
Performance and Security Improvements for Tor: A Survey

Mashael AlSabah, Qatar University and Qatar Computing Research Institute
Ian Goldberg, University of Waterloo

Tor [Dingledine et al. 2004] is the most widely used anonymity network today, serving millions of users on a
daily basis using a growing number of volunteer-run routers. Since its deployment in 2003, there have been
more than three dozen proposals that aim to improve its performance, security, and unobservability. Given
the significance of this research area, our goal is to provide the reader with the state of current research
directions and challenges in anonymous communication systems, focusing on the Tor network. We shed light
on the design weaknesses and challenges facing the network and point out unresolved issues.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Privacy-enhancing technologies, anonymity networks, performance

ACM Reference Format:
Masheal AlSabah and Ian Goldberg, 2016. Performance and Security Improvements for Tor: A Survey. ACM
Comput. Surv. , , Article (201X), 36 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
One of the main challenges facing users on the Internet today is maintaining their pri-
vacy, particularly in the face of widespread surveillance [Farrell and Tschofenig 2014].
While the Internet has revolutionized how we communicate and achieve our tasks, its
open nature has also attracted many entities that prey on users’ personal information
for commercial and other uses. Users are increasingly vulnerable to a variety of on-
line threats. Botnets are used to steal login credentials [Kirk 2013], wage Denial of
Service (DoS) attacks [Saarinen 2014], and send phishing spam mail [Security 2014].
Internet Service Providers (ISPs) sell their customers’ information and clicks to other
parties including advertising companies [Blodget 2007; Rushkoff 2012], which collect,
aggregate and analyze users’ data to strategize their marketing plans at the expense
of users’ privacy. Worse, users’ private data may also be sold to data brokers or iden-
tity thieves [Murphy 2012]. Even when entrusted to a government, users’ private data
are often leaked, stolen [Greenemeier 2006; BBC News 2007; Greenemeier 2008], or
exploited by some corrupt government officials to harass activists and others [Chris-
tensen 2008].

Anonymity networks have emerged as a solution to allow people to conceal their iden-
tities online. This is done by providing unlinkability between a user’s IP address, his
digital fingerprint, and his online activities. An anonymous user means that the user is
unidentifiable within a set of users [Pfitzmann and Hansen 2008], the anonymity set.
High-latency anonymity networks are often based on Chaum mixes [Chaum 1981],
where multiple proxies (called mixes) are used between the sender and the receiver.
When receiving messages, each mix collects a number of them into a batch, intention-
ally adding delays, before outputting the messages in the batch in a random order to
the next mix. This shuffling and delaying is performed in order to defeat traffic anal-
ysis attacks, where an observer attempts to link the two ends of the communication.
Many high-latency anonymity networks have spun off of Chaumian mixes to provide
anonymous communication for applications that can tolerate intentional delays, such
as emailing and blogging [Möller et al. 2003; Danezis et al. 2003].

Since much of users’ online activities are interactive (e.g., browsing and instant mes-
saging), low-latency anonymity networks have been proposed. Very few such systems

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:2

have left the realm of academic papers to the Internet, but one key such network is
Tor [Dingledine et al. 2004], the most widely used privacy-preserving network, serving
millions of people for more than ten years. It grew from a handful of routers—machines
that relay users’ traffic—to thousands of routers that are operated by volunteers all
around the world. Tor is very easy to use; all users have to do is to install the Tor
browser bundle, and start browsing the web anonymously. Users of Tor include jour-
nalists, activists and whistle-blowers, victims needing online support groups, and other
everyday users simply trying to perform private searches and visit websites while try-
ing to protect themselves from being profiled by advertisers. Mixing the diverse traffic
of all those users improves the anonymity guarantees provided by the network, as it
increases the size of the anonymity set for each user.

Despite its current great potential, Tor has long-term sustainability problems. As
more people become more privacy aware [Madden 2014], a future Tor network should
have the capacity to serve a significantly larger number of users. Because of sev-
eral aspects of Tor’s design, users currently experience inconvenient performance that
manifests itself in the form of large and highly variable delays and download times
experienced during web surfing activities. Such delays can be discouraging for users
who wish to use it on a daily basis. The challenge to improve the Tor user experience
has been taken up by the research community, who have proposed dozens of research
proposals and enhancements. Those proposals can be broadly classified to congestion,
scalability, routing, and security improvements.
Roadmap. Considering the important role of anonymous communication systems
in mitigating the privacy threats we face online, providing an understanding of the
research advances in the performance and security of low-latency anonymous com-
munication systems is essential. In this paper, we survey the literature and provide
an understanding of the state of current research in this area. We also shed light on
the challenges and emerging threats facing those systems. Since Tor is the de facto
research platform for anonymous communication systems, we focus on Tor for the re-
mainder of this paper.

We start by providing background on low-latency anonymity systems in Section 2,
and examine the design of Tor in particular, it being the most widely used and relevant
example of such a network. We identify some of the shortcomings of Tor’s design in Sec-
tion 3, and based on the outlined weaknesses, we present our classification of research
directions in Section 4. Next, we examine the forefront of this research area by provid-
ing a survey on how previous research proposals address Tor’s design weaknesses in
Sections 5–11. We present ongoing research and unresolved issues in Section 12, and
conclude the survey in Section 13.

2. LOW-LATENCY ANONYMITY SYSTEMS
The goal of anonymous communication is to solve the traffic analysis problem, which
David Chaum defines as follows: “The problem of keeping confidential who converses
with whom, and when they converse.” [1981] To that end, anonymous communication
systems are designed so that users in the system communicate with their destinations
through a single or a number of intermediate hops, where every hop only knows the
next and previous hops. Therefore, no hop alone can link the sender with the receiver
(unless only a single intermediary hop is used). Messages relayed in the system are
generally fixed in size, and they are cryptographically altered at every hop.

Since the introduction of mix-nets in 1981, the area of anonymous communications
has evolved into two streams, based on their design and the scope of applications they
support: the low-latency and the high-latency anonymity systems.

High-latency anonymity systems, like Mixminion [Danezis et al. 2003], and mix-
nets [Chaum 1981] assume a powerful active adversary—one that can add, delete, or

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:3

Onion Routers

Destination
Servers

Directory
Server

Entry
Guards Exit

RoutersOnion Proxies

Fig. 1. The Tor network: Clients (running OPs) contact the directory servers periodically to get a list of ORs
and their descriptors. Clients then use Tor’s router selection algorithm to build circuits. A circuit consists of
three hops: entry guard, middle and exit. The exit performs the TCP connection on behalf of the user to the
user’s destination.

delay traffic. Furthermore, they assume the adversary is global—one which is able to
monitor the input and output links of every node, usually called a mix, in the network.
To hide the correspondences between the incoming and the outgoing traffic of a mix,
equal-length messages are shuffled, cryptographically altered, and stored for some in-
tentionally added delay before they are sent to the next mix or destination. Because of
the additional delay, which can be up to several hours, high-latency anonymity systems
can only support delay-tolerant applications, such as e-voting and email.

