

Abstract—Fact bases produced by software comprehension

tools are large and complex, reaching several gigabytes in size for

large software systems. To effectively study these databases,

ether a query engine or a visualization engine is necessary.

In our proposed demo we will showcase LSEdit, a full-featured

graph visualizer and editor, which is suitable for, but not limited

to, visualizing architectural diagrams of software. LSEdit is

equipped with advanced searching, elision, layout and editing

capabilities. It has been successfully used in the past to visualize

extractions of Mozilla, Linux, Vim, Gnumeric, Apache and other

large applications.

Index Terms—Visualization, software architecture.

I. INTRODUCTION

SEdit is a graph visualizer that is uniquely suited for,

although not limited to, displaying architectural diagrams

of software systems. LSEdit displays the architecture of a

software system by treating it as a set of nested boxes

(entities) interconnected by arrows (edges). The nesting of

boxes usually, although not always, represents containment,

such as containment of a file within a subsystem or of a

function within a file. Various types of edges can be used to

represent various relationships that exist between entities in a

software system, such as “calls” or “accesses”.

By representing system architecture as a series of nested

boxes, LSEdit allows its users to focus their exploration on a

certain subsystem of the software being examined, thereby

reducing the amount of information that needs to be

understood at any one time. Elision and layout tools provide

the ability to filter available information and present it in a

variety of layouts, allowing the user to generate a view of the

software that is most meaningful.

LSEdit supports both exploration and editing of the

landscape. On the exploration side, it provides a containment

tree view of the landscape, not unlike that given by Windows

Manuscript received February 9, 2005.

Richard C. Holt is a full professor and a Nortel Networks Chair for
Telecommunications Software Engineering at the University of Waterloo,

Ontario, Canada. E-mail: holt@uwaterloo.ca

Nikita Synytskyy is a researcher working for the Software Architecture
Group at the University of Waterloo, Ontario, Canada. E-mail:

nikita@mondenet.com

Ian Davis is a researcher working for the Software Architecture Group at
the University of Waterloo, Ontario, Canada. E-mail: ijdavis@uwaterloo.ca.

Explorer, a browsing history that the users can view and travel

back and forward in, searching by name and type, and elision

tools that help users in hiding the data they don’t currently

want to see. Editing tools include the ability to add, delete and

edit nodes and edges and apply configurable layout

algorithms. Multiple levels of undo mean that users can edit

without fear, knowing that all changes they make can be rolled

back.

In our demo we will show a variety of fact bases (also

called landscapes) that have been extracted for LSEdit in the

past. We will include both large and small fact bases. Large

fact bases, which represent big software systems like Mozilla

or Gnumeric, will allow the users to experience searching and

elision capabilities of LSEdit. Smaller landscapes, which

represent toy programs, will give the users an idea of how a

real application looks in landscape format. The users will be

given a hands-on experience; they will have a chance to use

LSEdit to explore a large landscape and experience its features

for themselves.

The following sections of the proposal are as follows:

Section 2 gives a more detailed description of LSEdit’s

features, and gives some insight into its implementation

details. Section 3 describes our demonstration plan. Section 4

describes the benefits of using LSEdit for architecture

recovery and gives a brief history of its use in program

comprehension tools. Finally, section 5 discusses future

development plans for LSEdit.

II. DESCRIPTION OF LSEDIT

LSEdit is written in Java and runs on any platform that

provides a Java Virtual Machine. It can also be embedded in a

web page and run across the Internet as an applet. When run

as an applet, it can load and display a landscape file located

anywhere on the Internet.

The landscapes that LSEdit operates on are stored in Tuple-

Attriubte Language (TA) format [1]. TA is a plain-text

database format, which means it is easy to generate either

automatically or by hand. TA is based on Rigi Standard

Format (RSF), first introduced by the Rigi [2] reverse

engineering tool. TA is the underlying format of several

reverse engineering tools [3][4].

