indicating the location of null links within these nodes. Correcting such links is also 

trivial since null links correctly contain a known value, and non-null links correctly 

contain the same value as the last arc examined. 

So, assume that null links within the locality being corrected contain no errors, 

and that non-null links appear non-null even if erroneous. Then the error within this 

locality must occur either in the last arc examined, or in the non-null link that was 

expected to contain the same value as this last arc. If the location of the error can 

be determined, the error can be trivially corrected since these two pointers agree 

when correct. 

If the erroneous pointer addresses a non-existent node this can be detected when 

we attempt to access this node. Similarly if the erroneous pointer addresses a node 

outside of the instance being corrected, this can be detected by examining the 

identifier in this node. 

So suppose that Nx ·l and Nw ·a address different nodes within the instance being 

corrected, as shown in Figure 7.8, and let N
z 

be the node that both should address. 

Then one further traversal step using only correct links can be performed, arriving at 

the node addressed by Nm ·c Nz ·a. This is because Nx either has a right child 

addressed by Nz ·a, or the node correctly addressed by Nx ·l can be assumed to be a 

leaf since the tree is balanced. Having identified the correct value of N z ·a, using 

only correct pointers, we can identify N z and thus the erroneous pointer, since N z is 

not Nw , and no other correct node within the structure contains an arc with the same 

value as Nz • 

-
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Figure 7 .8. Possible configurations if left link or arc is in error 

Now suppose that N
x

·r and N
w

·a address different nodes within the instance 

being corrected. If N
x

·l is null or addresses an internal node, then the next non-null 

link N
m

·c within the link traversal does not depend on N
x

·r, and correction can be 

performed as described above. 

A problem arises however if N
x

·r=l=N
w

·a and N
x

·l addresses a leaf node, since 

in this case determining the correct value of N
m

· c involves determining the correct 

value of N x · r. This occurs for example if one of the changes depicted in Figure 7. 5 

occurs. Fortunately, in this case N
x

·r correctly addresses a subtree containing at 

most three nodes, since the tree is balanced. Thus if either N
w

·a or N
x

·r address a 

subtree containing more than three nodes, then the other pointer must be correct. 

Otherwise, the algorithm locates the next non-null link N n ·c not under N x, by 

temporarily assuming that N
x

·r is null. Then it locates the node N
z 

visited last 

within each subtree, and rejects the possibility that N
x

·r correctly addresses this 

subtree if N
z
·a=l=N

n
·c. If neither subtree is rejected during this process, then both 

contain N
z
• Since the two subtrees are distinct but each contains at most three 

nodes, one subtree must contain the single node N
z
, while the other has as its root 

the parent of N
z
. Thus, both N

w
·a and N

x
·r correctly address this larger subtree. 

Having corrected all pointers, identifiers can be corrected. Correction of the 

height balance flags in each node can be accomplished efficiently by using a post-
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order traversal, if the height of each left subtree visited is stacked, until the height of 

the corresponding right subtree has been established. Correcting the other 

information in each node identifier is trivial. 

7 .4. A robust trie 

7 .4. 1. Description 

A trie is an m-ary tree structure which allows rapid retrieval of data [72]. The 

structure consists of a collection of nodes that each address, in some manner, an 

ordered set of at most m children. The keys present within this structure are 

represented in an alphabet of m characters, and each possible path from the header 

node to a leaf node spells out consecutive characters of one key within the structure. 

To avoid some keys being initial subsequences of other keys, keys are usually 

terminated by a special termination character. 

In general, the cost of storing a vector of m pointers in each node of a trie is 

prohibitive, and we therefore will use lists to represent tries [3]. The first child 

below any node is addressed by the child link in its parent node, while all the siblings 

of this child node are linked to this first child node by using a single sibling link in 

each node. Since absent siblings are not included in this linked list, each node also 

contains a single character key identifying the relative position of this node within 

the sibling list. The last sibling pointer in the sibling list addresses the parent node. 

The above structure degenerates into a ( + 1,-1) linked list when m is one, and 

into an unconstrained, but non-standard, binary tree when m is two. However, it is 

also possible to use the above structure to represent a constrained binary tree, in 

which links have their more normal interpretation, by redefining child links as left 

links, and sibling links as right links. For this reason we will denote child links by I 

and sibling links by r. In such a constrained binary tree at most m right links can be 

followed successively before arriving at a null right link. 

Such a constraint is easily enforced if rotations are allowed. Simply detect 

violations of this constraint when attempting to insert any node, and re-establish this 

constraint by rotating the parent of this node to the left of this node so that it 
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becomes a left child of this node. The rotation is particularly straightforward and 

can be accomplished easily, even if the structure contains the redundancy described 

below. However, it should be stressed that this rotation increases the amount of 

imbalance below any rotation point, and· will therefore tend to encourage the 

construction of unbalanced trees. 

7 .4.2. Additional redundancy 

The tree structure being considered will be made more robust by adding 

additional redundancy to the nodes of the structure. Each node will contain a node 

identifier which, when correct, identifies the instance to which this node belongs. 

The identifier will also contain two flags, explicitly identifying the location of null 

links within this node. Each node will also contain an arc pointer. If desired, keys 

may also be protected by using checksums as described above. 

Null right links address the parent node of the node that they reside in. As a 

special case (since the header node has no parent) the null right link in NH addresses 

NH . If the tree is empty, then all pointers in NH are null. Otherwise, NH ·l correctly 

addresses the root node, and NH · r is null. Arc pointers form a cyclic single linked 

list, by generalizing the cyclic linked list formed by arc pointers in the A VL tree. 

Specifically, this linked list is ordered using the following node traversal: 

Visit(NH) 

Traverse(N H) 

Traverse(N) { 

For each child Ni of N Visit(NJ 

For each child Ni of N Traverse(NJ 

} 

Figure 7. 9. Arc traversal order in the m -ary Trie 

As shown in Figure 7.10, this structure is similar to the robust AVL tree, and, 

like the A VL tree without height balance flags, is 1-detectable, 1-local-correctable, 

and thus also 1-local-detectable and 1-correctable. As before, single pointer errors 

will be detected by performing a parallel traversal of links and arcs. 
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Figure 7.10. An example of a robust binary trie 

7 .4.3. Local correction 

The only possible traversal using arcs is to follow the single-linked list formed by 

these arcs. Each step of this traversal involves examining one new arc. Following 

the same traversal using links is considerably more complex, but errors can still be 

detected and corrected using a bounded locality, as justified below. 

Suppose that in performing the above parallel traversal we have arrived at some 

link Nx ·c and some arc Nw ·a and wish to determine if Nx ·c is null. The value of this 

link and the identifier N x • id provide two distinct votes to assist in resolving this 

issue. In cases where these two votes agree we can conclude that both votes are 

correct since at most one error is anticipated in either vote. Otherwise one vote 

contains an error implying that we can assume that a bounded number of other 

components are correct. 
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In particular, Nw · a must be correct. If N w • a addresses NH, the suspect link 

must therefore be null. So suppose that Nw ·a does not address NH, and thus does 

not address a previously trusted node. Then Nx ·l is null if and only if Nw ·a does not 

address a descendant (the first child) of N
x, while Nx ·r is null if and only if Nw ·a 

does not address a node (the following sibling) having the same parent as N
x
. This 

is shown in Figure 7. 11. 

. ..... 0 .....
•...

.. ··· N · r ····· 
...... . 

. . 
· .. . . . . . . ..... . 

w 

Figure 7.11. Examples for which Nx ·l=/=0 and N
x

·r-::/:-0 

Consider the nodes visited when following the path Nw ·a·rm , given that this 

path terminates prematurely if NH is encountered or if Nx is encountered when 

attempting to determine if Nx ·r is null. Since the correction locality contains some 

error not occurring in Nw ·a, we can assume that all pointers in this path are correct. 

The link N
x

·l is therefore null if and only if N
x is not encountered on this path, while 

the link N
x

·r is null if and only if the parent of N
x 

is not encountered. Having 

determined if the suspect link is null, the offending link or identifier can be trivially 

corrected. 

Since null links can be distinguished from non-null links whenever at most one 

error occurs in a locality, the links and arcs can be successfully traversed in parallel, 

given that no locality contains more than one error. Any remaining discrepancy 

encountered in such a parallel traversal implies that the last link and arc pointer 

examined should agree, but don't. All that is required of the correction algorithm 

upon detecting such a discrepancy, is that it identify the pointer in error, and assign 

it the value of the other pointer, before continuing. 

~ 
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Suppose that the discrepancy occurs between Nx·l and Nw·a. Then we wish to 

determine which pointer addresses the first child of Nx. If either pointer addresses 

Nx then this pointer is clearly in error. So assume otherwise. Then as before, follow 

the two paths Nx·l·rm and Nw·a·rm . If Nx is not the first trusted node on one such

· path then this path must be incorrect. So assume otherwise. Then both Nx·l and

Nw ·a address descendents of Nx, and the paths Nx·l·rm and Nw·a·rm merge at some

node, N
y
, prior to arriving back at Nx, since Nx is addressed by only one right link

occurring in an untrusted node.

Since Nx·l=INw·a, at least one path must visit a node, Nz, prior to arriving at 

Ny . This path is correct if N z is the previous sibling of N
Y
, and incorrect if N z is the

last child of N
y . This is shown in Figure 7 .12. But we can easily determine if Nz is 

a child of N
Y 

by following the pointers Ny l ·rm . Thus the first child below any node

can always be identified. 

Figure 7.12. Both Nx·l and Nw ·a address descendants of Nx 

Now suppose that the discrepancy occurs between Nx·r and Nx·a and let NP be 

the trusted parent of Nx. Follow the paths Nx ·rm and Nx ·a·rm and reject any path

that fails to visit N
P 

or visits some trusted node prior to arriving at N
P . So assume 

that both paths first visit the trusted node NP . Then as before both paths must 

ffi 
? •·• ···) . . . . . 

. 

···············•::?>l--r--1 
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merge at some node Ny . Perform the operation described above to determine if 

either path visits a descendent of Ny , and reject any such path. If neither path is 

rejected then the correct path contains the earlier sibling of Nx, and therefore the 

longer path is correct. Having identified the erroneous path, we can determine if 

Nx ·r or Nx ·a is in error, and thus can correct this pointer. Thus, all pointers and 

identifiers in the above trie structure are locally correctable. 

7 .5. Conclusions 

The above structures are of considerable interest for two reasons. Firstly, it is 

hoped that these structures have some practical application. Secondly, the existence 

of these structures significantly enlarges the set of known locally-correctable robust 

storage structures, and this is of benefit to those working in this field. 

Of the various tree structures presented in this dissertation, the locally 

correctable checksummed tree structure is most easily implemented and used, and 

involves the least overhead when being accessed. The locally correctable binary 

search tree, presented in this chapter, is also not difficult either to implement or to 

use, and typically involves only a small overhead. 

The locally correctable A VL tree has two weaknesses. Firstly, even though the 

A VL tree is typically a constrained binary search tree, we have not used keys to 

enhance the robustness of this structure. Secondly, we have produced a binary tree 

which has more constraints imposed on it than we might have wished, and this 

seems unfortunate. 

