
SPEcTRe: Spot-checked Private Ecash Tolling at Roadside

Jeremy Day
School of Computer Science

University of Adelaide∗
Adelaide, Australia

jerday@gmail.com

Yizhou Huang
Cheriton School of
Computer Science

University of Waterloo
y226huan@uwaterloo.ca

Edward Knapp
Dept. of Combinatorics &

Optimization
University of Waterloo

eknapp@uwaterloo.ca
Ian Goldberg

Cheriton School of
Computer Science

University of Waterloo
iang@cs.uwaterloo.ca

Abstract
Traditional stop-and-pay toll booths inconvenience drivers
and are infeasible for complicated urban areas. As a way
to minimize traffic congestion and avoid the inconveniences
caused by toll booths, electronic tolling has been suggested.
For example, as drivers pass certain locations, a picture of
their licence plate may be taken and a bill sent to their home.
However, this simplistic method allows the administrator of
the system to build a dossier on drivers. While this may be
an attractive feature for law enforcement, a society may not
wish to trust the tolling agency with such detailed informa-
tion. We present SPEcTRe, a suite of protocols to maintain
driver privacy while ensuring that tolls are accurately col-
lected. Existing protocols for privacy-preserving electronic
toll pricing suffer from computational challenges and require
an undesirable amount of location data to be collected. We
present two schemes: the spot-record scheme, which requires
the same amount of location data exposure as prior privacy-
preserving schemes, but runs much faster, and the no-record
scheme, which collects no location information from honest
users and is still able to run efficiently.

Categories and Subject Descriptors
K.4.1 [Public policy issues]: Privacy

General Terms
Security, Design
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1. INTRODUCTION
Electronic Toll Pricing (ETP) aims to improve road tolling

by collecting toll fares electronically and without the need
to slow down vehicles. In most ETP schemes, drivers are
charged periodically based on the locations, times, distances
or durations travelled. ETP is sometimes used to reduce
traffic congestion as vehicles tend to avoid peak drive times
due to the extra fees associated with them, such as with the
London congestion charge [13]. Usually, these schemes re-
quire the use of an on-board unit in the vehicle. As opposed
to traditional stop-and-pay tollbooths, ETP schemes can be
used in a more pervasive manner, potentially making, for
example, all roads in a downtown core into toll roads.

Many ETP schemes are currently deployed, such as e-TAG
in Australia [11] and E-ZPass in the United States [19]. Sin-
gapore was the first to implement an ETP system to reduce
congestion in 1998 [6]. Although these systems are efficient,
they require a great deal of knowledge regarding driving
habits in order to operate correctly. In particular, these
systems store time, location, and identity, making it easy to
build a profile of a driver’s daily travel. In the United States,
E-ZPass records can be obtained by court order in several
jurisdictions for use in civil matters such as divorce [16].
Given that a high level of privacy can be obtained using
traditional stop-and-pay toll booths, an ETP protocol that
maintains a comparable level of privacy would be ideal.

We propose two ETP schemes in which tokens are broad-
cast periodically from the driver’s vehicle. If a driver is
caught not broadcasting a valid token, the driver is appro-
priately penalized. In this manner, we ensure that drivers
behave honestly at all times, so long as they cannot discern
when someone is monitoring their broadcasts. In our first
scheme, we offer privacy guarantees similar to those offered
by other privacy-preserving schemes. In particular, the cen-
tral authority only learns the location data corresponding
to times and places where the vehicle is physically observed.
In our second scheme, we examine the cost of a system that
does not require the collection of any private data of honest
drivers. Both of these schemes rely on simple primitives such
as RSA Full Domain Hash [9] and Chaum’s ecash [7]. This is
in contrast to the comparatively expensive zero-knowledge
proofs and secure two-party computations needed by other
ETP protocols, such as VPriv [18], PrETP [2], and Milo [15].



1.1 Our Contributions
We present SPEcTRe, a suite of protocols for electronic

toll pricing. The SPEcTRe spot-record scheme records time-
location information where drivers are physically observed.
This is comparable to other schemes, but runs much faster,
requiring only a modest amount of computational power to
support one million vehicles. All the state-of-art ETP proto-
cols including our spot-record scheme keep records of a small
amount of location-time tuples in order to combat dishonest
drivers. However, the SPEcTRe no-record scheme stores no
private information of drivers, while still being capable of
detecting cheaters.