Low-latency anonymity systems assume a more relaxed threat model: a local ad-
versary who can monitor only part of the network (no more than 20% of the nodes,
for example). This threat model restriction exists because a global adversary for a
low-latency network can observe (or even induce) traffic timing patterns entering the
network, and watch for traffic of a corresponding pattern leaving the network, thus
matching sender and recipient. These powerful traffic correlation attacks [Murdoch
and Danezis 2005; Raymond 2000] are typically easy for a global adversary [Danezis
et al. 2007; Mallesh and Wright 2010] and so the literature restricts its attention to lo-
cal adversaries for the low-latency case. Low-latency anonymity networks are designed
to support common interactive applications such as instant messaging, web browsing,
and SSH connections, and are far more widely used than their high-latency counter-
parts. We next present a detailed background on Tor, the most widely used anonymity
network, and survey previous proposals that aim to improve it.

2.1. Tor
Tor is a low-latency anonymity network based on the concept of onion routing [Reed
et al. 1998]. The network today consists of approximately 6000 volunteer-operated
routers [Tor Project 2015a], known as Onion Routers (ORs). Each OR creates a router
descriptor that contains its contact information, such as its IP address, ports, public
keys, and its bandwidth capabilities, and sends the descriptor to directory authorities.
These authorities construct a network consensus document, which they send, along

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:4

with the descriptors, to directory servers. Tor clients, nicknamed Onion Proxies (OPs),
download the descriptors and the consensus from the directory servers in order to build
paths, referred to as circuits, through the network before they can communicate with
their Internet destinations. Each circuit usually consists of three ORs, or hops, which
are referred to as the entry guard, middle, and exit OR, according to their position in
the circuit. ORs in a circuit are connected by TCP connections and TLS [Dierks and
Rescorla 2008] is used to provide hop-by-hop authenticity, data integrity and confi-
dentiality. Traffic in Tor travels in fixed-sized units (512 bytes) called cells. Figure 1
visualizes the Tor network.

2.2. Circuits and Streams
The OP builds circuits by first selecting three routers, Xi, according to Tor’s
bandwidth-weighted router selection algorithm (described in Section 2.6). Next, to
start establishing the circuit, the OP sends a create fast command to X1, which re-
sponds with a created fast reply. To extend the encrypted channel, the OP sends an
extend command to X1, containing in its payload a create command and the first half
of a Diffie-Hellman (DH) handshake for router X2, encrypted to X2’s public key. Router
X1 forwards this create command to router X2, and when it receives a created cell back
from router X2, it forwards its payload in an extended cell to the OP to finish the client’s
DH handshake with router X2. The same procedure is carried out for each subsequent
OR added to the circuit, establishing a shared session key between the OP and each of
the routers in the circuit. Cells sent along a circuit by an OP are multiply encrypted,
with one layer of encryption (using the above session key) for each hop in the circuit.
Each hop decrypts one layer before passing the cell to the next hop.

For performance reasons, an OP preemptively creates a number of spare circuits for
its user applications. In order to communicate with the client application (for example,
a web browser), the OP exposes a SOCKS proxy, which the browser is configured to
use. When the browser connects a new TCP stream to the OP’s SOCKS proxy, the OP
attaches the new stream to an appropriate pre-established circuit. (OPs can multiplex
several TCP streams over one circuit.) Once a circuit begins being used, it generally
has a lifetime of ten minutes, after which no new streams will be attached to it, though
the circuit will continue to exist until all streams it contains are closed.

Note that only the exit node can observe the user’s traffic, and only the entry guard
knows the identity of the user. If both the entry guard and exit node cooperate, how-
ever, they can use traffic analysis to link the initiator to her destination.

2.3. Tor’s Queuing Architecture
Tor uses (at the application layer) a tiered buffer architecture to manage cells traveling
through circuits, as shown in Figure 2. When an OR receives a cell from an external
server or from another OR or OP, the cell is passed from the kernel TCP receive buffer
to a corresponding 32 KiB connection-level input buffer in Tor. After the cell is en-
crypted or decrypted, it is placed on the appropriate FIFO circuit queue. Since several
circuits share the same connection output buffer, a scheduler is used to retrieve cells
from the circuit queues to be placed on a 32 KiB output buffer. Finally, the cells are
sent to the kernel TCP send buffer which flushes them to the next OR or OP.

2.4. Circuit Scheduling
Tor uses a label-switching design that multiplexes several circuits across the same
Tor routers. In order to ensure that each circuit is given a fair share of the routers’
bandwidth, Tor’s original design employed a round-robin queuing mechanism. Each
circuit is serviced in a first-come, first-served manner, which ensures that each circuit
is given a fair share of the available bandwidth. However, McCoy et al.[2008] have

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:5

OR1

Input
buffers

Circuit queuesOutput
buffers

OR2
Input

buffers
Circuit queuesOutput

buffers

Input
buffers

Circuit queuesOutput
buffers

Input
buffers

Circuit queuesOutput
buffers

OR3

OR4

Browsing
traffic

File sharing
traffic

TCP
TCP

TCP

Fig. 2. This figure (adapted from AlSabah and Goldberg [2013]) shows Tor’s application-level queueing
architecture. Tor maintains input buffers, circuit queues, and output buffers, in addition to the kernel’s TCP
buffers. This figure also demonstrates the cross-circuit interference problem (see Section 3.4).

revealed that the distribution of application traffic on Tor is not uniform across all
circuits: a relatively small number of circuits (e.g., bulk file downloaders) consume a
disproportional amount of the network’s bandwidth. To mitigate the unfairness, Tang
and Goldberg [2010] proposed a circuit scheduling prioritization scheme (described in
Section 5.2.1) so that interactive circuits are serviced before bulk-downloader circuits.
This prioritized circuit scheduling is currently deployed on the live Tor network.

2.5. Traffic Throttling
In order to provide routers with the ability to control and manage congestion and
network overload, the Tor network employs several levels of throttling to limit the
amount of data that enters the network, as follows:

— Rate limiting: each Tor OR implements a token bucket rate limiting algorithm that
limits the amount of bandwidth an OR can spend on the network. The rate limit
can be configured by the OR operator.

— Circuit windows: each circuit uses an end-to-end window-based flow control algo-
rithm that limits the amount of data traveling down a circuit at any time. The
OP and the exit maintain a window that is initialized to 1000 cells (500 KiB). This
means that the end OR (exit or OP) can send 1000 data cells down the circuit before
an acknowledgment is received. Every time a data cell is sent, the window size is
decremented by 1, and transmission stops if the window size reaches 0. When the re-
ceiving end (OP or exit) receives 100 cells, it sends an acknowledgment cell, known
as the circuit sendme cell, to the sending end (exit or OP). When a circuit sendme
cell is received at any end, the OR increments its circuit windows by 100.