The m -ary trie structure is the first unconstrained locally-correctable m -ary tree 

structure to be presented. The structure is specifically designed to be efficient in its 

use of space, and can, if desired, be used to represent a constrained binary tree in 

which links have their standard interpretation. 

Results pertaining to the behaviour of the sibling-linked tree are presented in 

Appendix E, and F. Correction algorithms have not yet been implemented for the 

other trees presented in this chapter, and these structures appear too complex to be 

modelled accurately using the techniques described in the next chapter. 



Chapter VIII 

Mathematical models 

8.1. Introduction 

Having designed a robust storage structure, the intrinsic properties of this 

storage structure are naturally of some interest. Similarly, having designed a 

correction procedure for such a robust storage structure, the behaviour of this 

procedl!re is of interest. 

Historically, the robustness of a storage structure was typically considered a 

function of its global detectability and global correctability. Although this function 

was never defined explicitly, it was not difficult to claim informally that a storage 

structure which was (n+l)-correctable was more robust than a storage structure 

which was only n-correctable. This was obviously rather simplistic, and ignored 

many important issues discussed in Chapter 2 and Chapter 3. 

In Chapter 4 this simple model for describing the robustness of a storage 

-structure breaks down.•. We could perhaps provide upper and lower bounds on the

number. of errors that can be corrected by a local correction procedure when

operating on a locally correctable storage structure, but neither bound realistically

describes the robustness of such a structure. At the very least, given an arbitrary

instance state of some specific size, which is known to contain some particular error

distribution, we would like to know the probability that these errors are locally

correctable, and in cases when they are not, we would like to know the probability

that these errors disconnect the instance state being examined.

More generally, given an arbitrary storage structure and a known error 

distribution, we would like to know the expected number of nodes that can be 

traversed prior to encountering a disconnected node, and the expected number of 

nodes that can be traversed by a correction algorithm before failing. We may also 

110 
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wish to know the variance in these measures. Such measures can be used to directly 

compare different storage structures, and assist in identifying appropriate sizes for 

instance states. 

Previously, such issues could only be explored by resorting to empirical studies 

of the robustness of instance states, such as presented in Appendix C. This approach 

was unsatisfactory for a number of reasons. Firstly, any results obtained pertained 

to specific, typically small, instance states of robust storage structures, and provided 

little information about the behaviour of algorithms operating on different instance 

states, or related robust storage structures. Secondly, these results were subject to 

statistical error, and this made the results difficult to compare or interpret accurately. 

Thirdly, prior to being able to perform such studies, a considerable amount of 

software needed to be developed, tested and debugged, and despite every effort to 

produce correct code, it was difficult to claim that empirical results were not biased 

by undetected errors. Finally, considerable computing resources were required in 

order to produce statistically significant results. 

In this chapter, combinatorial and Markov models will be considered, which 

may be used to study the robustness of locally correctable storage structures. The 

combinatorial model provides general insights into the behaviour of a 1-local­

correction procedure, when operating on an arbitrary storage structure known to 

contain a specific number of errors. The Markov models are very much more 

detailed and may be used to investigate the behaviour of many specific robust 

storage structure algorithms, when errors are assumed to occur with some fixed set 

of probabilities. 

8.2. Constant error model 

Historically, it was assumed that some maximum number of errors occurred in 

a storage structure instance, ·and therefore, when studying the behaviour of global 

correction routines, some constant number of errors was randomly placed in the 

instance being corrected. Later, when studying the behaviour of local-correction 

procedures, a constant number of errors continued to be introduced during any one 

experiment. 
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This error distribution can be trivially modelled by translating correct instance 

states into some suitably chosen sequence of components, some constant number of 

which contain errors. Unfortunately, this model needs further clarification when 

considering the behaviour of a correction procedure, since correction procedures can 

examine components not in the original correct instance, and can examine single 

components in many different contexts. 

It is not difficult to ignore the fact that correction algorithms examine 

components not described within our model, since all errors are assumed to occur 

within our model, and it is these errors that are of interest. There are at least two 

alternative simplifying assumptions that can be made about the way in which an 

r-local-correction procedure, 'V, visits components.

We can assume that 'V produces linearisations in which the order of components 

is invariant, and that therefore any linearisation produced by 'V is merely an initial 

subsequence of the linearisation emitted when operating on the original correct 

instance state. This will be called the unperturbed constant error model, and can be 

modelled mathematically by assuming that 'V operates on an sequence of n 

components, some e of which contain errors. If we make the further simplifying 

assumption that there are always exactly m untrusted components in any correction 

locality, then we can assert that the locality constraint is violated, if and only if some 

subsequence of m components, within this sequence of n components, contains 

more than r uncorrected errors. 

Alternatively, we can assume that having made a change to a component in a 

linearisation, subsequent components are visited in an order which is independent of 

the order in which these components were previously visited. One method of 

approximating this assumption mathematically, is to assume that after each error is 

corrected, remaining errors are redistributed throughout the- possibly erroneous 

components. This will be called the perturbed constant error model. 

Neither of the above models reflect accurately the effect that errors will have on 

a local correction procedure, since they represent rather extreme assumptions. 

However, the unperturbed constant error model seems somewhat more realistic than 

the perturbed constant error model, and fortuitously this model is a little easier to 



113 

work with. In this section we present some results that pertain to this error model. 
No results are presented for the perturbed constant error model. 
Lemma 8.1 

[n-(m-l)*(e-1))There are exactly f(n ,m ,e )= e ways in which e >O errors can 
be inserted into a sequence of n components, so that no subsequence of m 
components contains more than 1 error. 
Proof 

The proof proceeds by induction. In the base case when e=l this single error 
can occur in any of the n components. Thus f(n,m ,l)=n= [�) as desired. So 
assume that e errors occur in the sequence of n components, and that the proposed 
formula is correct for any smaller number of errors in the sequence. 

Let the earliest error in the sequence occur at c;, where the location, i, of c;

ranges between O and n-1. Then since none of the other errors occur in the 
subsequence of m components beginning at c;, we have the recurrence relation 

n-1J(n ,m ,e)= �f(n-m-i ,m ,e-1). 
i=O 

Replacing f by the proposed formula we wish to show inductively that 
(n-(m -�*(e-l))=�tl (11-m-i-�1_'._1-l)*(e -2)). But �tl (n-m -i-�m-1 l)*(e-2))

1=0 1=0 

n-m-(m-l)•(e-2) ( · ) ( ( 1)* ( 2) 1) 
= 

i�O 
e_'._l = n-m- m-e e- + by a basic combinatorial identity

[59]. This is simply [n-(m-�*(e-l)) as desired. ■
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Corollary 8.1 

The probability P (X >e) that at least e errors can be inserted into a sequence of 
n components so that no subsequence of length m contains more.than one error is 
[n-(m-�*(e-1) )

i 
[: ). 

Graphs of the above function for representative values of n, m, and e are 
presented in Appendix D. The above result is a generalization of the result for 
J(n,2,e) which appears to have first been presented in [68]. A corresponding result 
for the case when no error occurs exactly two components after a previous error is presented in [74], and this is generalized for the case when no error occurs exactly n
components after a previous error in [66, 102]. 

We have been unable either to find, or to deduce, the more general formula for 
the case when at most r errors are allowed in any subsequence of m components. 
However, when both m and r are small, the patterns which are forbidden to occur in 
any subsequence of m components can be enumerated, and a recurrence relationship 
providing specific solutions of this problem then derived [57, 58]. Unfortunately, 
this derivation requires that we invert a square matrix having as many rows and, 
columns as there are illegal patterns. Since the elements of this square matrix are 
themselves polynomials in two variables, this inversion rapidly becomes infeasible for 
even moderate values of m and r.

Lemma 8.2 

The expected number of errors, E(e), that can be inserted into a sequence of 11 

components, so that no subsequence of m components contains more than one error 
is,�! ["-(m-�*(e-l) )1 [; ). Graphs of this function for representative values of 11 

and m are presented in Appendix D. 

--
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Proof 

By the corollary to Lemma 8.1 the probability P(X>e) that at least e errors can 
be inserted into n sequential components so that no subsequence of length m

contains more than one error is (n-(m-�*(e-l) )1 [: ). The probability P(X=e)

that exactly e errors can be inserted is P(X>e)-P(X>e+l) .. By definition, the 
expected number of errors E(e) that can be introduced is � e*P(X=e). This is 

Cancelling common 
■ 

Theorem 8.1 

If E(e) is the expected number of errors that can be introduced into a sequence 
of n components, such that no more than one error occurs in any subsequence of size 
m , then E ( e )--+oo as n --+00.

Proof 

It has been established in Lemma 8.2 that E(e)=,�1 

(n-(m-�*(e-l) )1 [: )=
ln+m-1 j 

;, •
rr

-1 n-(m-l)(e-1)-i S E( )>� •
rr
-l (l (m-l)(e-1)) f b' 

LJ . . o e _LJ ( ') , or any ar 1trary 
e=l i=O 

n-l e=li=O 
n-l 

. (e-l)<c [ (m-l)(e-1) )-constant c<n/m. But hm IT 1 ( ') -1,
n-+00 i=O 

n -z 

since 

Jim (1 
n--+00 

(m(l)(�)-l) )=l·when; and e are bounded above by the constant c and mn-, 
is a given constant. Thus Jim E ( e )> � l=c. But c can be made arbitrarily large as 

n-oo 
e=l 

n--+00. Thus Jim E(e)=oo.
n-+oo 

■

00 

~e* (n-(m-l)*(e-1)]/ (n]_n~\* (n-(m-l)*e]/ ( n ]. /i1 e e ;; 1 e+l e+l 

terms in this expression gives e~l [n-(m-~*(e-l) ]/ r~ ]. 

C 
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Corollary 8.2 

The expected number of errors that can be corrected by a local ,correction 
procedure, operating on a sufficiently large instance state, exceeds any given bound. 
Proof 

All local-correction procedures perform 1-local-correction. Lemma 8.2 provides 
a lower bound on the expected number of errors that can be corrected by a 1-local­
correction procedure, when operating on an instance state containing n components, 
given that this procedure uses localities containing at most m untrusted components. 
Theorem 8.1 shows that, by increasing n, this lower bound can be made arbitrarily 
large. ■

Theorem 8.2 

There are N(n,m,e)=[;]+(n-m)*[;.=J] ways in which e errors may be 
inserted into a linearisation containing II components so that all e errors occur in 
some locality of size m.

Proof 

If an error occurs in the first component of the linearisation then e errors occur 
in a localit) of size m if and only if all errors occur in the first m components. There 
are (;.=f j ways in which the other e-1 errors can be placed in the next m-1
components. Conversely, if the first component in the linearisation is correct, then 
the number of ways that the e errors can be placed in the linearisation so that they 
all occur in some locality 
N(n,m,e)-N(n-l,m,e)+b.=J ]. 

N(n,m,e) = (; )+(n-m)* [;.=f ). 

of size 
Clearly, 

m is N(n-l,m,e). So 
N(m,m,e) = (; ). Thus 

■
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Theorem 8.3 

The number of ways that e errors can be distributed in a linearisation 
containing n components so that no more than r errors occur in the first erroneous 
locality of size m is 

:�(mil ) (n��Jl ). 