1.2 Organization
The remainder of this paper is organized as follows. In

section 2, we discuss other schemes that provide privacy-
preserving electronic toll pricing. In section 3, we describe
various cryptographic primitives that we use in SPEcTRe.
Our spot-record-based scheme is outlined in section 4 and
our no-record scheme is given in section 5. We compare
SPEcTRe with previous results in section 6. In section 7, we
describe some of the hardware required to realize SPEcTRe.
We give some results on the performance of SPEcTRe in
section 8. Finally, we give concluding remarks in section 9.

2. RELATED WORK
Recently, much work has been done to build privacy-pre-

serving schemes for electronic toll pricing and other related
driving problems. For instance, work has been done to ex-
tend the problem to insurance pricing and speeding detec-
tion. Popa et al.’s VPriv [18] provides a practical proto-
col for computing path functions for several driving-related
problems while maintaining a high level of privacy. The
protocol uses a secure two-party computation to make sure
drivers cannot cheat on the total tolling price if they do not
cheat on the tokens they have uploaded. To ensure users
upload the correct data, the authority is required to ran-
domly record some {license plate, location, time} tuples, and
then challenge drivers with these records during payment.
It is important that the number of random observations, or
“spot-checks”, are kept to a moderate amount to maintain
drivers’ privacy. A measurement is performed to show that a
modest hardware infrastructure can easily serve one million
vehicles. VPriv is one of several recent papers that attempt
to solve the problem of location privacy through the use of
zero-knowledge proofs and secure multi-party computation.

Published a year after VPriv, Balasch et al. propose the
PrETP scheme [2] with similar goals. They define a crypto-
graphic protocol, Optimistic Payment, and prove it secure
using zero-knowledge proofs and the RSA assumption. Un-
like VPriv, they do not use secure two-party computations.
Instead, the Toll Charger requires homomorphic commit-
ments from clients, and the Toll Service Provider asks clients
to open commitments to certain location-time tuples corre-
sponding to its random spot-checks. For each client, only
the total payment amount and location-time tuples in the
physical vicinity of random spot-checks are revealed. They
construct an on-board unit and analyze their system from
a security, legal, performance, and cost perspective. Based
on PrETP, Meiklejohn et al.’s Milo [15] furthermore con-
siders the possibility that drivers may collude to learn the
spot-checking locations. By utilizing blind identity-based
encryption, these locations are not revealed to drivers.

The use of ecash to pay for driving has been suggested by
Chaum and others [3, 8, 14] but the concept has not been
used in a pervasive electronic tolling scheme until now. In
particular, it is merely suggested that ecash replace physical
currency. However, we have found that we can improve on
this naive implementation by reducing the number of tolling
points while maintaining driver honesty and privacy.

In VPriv, PrETP and Milo, spot-checks are necessary to
uncover cheating drivers. SPEcTRe maintains the same
level of privacy as these other schemes for drivers, in the
sense that in all these schemes, location-time information of
a vehicle is only revealed at spot-checking points. We also
offer the same amount of security. Cheating drivers are de-
tected, and a dishonest central authority cannot learn any
more information than they do by spot-checking.

3. CRYPTOGRAPHIC PRIMITIVES
In this section, we describe various protocols which un-

derlie SPEcTRe.

3.1 Signatures
The RSA Full Domain Hash signature scheme [9] is secure

relative to the RSA assumption, the difficulty of finding e-
th roots modulo a composite integer. The RSA assumption
is conjectured to be equivalent to factoring. The scheme
consists of three algorithms, Generate, Sign, and Verify.
Generate constructs an RSA modulus N and integers e,

d such that ed ≡ 1 (mod ϕ(N)). The algorithm returns a
public key (e,N) and a private key (d,N). The algorithm
publishes a hash function H : {0, 1}∗ → ZN .
Sign takes as input a message m and returns the signature

σ = (H(m))d.
Verify takes as input a message m and a signature σ.

The signature is valid iff σe = H(m).
The Generate and Sign algorithms are run by the signer.

The Verify algorithm can be run by anyone in possession of
the corresponding public key. We remark that although the
private key (d,N) is sufficient to use the scheme, in practice,
keeping the factors of N as part of the private key speeds
up the Sign algorithm.