— Stream windows: recall that every Tor circuit multiplexes several TCP streams from
a user’s applications. Each stream is flow controlled using a stream-level window,
which operates in a very similar manner to circuit windows, except that the win-
dow size is 500 cells (250 KiB). Every time one end OR receives 50 cells, it sends
a stream sendme acknowledgment cell, which has the effect of incrementing the
window at the other end by 50.

2.6. Router Selection Algorithm
In the original Tor proposal, ORs are selected uniformly at random for circuit con-
struction. This is based on the idea that random selection allows all routers to be

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:6

selected with equal probability, which increases the uncertainty of an observer trying
to deanonymize the routers used in a particular circuit. However, due to heterogeneity
in resources and to protect users from other classes of attacks, the algorithm was later
changed to fulfill the following constraints:

(1) No router appears more than once on a path, and no two routers in the same circuit
belong to the same class B network (/16 subnet) or the same family. Co-administered
routers can be marked as belonging to the same family by operators to avoid hin-
dering users’ privacy.

(2) Directory authorities assign flags to routers based on their performance, stability
and roles in the network. For example, a “fast” flag is given to an OR that is active,
and its bandwidth is either in the top 7/8 of known active routers or at least a min-
imum defined amount. An OR with a “stable” flag is defined as one whose weighted
mean time between failure is at least the median for all known routers.

(3) As of 2006, to defend against some attacks, such as the predecessor [Wright et al.
2004] and locating hidden services [Øverlier and Syverson 2006] attacks, Tor’s
router selection algorithm was changed so that the entry node is chosen from a sub-
set of nodes known as the entry guards. An entry guard is a node whose weighted
fractional uptime is at least the median for active routers, and its bandwidth is at
least the median or at least 250 KB/s [Dingledine and Mathewson 2015]. At time of
writing, a set of 3 guards is selected, assigned a validity period between 30–60 days,
and used throughout that time for all circuits. However, to limit opportunities for
attacks by malicious guards, this design is currently being changed, so that every
client uses one entry guard for a longer period of time [Dingledine et al. 2014].

(4) Selecting a subsequent OR on the path is proportional to its offered bandwidth,
in order to ensure that more capable routers are chosen more often. If bi is the
bandwidth1 offered by router i, then router i is chosen with probability bi/

∑N
k=1 bk,

where N is the total number of routers in the network.

2.7. Tor’s Threat Model
The threat model in Tor assumes a local active adversary that can watch or control part
of the network (no more than 20%, for example) and can add, delete or modify traffic
in the network. The anonymity of a Tor circuit is compromised if the adversary can
watch the two ends, the entry and exit, of the circuit. That is, if an adversary controls
a fraction f of the network, then the probability of circuit compromise is f2, which is
the probability of controlling the two ends of a circuit. For example, if we assume a
powerful adversary controlling 20% of the network resources, then the adversary will
be able to deanonymize only 4% of the user circuits.

2.8. Anonymity Loves Company
Tor offers anonymity at the expense of intolerable performance costs. Figure 3 shows
the download time distribution of 5 MiB files over the Tor network from July to October
2009 [Tor Project 2015b]. During that time period, the median download time was 144
seconds. Over the years, the performance of Tor has improved tremendously, as also
shown in Figure 3. The median download time in 2015 is 14 seconds. This improvement
could be attributed to many factors such as (1) the increasing capacity and number

1The bandwidth value of a router published in the network consensus is calculated by the directory servers
based on a router’s advertised bandwidth, adjusted by live bandwidth measurements performed by spe-
cial servers, known as the bandwidth authorities, whose duty is to periodically probe routers and report
their measured capacity to the directory servers. These values are then weighted depending on the router’s
capabilities and position in the circuit.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500
C

D
F

Download Time (s)

Jan-Mar 2015
Jul-Oct 2009

Fig. 3. Download times. The figure compares the download time distributions of 5 MiB files over the live
Tor network in 2009 and 2015. At the median, downloading the file completed in around 144 seconds in
2009, and 14 seconds in 2015. Even though the performance has improved since 2009, it is still poor at the
fourth quartile where download times ranged from 17 to more than 25 seconds.

of routers serving the network, and (2) performance improvements that have been
adopted over the years.

Not only do performance problems hinder Tor’s wider adoption, but they can have
an immense impact on its anonymity [Dingledine and Mathewson 2006]. If users are
discouraged from Tor’s below-mediocre service, the anonymity set of all users would
eventually shrink, which in turn reduces the anonymity guarantees obtained from the
network today. Therefore, it is crucial to improve the performance and usability of Tor
in order to enhance the anonymity it provides.

Interestingly, while improving performance is useful for adoption and anonymity, it
can also improve the effectiveness of active side-channel based attacks, as has been
demonstrated by Geddes et al. [2013]. The reason is that improving performance
causes less variability in throughput and latency observations, which improves the
accuracy of attacks that relay on measuring latency and throughput to deanonymize
users.

2.9. Hidden Services
Tor allows servers to provide content and services over the network while maintaining
their anonymity. First, a hidden service generates a public/private key pair and chooses
some routers randomly as introduction points. Then, to advertise its service, the hid-
den service creates a signed descriptor containing the introduction point information
and its own public key. Based on the contents of the descriptor and a validity time pe-
riod t, a descriptor ID will be generated, and then the descriptor will be published in a
Distributed Hash Table (DHT) hash ring that is formed by hidden service directories.
The hidden service computes the directory responsible for holding its descriptor based
on a closeness metric between the descriptor ID and the directory’s fingerprint, which
is the SHA-1 hash of the directory’s public key. (At the time of writing, descriptors are
uploaded to 6 hidden service directories.) Note that the responsible directories for a
specific descriptor change after time t. The hidden service publishes its onion address,
which is an address of the form abc.onion where abc is a truncated hash of the hidden
service public key. The hidden service also maintains circuits to its introduction points
and informs them of its public key.

When a client is interested in connecting to hidden service X, it first searches for
the latter’s onion address abc.onion, which can be queried through one of the public
routers that is part of the DHT. Next, the client starts preparing for the connection to X

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:8

by constructing a circuit to a randomly chosen Rendezvous Point (RP). The client sends
a command cell to the RP containing a 20-byte arbitrary ID to serve as a rendezvous
cookie. Then, the client builds a circuit to one of X ’s introduction points and sends a
message (encrypted to X ’s public key) containing the first half of a DH handshake,
along with its RP information, and the rendezvous cookie that was sent to the RP
in the previous step. Finally, X builds a circuit to the RP, and the two parties can
communicate.