Proof 

Let there be exactly j errors in the first erroneous locality, and let the first error 
occur at component i, where i ranges between O and n-m-e+j. Then the j-1 
errors following the first error must occur in the next m -1 components of the 
linearisation, while the remaining e-j errors must occur in the last n-m-i

components of the linearisation.
errors in the first erroneous 
[1-f t]:Je!_j)= b-f) [:-j-tf ). 

Now allowing j to range over its possible values we deduce that the total number of 
ways that at most r errors can occur in the first erroneous locality is exactly 
Jtl [1-i) [:�j:f )=:�:(mil l (n��J1 ]. ■ 

8.3. Markov models 
Instead of assuming that some set number of errors occurs in an instance state, 

we may assume that each component examined has a constant probability of being in 
error. Then, we. can construct discrete Markov models which describe various 
abstract properties of the robust storage structure being investigated, and in 
particular can predict with considerable accuracy the behaviour of various types of 
algorithms that operate on such structures. 
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A Markov model [79] is described by a collection of states, and transitions 

between these states. Given any two states, S1 and S2, which need not be distinct, 

there is some constant probability that a transition will occur from state s1· to s2 , 

given that we are currently in state S1 . The probabilities of all transitions from any 

state, S;, sum to unity. Having selected some start state, we wish to determine the 

probability that we arrive in some other state and may also wish to determine the 

expected number of transitions of a certain type that occur before arriving in this 

selected state. Such selected states are called final states, and allow no transition to 

any other state. 

We will use Markov models to simulate the occurrence of specific events, such 

as the discovery of an error, the correction of an error, or the traversal of a node, 

and will wish to predict the number of such events that occur prior to some 

catastrophic event such as the discovery that the instance state being examined is 

disconnected or not correctable. 

One clever way of counting the number of events of a particular type, which 

occur in a Markov model, involves transforming transition probabilities into 

generating functions, by multiplying transition probabilities by dummy variables. 

Specifically, suppose that during a given transition an event, X, occurs, which we 

wish to count. Then we multiply the probability of this transition by some dummy 

variable, x. Later, having deduced a formula for the probability of a move 

(potentially via many steps) from state S1 to state S2 , we can extract the probability 

that X occurs exactly II times during this move, by setting all of the dummy variables 

except x to 1, expanding the derived formula as a polynomial in x, setting all but the 

coefficient of x" to zero, and then setting x to 1. Various other types of result, such 

as the probability that an event occurs at least or at most II times, or that multiple 

events occur, can easily be deduced by using this technique. 

Typically, we will wish to derive a generating function that encapsulates, for the 

events of interest, the expected number of such events that occur between beginning 

in the starting state and terminating in a final state. The rules for deriving such a 

· generating function are straightforward. While we have more than one generating

function describing a transition from state S1 to S2 , replace these generating
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functions by their sum. This is equivalent to summing the probabilities of 

independent mutually exclusive but identical events, so that the overall probability of 

that event can be deduced. Having eliminated duplicate transitions, select some 

state S1 which allows no direct transition to itself, and explode the transitions into s1 

with those out of S1 , by multiplying each such pair of transitions producing new 

transition rules for moves which essentially pass through S1 but no longer explicitly 

reference S1 . This is equivalent to multiplying the probabilities of independent 

events when wishing to determine the probability that both occur. Eventually, we 

will either reduce the Markov model to a single transition from a start state to a final 

state, or will be obliged to remove a transition which moves from some state S1 

directly back to S1 . If the generating function associated with this loop is G, then 

multiply the probability of other transitions from S1 by 1/(1-G), and remove the 

loop transition. Thus, the sum of all output transition probabilities from s1 remains 

1. The above operations are then resumed until only one transition remains.

Example 8.1 

Suppose that we wish to study a standard double-linked list, and are particularly 

interested in the connectivity of such a structure. Then, proceeding empirically, we 

might write an algorithm which, having been provided with an exact description of 

the errors introduced into the data memory state, attempted to traverse an instance 

state of such a structure, counted errors encountered and nodes traversed, and 

reported these counts when disconnection was detected or the traversal was 

complete. 

Let us assume that the probability of an error being observed is p, and that we 

count the number of errors encountered in· the dummy variable y. We will also 

count the number of nodes traversed using the dummy variable z. The Markov 

model which performs the desired simulation is presented in Figure 8.1. The 

Markov model starts in state So, and while no error is encountered in a forward 

pointer, proceeds forward through the instance state, counting the number of nodes 

traversed. When an error is encountered the Markov model moves to state S1 , in 
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the process counting the error observed, and then proceeds to move backwards from
the headers of the instance, continuing to accumulate the count of the number of
nodes visited. When an error is encountered in a back pointer, the model enters its
final state since the instance state being examined has been discovered to be
disconnected.

z*(l-p) z*(l-p) 1 

y*p y*p 

Figure 8 .1. A Markov model for connectivity in a double linked list

The generating function, G, describing the behaviour of the Markov model in
moving from S0 to S2 , can easily be seen to be G= (y*p/(1-z*(l-p)) ) 2 . Suppose
that we wish to study the connectivity of a double-linked list containing 100 data
nodes, given that components contain errors with probability p. Then, presumably
using a symbolic manipulation package such as Maple [30], we set y=l, expand G as
a Taylor series around z, and truncate this series by eliminating terms of order
greater than z99

• Setting z =l, we derive a function of p which expresses the
probability that disconnection will be discovered, prior to traversing all 100 data
nodes. By allowing p to range between 0 and 1, we can then study the connectivity
of a double-linked list without necessarily conducting any empirical studies.

Now suppose that we wish to know the expected number of nodes E(z) which
can be traversed by such a procedure, before detecting that the instance state is
disconnected. Then by setting y=l, differentiating G with respect to z, and then
setting z=l, we replace terms of the form ab *zb in G by b*ab . Since ab is the
probability that our algorithm observes exactly b nodes before terminating, the
resulting expression E(z)=�b*ab is the expected number of nodes visited. This

i=O 

easily derived formula is useful, since it describes the robustness of a double-linked
list in terms of its size.

00 
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We may also easily determine the variance V(z) of the number of nodes visited 

by this traversal. This variance is V(z)=E(z2)-E2(z) .. Consider setting y=l as 

before, differentiating G with respect to z twice, and then setting z=l. Then we 

replace terms of the form ab*zb in G by b*(b-1)*ab . Therefore, the resulting 
00 

expression I;b*(b-1)*ab=E(z2)-E(z). Adding E(z) to this expression produces an 
i=O 

expression for E (z2), and subtracting the square of E (z) from this expression 

produces the desired formula for V(z). 

8.4. Regular linked lists 

A large number of regular linked lists have been analyzed both empirically and 

by using Markov models. To remain compat(ble with the Markov models, the 

empirical studies assumed that there was some fixed probability that an error 

occurred in any component. Thus the empirical studies differed from earlier studies, 

presented in Appendix C, which assumed that an instance state contained some 

specified number of errors. The results of these studies are presented in Appendix E 

and Appendix F. 

Somewhat surprisingly, it was not possible to produce a Markov model which 

allowed the connectivity of a spiral(k) storage structure to be studied precisely. 

Suppose that the marked pointers in Figure 8.2 contain errors. Then N1 is connected 

if there is a path from N3 to N2. However, as shown in Figure 8.3 there may be a 

path from N3 to N2 if and only if there is a path from N6 to N5 . Thus, the task of 

finding a path to N 1 may involve recursion. Therefore, determining that N 1 is 

connected may involve examining an unbounded number of pointers, an unbounded 

number of which contain errors. This problem cannot therefore be described by a 

Markov model, since a Markov model has only a finite memory in which to record 

the errors which have so far been encountered. 
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Figure 8.2. N1 is connected if path from N3 to N2 

Figure 8.3. N1 is connected if path. from N6 to N5 

The simplest locally correctable linked list analyzed was a double-linked list 

containing a forward pointer, a back pointer, and two additional checksum 

components. The error-correcting code presented in Appendix Al was used to 

produce a 1-local-correctable structure, in which any one error in a node was 

correctable while any two errors were not. The Markov model describing the 

behaviour of a correction algorithm operating on this structure is presented in Figure 

8.4. Errors occur with probability p. The dummy variable y indicates that the 

component being examined is in error. The dummy variable z indicates that local 

correction is advancing to the next node in the linked list. 
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PY 

(1-p+py)z 

(1-p)z 

Figure 8.4. Correction of one error in any node containing four components 

When considering more complex local-correction procedures the Markov models 

must typically use additional states to "remember" not only that an error has been 

encountered, as is the case in the example above, but also to record the exact set of 

components in the current locality known to contain errors, because errors occurring 

in one locality are often carried forward into a bounded number of subsequent 

localities, and thus can have subtle effects on the behaviour of the local-correction 

algorithm being modelled. 

8.5. Tree structures 

In order to construct Markov models which describe structures which are Jess 

regular than linked lists, we must provide not only the probability that an error 

occurs in any given state, but also the probability that we next visit a node of a 

particular type. For example, the behaviour of an algorithm traversing a tree 

structure is in part dependent on the distribution of full nodes, incomplete nodes, 

and leaf nodes. 

When attempting to predict the behaviour of such an algorithm operating on a 

tree containing n nodes, we begin by determining the expected number of full nodes, 

incomplete nodes, and leaf nodes, in a tree containing n nodes. Then we can make 

the simplifying assumption that the probability of arriving at a node of a particular 
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type is merely the expected number of such nodes in the tree divided by ,,. 

We present below the expected number of leaf, incomplete, and full nodes in a 

binary search tree that is created by the insertion of keys in a random sequence. It 

seems clear given the importance of these results, and the .ease with which ·they can 

be·obtained, that these results are not new. However, these results are relevant and 

are easier to derive than to cite. 

Lemma 8.3 

If a binary search tree is created by the random insertion of n>2 distinct keys, 

the expected number of leaf nodes is (n+l)/3, the expected number of incomplete 

nodes is the same, and the expected number of full nodes is (n-2)/3. 

Proof 

Assume that some set of n distinct keys is to be inserted into an initially empty 

binary search tree. There are n ! possible permutations of n keys and therefore there 

are n ! possible binary search trees which may be constructed, not all of which are 

distinct. Denote the total number of full nodes in all such trees of size n by fn , the 

number of incomplete nodes by hn , and the number of leaf nodes by t •. Now 

consider how these variables change when the forest of all (n+l)! trees containing 

n + l nodes is constructed. 

Since there are n+l times as many trees, and full nodes in trees of size 11 

remain full if an additional node is inserted in the tree, it is only necessary to 

identify the number of new full nodes which occur as a result of inserting the last 

node into each position in each tree in the forest. But this is merely lzn , since in 

exactly one tree of size n+l will a particular incomplete node in a tree of size n 

become a full node. Thusfn+i=(n+l)*f.+h •. 

Applying the same reasoning to incomplete nodes, hn+i=(n+l)*h.-h.+2*1., 

since overall lzn incomplete nodes will become full nodes while each leaf node has 

two ways of becoming an incomplete node. Finally, since a leaf node is added to 

each of the (n+l)! trees in the forest of trees containing n+l nodes, 
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The equation 1.+i=(n-l)*l.+(n+l)! has a particular solution [91] l. =(n+l)!/3 

and this solution is exact for n>2, since there are a total of two leaf nodes in the two 

possible trees containing two nodes. The equation h•+1 =n*h.+2*(n+l)!/3 also has 

a particular solution h.=(n+l)!/3 which is exact for n>2. The expected number of 

leaf and incomplete nodes in one of these n! trees is therefore 2*(n+l)/3. Since 

each tree contains a total of n nodes, the expected I)umber of full nodes is therefore 

(n-2)/3. ■

8.6. Conclusions 

All of the correction procedures studied had finite Markov models that 

described exactly the set of errors which would cause these correction procedures to 

fail, given that multiple errors did not conspire to assist correction algorithms by · 

masking the presence of errors. 