3.2 ecash
Chaum [7] introduced the concept of ecash. The essential

idea is that a user can purchase a single interaction with
a server the end result of which is a cryptographic coin in
the possession of the user which can only be created by the
server. Presuming the server demands a fixed amount of a
given currency to create a coin and presuming a coin can
be redeemed for the amount in question, the coin may be
treated as though it were the underlying currency.

The attractiveness of Chaum’s scheme lies in the privacy
guarantees. In particular, given two coins created in two
separate interactions with the server, it is information-the-
oretically impossible to relate the coins to the respective
events which created each coin.

We present an instantiation which produces RSA Full Do-
main Hash [9] signatures but the result can be generalized
to other signature schemes. Chaum’s scheme consists of the
algorithms Generate, Commit, Sign, and Open.
Generate returns a public key (e,N), a private key (d,N),

and a hash function H : {0, 1}∗ → ZN as detailed in sec-
tion 3.1.



Commit takes as input a message m. The algorithm selects
x ∈ ZN uniformly at random and returns c = xe ·H(m).
Sign takes as input a commitment c and returns γ = cd.
Open takes as input a signed commitment γ and the cor-

responding random value x. The algorithm returns the sig-
nature σ = γ · x−1.

The algorithms Generate and Sign are run by the signer,
who holds the private key, while the remaining algorithms
are run by the client, who holds the public key.

Finally, given the public key (e,N), anyone can run, on in-
put (m,σ), the Verify algorithm which returns the Boolean

value σe ?
= H(m).

The security of Chaum’s scheme can be proven equiva-
lent to solving the One-More-RSA-Inversion problem [4]. In
practice, it is generally assumed that this is equivalent to the
RSA problem but currently it is only known that the One-
More-RSA-Inversion problem can be reduced to the RSA
problem.

3.3 Pairings and BLS
Let G1, G2, GT be groups of order r. An asymmetric

bilinear pairing e : G1 × G2 → GT is a map which is linear
in each coordinate (under the group operations). We de-
scribe how to use a pairing to implement a (blind) signature
scheme. The advantage of the pairing-based schemes is that
compared to RSA Full Domain Hash, signatures are smaller
and signing is more efficient at higher security levels.

The BLS signature scheme [5] is defined as follows. As
global public parameters, generators g1 ∈ G1, g2 ∈ G2, and
a hash function H : {0, 1}∗ → G1 are selected. A signer se-
lects a random integer a in the interval [1, r−1] as his private
key and publishes the corresponding public key A1 = ga1 ,
A2 = ga2 . To sign the message m, the signer computes the
signature σ = H(m)a. To verify the signature σ of the
message m signed under the public key (A1, A2), the driver

checks that e(H(m), A2)
?
= e(σ, g2). To save space, the y-

coordinate of the signature σ can be thrown away; unlike
the generic situation for elliptic curve point compression,
for BLS, not even one bit need be kept [17]. This comes
at a slight extra cost for verification, as that coordinate will
need to be recomputed, but this extra cost is negligible com-
pared to the pairing operations (over two orders of magni-
tude cheaper).

In order to obtain blind signatures, a driver wishing to
have the message m signed can give gx1H(m) to the signer
for some random x, receive back γ = (g1)xaH(m)a from
which the signature σ = γ · A−x

1 can be computed. This
allows us to implement SPEcTRe using pairings instead of
RSA.

4. SPOT-RECORD SCHEME
There are four main components of a tolling scheme. A

registration server registers drivers, possibly providing them
with an on-board unit. A driver drives on toll roads and
verifiably pays for driving either during or after transit. A
verifier occasionally monitors the drivers as they drive. A
payment server ensures that drivers pay for the amount of
driving they perform. We could expect that the registra-
tion server, payment server, and verifier are managed by the
same entity. The goal is to protect the privacy of the driver
while enforcing that the driver correctly pays for his driv-
ing. Specifically, we concern ourselves with location privacy,

which is the linkability of the times and places a particular
driver has travelled.

In our scheme, the driver obtains tokens from the reg-
istration server at the beginning of some time period (for
example, a month). While driving, the driver spends the
tokens by broadcasting them. At the end of the time pe-
riod, the driver interacts with the payment server to redeem
unused tokens and pays for the tokens used.