2.10. Blocking Resistance
Because Tor uses a centralized approach to distribute its routers’ information, it is
possible for censors to obtain the list of the public routers (from the directory servers),
and block access to the Tor network. To mitigate this problem, Tor uses special un-
listed routers called bridges to help users residing within regimes, such as China
and Iran, which are actively blocking the Tor network. Clients can obtain informa-
tion about bridges by visiting https://bridges.torproject.org or by sending mail
to bridges@bridges.torproject.org from a Gmail account. Clients usually get a re-
sponse consisting of the contact information of three bridges. Clients can then config-
ure their OPs to use the bridges they learn about as first hops in their circuits. To
prevent censors from enumerating the list of available bridges, Tor rate limits the dis-
tribution of bridges using simple IP- and email-based strategies. For example, users
requesting bridges from the same IP/email addresses will get the same list of bridges.

In addition to blocking by IP addresses, censors can also filter by traffic flows. To pro-
tect Tor flows from being identified in censored regimes, Tor uses pluggable transports,
which are extensions that provide bridge users with a means to obfuscate and disguise
their Tor traffic to appear like different protocols or applications (such as Skype or
HTTP).

3. DESIGN WEAKNESSES
Despite its popularity, previous research has pointed out several design weaknesses in
Tor. Below, we summarize those weaknesses.

3.1. Scalability
This refers to the network’s ability to grow with the increasing number of users. Scala-
bility problems are lurking in the future of the Tor network because of two main issues:
the centralized design, and the high client-to-router ratio.

Recall that the network uses a centralized design to help clients and routers boot-
strap and continuously keep a fresh list of routers serving in the network. This is
important to prevent some families of partitioning attacks that leverage stale infor-
mation to compromise the anonymity of users. For example, if a client is using an old
set of routers, whose size is smaller than the actual number of current routers, this
will give the attacker a higher success rates in guessing which routers are used in the
client’s circuits. Therefore, routers and clients download the router descriptors and
network consensus document, which lists all current routers and their information,
periodically, in order to have a consistent view of the network. This centralized design,
while a good defence against some attacks, is a cause for scalability problems. First,
it has been estimated that if the Tor network grew to the sizes of popular peer-to-peer
(P2P) networks, it would spend more bandwidth relaying descriptors than in routing
anonymous traffic [McLachlan et al. 2009].

Second, although the number of Tor users has been steadily growing since it was
deployed more than ten years ago, the number of routers supporting the network has
not been growing at the same pace. This results in a high client-to-router ratio, where
more than one million clients route their traffic over more than 6000 routers.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:9

3.2. Security
Recall that the traditional security analysis of Tor assumes that the attacker needs
to control both ends (entry and exit) of a circuit in order to compromise it. How-
ever, there have been several proposed attacks that demonstrated their ability to in-
crease the compromise rate of users, such as the Selective Denial of Service (SDoS)
attack [Borisov et al. 2007], side-channel information attacks [Murdoch and Danezis
2005; Hopper et al. 2010; Evans et al. 2009; Mittal et al. 2011a], and the Autonomous
System (AS)-level adversary attack [Murdoch and Zielinski 2007; Edman and Syver-
son 2009].

3.3. Lack and Mismanagement of Resources
Because Tor’s resources, such as its router bandwidth and CPU, are provided by vol-
unteers, they suffer from significant heterogeneity. For instance, the bandwidth capa-
bilities of routers can vastly range from as little as 20 KiB/s to more than 20 MiB/s. As
has been observed from router descriptors [AlSabah and Goldberg 2016], more than
60% of routers have less than 1 MiB/s, and only 10% of the routers have more than
20 MiB/s. Recall that a circuit consists of three routers; the huge difference in capacity
results in high variability in performance as observed by the system users, as we saw
previously in Figure 3.

3.4. Poor Transport Design
Tor’s OPs and ORs communicate with each other using TCP connections. Every OR-
to-OR TCP connection multiplexes circuits from several users. Reardon and Gold-
berg [2009] pointed out that this design can potentially hinder the performance of
interactive circuits. To understand this problem, consider the application-layer queu-
ing architecture of Tor, depicted in Figure 2. The figure shows the data paths of cells
belonging to two circuits built by two different clients, where one circuit is used for file
sharing and the other is used for browsing. The clients use two different entry guards,
but share the same middle and exit ORs of a circuit. This means that both circuits will
be multiplexed in the same TCP connection between the two ORs (middle and exit).

Since the file sharing circuit transmits more data than the interactive browsing
circuit, two issues can undermine the performance of the interactive circuit. First,
both circuits share an application layer output buffer, which is filled quickly by the file
sharing data, forcing the browsing cells to wait behind the file sharing data. Second,
although the bulk circuit drops more data in the connection between middle and exit,
TCP’s congestion control, triggered due to lost packets, will be applied on both circuits
to throttle them, which is not fair for the browsing circuit.

3.5. Lack of Congestion Control
Although the original Tor design claimed to implement a congestion control algorithm,
the reality is that the Tor network is actually not congestion controlled, but only flow
controlled. Although flow and congestion control are often lumped together as one con-
cept, they implement different functionalities. Flow control is concerned with regulat-
ing flow in the network between two endpoints, so that the sender does not overrun the
receiver. Congestion control, on the other hand, focuses on techniques that protect the
network from congestion, a state in which a network node is overloaded because the
rate of its incoming traffic is greater than the rate of its outgoing traffic. In the context
of Tor, the implication of the lack of congestion control is that intermediate routers
on a circuit cannot react to congestion or reduce the transmission rate of the sender.
A good congestion control algorithm should strike a good balance between bandwidth
(can be wasted with small queue sizes) and latency (can increase with larger queues).

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:10

3.6. Circuit Construction
In the original onion routing design, to construct a circuit, a user creates an onion
where each layer contains symmetric keys for the corresponding router on the circuit,
and information about the next router on the path. One problem with this approach
is that it did not provide a forward secrecy property, meaning that if a router is com-
promised, it can reveal information about past user communication. This can be done
if an adversary records all communication and later obtains a private key of a router
and uses it to decrypt the session key messages, thereby obtaining the key to decrypt
the rest of the communication.

To avoid this problem, the circuit construction in Tor is performed in a telescoping
manner. This means that the circuit is built incrementally and interactively with each
hop on the path so as for the client to establish shared keys with each hop, as de-
scribed in Section 2.2. The drawback of this operation is that it is costly; establishing
a circuit of length ` requires Θ(`2) network communications, and Θ(`2) symmetric en-
cryptions/decryptions [Kate et al. 2007]. This disadvantage is especially critical to Tor
routers, since the most commonly used ones are CPU challenged [Mathewson 2010].

4. CLASSIFICATION OF IMPROVEMENT TECHNIQUES
Several research directions have spun off to address the design weaknesses described
in Section 3. We have visualized those directions, branching off from the center, in the
mind map depicted in Figure 4. The leaves of the mind map represent previous propos-
als that we will cover in this paper. Note that our coverage of the previous proposals
will neither be exhaustive nor complete; however, we hope that it will be sufficiently
detailed so that the reader will appreciate the core of this research area.