In Appendix E and Appendix F many Markov models are presented, and the 

results of using these Markov models compared with empirical studies. Typically, 

the results produced by using Markov models very clearly correspond almost exactly 

to empirical results. Indeed, in the few cases where noticeable differences did occur, 

faults were subsequently discovered in the empirical studies. Had we not had such 

accurate tools for predicting the behaviour of the algorithms being studied, it seems 

likely that some of these faults would not have been found. 

Although there are obvious benefits associated with using Markov models, some 

questions 

relatively 

are not easily resolved by using Markov models. For example, it is 

easy to construct models which count 

operating on linked lists are misled, as a result 

cases when correction algorithms 

of carefully selected values being 

placed in specific components. However, such models communicate nothing, unless 

it is also possible to determine the probability that errors do cause specific values to 

be placed in selected components. 
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Another problem with using Markov models to precisely describe the behaviour 

of more complex systems is the sheer size of the generating functions obtained. 

·Although it_ was possible to produce a generating function describing the precise

behaviour of the helix(3) correction algorithm described in Chapter 6, the .resulting

expression was more than 100,000 characters long, and even the problem of

determining if this expression could be simplified proved to be computationally

infeasible using available computing resources.



Chapter IX 

Conclusions and further work 

9 .1. Conclusions 

In Chapter 1 we presented a number of issues which we wished to explore in the 

hope that their resolution would lead to the discovery of good methods of 

implementing and correcting robust storage structures. 

We began by suggesting that the specifications that correction routines operate 

under be reviewed, in the hope that better specifications might challenge rather than 

blinker the designers of robust storage structures. 

In Chapter 3, we therefore stressed the role that the Valid State Hypothesis can 

play in the development of correction procedures, and then extended the desired 

behaviour of global correction algorithms, so that in cases where the number of 

errors encountered exceeded the number that could necessarily be corrected, these 

algorithms selectively performed correction, and otherwise reported failure. We 

then established upper and lower bounds on the selective correctability of arbitrary 

storage structures. Using these bounds, we showed how in a 1-global-correctable 

mod(2) linked list, 2 errors could always be corrected, provided that these two errors 

did not disconnect the instance state being examined. 

In Chapter 4, we explored the issue of lo.cal correction, and showed that distinct

votes could not always be used to detect errors in locally detectable structures. We 

therefore developed the notion of local connection functions, and showed that if a 

storage structure had a Zr-local-linearisation function which was r-local-connected, 

then the storage structure was at least r-locally-correctable. We then proposed the 

development of algorithms that performed selective-local-correction, and established 

upper and lower bounds on the selective local correctability of an arbitrary storage 

structure. In Chapter 5 and 6, we showed how this theory could be readily applied 
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to the mod(k>3) linked list, and the helix(k>3) linked list. 

Our next area of concern addressed the underlying assumptions about the·nature 

of errors introduced into the data memory state. There is only a limited amount of

information available about the frequency and types of faults that, in practice, lead

to errors in robust storage structures, and we were therefore keen to address this

issue. However, it soon became apparent that such questions were not likely to

produce any definitive results, and this avenue for research was therefore

abandoned. Rather more constructively, in Chapter 8, we presented two new

theoretical models for studying the effects of introducing errors into robust storage

structures, and derived a number of new results that pertained to these error models.

We then indicated that there was a need to develop additional guidelines, 

indicating the properties that robust storage structures must have if they are to 

facilitate certain types of error correction. The theoretical results presented in 

Chapter 3 and Chapter 4 address this issue. 

We then indicated that existing robust storage structures should be carefully 

reviewed, in the hope that such structures might be corrected more efficiently or 

accurately using techniques not originally considered when designing the structure. 

This led to an algorithm, presented in Chapter 3, for performing 2-selective-global­

correction on mod(k>2) linked lists, and an algorithm, presented in Chapter 5, for 

performing 2-selective-local-correction on mod(k>3) linked lists. The helix(k) 

linked list, presented in Chapter 6, also arose as the result of reviewing the existing 

spiral(k) linked list structure. As shown in Appendix Cl and Appendix C2, these 

algorithms are significantly better than previous algorithms when correcting similar 

linked list structures. 

We also expressed a desire to develop a number of new robust storage structures 

so that these could be evaluated and compared .with existing storage structures. It

was hoped that, in the process, new ideas and better methods of introducing 

redundancy into storage structures would be discovered. In Chapter 4 we presented 

a checksummed binary tree, in Chapter 6 we presented the helix(k) linked list, and 

in Chapter 7 we presented three new tree structures, all of which were locally 

correctable. 

-
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Finally, we suggested that empirical studies provided only limited information 

about the behaviour of robust storage structures, and associated correction 

procedures, and that therefore there was a need.to develop statistical models which, 

when presented with various parameters, accurately predicted the behaviour of 

robust storage structures, and their associated correction routines. 

In Chapter 8 we therefore discussed the constant error model and showed, using 

this model, that the expected number of errors that could be corrected by a local 

correction procedure, when operating on a sufficiently large instance, exceeded any 

bound. We also developed results indicating the probability of performing 1-local­

correction under a variety of different constraints, and presented these results 

graphically in Appendix D. 

We then proposed using Markov models to simulate the introduction of errors 

into robust storage structures, so that we might predict the consequences of such 

errors. As shown in Appendix E and Appendix F, the results of using Markov 

models to predict the consequences of errors correlated almost exactly with the 

corresponding results obtained from empirical studies. This is obviously very 

exciting, and promises to make the evaluation of some robust storage structures very 

much easier, while also making such evaluations more accurate and complete. 

Thus, this thesis has contributed to storage structure error correction in four 

· main ways. Firstly, a number of new theoretical results have been presented which

pertain to global and local error correction. Secondly, a theory has been developed

which allows global and local correction algorithms to selectively perform correction

and otherwise report failure. Thirdly, using these new theoretical results, better

correction algorithms have been proposed for previously correctable storage

structures, and a number of new robust storage structures designed. Finally, it has

been shown that probability theory and Markov models are powerful tools for

studying the properties of many robust storage structures.
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9 .2. Further work 

Most of the· unsolved problems pertaining to error detection and correction seem 

intrinsically hard, but are sufficiently important to merit further research. 

The relationships between storage structures and local-linearisation functions are 

not well understood, and in particular it remains unclear how good local-linearisation 

functions can be derived from a given storage structure specification. A number of 

related issues should be addressed in the hope of resolving this question. 

What are the constraints that limit the local detectability of a given local­

linearisation function, and how does the local detectability of a linearisation function 

change as modifications are made to this linearisation function? How can the exact 

local detectability of a given linearisation function be determined? What is the 

relationship between linearisation functions capable of detecting different numbers of 

errors in different size localities, and how does one determine which is "better"? 

How does one translate a linearisation function having certain attributes into one 

that uses the smallest possible locality while continuing to satisfy these attributes? 

In Chapter 4 we proved that an r-local-connected 2r-local-linearisation function, 

J, had an r-local-correction function, P 1. However, the existence of P
I does not

necessarily imply the existence of an efficient r-local-correction procedure which can 

correct at least one error in any linearisation J(x1 ) containing. between 1 and r 

errors, since P
f 

may not be computable by a reasonable procedure. Is it possible to 

prove that all local-correction functions are computable by a reasonable procedure, 

or alternatively to provide some theory which would at least allow us to identify 

those local-correction functions which are? 

In Chapter 4 we also proved that an r-local-correctable (2r+l)-local­

linearisation function was (r+l)-selective-local-correctable. It seems clear that some 

linearisations which are exactly r-local-correctable are more than (r+l)-selective­

local-correctable. What are the identifying characteristics of such linearisation 

functions? 
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More generally, what is the relationship between local correction algorithms and 

oth�r types of correction algorithm? Should we be developing correction algorithms 

that are designed to operate "correctly" under worst-case scenarios, rather than 

developing correction algorithms which meet other objectives? Perhaps no 

assumption should be made about the number of errors encountered by a correction 

procedure, in the hope that we might develop algorithms with good probabilistic 

behaviour, or algorithms capable of always transforming damaged instances into the 

nearest correct and seemingly valid instance. Since it is not known how to construct 

such correction algorithms, or even if the construction of such algorithms is feasible, 

this would be an interesting area for further research. 

Historically, the Valid State Hypothesis has been used primarily when 

attempting to prove the correctness of algorithms that relied on it. However, many 

of the algorithms presented in this dissertation actively use the assumption that the 

Valid State Hypothesis holds to assist in performing correction. There is therefore a 

need for a theory which would identify the effect that the Valid State Hypothesis has 

on the correctability of an arbitrary structure. 

In this dissertation we assumed that correction algorithms had no external 

knowledge about the cause of errors, or the possible propagation of errors, and that 

they therefore had to assume at best some probabilistic distribution of errors within 

the structure being corrected. However, often the cause of errors can be externally 

identified, or the propagation of errors carefully controlled. It would therefore be of, 

interest to investigate the properties of robust storage structures when subjected to 

such restrictive classes of errors, and to attempt to design good algorithms for 

handling such errors. Most notably, power failures, deadlock, and user-initiated 

interruption can often lead to partially completed updates within robust storage 

structures. How should correction algorithms attempt to correct such errors within a 

single robust storage structure, and more generally how should correction algorithms 

rectify partially completed updates applied to composite storage structures? 

Methods of simulating the types of error that arise as a result of incorrect 

concurrency control should also be investigated. It would be of interest to develop 

code that simulated this type of error, and to consider the possible consequences of 
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allowing error correction to be performed concurrently with other forms of update . 

. Finally, the most ambitious researchers might attempt to unify the theoretical 

results· which pertain to robust storage structures with the theory of error-correcting 

codes, and/or the theory of detection and correction of errors in hardware 

components and systems. There are many superficial similarities between these 

fields, and much can be learned from studying all three. In particular, if storage 

structure errors could be modelled using any of the existing models for hardware 

error detection and correction, then a huge body of accumulated knowledge would 

suddenly become available to the designers of robust storage structures. 