We present SPEcTRe using the RSA Full Domain Hash
signature scheme. However, the BLS signature scheme can
be used as well. The tolling protocol consists of three phases:
registration, driving, and reconciliation. During registration,
the driver is assigned a random private identity i and a set
of tokens of the form (r, σ), where σ = H(r, i)d and r is
a random string. The identity i should correspond to the
license plate of the driver’s vehicle but the correspondence
should be kept private from third parties.

While driving, the driver broadcasts tuples (r, σ), switch-
ing tuples at predefined intervals. In order to ensure drivers
are broadcasting, a verifier secretly monitors drivers at ran-
dom locations and times. For each driver, the verifier takes
a picture of the driver’s licence plate and records all tuples
(r, σ) which are being broadcast. No further work needs to
be done by the verifier other than recording and storing this
data.

For each license-plate photograph, there is a set of records
{rj , σj}j that were recorded in the vicinity. The registration
server derives an identity i from the photograph and en-
sures that σe

j = H(rj , i) for some index j, forming a tuple
(i, rj , σj) for each photograph. This server also checks for
double spending by ensuring no identity uses the same ran-
dom string rj in two different locations. If no signature is
found for a given photograph or a signature appears twice,
it is concluded that the driver is cheating.

Finally, during payment, the driver submits all tuples
(r, σ) which were not spent. The payment server verifies that
none of these tokens were detected and collects payment for
those tokens not submitted. Alternately, full payment for
all tokens can be made at registration time and a refund for
the submitted tokens can be received during reconciliation.

If the verifier is capable of taking photographs and de-
tecting tokens in a stealthy manner, then the driver must
always spend tokens while driving to avoid penalty. Since
a private random identity is chosen for each licence plate,
tuples cannot be linked to each other without knowledge of
the identity. Since the identity is not broadcast as part of
the token, a third party cannot determine the identity cor-
responding to a given tuple. Location data is only collected
during spot-checks. This is similar to VPriv, PrETP, and
Milo, and is a vast improvement over schemes implemented
today, such as E-ZPass.

5. NO-RECORD SCHEME
In the preceding scheme, a small amount of location-time

information about honest drivers is recorded in order to com-
bat cheating drivers. However, in an ideal privacy setting,
we want to collect no information about honest drivers at all,
but still be able to detect dishonest drivers. Our no-record
(NR) scheme is an exploration of this possibility.

To accomplish this, we require the additional engineering
capability that the spot-checking verifiers be able to deter-
mine which car is broadcasting which token, through the use
of directional antennas or triangulation, for example.



Initially, the registration server runs the ecash Generate

algorithm and gives the public key to all other components
in the scheme.

From the perspective of the driver, our scheme consists of
three algorithms: an interactive Create algorithm, the Ver-

ify algorithm, and the Payment algorithm. Contained with
the Create algorithm is the collection of ecash algorithms.
The driver selects a random string m ∈R {0, 1}∗ and a ran-
dom integer x ∈R ZN . The driver sends c = xeH(m) to the
registration server and obtains cd from the server. From cd,
the driver can compute the signature σ = x−1cd = H(m)d.
The Create algorithm is described in Figure 1. The driver
runs the Create algorithm n times to get n tokens from the
registration server.

User Registration Server
m ∈R {0, 1}∗
x ∈R ZN

c = xeH(m) −→ c
γ ←− γ = cd

σ = γ · x−1

Figure 1: The creation of one token

While driving, the driver broadcasts tokens (m,σ) at a
predetermined rate. The Verify algorithm is run by the
verifier as these tokens are received. If the Verify algo-
rithm indicates that a signature is invalid, or if the driver is
not broadcasting tokens at all, the driver is held accountable
in some manner at the time the algorithm is run. In prac-
tice, the verifier will be associated with a camera or police
presence which can take appropriate measures.

After a predetermined period of time (eg. monthly), the
driver’s tokens are invalidated. At this time, the driver in-
teracts with the payment server to redeem his unused tokens
and pay for the service Invalidation can be done by using a
different public key (e,N) for each time period.

The spot-record scheme has the advantage that the veri-
fier does not need to do any work online other than pho-
tographing license plates and recording tuples. The no-
record scheme has the advantage that the amount of private
data recorded is reduced but requires a more involved veri-
fier in order to detect malicious activity, as outlined next in
section 5.1.