As shown in the figure, those five main research directions can be categorized as
follows:

(1) Traffic Management: Literature on traffic management in Tor mainly revolves
around reducing traffic overload, and relieving the congestion symptoms by address-
ing the poor transport design, the lack and mismanagement of resources, poor QoS,
and the lack of congestion control. Those can be classified to overlay (application)
layer (Section 5), and transport layer (Section 6) approaches. While traffic conges-
tion is a well-known problem in Tor as the network is not congestion controlled,
there are only a couple of proposals that aim to provide congestion control. Those
are the N23 algorithm (described in Section 5.4), and UDP-OR (described in Sec-
tion 6.2).

(2) Router selection: Recall that an OP (Tor client) has to build circuits before it can
use the network. A router selection scheme is concerned with the method by which
nodes are selected to form these circuits. Traditional IP routing protocols attempt to
minimize cost, which can be a function of various metrics such as hop count, latency,
bandwidth, load, etc. While these metrics can help choose the highest-performing
paths, they cannot be easily adopted in anonymity networks, where choosing ran-
dom routers for a path is more desirable from a security perspective. Therefore,
there is an increasing need to find routing scheme alternatives that combine the se-
curity benefit of choosing random routers to construct a path with the performance
benefits of choosing least-costly routers. We see in Section 7 how the router selec-
tion problem has been approached in the literature. This research direction also
addresses the lack and mismanagement of resources.

(3) Scalability: To address the scalability problems facing anonymity networks, pre-
vious work proposed decentralizing the network infrastructure to support peer-to-
peer network setups. Because of the anonymity challenges facing P2P networks
(P2P lookups break anonymity), another proposed direction is to maintain the cen-

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:11

tralized architecture of the network, while leveraging Private Information Retrieval
(PIR) techniques to reduce the costs of router discovery and augment the network’s
scalability. Section 8 surveys both directions.

(4) Circuit construction: To reduce the computational and communication cost of Tor’s
iterative circuit building process, several protocols have been proposed. Some proto-
cols trade off between anonymity and performance. In general, performance gains
are achieved at the expense of anonymity guarantees when a proposed protocol
requires placing more trust in a centralized party, or when forward secrecy is elim-
inated. Section 9 is dedicated to the circuit construction problem.

(5) Security: Attacks on anonymous communication systems can be broadly categorized
to passive or active. Passive attacks, presented in Section 10, include traffic analysis
attacks that can be carried out by an Autonomous System (AS) adversary sitting at
both ends of the communication, or any entity watching a client’s traffic to perform
website fingerprinting. Active attacks, presented in Section 11, can be side-channel,
where the adversary leverages congestion, latency or throughput to increase the
compromise rates, routing-based, where the adversary exploits the router selection
algorithm to attract more client circuits, or end-to-end confirmation, where mali-
cious entries and exits collude to deanonymize the user.

5. OVERLAY LAYER TRAFFIC MANAGEMENT
Recall that Tor is not congestion controlled. Various previous approaches, surveyed in
this section, tackle this problem by introducing traffic management techniques such
as improved scheduling, classification and throttling. While such techniques can ease
the congestion symptoms, and provide performance improvements for interactive ap-
plication users, they are unable to solve the root cause of the problem, which is overlay
layer congestion. Only one work (N23 [AlSabah et al. 2011]) attempts to add congestion
control to Tor. Below we survey those proposals.

5.1. Incentive-based Schemes
Incentive-based schemes aim to encourage clients to contribute bandwidth to the net-
work by becoming ORs themselves. From a high level, all existing proposals—the Gold
Star scheme [Ngan et al. 2010], BRAIDS [Jansen et al. 2010], and LIRA [Jansen et al.
2013]—are similar in terms of the incentive used: performance gains.

The Gold Star scheme aims to incentivize Tor clients to relay anonymous traffic.
Trusted authoritative directories are responsible for assigning “gold stars” to routers
after evaluating their bandwidth capabilities, and after testing their faithfulness in
relaying traffic. A gold star’s router traffic is given higher priority by other routers,
which means they always get relayed ahead of other traffic. In this scheme, there are
only two types of traffic: gold star prioritized, and other non-prioritized. The reason for
the simple two-level classification of the proposed scheme is to protect the anonymity
of users that can be hurt if an observer is able to reduce the anonymity set based on the
class of service of a circuit. This scheme is very simple and easy to implement in the
current Tor network. Experimental results have shown that cooperative users—clients
that donate an amount of bandwidth to relay network traffic—witness significant im-
provements in download times and ping times, even under heavy background traffic.
Also, cheating users that stop relaying network traffic after achieving a gold star sta-
tus are penalized with degraded performance whenever they toggle to their selfish
behavior.

In BRAIDS, clients first obtain free tickets from a bank, which is a centralized and
partially trusted offline entity that is responsible for bandwidth accounting tasks.
Clients remain anonymous, as they use blind signatures to get the signed tickets from

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:12

Performance

Security
PIR-Tor [Mittal et al. 2011]

Torsk [McLachlan et al. 2009]

Transport

Scheduling

BRAIDS [Jansen et al. 2010]

Incentives

EWMA [Tang & Goldberg 2010]

TCP-over-DTLS
[Reardon & Goldberg 2009]

UDP-OR [Viecco 2008]

*Fair Queuing [Tschorsch & Scheuermann 2011]

Routing

Selective DoSSelective DoS
[Borisov et al. 2007]

Resource ExaggerationResource Exaggeration
[Bauer et al. 2007]

PathPath

Tunable selectionTunable selection
[Snader & Borisov 2008]

Link-basedLink-based
[Sherr et al. 2009]

Passive

CircuitCircuit

[Øverlier and Syverson 2006]

PB-OR [Kate et al. 2007]

CL-OR [Catalano et al. 2009]

Throttling
Threshold [Jansen el al. 2012]

Traffic SplittingTraffic Splitting [AlSabah et al. 2013]

Classification [AlSabah et al. 2012]

PCTCPPCTCP
[AlSabah & Goldberg 2013]

Overlay

Congestion Control [AlSabah et al. 2011]

Latency-basedLatency-based
[Akhoondi et al. 2012]

Congestion-awareCongestion-aware
[Wang et al. 2012]

TorchestraTorchestra
[Gopal & Heninger 2012]

Gold Star [Ngan et al. 2010]

Tortoise [Moore et al. 2011]

ntorntor
 [Goldberg et al. 2011]

Side Side
channel

[Evans et al. 2009]

Latency [Hopper et al. 2007]

Throughput [Mittal et al. 2011]

Sniper [Jansen et al. 2013]

 [Murdoch and Danezis 2005]

[Geddes et al. 2013]

AceAce
 [Backes et al. 2012]

KIST [Jansen et al. 2014]

uTor [Nowlan et al. 2013]

*IMUX [Geddes et al. 2014]

Multipath Routing [Snader 2010]

*ShadowWalker [Mittal & Borisov 2009]