APPENDIX Al 

A tertiary perfect Hamming code 

0 0 0 0 

0 1 1 1 

0 2 2 2 

1 0 2 1 

1 1 0 2 

1 2 1 0 

2 0 1 2 

2 1 2 0 

2 2 0 1 
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APPENDIX A2 

A quaternary perfect Hamming code 

0 0 0 0 
I

Q 2 0 0 2 1 

0 0 1 1 1 2 0 1 3 0 

0 0 2 2 2 2 0 2 0 3 

0 0 3 3 3 2 0 3 1 2 

0 1 0 1 2 2 1 0 3 3 

0 1 1 0 3 2 1 1 2 2 

0 1 2 3 0 2 1 2 1 1 

0 1 3 2 1 2 1 3 0 0 

0 2 0 2 3 2 2 0 0 2 

0 2 1 3 2 2 2 1 -1 3 

0 2 2 0 1 2 2 2 2 0 

0 2 3 1 0 2 2 3 3 1 

0 3 0 3 1 2 3 0 1 0 

0 3 1 2 0 2 3 1 0 1 

0 3 2 1 3 2 3 2 3 2 

0 3 3 0 2 2 3 3 2 3 

1 0 0 1 3 3 0 0 3 2 

1 0 1 0 2 3 0 1 2 3 

1 0 2 3 1 3 0 2 1 0 

1 0 3 2 0 3 0 3 0 1 

1 1 0 0 1 3 1 0 2 0 

1 1 1 1 0 3 1 1 3 1 

1 1 2 2 3 3 1 2 0 2 

1 1 3 3 2 3 1 3 1 3 

1 2 0 3 0 3 2 0 1 1 

1 2 1 2 1 3 2 1 0 0 

1 2 2 1 2 3 2 2 3 3 

1 2 3 0 3 3 2 3 2 2 

1 3 0 2 2 3 3 0 0 3 

1 3 1 3 3 3 3 1 1 2 

1 3 2 0 0 3 3 2 2 1 

1 3 3 1 1 3 3 3 3 0 
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APPENDIX Bl 
Pseudocode for mod(k>3) correction. algorithm 

correct_headers{); /* Terminate if null instance 
for (count= O; count< max_possible; count= count+l) { 

candidates = O; 
for (i = O; i < 3; i = i+l) { 

N -N ·b ·f i-1. x- 1-k+i k 1 , 

if (N x'F any candidate[j]) { 

/* Apply constructive votes 
/* For simplicity, assume Nx exists 

j = candidates++; candidate[j] = N x; vote[j] = O; } 
vote[j] = vote[j] + weight[i}; } /* weight[i] = {1/4, 3/16, 1/16} 

for (i = O; i < candidates; i = i + 1) { /* Apply diagnostic votes 
Nx= candidate[i}; 
if (Nx·fi No) vote[i] = vote[i] + 1/4; 
if (Nx·bk·fi No·bk) vote[i] = vote[i] + 3/16; 
if (Nx·bk·f/ N_ 1·bk) vote[i] = vote[i] + 1/16; 

if (Nx= any No;;;::l>-k) vote[i] = 0;} 
case 'Only Na got vote> 1/2': break; 
case 'Only Na got vote of 1/2': 

if (candidates = 1) { 
if (Na·id bad or Na·b 1·J/ ok) abort(Target disconnected); 
break;} 

if (Na·fi No and Na N2-1·bk and Na N3_k-bk·fi) { 
if (k-3) abort(Target may be disconnected); 
if (N4_k.bk·fi N3_k-bk) abort(Target disconnected);} 

case 'Only Na and Nb got vote of 1/2': 
if (Na·ft¥:Nb·ft) { 

if (Nb·ft No) Na Nb; 
} else if (Nb-bk Na) Na Nb; 

case 'Otherwise': abort(Target disconnected); 

*/ 

*I 
*/ 

*/ 
*/ 

/* Na is target node N 1 * / 
N1-k·bk-Na;Na·id=id;Na·f 1 N0; /* Assignments may be unnecessary */ 
if (Na= last header) correct_count(); /* Terminate successfully */ 

} 
abort(Algorithm looping); 
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APPENDIX B2 

Pseudocode for helix(k>3) correction algorithm 

correct_headers(); /* Terminate if null instance 
for (count= O; count< max_possible; count= count+ 1) { 

candidates = O; 
for (i = O; i < k; i = i+l) { 

case 'i = O': Nx No ·h2 -f1 ; 
case 'i = k': Nx N2-k·bk ·fi; 
case 'default': Nx -N _1·h;+1; 
if (N x"F' any candidate[j]) { 

/* Apply constructive votes 
/* For simplicity, assume Nx exists 

j=candidates+ +; candidate[j]=Nx; vote[j]=O;} 
if (i ,/a 0) vote[j] = vote[j] + 1;} /* Nx= candidate[j] 

for (i = O; i < candidates; i = i+l) { /* Apply diagnostic votes 
Nx

= candidate[i]; 
for (j = 1; j < k; j = j+ 1){ 

case 'j = 1': if (Nx ·fi No) 
case 'j = k': if (Nx ·hk No·h2·bk-1) 
case 'default': if (Nx ·hi -No·hi+ 1) 

if (Nx-N
j 

, for any O�>l-k) vote[i] = O;} 
case 'Only Na has > k votes': break; 
case 'Only Na has k votes': 

if (candidates = 1) { 
if (Na ·id bad or Na N2-k·bk or Na ·fi Na 

vote[i] = vote[i]+ 1; 
vote[i] = vote[i] + 1; 
vote[i] = vote[i] + 1; } 

or Na ·ft·bk ·f/-1-'Na without cycles) abort(Target disconnected);}
else if (Na -f1-No and Na N1-k·bk and Na -N2-k·bk-1) { 

if (k=3) abort(Target may be disconnected); 
if (Na N _1 · b3) abort(Target disconnected); } 

case 'Na and Nb have k votes': 
if (Na -f 1a/aN b -f1) { 

if (Nb·ft-No) Na -Nb ;} 
else if (Na N2-k·bk ) Na Nb ; 

case 'Otherwise': abort(Target disconnected); 
Na ·id=id; Na ·h N0 ; /* Na is the target nodeN1 
for (i =.2; i < k; i = i+l) N1_i·b1 Na ; /* Assignments may be unnecessary 
if (Na = last header) correct_count();} /* Terminate successfully 

abort( Algorithm looping); 
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APPENDIX Cl 

Empirical results for double-linked list -structures 

Cl.I. Explanation 

This appendix presents empirical results obtained when "random" errors were 

introduced into double-linked lists, a mod(2) structure, a mod(3) structure, and a 

mod(4) structure. Each instance contained 100 consecutively located nodes plus 

headers. Increasing numbers of pointers were randomly selected from within this 

instance, and modified by adding or subtracting a random number between 1 and 

10. Because the instances being considered were small, the probability that errors

caused disconnection was high. Because pointers were modified by a small amount,

the probability that votes supported common incorrect candidates was high. This

appendix is therefore somewhat pessimistic.

Since a standard ( + 1,-1) double-linked list is not locally correctable, two -

distinct methods were used to produce a locally correctable ( + 1,-1) linked list. 

Both methods employed a forward traversal. The first method added two checksum 

components, of the same size as the pointer components, to each node in the 

instance being corrected. A generalised perfect tertiary hamming code [21), 

presented in Appendix Al, then allowed single errors within nodes to be corrected. 

The algorithm reported failure if more than .one component within a node required 

correction. The algorithm also reported failure if the (possibly corrected) back 

pointer in the current node failed to address the previous visited node. 

The other method of producing such a list used two consecutive header nodes 

and stored Nx+iffiNx-1> rather than Nx-l• in a virtual backpointer component, Nx ·v 

[80). Local correction in this VOLL structure was accomplished· by using two 

constructive votes, Nx ·f1 and Nx ·vffiNx-t, together-with a diagnostic vote,-'Nn ·id=id 

& N n • Ji E0N n • v N x', to identify the target node N x+l. 

For the mod(2) instance, correction was attempted using a historical mod(k) 

1-local-correction algorithm, which used the votes N1=N1-k·bk, Ni N2-k·bk·f1, and

Nr/1 No , the mod(2) local correction algorithm presented in [12::!], and the spiral 
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local correction algorithm presented in [20]. For the mod(3) and mod(4) instances, 

correction was attempted using the mod(k) local correction algorithm, and the 

selective-local-correction algorithm described in Chapter 5 and Appendix Bl. 

Each mod(k) algorithm was executed on· exactly the same "randomly" damaged 

instances. Each test was performed 1000 times before the number of pointers being 

damaged was increased. Statistics were collected on the number of times that the 

damaged instance remained connected, and was thus potentially correctable. 

Statistics were also collected on the number of times each algorithm was able to 

correct the structure, and the number of times that each algorithm was misled into 

attempting to apply an incorrect change. 
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When the double-linked list was protected by using an error-correcting code, 

nodes contained no identifier field, but still contained one additional component not 

present in the other structures considered. When compared to alternative robust 

linked lists requiring the same amount of storage space, the checksummed double­

linked list performed rather poorly. Comparable results for the spiral(3) and helix(3) 

storage structures are presented in Appendix C2 and Appendix E2. 

The VDLL structure performed very w_ell. Empirical results suggest that it is as 

strongly connected as the mod(3) structure, and that its correction algorithm is 

competitive with the historical correction algorithms used to correct mod(k) 

structures. 

While the behaviour of the mod(k) local-correction algorithm is similar to the 

spiral(2) local-correction algorithm, and to a lesser extent the selective-local­

correction algorithm presented in Chapter 5, the mod(-2) local-correction algorithm is 

quite different, since it uses two parallel traversals of the instance, and an elaborate 
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fault dictionary to assist in correction. It is therefore surprising that the results of 

attempting to correct a mod(2) instance are almost identical, regardless of the 

algorithm used. 

Under the various errors introduced, the mod(2) structure remained connected 

44% of the time, the mod(3) structure-55% of the time, the VOLL structure 56% of 

the time, and the mod(4) structure 60% of the time. The VOLL correction 

algorithm corrected 26% of all errors, as did the mod(k) correction algorithm when 

operating on mod(2), mod(3), and mod(4) linked list structures. 

Superficially it appears that the local correction algorithm outlined in Appendix 

Bl should correct more errors in a mod(k>4) structure than in a mod(3) structure. 

However the locality, in which it is assumed that at most two errors occur, is smaller 

in a mod(3) structure than in a mod(k>4) structure, and this becomes significant 

when many errors are introduced into the instance being corrected. It is therefore 

not surprising that this algorithm corrected 40% of errors in mod(3) instances, and 

38% of errors in mod(4) instances. 

The statistics presented above are very dependent on the number of errors 

introduced into the instance, the type of error introduced, and the size of the 

instance being damaged. However, these statistics provided some assurance that the 

selective-local-correction algorithm outlined in Appendix Bl is indeed superior to 

algorithms previously presented, when applied to a mod(k>3) structure. 



APPENDIX C2 
Empirical results for multi-linked list structures 

Cl.1. Explanation 

This appendix presents empirical results obtained when "random" errors were 

introduced into instances of a helix(3), helix(4), spiral(3), and spiral(4) structure. 

Each instance contained 100 consecutively located nodes plus headers. 

Increasing numbers of pointers were randomly selected from within this instance, 

and modified by adding or subtracting a random number between 1 and 10. 

The spiral( k) instances were corrected using the spiral correction algorithm 

described in [20]. This algorithm used the following votes to correct up to k-1 

errors in any locality. If a single candidate receive!d k+l or more votes the 

algorithm concluded that this node was the target. Otherwise the algorithm reported 

failure. 