5.1 Combating Double Spending
Malicious drivers have a number of opportunities to dou-

ble spend their tokens. First, a single driver can use the
same token more than once while driving. Second, a single
driver can spend a token while driving and then attempt
to redeem the token during payment. Third, two drivers
can use the token at the same time in different locations.
An individual verifier can maintain a sorted list of detected
tokens and check new tokens against this list to combat dou-
ble spending locally. If the verifiers periodically synchronize
and ultimately report their results to the payment server, the
first and second attacks can be combated. However, without
constant communication between verifiers, two drivers using
the same token at the same time cannot be detected.

In light of the fact that we need the verifiers to be synchro-
nized to prevent double spending, we introduce a centralized
server called the verify server which interacts with the ver-
ifier to combat double spending. After the verifier ensures

the signature is correct, the message m is sent to the ver-
ify server to be checked against other messages. The server
indicates to the verifier if the token was double spent or not.

5.2 Reducing the Cost of Double-Spending
Detection

Since verification is a very time-sensitive procedure, we
would like to reduce the server-side latency as much as pos-
sible. We can search and insert into a B+ tree in time
O(logn). With even a modest number of vehicles, the num-
ber of tokens and verification percentage results in very rapid
growth in the size of the B+ tree. If n were small enough
to fit in memory, it would greatly reduce the server-side
latency and eliminate the need for complicated database-
management techniques. To this end, we show that by bind-
ing m to a time or location, the double-spending detection
cost can be reduced significantly.

We modify SPEcTRe as follows. During the Register

algorithm, for each possible time t, the driver constructs
m = (H(r, t), H(i, s)), where r and s are fixed-length bit-
strings chosen uniformly at random. The driver obtains a
signature on m in the same manner as in the preceeding de-
scription of the algorithm with the final result being a set
of tuples of the form (t, r, i, s, σ). We suggest that the gran-
ularity of t be 5 minutes for instance. If this granularity is
too small, then as we will see in section 8, the performance
of this scheme might suffer as the registration phase would
turn out to be a bottleneck.

While driving, the driver selects the token (t, r, i, s, σ) cor-
responding to the current time. The driver computes b =
H(i, s) and broadcasts (t, r, b, σ). The verifier receives this
tuple and rejects the token if t does not correspond to the
current time window. It computes the value m = (H(r, t), b)

and verifies the signature as H(m)
?
= σe. Finally, the value

m is sent to a central server to ensure that the token is not
being double spent.

During the time corresponding to t, the verify server needs
to compare tuples (t, r, b, σ) only to other tuples of the form
(t, r′, b′, σ′) in order to detect double spending. If n cars are
being detected during the time period corresponding to t,
the total time and space complexities for detecting double
spending are O(n logn) and O(n) respectively. Of particu-
lar note is the amount of space required. One million vehi-
cles and a 160-bit value for m gives a total memory cost of
20 MB.

Finally, the payment server collects all sorted time-based
lists and merges them into a master sorted list. The driver
computes a = H(t, r) and submits a sorted list of tokens
to be redeemed of the form (a, s, σ). Since the identity i is
fixed for all tuples, there is no need to submit it multiple
times. The payment server computes m = H(a,H(i, s)) for
each tuple, ensures the list is sorted by the m’s, runs the
Verify algorithm on each tuple and ensures that there are
no repeated tuples. Finally, the payment server checks the
submitted list against the master list to detect if the driver
is attempting to redeem spent tokens. Since the tokens that
drivers are attempting to redeem are bound to their identity,
they cannot be spent by two drivers. Hence, the submitted
list need not be added to the master list. The driver pays
for those tokens not returned to the payment server.

We will describe the security and privacy implications of
this modification in the next section. We also remark that
the entirem need not be transmitted during the verify phase;



Table 1: A comparison of various schemes in terms of the complexities of each phase, security and privacy
properties, and also whether real-time cheating detection (RCD) and real-time verifier communications (RVC)
are required when drivers are driving on the road. n is the number of tokens per driver. u is the number of
drivers. k is the average number of tokens spent per driver. r is the average number of detections per driver.
ρ is the granularity of the bound time (a small fraction), so ρ−1 is the number of time slices for one month.
All algorithms are per driver. ZKP stands for zero-knowledge proofs and SMC denotes secure-multiparty
computation. Hash denotes the assumption of a preimage-resistant and collision-resistant hash function. Milo
also includes an Audit phase which has been grouped with Verify (and thus unchanged, since r < k). Also
note that the constants hidden behind the O notation for schemes with ZKP and SMC are quite large, while
for SPEcTRe, they are very small. Privacy means the extent to which data of honest users are unmonitored.