Website Fingerprinting

 [Herrmann et al. 2009]

 [Panchenko et al. 2011]
 [Cai et al. 2012]

 [Wang & Goldberg 2014]

 [Wang et al. 2014]

 [Cai et al. 2014]

AS Observer

[Edman & Syverson 2009]

*[Murdoch & Zielinski 2007]
Congestion

LIRA [Jansen et al. 2013]LIRA [Jansen et al. 2013]

LIRA [Jansen et al. 2013]*TEARS [Jansen et al. 2014]

Scalability

Construction

Traffic
Management

Selection

*[Feamster & Dingledine 2004]

Tor's
Improvements

Active

E2E
Confirmation

Resource Exaggeration Cell Counter-based
[Ling et al. 2009]

Resource ExaggerationProtocol-level
[Ling et al. 2013]

Resource ExaggerationHidden Service Discovery
[Ling et al. 2013]

 [Kwon et al. 2015]

*RAPTOR [Sun et al. 2015]

Fig. 4. This mind map summarizes the research directions on Tor. Its leaves represent works that are
discussed in this paper. Leaves marked with (*) are discussed in the extended version of this paper [AlSabah
and Goldberg 2016].

the bank. Each ticket can be redeemed at a specified router; this solves the problem of
double spending, meaning that no client can use a ticket twice. When a client wishes to
get improved service from a router R, it can present it with tickets. Each ticket allows
the client to receive an improved prioritized service for a fixed number of data cells.
After the ticket is used, the circuit priority is lowered, but can be restored after a new
ticket is presented. A used ticket is utilized by R as a voucher that is redeemable for
a new router-specific ticket for another router C. Therefore, the more service a router
R provides, the more tickets for improved service it can collect, thereby obtaining a
better service from the network.

While experimental results showed that BRAIDS leads to better overall network
performance (assuming more clients provide router service), it is still impractical as
it relies on a centralized server for distributing and exchanging tickets (for millions
of users) resulting in scalability and single-point-of-failure problems. Furthermore,
both the Gold Star scheme and BRAIDS introduce anonymity risks as they allow an
observer to infer if the client is also a router (based on service obtained), and thereby

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:13

reduce the size of the anonymity set from more than a million users to only around
6000 routers.

LIRA was proposed to address some of these limitations by leveraging a crypto-
graphic lottery at routers. If a client wants a prioritized service, he makes a guess and
gets prioritized service with a tunable probability. To get guaranteed prioritized ser-
vice, clients can run as routers and in exchange for their bandwidth, they obtain tokens
from a central bank. Clients can then use those tokens to purchase “guaranteed win-
ners” to the lottery for prioritized service at the routers. The main drawback of LIRA
is that misbehaving clients can try to create multiple circuits until they get a pri-
oritized one. For example, if the probability of winning the lottery to obtain improved
service (in the absence of a “guaranteed winner” ticket) is 20%, then on average, clients
will get 2 prioritized circuits out of every 10 they build; this will encourage clients to
keep building circuits to find winners, wasting network resources. Reducing the prob-
ability of winning introduces anonymity issues, because an adversary monitoring a
prioritized circuit can reduce the anonymity set. On the other hand, LIRA addresses
BRAIDS’ scalability issues because LIRA’s bank only interacts with ORs, and not with
all clients.

5.2. Scheduling and Traffic Prioritization
5.2.1. Circuit Scheduling. To address the cross-circuit interference problem (described

in Section 3.4), Tang and Goldberg [2010] propose prioritizing circuits that have inter-
active traffic. Because it is hard to identify the type of traffic in an anonymity network,
the insight of this work is to change the scheduling algorithm so that it gives prece-
dence to circuits that have sent fewer cells recently, thereby increasing their respon-
siveness. To achieve that, each circuit maintains a state variable that keeps track of the
exponentially weighted moving average (EWMA) of the number of cells sent. A smaller
such value is likely to identify a circuit with interactive traffic, which the scheduler
prioritizes and gives service next, as opposed to Tor’s original round-robin scheduling.
Small-scale live experiments show that this technique does not hurt the performance
of bulk transfer circuits; however, later work by Jansen et al.[2012] showed that the
performance of bulk clients can be noticeably worse when this prioritization algorithm
is used. Also, web clients only benefit from the EWMA circuit scheduler under heavy
traffic loads. Under light traffic loads, clients might experience performance degrada-
tion when EWMA is used.

5.2.2. Classification. One problem in Tor is that it provides all applications with equiv-
alent service, despite the fact that different applications have different requirements.
For example, interactive real-time applications require more responsiveness from the
network, whereas bulk applications require higher throughput. To alleviate the im-
pact that bulk circuits have on interactive circuits, AlSabah et al.[2012] introduced
DiffTor. DiffTor is a machine-learning-based approach to perform traffic classification
of Tor’s encrypted traffic into three traffic categories: browsing, streaming, and bulk.
This approach has two use cases: online and offline.

The offline classification can be used to provide insight into the usage of the network
without applying privacy-intrusive Deep Packet Inspection (DPI) techniques. The on-
line classification, on the other hand, gives each router the flexibility of applying real-
time Quality of Service rules on the different traffic classes. For example, a router can
prioritize interactive circuits, and throttle bulk circuits if it is experiencing congestion.
When the router has some spare bandwidth, it can allow the bulk circuits to ramp up.

Since the traffic is encrypted and travels in fixed-sized units, the authors rely on
timing and cell counts (and other related statistics) to extract features for the clas-
sification. More than 90% accuracy can be obtained using decision trees and Naive

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:14

Bayes classifiers. To evaluate the effectiveness of the classification approach, they im-
plemented a Naive Bayes classifier on an entry guard router that they deployed on the
live Tor network. They also implemented a simple QoS rule that throttles a connection
if several circuits in the connection are classified as bulk. This simple rule resulted in
more than 70% improvements in the time-to-first-byte and download time measure-
ments observed by a web client using the same entry guard. This demonstrates how
greedy applications are capable of consuming most of the bandwidth in Tor if left un-
controlled.

5.2.3. Throttling. To reduce the impact of greedy file sharing applications on the net-
work, Jansen et al. [2012] leverage Tor’s already existing token bucket throttling sys-
tem (Section 2.5). This technique is employed by entry guards, who keep track of the
EWMA of cells sent (as proposed previously by Tang and Goldberg; see Section 5.2.1) at
the connection level. Furthermore, they explore three algorithms that adjust or throt-
tle the connection between an entry guard and a client. Their most effective algorithm,
nicknamed the threshold algorithm, sorts circuits from loudest to quietest based on the
EWMA of cells sent, with the goal of throttling a loudest threshold of all connections.
The authors report that a threshold of 90% yields the best results. The problem with
such an approach is that it would unnecessarily throttle time-sensitive interactive ap-
plications if the threshold is too high. Another problem with the threshold algorithm
is that it is based only on a simple metric (EWMA of cells sent), which is sometimes
unreliable as interactive circuits sometimes have large values of EWMA while they
are downloading web pages. This metric is also easy to game, as misbehaving bulk
clients can try to spread their traffic over multiple circuits so that their circuits look
lighter [AlSabah et al. 2012].