Vote Path followed Compared with 

C;,1 <.i<.k N1+i-k ·bk ·f; 

Ck N1-k 0 bk 

D;,1 <i<.k Nn·fi N1-i 

Unfortunately since the spiral and helix structures are different, it was 

impossible to execute the correction algorithms on the same "randomly" damaged 

instances. Thus the errors applied to each instance were related only by the above 

constraints. Each test was performed 1000 times on each instance before the 

number of pointers being damaged was increased. Statistics were collected on the 

number of times that each damaged instance remained connected, and was thus 

potentially correctable. Statistics were also collected on the number of times the 

appropriate algorithm was able to correct the instance presented to it, and the 

number of times that each algorithm attempted to apply an incorrect change. 
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C2.2. Comments 

Under the various errors introduced, the helix{3) structure remained connected 

85% of the time and the spiral(3) structure 84% of the time. The helix(4) and 

spiral(4) structures remained connected 99% of the time. -

The helix(3) structure. was corrected 54% of the time while the spiral{3) 

structure was corrected only 36% of the time. Similarly, the helix(4) structure was 

corrected 83% of the time, but the spiral(4) structure only 66% of the time. More 

informally, in the experiments conducted, the helix(k) algorithm generally behaved 

as well as the spiral(k) correction algorithm, even when the structures that it was 

correcting contained an additional 10 errors. 

Somewhat surprisingly, the helix correction algorithm attempted more erroneous 

corrections than the spiral correction algorithm. In the helix(3) structure 111 

erroneous corrections were attempted compared to 33 in the spiral(3) structure. 

Similarly, in the helix(4) structure 2 erroneous corrections were attempted compared 

to none in the spiral(4) structure. Various factors seem to have contributed to this 

discrepancy. Since the spiral correction algorithm failed more often, it encountered 

fewer errors, and thus had less opportunity to be misled. In addition, the helix 

correction algorithm could be misled when an incorrect candidate receives k votes, 

while the spiral correction algorithm could be misled only if an incorrect candidate 

receives at least k+l votes. This became particularly significant when constructive 

votes supported nodes outside of the instance being corrected. Given the nature of 

the diagnostic votes used, and the fact that only components within the instance were 

damaged, such nodes receive no diagnostic votes from the spiral correction 

algorithm, but could receive up to k-1 diagnostic votes from the helix correction 

algorithm. 

Although the spira1(3) and helix(3) structures are naturally much more robust 

than the mod(3) structure, since each node in a mod(k) structure contains only the 

two pointers Ji and bk·• it is of some interest to compare the results presented.above 

with those presented in Appendix Cl. Therefore, instances of the helix(3) and 

spiral(3) structure containing more than 30 damaged pointers will be ignored. 

Under this scenario-the spira1(3) and helix(3) structures remained connected 98% of 

the time. The helix(3) instances were corrected 90% of the time, and the spira1(3) 

instances 70% of the time. 



APPENDIX D 
The unperturbed constant error model 

D.1. Explanation 

This appendix graphs the behaviour of functions, derived in Chapter 8, which 

pertain to the unperturbed constant error model. This model assumes that n 

components in an instance state are traversed in some sequence, and that e 

randomly selected components initially contain errors. It further assumes that the 

order in which components are traversed is unperturbed by the correction of 

erroneous components. 

We then assume that the local-linearisation function, being used to detect or 

correct errors in these 'components, produces linearisations which violate the locality 

constraint if and only if some subsequence of m components contains more than one 

error. 

Superficially, it might appear that the above assumptions are reasonable when 

considering the behaviour of a 1-local-detection procedure, and that therefore the 

results presented here can be used to predict the behaviour of such algorithms. 

However, in the vast majority of cases, local detection will be accomplished 

successfully even when localities contain an arbitrary number of errors. This is 

because, typically, such erroneous localities will not be internally consistent. The 

results presented h~re therefore provide very pessimistic predictions of the behaviour 

of 1-local-detection procedures. 

The unperturbed constant error model is more useful when attempting to 

understand the behaviour of a 1-local-correction procedure. Specifically, when 

1-local-correction procedures use linearisations which always contain exactly m 

untrusted components, we will assume that an instance state is locally correctable, if 

and only if no subsequence (or window) of m consecutive components contains more 

than one error. 

Graphs are presented in pairs, the first being a linear graph for small numbers 

of components, and the second using a logarithmic scale to depict results for large 

numbers of components. 
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The first four sets of graphs plot the relationship between 11, e and 

[n-(m-~•(e-l) ]1 [: l for m=5, m=lO, m=20, and m=40. This formula 

expresses the probability that no subsequence of m components contains more than 

one error, given that exactly e errors occur in a sequence of n components. 

These graphs suggest that when the size of a correction locality is quadrupled 

and the number of errors introduced into the structure reduced by half, similar 

results are obtained. ·Currently, this behaviour is not well understood. However, it 

is important since it implies that local-correction algorithms will perform reasonably 

well, even when they use large correction localities. 

The last pair of graphs plots the relationship between m, n, and 

f;:, [n-{m-~•(e-l) ]1 [:]. This formula expresses the expected number of errors 

that can be placed in a sequence of n components, while placing no more than one 

error in any subsequence of m components .. 

These graphs suggest that the expected number of correctable errors does not 

increase linearly as storage structures grow. This is not surprising and indicates that 

the ratio of correctable errors to total components will decrease as structures grow. 

However, the expected number of correctable errors increases almost linearly when n 

is large, and clearly increases m·ore rapidly than log n. Thus, local-correction 

algorithms can be expected to perform very well when operating· on large storage 

structures containing unrelated sets of errors. 
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APPENDIX E 
Analysis of connectivity using Markov models 

E.1. Explanation 

This appendix uses Markov models to present results pertaining to the 

connectivity of a number of storage structures, and compares these results with 

empirical data. Beginning in state 0, each model simulates an algorithm attempting 

to traverse a particular storage structure, in which errors occur with constant 

probability p. The Markov model uses the expression z", containing the dummy 

variable z, to indicate the successful traversal of n consecutive nodes. 

Each Markov model is then transformed into a generating function, describing 

the overall transition from the.start state to a final state. These generating functions 

are not presented, since they can easily be reconstructed from the Markov model. In 

all but the simplest structures, these generating functions are rather complex, and not 

easily depicted. 

We will study two issues. Firstly, in order to remain compatible with the results 

presented in Appendix C, we will determine, for various structures and values of p, 

the expected number of instances that remain connected, given that we examine 

1000 instances, each containing 100 data nodes. The results of this study will be 

compared with empirical data. Secondly, we will determine, for various structures 

and values of p, the expected number of nodes traversed prior to detecting 

disconnection, given that we are examining an instance containing at least this 

number of nodes. All of these results will be presented graphically. 

Let G be a generating function whose coefficient of z" indicates the probability 

that exactly n nodes can be reached from the headers of an instance. Then the 

number of instances out of 1000 which remain connected, and the expected number 

of nodes traversed at the point when disconnection is first detected, is calculated 

using the following 'Maple' code. 
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# Instances remaining connected out of 1000 
0 := proc(a) 0 end: # Tue order term of the taylor series is 0 
nodes:= 100: # There are 100 data nodes 
for p from . 005 by . 005 to .15 do 

z := 'z': 
failed := taylor(G,z,nodes)*lOOO: 
z := 1: 
print(p, evalf(1000-failed)): 
od: 

# Expected number of nodes traversed 

# Let z be an arbitrary variable 
# Number disconnected 
# Eliminate the dummy variable 'z' 
# Print number connected 

result:= diff(G,z): # Differentiate G with respect to z
z := 1: # Eliminate the dummy variable z 
for p from . 005 by . 005 to .15 do 

print(p, evalf(result)): # Print expected number of errors 
od: 

E.2. Markov models for linked lists
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The Markov models used to study the connectivity of linked lists simulate a 

backwards traversal from the headers of the instance, iteratively selecting with 

probability qi some transition generating function, q;*z", indicating that the 

simulation has successfully retreated backwards from Nx+n to N
x , visiting in the 

process all intermediate nodes. If it is discovered that the model cannot proceed 

backwards because Nx is disconnected then the model enters a final state. 

Otherwise, when it becomes impossible to arrive at N
x 

by traversing the linked list 

backwards, the model simulates a forward traversal from the headers of the instance, 

iteratively selects with probability qi some transition generating function qiz
m which

indicates that we can advance forward from N x-m to N x once again visiting in the 

process all intermediate nodes. This forward traversal terminates when it is 

determined that some node is disconnected. 

Each of the following tables contains four columns. The first two columns 

describe a possible transition between a state and an adjacent state. The third 

column provides the generating function associated with this transition, and the 

fourth column indicates when this transition occurs. State O represents the start 

state, and state -1 the final state. 



Double-linked list 

This Next Generating Comments 

State . State Function 

0 u z(l-p) Nx+1·b1--Nx 
0 1 p N x+1 ·br::/;N x 
1 1 z(l-p) Nx-1•/1 Nx 
1 -1 p Nx-1·fi¥-Nx 

Virtual double-linked list (VDLL) 

0 0 

0 1 
1 1 
1 2 

2 1 

2 -1

0 0 

0 1 

1 2 

1 3 

2 0 

2 -1

3 3 

3 -1

0 0 

0 1 

1 2 

1 3 

2 0 
2 -1

3 4 

3 5 

4 6 

4 -1

5 5 

5 -1

6 0 
6 -1

z(l-p) N x+l · V ffiN x+2--N x 

p N x+1 ·v(:£JN x+2¥-N x 
z(l-p) Nx-1-/1 Nx 
p Nx-1·Ji¥-Nx 
z(l-p) Nx-1 ·vffiNx-2 Nx 

p N x-1 · vffiN x-2::/;N x 

Mod(2) linked list 

z(l-p) Nx+2·b2 Nx 
p Nx+2·b2¥-Nx 

(1-p) Nx+1·b2 Nx-1 

p Nx+1 ·b2¥-Nx-l 
z2(1-p) Nx-1•Ji Nx 

p Nx-1 ·f1'FNx 
z(l-p) Nx-1·/i Nx 

p Nx-1-/1::/;Nx 

Mod(3) linked list 

z(l-p) Nx+3·b3 Nx 

p Nx+3·b3"::/;Nx 

(1-p) Nx+2·b3 Nx-1 

p N x+2 · b3#N x-1 
z2(1-p) Nx-1·fi-Nx 
p Nx-1·Ji¥-Nx 

(1-p) Nx+1·b3 Nx-2 

p Nx+1·b3#Nx-2 

(1-p) Nx-2·/i Nx-1 
p Nx-2·fi#Nx-l 
z(1-p) Nx-1-/1 Nx 

p Nx-1·fi¥-Nx 
z 3(1-p) Nx-1-f1 Nx 
p Nx-1 •Ji#Nx 
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Mod( 4) linked list 

0 0 z(l-p) Nx+4·b4 Nx 
0 1 p N x+4 • b4,i:N x 
1 2 (1-p) Nx+3·b4=Nx-1 
1 3 p Nx+3·b4#Nx-1 
2 0 z2(1-p) Nx-1·/i Nx 
2 -1 p Nx-1·/i#Nx 
3 4 (1-p) Nx+2·b4 Nx-2 
3 5 p N x+2· b4,i:N x-2 
4 6 (1-p) Nx-2·/i Nx-1 
4 -1 p Nx-2·fi#Nx-1 
5 7 (1-p) Nx+1•b4 Nx-3 
5 8 p Nx+1·b4�Nx-3 