Verify / Payment / Security Privacy RCD RVC
driving reconciliation assumptions

VPriv O(k) O(k) RSA, ZKP, SMC Partial No No
PrETP O(k) O(k + u · r) RSA, ZKP Partial No No

Milo O(k) O(k) RSA, ZKP, SMC Partial No No
spot-record O(r) O(n log(n)) RSA, Hash Partial No No
Basic NR O(r log(u · r)) O((n− k) log(u · r)) RSA, Hash Full Yes Yes
t-bound NR O(r · ρ log(u · r · ρ)) O((n− k) log(u · r)) RSA, Hash Full Yes Yes

we could transmit only the first few bits of H(m). For ex-
ample, if we expect to store 2s tokens, if we sent only the
first 2s + 60 bits of H(m), we would experience collisions
with probability 2−30.

5.3 Complexity
In Table 1, we give the complexities of our no-record

scheme with and without time-bound tokens. The regis-
tration algorithms have identical complexity but the com-
plexities of both Verify and Payment are greatly reduced
with the addition of the time variable. In both algorithms,
the bottleneck of computation is on the server side.

5.4 Probability of Detecting Double Spending
One of the most attractive aspects of SPEcTRe is that

verifiers need not check all tokens. Presuming the drivers
cannot detect the verifiers, they have no choice but to as-
sume someone is listening and behave honestly. Let ν de-
note the fraction of spent tokens which are being detected
by verifiers. Then the probability of detecting double spend-
ing during verification is ν2. The probability of detecting a
driver attempting to redeem a spent token is ν. Thus, it
is important to ensure the penalty for double spending out-
weighs the benefit.

5.5 Security of Tokens
We require that it is difficult for drivers to create more

tokens than are given to them during the registration proto-
col. The security of SPEcTRe is equivalent to the security
of ecash, relying on the difficultly of the One-More-RSA-
Inversion problem.

5.6 Privacy
During registration, it’s clear that tokens are private in

the information-theoretic sense since they are based on a
standard ecash scheme. We argue that no relation can be
ascertained between tokens revealed during different algo-
rithms. In particular, for m = H(a, b) with a = H(t, r) and
b = H(i, s), since the images a and b are from a salted hash,
it is computationally infeasible to relate a to t or b to i.

6. COMPARISON WITH OTHER WORK
Table 1 shows the complexity of our schemes with various

others. Compared to previous work, our schemes rely on
much more common security assumptions, such as the RSA
problem and random oracles. Although the complexities of
payment and reconciliation may appear much more expen-
sive than previous work, our schemes are based on simpler
primitives, and so the constants in the big-O notation are
much smaller in our scheme, as evidenced by our measure-
ments in section 8.

7. HARDWARE INFRASTRUCTURE
There are three basic hardware components in the verify-

ing and payment phases of SPEcTRe: a transponder on each
vehicle, token readers at various points along the road, and
a centralized server that maintains the database to check
double spending.

Commercial manufacturers are working on transponder
devices which allow for reliable vehicle-to-roadside or vehicle-
to-vehicle communications. The communication protocol
is layered [12], giving application-level developers flexibility
in designing and implementing their own protocols. These
communications are based on dedicated short-range commu-
nications [10]. We did a proof-of-concept experiment, broad-
casting tokens in a moving vehicle driving at 40 km/h from
a Nexus One smartphone, and they were reliably received
on the roadside by another Nexus One.

Token readers could either be police cars moving around
discreetly or some reader device on the roadside. Whatever
those readers are, it is important that drivers are unable to
determine if someone is monitoring their broadcasts.

The registration phase requires some server to sign tokens
for clients so that transponders can broadcast these tokens.
These operations can be carried out between a driver’s per-
sonal computer and a server. A simple TLS-protected con-
nection is sufficient.