5.2.4. Hybrid Techniques. In Tortoise [Moore et al. 2011], all clients using the network
are throttled, using Tor’s already-implemented token-bucket system (Section 2.5), to
a certain bandwidth rate by entry guards. While the global rate-limiting significantly
slows down bulk downloaders, and allows more spare bandwidth to be present in the
network, it also slightly slows down web browsing users. For a user to bypass the
throttling, he has to run as a router. This design unfortunately hinders the anonymity
of router operators, as if the adversary observes an unthrottled circuit, he can reduce
the anonymity set of the unthrottled circuit initiators to the set of publicly known
router operators.

To prevent users from gaming Tortoise by either running limited-bandwidth routers,
or by running only sporadically, global throttling can only be bypassed by the routers
labeled “fast” and “stable” by the directory authorities. This condition ensures that
clients can only bypass the throttling if they contribute a significant amount of band-
width to the network.

5.3. Multipath Routing
Multipath routing has been studied in the context of onion routing by Snader [2010].
In this work, Snader simulated downloading a 1 MB file over a Tor network simulator.
The file was divided into 512-byte chunks and sent over multiple circuits simultane-
ously. He observed that throughput was significantly improved with the use of multi-
ple circuits; however, using two circuits performs better than using one circuit or more
than two circuits—using more than two circuits increases the chances of choosing a
slow router. The median transfer time remains unchanged for more than two circuits,
but the 90th percentile transfer times actually increase when the number of circuits
used is greater than two. However, this work does not provide a security analysis of
how compromise rates would be affected if clients adopted this technique.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:15

Multipath routing has also been proposed to improve the experience of bridge users.
Because bridge users observe worse performance than the rest of the network, Con-
flux [AlSabah et al. 2013] was introduced to enhance their browsing experience by
using multipath routing in Tor. A bridge user starts by building a primary circuit us-
ing Tor’s usual weighted bandwidth selection algorithm. Next, he builds a secondary
circuit using the same algorithm with the exception that it has the same exit OR as the
primary circuit, and uses a different bridge. Once the two circuits are built, the user
sends a new command message that contains a special 32-bit number on both circuits
towards the common exit. This allows the exit to know that both circuits belong to
the same user. When the user starts downloading data, the exit performs a weighted
traffic splitting algorithm that balances load on each circuit. Conflux exploits Tor’s cir-
cuit sendme messages sent from the client to the exit on each circuit to compute the
latency on each path, and set the weight of the traffic sent on each circuit accordingly.
If one path is more loaded, it gets a smaller fraction of the traffic. Because cells may
arrive out of order at the client, a Conflux exit adds 4-byte sequence numbers to the
cells, and a Conflux client buffers and reorders cells before passing them to the client.

The location of the bottleneck node in the circuit affects the benefits observed by
Conflux. Benefits appear to be substantial as long as the Conflux circuit bottleneck is
not the (common) exit. Furthermore, because Conflux uses more nodes in its circuit
than a vanilla Tor circuit, it slightly raises the path compromise rate for its users.

5.4. Congestion Control
To introduce congestion control in Tor, AlSabah et al.[2011] introduced to Tor N23,
a credit-based congestion control algorithm that was originally proposed for Asyn-
chronous Transfer Mode (ATM) networks. Briefly, every OR maintains a variable,
credit balance, which denotes the amount of data an OR can send on a circuit. When
a circuit is created, the credit balance is initialized to N2+N3, where N2 and N3 are sys-
tem parameters. When an OR forwards a cell downstream, it decrements the circuit’s
balance by 1. Every time an OR sends N2 cells downstream, it forwards a new cell type,
known as the credit cell, upstream. The credit cell allows the upstream OR to calcu-
late the amount of buffer space available downstream to update its credit balance
variable accordingly.
N23 provides several advantages to Tor ORs. First, their circuit queues depicted in

Figure 2 never grow beyond N2+N3 (approximately 100), whereas in stock Tor, the cir-
cuit queues can reach up to 1000 cells. Second, when an OR gets congested, it stops
sending credit cells to the upstream OR, which will run out of credits, and stop for-
warding data to the congested OR. This allows ORs to signal congestion using back
pressure. Finally, if there is a sudden increase or decrease in the available bandwidth,
N23 reacts within the round-trip time (RTT) of a single link, as opposed to the end-to-
end RTT of Tor’s window-based flow control algorithms.

6. TRANSPORT LAYER TRAFFIC MANAGEMENT
Recall that one of the key culprits to Tor’s poor performance is its transport design.
Tor multiplexes several circuits over the same TCP connection, which results in un-
fair application of the TCP congestion control of the shared connection on all circuits,
as well as head-of-line blocking of unrelated circuits when a packet in a circuit that
shares a TCP connection is dropped. Various proposals in this section attempt to solve
this cross-circuit interference problem by changing the transport design so that TCP’s
congestion control is applied at the circuit granularity.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:16

6.1. TCP-over-DTLS
Another implication of the cross-circuit interference problem that was observed by
Reardon and Goldberg is that when packets are dropped or reordered from one circuit,
all other circuits going through the same TCP connection are penalized. The reason
is that the TCP stack will buffer available data on input buffers until the missing in-
order component is available. To solve the cross-circuit interference problem, Reardon
and Goldberg proposed TCP-over-DTLS, a transport design in which every circuit is
managed by a user-level TCP connection. DTLS, a secure datagram protocol, is used for
inter-OR communication. This design maintains hop-by-hop reliability and congestion
control, but it introduces performance and deployment issues: (1) there is a lack of an
available user-level TCP stack whose license is compatible with Tor, (2) even if such
user-level stacks exist, they are known to perform worse and consume more CPU cycles
than their kernel-level counterparts [Edwards and Muir 1995; Braun et al. 1995].

6.2. UDP-OR
In UDP-OR [Viecco 2008], a TCP connection is maintained at the two ends of a circuit,
the OP and the exit, and UDP, an unreliable transport, is used for communication
between routers. The advantage of this design is that it simplifies the tasks of pro-
cessing at intermediate routers and allows for the introduction of congestion control at
the overlay layer (user-level TCP congestion control is performed between the OP and
exit); however, it creates the following problems: (1) reliability and in-order delivery is
not maintained between routers, which requires changing the current cryptographic
protocols currently used in Tor in which if a cell is lost, subsequent cells can not be en-
crypted or decrypted correctly. This also means that discovering lost packets, in cases
of extreme congestion, will be in the order of several seconds; (2) this design used the
kernel TCP stack, which opens the door to OS fingerprinting attacks.