6 0 z3 (1-p) Nx-1•/i Nx 
6 -1 p Nx-1·Ji¥-Nx 
7 9 (1-p) Nx_3·fi Nx-2 
7 -1 p Nx_3·f1¥-Nx-2 
8 8 z(l-p) Nx-1·/i Nx 
8 -1 p Nx-1·/1¥-Nx 
9 10 (1-p) Nx-2·/i Nx-1 
9 -1 p N x-2 · Ji =IN x-1 
10 0 z4(1-p) Nx-1·/1-Nx 
10 -1 p Nx-1·fi-::/;Nx = 

= 

= 
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Helix(3) linked list Helix(4) linked list 

0 0 z(1-p) Nx+3·b3 Nx 0 0 z(l-p) Nx+4·b4=Nx 
0 1 p Nx+3·b3=/:Nx 0 1 p Nx+4·b4;/-Nx 
1 0 z(1-p) Nx+2·b2 Nx 1 0 z(1-p) Nx+3·b3 Nx 

1 2 p Nx+2·b2a/-Nx 1 2 p Nx+3·b3;/-Nx 

2 3 (1-p) Nx+2·b3 Nx-1 2 0 z(l-p) Nx+2·b2 Nx 

2 4 p Nx+2·b3;/-Nx-l 
3 0 z2(1-p) Nx-1·f1-Nx 

2 3 p Nx+2·b2a/-Nx 
3 4 (l-p) N,a3•h4=Nx-1 

3 -1 p Nx-1·Jia/-Nx 
3 5 p Nx+3·b4:/-Nx-l 

4 5 (1-p) Nx+1·b2 Nx-1 4 0 z2(1-p) Nx-1-f1 Nx 

4 6 p N x+l ·b2;/-N :r-1 
5 0 z2(l-p) Nx-1-f1 Nx 

4 -1 p Nx-1-f1a/-Nx 
5 4 (1-p) Nx+2·b3=Nx-1 

5 -1 p Nx-1·Jia/-Nx 5 6 p Nx+2·b3:/-Nx-1 

6 7 (1-p) Nx+1·b3 Nx�2 6 4 (1-p) Nx+1 ·b2 Nx-1 

6 10 p N x+l · b3;/-Nx -2 6 7 p Nx+1 ·h2:/-Nx-1 

7 8 (1-p) Nx-2·ft Nx-1 7 8 (l-p) Nx+2·b4 Nx-2 

7 -1 p Nx-2·fia/-Nx-l 7 9 p Nx+2·b4•J�Nx-2 

8 0 z3(1-p) · Nx-1-fl Nx 8 10 (1-p) Nx-2-f1 Nx-1 

8 -1 p Nx-1·fta/-Nx 8 -1 p Nx-2·f1:/-Nx-l 

10 10 z(l-p) Nx-1"f1 Nx 9 8 (l-p) Nx+l ·b3 Nx-2 

10 -1 p Nx-1·fia/-Nx 9 11 p N x+t · b3'F'N x-2 
10 0 z3(1-p) Nx-1•Ji Nx 
10 -1 p Nx-1 •f1:/-Nx 

11 12 (1-p) Nx+1·b4 Nx-3 
11 13 p Nx+l · b4;/-Nx-3 
12 14 (1-p) Nx-3-fi=Nx-2 

12 -1 p Nx-3-fi#Nx-2 
13 13 z(l:-p) Nx-1·/i Nx 

13 -1 p Nx-1f1#Nx 

14 15 (1-p) Nx-2-f1 Nx-1 
14 -1 p Nx-2-/1-#Nx-1 
15 0 z4(1-p) Nx-1·f1=Nx 

15 -1 p Nx-1 -f1¥-Nx 
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E.3. Markov model for binary trees 

We also present the results of using Markov models to study the connectivity of 

· the checksummed binary tree described in Chapter .4, and the sibling-linked binary 

tree described in Chapter 7. In the checksummed binary tree we consider a child 

node connected if either the link addressing it is correct or no other errors occur in 

the parent node, thus allowing this erroneous link to be corrected. 

As justified in Lemma 8.3, in a binary tree created by random insertion, the 

probability of encountering a leaf node is (n+1)/3n, the probability of encountering 

an incomplete node is the same, and the probability of encountering a full node is 

(n-2)/3n. In the Markov models we will assume that n is large and therefore use 

1/3 to approximate each of the above three probabilities. 

Checksummed binary tree 
This Next Generating Comments 
State State Function 

u u 11_3 At leaf noae - select another noae 
0 1 1/3 At an incomplete node 
0 6 1/3 At a full node 
1 0 z(l-p) Link correct 
1 2 p Link contains an error 
2 3 (l-p) No error in 2nd component 
2 -1 p Two errors in node 
3 4 (1-p) No error in 3rd component 
3 -1 p Two errors in node 
4 5 (1-p) No error in 4th component 
4 -1 p Two errors in node 
5 0 z(l-p) Only one error in 5 components 
5 -1 p Two errors in node 
6 7 z(l-p) Left link correct 
6 8 p Left link in error 
7 0 z(l-p) Left link correct - Right link correct 
7 3 p Left link correct - Right link in error 
8 3 z(l-p) Left link in error - Right link correct 
8 -1 p Two errors in node 
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Sibling-linked binary tree 
0 0 1/3 At a leaf node - select another node 
0 1 1/3 At an incomplete node 
0 3 1/3 At a full node 
1 0 z(l-p) Single child addressed by left link 
1 2 p Single child not addressed by left link 
2 0 z(l-p) Single child addressed by right link 
2 -1 p Single child disconnected 
3 4 z(l-p) Left link correct 
3 5 p Left link in error 
4 0 z(l-p) Right link correct 
4 6 p Left link correct - Right link in error 
5 6 z(l-p) Left link in error - Right link correct 
5 -1 p Both links contain errors 
6 0 z(l-p) Other child addre~d by arc pointer 
6 -1 p Other child disconnected 

E.4. Graphs · 

In the following graphs, predicted results were obtained using Markov models 

and the Maple code presented at the beginning of this appendix. The observed 

results were obtained from corresponding empirical studies. In the empirical studies, 

storage structure instances contained 100 data nodes. Binary trees contained 

approximately the same number of full, incomplete, and leaf nodes, but no effort 

was made to ensure that these trees were balanced. Pointers, and when appropriate 

checksums, in each storage structure instance were assigned arbitrary incorrect 

values with the indicated constant probability and a test performed to determine if 

the instance remained connected. This test was repeated 1000 times and the total 

number of times that the instance remained connected recorded. This exercise was 

repeated under a variety of different error probabilities. 

Empirical results were not obtained for the expected number of nodes capable 

of being traversed in large structures, given that components contained errors with 

constant probability. Such empirical studies would have required considerable 

computing resources, since large storage structures were involved, and probably 

would not have produced any significant new results. 
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APPENDIX F 

Analysis of local correction using Markov models 

F .1. Explanation 

This appendix analyses the behaviour of some of the local correction algorithms 

described in Chapters 4, 5, and 7, using the techniques described in Chapter 8 and 

Appendix E. We will study two issues. Firstly, in order to remain compatible with 

the results presented in Appendix C, we will determine the expected number of 

instances that can be corrected, given that we attempt local correction on 1000 

instances, each containing 100 data nodes, when selected components have a 

constant probability, p, of being in error. In our Markov models we assume that 

multiple errors do not conspire to assist or mislead correction algorithms. The results 

of this study will be compared with empirical data. 

Secondly, we will determine, for various values of p, the expected number of 

nodes traversed by correction algorithms prior to failing, given that we are 

examining an instance containing at least this number of nodes. All of these results 

will be presented graphically. 

F .2. Markov models for linked lists 

·· - We will compare local correction algorithms operating on a· number of different

unkeyed double-linked list structures. These structures are the checksummed 

double-linked list containing two additional checksum components, the virtual 

double-linked list (VDLL) [80], the mod(2) linked list, and the mod(3) linked list. 

Each node in the checksummed double-linked list was corrected by using the error 

correcting code presented in Appendix Al. The VDLL structure was corrected as 

described in [80), and the mod(2) linked list was corrected using the historical 

1-local-correction algorithm described in Appendix C. The mod(3) linked list was

corrected using the 2-selective-local-correction algorithm described in Chapter 5.

In each of the Markov models presented below we assume that local correction 

is attempting to determine the correct address of node Nx · If the correct address of 

this node cannot be determined, because of the errors in the correction locality, then 
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the Markov model enters a final state. Otherwise the Markov model proceeds 

through all subsequent nodes whose addresses are necessarily identifiable given the 

errors in the locality, before trying to determine the address of some new Nx. 

Somewhat surprisingly, the Markov model for performing- local correction of the 

- virtual double linked list was discovered to be identical to the Markov -model for 

performing local correction in the mod{2) linked list. Results are not -therefore 

presented for the local correction of virtual double linked lists. 

Although we succeeded in producing a Markov model for the helix{3) local 

correction algorithm, the generating function produced from the helix(3) Markov 

model exceeded 100,000 characters, and was computationally intractable using 

available computing facilities. 

1-local-correction of 
Checksummed linked list 

This Next Generating Comments 
State State Function 
u 1 1-p 1st component correct 
0 2 p Error in 1st component 
1 3 1-p Components 1 and 2 ok 
1 4 p Component 1 ok, 2 bad 
2 s 1-p Component 1 bad, 2 ok 
2 -1 p Components 1 and 2 bad 
3 6 1-p Compoµents 1, 2 and 3 ok 
3 7 p Components 1 and 2 ok, 3 bad 
4 8 1-p Components 1 and 3 ok, 2 bad 
4 -1 p Components 2 and 3 bad 
5 9 1-p Components 2 and 3 ok, 1 bad 
5 -1 p Components 1 and 3 bad 
6 0 z{l-p} All components correct 
6 0 zp Only component 4 bad 
7 0 z(l-p) Only component 3 bad 
7 -1 p Components 3 and 4 bad 
8 0 z(l-p) Only component 2 bad 
8 -1 p Components 2 and 4 bad 
9 0 z(l-p) Only component 1 bad 
9 -1 p Components 1 and 4 bad 
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1-local-correction of 2-selective-local-correction of 
Virtual double-linked list (VDLL) Mod(3) linked list 

0 1 1-p Nx-1-/1. Nx 0 1 1-p Nx+3·b3 Nx 
0 2 p Nx-1·fi-:/Nx 0 2 p N x+3•b3:/,N x 
1 0 z(l-p) Nx-1·vffiNx-2 Nx 1 0 z(l-p) Nx·fi Nx+l 
1 3 p Nx-1·vffiNx-2¥Nx 1 3 p Nx·fi#Nx+l 
2 3 1-p Nx-1·vE0Nx-2 Nx 2 4 1-p Nx·f1 Nx+1 
2 -1 p N x-1 · vf!i)N x-2#N x 2 5 p Nx·ft#Nx+1 
3 4 1-p Nx·f1 Nx+1 3 6 l-p Nx+2•b3 Nx-1 
3 -1 p Nx·fi#Nx+1 
4 0 z2(1-p) Nx·v{J)Nx·f1 Nx-1 