LSEdit’s features fall into two main categories: exploration

features and editing features. Exploration features help users

study the landscape, allowing them to search and navigate

Browsing Software Architectures

With LSEdit

Nikita Synytskyy, Richard C. Holt, Ian Davis

University of Waterloo

Canada

L

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEEAuthorized licensed use limited to: University of Waterloo. Downloaded on May 27,2024 at 00:03:18 UTC from IEEE Xplore. Restrictions apply.

2

through the fact base, selectively hide and display data, and

manage their navigational experienced. Editing features allow

the users to change the landscape by adding, deleting and

editing nodes and edges, and automatically or semi-

automatically arranging nodes in a landscape into layouts that

are helpful in understanding the software being examined.

Figure 1: LSEdit running as an applet.

A. Exploration features

Navigation. A user uses LSEdit to browse the landscape by

entering into the boxes corresponding to architectural entities

of the program being explored. When in a particular box, only

its children are shown by default; all other boxes are hidden to

prevent cluttering the view. The user can navigate deeper and

deeper into the landscape, navigating it as if it were a

filesystem.

Dependencies between entities are shown as arrows going

between the appropriate boxes; these dependencies can also be

lifted to provide a higher level of abstraction.

Navigation aides. LSEdit provides several navigational tools

that make navigation easier. One is a Table of Contents

(TOC) view, which shows the entire landscape in an

expandable/collapsible tree. Another is the history; similar to

the history feature of Web browsers, it keeps track of all

locations visited and allows the user to return to any one of

them. The final navigational tool is the map, which always

shows the path taken from the root node to the current

location.

Searching and elision. Users can search for any box by its

name and type. They can also limit the amount of information

shown by hiding all boxes or arrows of a given type, or related

to a particular entity.

B. Editing features

Basic editing. LSEdit allows for creation of new entities

and edges, and deletion of existing ones. Location and all

other properties of entities can be changed.

Layouts and positioning. LSEdit provides several built-in

layout algorithms, which organize the entities in a landscape

according to the edges going between them in various ways.

Spring and tree layouts are among the ones provided. Entities

can also be aligned on both vertical and horizontal axes,

distributed in a given amount of space, and resized in a

number of ways.

Undo and redo. Any edit that can be done can be also

undone. Any edit that has been undone can also be re-done.

100 levels of undo are supported by default, and the limit can

be increased if necessary.

III. DEMONSTRATION FORMAT

During the demo we will have LSEdit running on computers

with several large landscapes available for browsing. This

will give the participants a chance to use LSEdit to explore a

real system. This will expose them to the exploration features

that LSEdit provides. To demonstrate LSEdit’s ability to run

as an applet over the Web, one of the running copies of LSEdit

will be running as an applet on an Internet browser. Figure 1

shows a screenshot of LSEdit running as an applet under

Internet Explorer.

Several small landscapes representing toy programs will also

be available. These examples are valuable because toy

examples can be easily understood from their source code

alone. The demonstration participants can gain insight into

how LSEdit displays software architecture by comparing the

landscapes presented with the mental models that they have

independently formed.

IV. LSEDIT IN PROGRAM COMPREHENSION

A. Understanding architecture

LSEdit simplifies studying software architecture by

providing a repository to store information about the

architecture of a system as it is discovered. It allows for

convenient storage, retrieval and modification of information

on containment, dependencies and module structure. LSEdit

presents this information using an easily understandable

paradigm and provides tools to search, filter and modify it.

Understanding the architecture of a software system without

the benefit of specialized tools usually involves two activities:

studying the source code to gain detailed knowledge about

dependencies between various code entities, and examining

the directory structure of the project and/or supporting

documentation in order to understand how the software system

is divided into sub-parts, i.e. modules. The two bodies of

knowledge can then be combined to get a complete picture of

the system’s components and their interactions.

Unfortunately for programmers and researchers, this

activity is rather difficult, because it requires the person doing

the study to sift through, and commit to memory, very large

amounts of data. This process is inevitably error-prone—in

any system of more than a trivial size the researcher will not

be able to discover all dependencies, will get some of them

wrong, and will forget some of the results.

Keeping notes in this situation is essential, and LSEdit’s

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEEAuthorized licensed use limited to: University of Waterloo. Downloaded on May 27,2024 at 00:03:18 UTC from IEEE Xplore. Restrictions apply.