8. PERFORMANCE MEASUREMENT
In this section we evaluate the runtime and storage re-

quirements for the primitives of SPEcTRe. In our measure-
ment, we let each client serially go through the three phases:
registration, verification, and payment. The measurement
is based on the no-record scheme, but with an extreme case
where all the tokens broadcast are collected.

The proof-of-concept implementation was written in C++
with a multithreaded registration phase. The code is based
on a server-client model where each client, representing a
vehicle, first gets tokens for the whole month, reveals half of
the tokens, and then uses another half in the payment phase.
For every token a client reveals, the server stores that token
in the database to check double spending later. Our mea-
surement does not utilize the knowledge of i to speed up
the payment phase for simplicity, and we add every token in
the payment phase to the database, which actually reduces
the speed, because with identities revealed in the payment
phase, we can simply check double redemption for each indi-
vidual client. However, we still found that we beat VPriv in
terms of computation time given the same number of tokens
used.

We only compare in detail the performance of our spot-
record scheme with VPriv, because these two schemes share
a similar hardware infrastructure. PrETP requires heavy
real-time computation on the on-board unit, which would
require specialized crytographic coprocessor when the key
size goes to 2048 bits. PrETP also requires the incorpora-
tion of GPS data on each vehicle. In terms of computation
requirements on the server side, for a segment size of 1 km
and a key size of 2048 bits, PrETP takes 88.050 seconds to
verify the payment of each individual driver [2]. SPEcTRe
takes only around 16 seconds to both register and verify one
month’s worth of tokens for a security level of 128 bits by
using pairing-based scheme described earlier, corresponding
to a RSA key size of 3072 bits.

We used the C/C++ interface of SQLite to manage our
database and OpenSSL libraries to implement the crypto-
graphic primitives. The measurement was run on a laptop
with two 1.86 GHz cores and 2 GB RAM, with 32-bit 10.04
Ubuntu (lucid) installed. The client and the server were
running on the same machine, so we were not simulating
the network. However, we did estimate the communication
cost and we will argue that our bandwidth requirement is
not high.

Figure 2 shows our runtime for three phases when the RSA
key size is 1024 bits, corresponding to different number of
tokens used. Let us assume the average driver travels 18,000
km per year [18]. This equates to 40 hours of driving per
month for each car. If drivers are required to reveal a new
token every minute, and tokens are not bound to t, then the
number of tokens for each client thus would be 40×60 = 2400
every month. The decision to reveal a new token once per
minute was chosen to better compare with VPriv. If we are
to bind t to each token, the resolution of time should be
chosen carefully so that the number of tokens issued would
allow registration to finish in a reasonable amount of time.

There are some practical concerns here, however, some
of which make SPEcTRe faster, while some of them make
SPEcTRe slower.

One concern is that although the runtime for revealing
and payment appears to be linear when the dataset is small,
it should not always be the case when the database becomes
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Figure 2: Runtimes of each phase for many tokens
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Figure 3: Runtimes of verification and payment with
10 times as many tokens as Figure 2.



larger. According to the observation of our experiment,
SQLite organizes the database with hash tables. As the
database becomes larger the linear performance would not
be maintained due to collisions and reorganizations. In or-
der to find out the performance for a larger dataset, we ran
another measurement which generates random numbers and
insert them into the database. The performance is shown in
Figure 3, which shows that when the number of tokens grows
to 34,992,000 (14,580 clients), the runtime for each insertion
grows to twice as long as before.

There are also ways to make SPEcTRe faster. First, we
can replace the RSA scheme with a pairing-based scheme.
Since currently the bottleneck is the registration phase, and
in particular the blind signature computation, a pairing-
based scheme would significantly improve our runtime. This
is discussed in more detail in section 8.1. Second, the reg-
istration phase is also completely parallelizable and can be
done in advance. For example, we may choose to allow reg-
istration for the next month. All that we need to ensure is
that the server’s key pair is regenerated every month. Third,
we can also easily utilize the i value so that we do not need to
add tokens to the database during the payment phase since
we only need to check that every client does not submit two
identical tokens.