3 7 p Nx+2·b3'#:Nx-1 
4 8 1-p Nx+2•b3 Nx-1 

4 -1 p Nx·v{J)Nx·fi#Nx-1 4 7 p Nx+2·b3:/,Nx-1 

1-local-correction of 
Mod(k>2) linked list 

0 1 1-p Nx+k·bk Nx 
0 2 p Nx+k·bk#Nx 
1 0 z(l-p) Nx·f1 Nx+l 
1 3 p Nx·ft#Nx+1 
2 3 1-p Nx·f1 Nx+l 
2 -1 p Nx•ft#Nx+1 
3 4 1-p Nx+k-t"bk=Nx-1 
3 -1 p Nx+k.-1 ·bk#Nx-1 
4 0 z2(1-p) Nx-1·f1 Nx 
4 -1 p Nx-1·ft#Nx 

5 7 1-p Nx+2•b3 Nx-1 
5 -1 p Nx+2·b3#Nx-1 
6 9 1-p Nx-1·/1 Nx 
6 10 p Nx-1·f1'#:Nx 
7 10 1-p Nx-1·/1 Nx 
7 -1 p Nx-1•f1"FNx 
8 9 1-p Nx-1·/i Nx 
8 -1 p Nx-1·f1'#:Nx 
9 11 1-p Nx+1·b3 Nx-2 
9 12 p Nx+1·b3'#:Nx-2 
10 13 1-p Nx+1·b3 Nx-2 
10 -1 p Nx+1·b3:/,Nx-2 
11 0 z3(1-p) Nx-2·f1 Nx-1 
11 14 p Nx-2·f1#Nx-l 
12 14 l-p Nx-2'/i Nx-1 
12 -1 p Nx-2·f1#Nx-l 
13 15 l-p Nx-2·ft Nx-1 
13 -1 p Nx-2·f1#Nx-1 
14 16 1-p Nx·b3 Nx-3 
14 -1 p N x · b3,=N x-3 

15 17 1-p Nx·b3 Nx-3 
15 -1 p Nx·b3'#:Nx-3 
16 9 z2(1-p) Nx_3·f1 Nx-2 
16 -1 p Nx_3·f1#Nx-2 
17 0 z4(1-p) Nx_3·f1 Nx-2 
17 -1 p Nx_3·f1#Nx-2 
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,j-select1ve-Iocal-correct10n ot Helix(3) linked list {q: ,1-p} 
0 1 q Nx+3·b3 Nx 19 30 q Nx+1·b3 Nx-2 37 34 zq Nx·fi Nx+l 
0 2 p Nx+3·b3#=Nx 19 31 p Nx+1·b3"FNx-2 37 45 p Nx·f1#Nx+1 
1 3 q Nx+2·b2 Nx 20 24 z2qS Last 2 votes ok 38 21 zq3 Last vote ok 
1 4 p Nx+2·b2#=Nx 20 -1 l-qs Otherwise 38 -1 1-q3 Otherwise 
2 4 q Nx+z·bz=Nx 21 24 zq Nx·f1 Nx+1 39 3 zq Nx+2·b2 Nx 
2 5 p N x+2. bz#=N x 21 32 p Nx·fi#Nx+1 39 33 p Nx+2·h2#Nx 
3 0 zq Nx·ft Nx+l 22 30 q Nx+1•b3 Nx-2 40 34 z2q3 Last vote ok 
3 6 p Nx·f1¥=Nx+1 22 31 p Nx+1·b3#Nx-2 40 -1 l-q3 Otherwise 
4 6 q Nx-ft Nx+l 23 24 z2qS Last 2 votes ok 41 24 z2q2 Last vote ok 
4 7 p Nx·ft#Nx+1 23 -1 l-qs Otherwise 41 -1 1-q2 Otherwise 
5 8 q Nx+t"f1 Nx 24 3 zq Nx-ft Nx+1 42 46 q Nx+1·b3=Nx-2 
5 -1 p Nx+1·f1#Nx 24 33 p Nx·f1#Nx+1 42 47 p Nx+1·b3#Nx-2 
6 9 q Nx+2·b3 Nx-1 25 34 zq Nx·bz Nx-2 43 48 q Nx-1·/1 Nx 
6 10 p N x+2·b3#Nx-1 25 35 p Nx·b2#Nx-2 43 49 p Nx-1"f1#Nx · 
7 11 q Nx+2·b3 Nx-1 26 27 z2q3 Last vote ok 44 48 q Nx·ft Nx+l 
7 12 p Nx+2·b3#Nx-l 26 -1 1-q3 Otherwise 44 50 p Nx·f1#Nx+l 
8 13 q Nx-ft Nx+l 27 34 q Nx+2·b2--Nx 45 33 zq Nx-1 ·ft Nx 
8 14 p Nx·f1#Nx+l 27 36 p Nx+2·b2::;6Nx 45 -1 p Nx-1•ft#Nx 
9 3 zq Nx-t·ft Nx 28 37 zq3 Last vote ok 46 33 zq Nx·bz-Nx-2 
9 16 p Nx-1·ft#Nx 28 -1 1-q3 Otherwise 46 51 p Nx·h2#Nx-2 
10 17 q Nx+1 ·b3 Nx-2 29 27 zq Nx-f1-Nx+1 47 27 z2q2 Last vote ok 
10 18 p Nx+1 ·b3#=Nx-2 29 38 p Nx·ft#Nx+l 47 -1 1-ql Otherwise 
11 19 q Nx-1•/i Nx 30 39 zq Nx·b2 Nx-2 48 52 q Nx+1·b3 Nx-2 
11 20 p Nx-1 ·Ji:/:-Nx 30 40 p Nx·h2#-Nx-2 48 53 p Nx+1·b3#Nx-2 
12 21 zqs Last 2 votes ok 31 27 z2q3 Last vote ok 49 24 z2q4 Last 2 votes ok 
12 -1 1-qs Otherwise 31 -1 1-q3 Otherwise 49 -1 1 4 Otherwise 
13 22 q Nx+2·b3 Nx-1 32 3 z2q Nx-1·ft Nx 50 24 zi;} Last 2 votes ok 
13 23 p N x+2 · b3#=N x-1 32 41 p Nx-1•f1¥=Nx 50 -1 l-q4 Otherwise 
14 24 z2q6 Last votes ok 33 0 z2q Nx-t-ft Nx 51 34 z2q2 Last vote ok 
14 -1 1-q6 Otherwise 33 42 p Nx-1·f1,INx 51 -1 1-q2 Otherwise 
16 25 q Nx+1·b3....;Nx-2 34 33 q Nx+2·b2=Nx 52 3 z2q Nx·b2 Nx-2 
16 26 p N x+t. b3,:;fN x-2 34 43 p Nx+2·b2#Nx 52 54 p Nx·hz#Nx-2 
17 27 zq Nx·b2 Nx-2 35 34 z2q3 Last vote ok 53 27 z2q2 Last vote ok 
17 28 p N x · bz::;6N x-2 35 -1 1-q3 Otherwise 53 -1 l-q2 Otherwise 
18 29 zq3 Last vote ok 36 44 q Nx-t-ft Nx 54 34 z2q2 Last vote ok 
18 -1 1-q3 Otherwise 36 -1 p Disconnected 54 -1 1-q2 Otherwise 



167 

F .3. Markov model for binary trees 

We also present the results of using Markov models to study- local correction of 

the checksummed binary tree described in Chapter 4, and the sibling-linked binary_ 

tree described in Chapter 7. 

In the analysis of the sibling-linked tree we use· Markov· models to separately 

predict the probability of performing correction when only pointers may contain 

errors, and when only keys and checksums may contain errors. The probability of 

correcting a sibling-linked tree when errors may occur in pointers, keys, and 

checksums, is approximated by multiplying these two probabilities. 

If distinct dummy variables are used in distinct generating functions, and the 

Markov model for correcting pointers is extended by also allowing keys to contain 

errors with probability p, then the generating function describing correction of both 

· · keys and pointers in a sibling-linked tree is merely the product of the generating 

function describing the correction of each. 

Unfortunately, since this composite generating function contains two distinct 

dummy variables, the techniques described in Chapter 8 cannot be used to identify 

the expected number of nodes traversed by an algorithm correcting both keys and 

pointers. Therefore, we present separately the expected number of nodes traversed 

in a sibling-linked tree when each of these two types of error occurs. 

1-local-correction of 1-local-correction of keys in 
Checksummed binary tree Sibling-linked tree 

0 1 1-p 1st component ok 0 1 1-p Nx·s ok 
0 2 p 1st component bad 
1 3 1-p 2nd component ok 
1 4 p 2nd component bad 
2 0 z(l-p)4 At least two errors 
2 -1 1-(1-p)4 At least two errors 

0 2 p Nx·s bad 
1 0 z(l-p) Nx·k ok 
1 3 p Nx·k bad 
2 4 1-p Nx·k ok 

3 5 1-p 3rd component ok 
3 6 p 3rd component bad 
4 0 z(l-p) 3 No other errors 
4 -1 1-(1-p)3 At least two errors 
5 0 z(1-p) 4th component ok 

2 -1 p Nx·k bad 
3 5 1-p Nx+i·k ok 
3 -1 p Nx+l"k bad 
4 6 1-p Nx+i·k ok 

5 7 p 4th component bad 4 -1 p Nx+1·k bad 
6 0 z(l-p)2 No other errors 
6 -1 1-(1-p)2 At least two errors 
7 0 z(l-p) 5th component ok 
7 -1 p At least two errors 

5 0 z2(1-p) N:x+1·s ok 
5 -1 p Nx+1·s bad 
6 0 z2(1-p) Nx+i·s ok 
6 -1 p Nx+i·s bad 
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1-local-correction of pointers in 
Sibling-linked tree 

0 1 1/3 At a leaf 
0 3 1/3 At incomplete node 
0 7 1/3 At full node 
1 0 z(l-p) Left link null 
1 2 p Left link bad 
2 0 z(l~p) Right link null 
2 -1 p Both links bad 
3 4 1-p Left link ok 
3 5 p Left link bad 
4 0 z(l-p) Right link ok 
4 6 p Right link bad 
5 6 1-p Right link ok 
5 -1 p Disconnected 
6 0 z(l-p) Child arc ok 
6 -1 p Child arc bad 
7 8 1-p Left link ok 
7 9 p Left link bad 
8 10 1-p Right link ok 
8 11 p Right link bad 
9 11 1-p Right link ok 
9 -1 p Disconnected 
10 0 z(l-p) First arc ok 
10 12 p First arc bad 
11 0 z(l-p) 2 Neither arc bad 
11 -1 1-(1-p) 2 At least one arc bad 
12 0 z(l-p) Other arc ok 
12 -1 p At least one arc bad 

F.4. Graphs 

In the following graphs, predicted results were obtained using Markov models 

presented earlier in this appendix and the Maple code presented at the beginning of 

appendix E. The observed results were obtained from corresponding empirical 

studies. In the empirical studies storage structure instances contained 100 data 

nodes. Binary trees contained approximately the same number of full, incomplete, 

and leaf nodes, but no effort was made to ensure that these trees were balanced. 

Pointers, and when appropriate keys and checksums, -in each storage structure 

instance were assigned arbitrary incorrect values with the indicated constant 

probability and a test performed to determine if the instance was correctable. This 

test was repeated 1000 times and the total number of times that the instance was 

corrected recorded. This exercise was repeated under a variety of different error 

probabilities. 
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