3

main strength is that it serves as a notebook. Rather than

starting out blank, it comes pre-initialized with all the facts

discovered by a fact extractor. These typically capture all

dependencies within the software system, and provide a

general outline of the module structure, as derived from the

directory structure. LSEdit’s exploration features provide for

easy searching and viewing of that information.

The source code does not contain all information on the

software’s structure. Some of it is contained in

documentation, in comments, and in the minds of the

developers. As the researcher discovers this information, it

can be incorporated into the landscape, until the landscape

adequately reflects the system architecture.

B. Historical use

LSEdit has a long development history and over the years has

been used as a visualization engine for many reverse

engineering tools developed at the Software Architecture

Group (SWAG) at the University of Waterloo. It was first

developed for use with the Portable Bookshelf [5]. As a part

of that system, it was used to visualize the extracted

architecture of the Linux kernel [6][7].

An upgraded version of LSEdit is currently used as a part of

several architecture recovery and design analysis toolkits: the

LDX/BFX pipeline [3][8] and the SWAG Kit [4][9]. As part

of these packages, it is used in graduate software architecture

courses taught at the University of Waterloo.

LSEdit is free software. It is available for download, together

with supporting documentation, on the LSEdit homepage[10].

V. FUTURE WORK

When exploring a large fact base, it is beneficial to have

both a query engine and a visualizer. The Software

Architecture Group of the University of Waterloo has

experience developing both classes of tools, and our next

project aims to integrate the two in a single application.

A query engine integrated with a visualizer would yield the

combined power of both classes of tools: the expressiveness

and power of command-line queries will be complemented by

the instant feedback and ease of understanding that only a

graphical interface can provide.

Such an application will also be able to capitalize on the

synergies of the two engines. For example, it could provide

additional feedback by visually displaying the results of

executed queries, or by allowing users to build queries about

the objects currently visible in the graphical display.

REFERENCES

[1] “An Introduction to TA: the Tuple-Attribute Language”, R. C. Holt,

March 1997 (updated July 2002). Available on-line:
http://plg.uwaterloo.ca/~holt/papers/ta-intro.htm

[2] H. A. Müller, K. Wong, and S. R. Tilley. “Understanding software

systems using reverse engineering technology.” The 62nd Congress of
L'Association Canadienne Francaise pour l'Avancement des Sciences

Proceedings (ACFAS 1994)

[3] “Linker-Based Program Extraction and Its Uses in Studying Software

Evolution”, Jingwei Wu and Richard C. Holt, in Proceedings of the
International Workshop on Unanticipated Software Evolution,

Barcelona, Spain, March 28, 2004.

[4] “Union Schemas as the Basis for a C++ Extractor”, Thomas Dean,
Andrew Malton, and Richard Holt: Working Conference on Reverse

Engineering, Stuttgart, Germany, Oct 2-5, 2001.

[5] “The Software Bookshelf”, P. Finnigan, R. Holt, I. Kalas, S. Kerr, K.
Kontogiannis, H. Muumller, J. Mylopoulos, S. Perelgut, M. Stanley, and

K. Wong. IBM Systems Journal, Vol. 36, No. 4, pp. 564-593, November

1997
[6] “Linux as a Case Study: Its Extracted Software Architecture”, Ivan T.

Bowman, Richard C. Holt and Neil V. Brewster, ICSE '99: International

Conference on Software Engineering, Los Angeles, May 1999.
[7] “Software Bookshelf of the Linux Kernel”, Available on-line:

http://swag.uwaterloo.ca/pbs/examples/linux/index.html

[8] LDX and BFX homepage. Available on-line:
http://swag.uwaterloo.ca/qldx/index.html

[9] SWAG Kit homepage: http://swag.uwaterloo.ca/swagkit/index.html

[10] LSEdit homepage: http://swag.uwaterloo.ca/lsedit/index.html

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEEAuthorized licensed use limited to: University of Waterloo. Downloaded on May 27,2024 at 00:03:18 UTC from IEEE Xplore. Restrictions apply.