In order to hold the number of tokens generated in our ex-
periment, namely 34,992,000 tokens, the size of the database
is 544.9 MB. So in order to hold tokens for one million
clients, we need 544.9× 1, 000, 000/14, 580 = 37373.11 MB,
which is about 37 GB storage space. This is small for an av-
erage server. We can also save some space by not storing the
entire token, but instead truncating the hash to a smaller
size that makes collisions unlikely, as discussed earlier.

We also measure the communication cost. For the pay-
ment phase, the client will reveal every token that is not
spent. Assume that a client does not spend any tokens at
all, which is the worst case. With the RSA scheme, every
token is |H(t)|+ |σ| = 256+3072 = 3328 bits at a 128-bit se-
curity level. Thus, one client needs to transmit 2, 400×3328
bits = 998 KB in a whole month. For the server, assume that
there are 1 million clients who do not spend any tokens at
all throughout the whole month. There will be 1 million ×
998 KB which is approximates 998 GB of data transmitted.
The bandwidth required for the server is only 0.385 MB/s.
If we are to allow multiple prices by requiring more tokens
to be revealed on expensive roads, these numbers would go
up but they are still acceptable even if multiplied by 10.
The pairing-based scheme with a security level of 128 bits
has a signature length of 256 bits. In that case, the commu-
nication cost would be even less. The communication cost
between verify servers is negligible.

We summed up the runtime for all three phases in Fig-
ure 4, which also compares SPEcTRe with VPriv. For 1800
clients (4,320,000 tokens), SPEcTRe takes about 10,000 sec-
onds. The runtime for VPriv grows linearly with the number
of tokens, and VPriv requires 100 seconds for 2,000 tokens in
a recommended setting of 10 rounds computation. In this
sense, SPEcTRe is 4, 320, 000/(2, 000 × 100) = 21.6 times
faster. Figure 5 better demonstrates this speed difference.
A subsequent experiment with a key size of 3072 bits on
the 64-bit machine mentioned in the next section yielded a
runtime 3 times slower, but still SPEcTRe runs much faster
than VPriv. With a pairing-based signature scheme, SPEc-
TRe runs even faster.
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scheme with VPriv.
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8.1 BLS vs RSA
Registration is the slowest phase in the above measure-

ment, as seen in Figure 2. By using a pairing-based signature
scheme to sign and verify tokens, we are able to make the
registration phase much faster. The performance of the BLS
pairing-based scheme and the RSA scheme were measured
on a 64-bit machine. We used relic-toolkit version 0.3.0 [1]
to implement the pairing-based scheme, and OpenSSL to
implement the RSA scheme, both at a 128-bit security level
(256-bit curves for BLS and a 3072-bit modulus for RSA).
With the computation power of a single core, the times are
shown in Table 2.

Table 2: The performance of the BLS and RSA sig-
nature schemes

Sign Verify Signature size
BLS 0.4 ms 5.2 ms 256 bits
RSA 13 ms 0.3 ms 3072 bits

As we can see, the pairing-based scheme is doing a much
better job in signing blind signatures, while the RSA scheme
is slow in signing but much faster in verification. In our
no-record scheme, where drivers who are double-spending
should be detected on the fly, faster verification reduces one
possible bottleneck. However, one should also notice that
even assuming 20 cars are passing by within one second,
BLS verification only takes 104 ms, which may not be a
great issue when compared to network delay. In our spot-
record scheme, where double-spending detection can be done
offline, verification time is a less critical factor. Given that
a client doesn’t reveal all his spent tokens to the verifier, it
is optimal to utilize faster BLS signing to decrease the over-
all computation tasks on the server side. The pairing-based
scheme requires a smaller signature, which lowers the com-
munication cost at places where signatures are required. But
this feature would not help much for the real-time commu-
nications between verifiers, because they do not need signa-
tures to be exchanged in order to combat double-spending.

9. CONCLUSIONS
We presented two electronic toll pricing schemes that pre-

serve privacy. When compared to other schemes, the spot-
record scheme offers comparable privacy guarantees with
standard security assumptions. No intensive nor interac-
tive computation is required on the on-board unit. The no-
record scheme has the property that no private location in-
formation of drivers needs to be recorded in order to detect
dishonest drivers, however, more powerful verifiers would
be required. Both of our schemes are compared with other
systems, specifically VPriv. We offer the same amount of
security, and even more privacy in the no-record scheme,
while our proof-of-concept measurement indicates that they
both run considerably faster than related works.
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