6.3. Torchestra
In Torchestra [Gopal and Heninger 2012], two TCP connections are used between any
pair of routers. One connection is used to multiplex light circuits, and the other is used
to multiplex heavy circuits. The exit OR uses the EWMA of cells sent (as proposed
previously by Tang and Goldberg; see Section 5.2.1) in order to classify circuits as light
or bulk. Then, special control cells are sent to instruct the remaining routers on the
circuit of the classification decision. Therefore, all ORs in a circuit using Torchestra
need to upgrade in order to benefit from this work. However, it has been pointed out
that the EWMA of cells sent is not enough to determine if a circuit is light or bulk, and
unfortunately, the classification accuracy was not discussed in Torchestra. Although
Torchestra was implemented, it was only tested on a small-scale network setup, which
is not sufficient to provide conclusive results regarding its benefits.

6.4. PCTCP
AlSabah and Goldberg [2013] attempt to solve the shortcomings of previous transport
designs by dedicating a separate kernel-level TCP connection for each circuit. This
has the advantage of maintaining reliability and congestion control on a hop-by-hop
basis. Second, using a separate kernel-level TCP connection eliminates buffer sharing
between bulk and interactive application cells, which solves the cross-circuit interfer-
ence problem in Tor.2 Finally, this design eliminates the performance and deployability
problems inherent from using user-level TCP.

2We note that the queueing strategies utilized by IP routers might cause dropped cells from one circuit to
affect another circuit. At the transport layer, TCP connections are not independent and are affected by the
dynamics of shared IP routers.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:17

However, to prevent an adversary to determine which circuit within a connection is
carrying any particular cell, PCTCP proposes using the Encapsulation Security Pay-
load (ESP) protocol of IPsec, the standard security mechanism for the IP layer, in trans-
port mode, which provides authenticity, integrity and confidentiality of the data com-
municated between any two ORs using PCTCP. The individual circuits, each in their
own TCP connection, are all bundled within a single IPsec channel, so the attacker
cannot discern the circuits.

Although the experimental evaluation of PCTCP shows significant improvement
benefits, deployment of IPsec might face some challenges in Tor, which could be miti-
gated by shipping Tor with scripts that can facilitate router operators installing IPsec.
Other challenges might arise from older Windows-based ORs, which are notorious
for their inability to handle the increasing number of sockets required for the oper-
ation of PCTCP. IMUX [Geddes et al. 2014] (described in the extended version of this
work [AlSabah and Goldberg 2016]) builds on the design of PCTCP but further ex-
plores various circuit-to-connection ratios (as opposed to PCTCP’s 1-to-1 ratio) in order
to help protect against socket exhaustion attacks.

6.5. uTor
Nowlan et al.[2013] introduced uTor to solve the head-of-line blocking issue, where
if one heavy circuit, occupying the first packet in the TCP congestion window, drops
data, the TCP congestion window will buffer available data from other circuits and
will not advance the TCP window until the missing packet is available. This is done to
guarantee in-order delivery for the data in one TCP connection.

In Tor, since circuits are logically independent from each other, delaying data from
one circuit until all missing data is available from other circuits is not needed. uTor
solves this problem by using Unordered TCP (uTCP) protected by Unordered TLS
(uTLS), which allows the TCP connection to send the available data even in the condi-
tion of missing dropped data. This way, a lost packet from one circuit will not interfere
with other circuits’ delivery. uTor requires very minimal changes to the Tor source
code, and the upgrade is backward compatible.

However, the micro-benchmark evaluation shows that only modest performance
gains can be obtained using uTor. The reason is that, unlike PCTCP, circuits in uTor
still need to share input/output buffers between any two ORs. Also, uTor adds packet
processing latency at the application layer, as it needs to perform packet sequencing,
additional per-circuit queueing, and ordering.

6.6. KIST
Jansen et al.[2014] confirm previous findings [Reardon and Goldberg 2009] regarding
where cells spend most of their queuing time in their data path in a circuit. Both
Jansen and Reardon agree that cells spend most of their time waiting in the socket
output buffers waiting to be flushed. In addition, Jansen et al.observe that although
Tor uses its EWMA circuit scheduler (see Section 5.2.1) to prioritize cells from light
circuits, those cells lose their priority when they are written to the kernel socket. The
reason is that they are not written to the kernel according to their priority level, but
according to when their corresponding sockets receive notifications from libevent, the
asynchronous event library that Tor uses for network reading and writing operations.

To solve this problem, Jansen et al.propose KIST (Kernel Informed Socket Trans-
port), which ensures that cells do not lose their priority at the kernel. First, when a
KIST-upgraded OR is given a ready socket by libevent, instead of writing cells right
away, it waits until the end of a tunable time interval, during which it keeps track of
all ready sockets reported by libevent. At the end of the interval, it pulls cells from
the highest-priority circuits and writes them to their corresponding sockets. That way,

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:18

a higher-priority circuit is written first to the kernel and gets flushed first to its next
destination since the kernel services sockets in order. Note that this achieves global
circuit scheduling, as opposed to Tor’s per-connection local circuit scheduling.

Furthermore, KIST measures the amount of data that can be sent to the socket
based on the minimum of the available outbound kernel buffer space, and the available
congestion window space. While this moves the queueing delays from the kernel to Tor,
it gives Tor the ability to control the prioritization until the last instant before kernel
starvation. Both components of KIST have been implemented in Tor and large-scale
experiments showed significant performance benefits. However, the authors showed
that decreasing network latency makes the network more vulnerable to latency-based
attacks, where the adversary uses latency as a side channel to deanonymize clients
(see Section 11.3).

7. ROUTER SELECTION
Recall that Tor clients select routers for circuits in a frequency roughly proportional to
their bandwidth. This section surveys previous research papers that investigated the
router selection problem in Tor and aimed to improve it by trading off its performance
with anonymity, by exploring other link-based metrics such as latency and jitter, by
exploiting the geographical location of routers to reduce latency, or by enabling clients
to be congestion aware.

7.1. Tunable Selection
Snader and Borisov [2008] identified two key weaknesses in Tor’s original design.
First, ORs’ bandwidths are self-reported. This allows some routers to misbehave by
reporting exaggerated bandwidth capabilities in order to lure more circuits to use
them [Bauer et al. 2007], in order to increase the rate of compromise (see Sec-
tion 11.2.2). Even when honest bandwidth values are reported, they are still a poor
indicator of the available capacity because of network dynamics and congestion states.
Second, the Tor design does not provide users with the flexibility to trade off anonymity
with performance according to their requirements.

Therefore, to solve the self-reported bandwidth problem, they proposed an oppor-
tunistic bandwidth monitoring approach, where every router aggregates the band-
width capabilities of other routers it contacts over time, and then reports these mea-
surements to the bandwidth authorities. They also introduce Tunable Tor, an algo-
rithm that allows users to configure the level of performance they want to trade off
with anonymity. Briefly, Tunable Tor works as follows: the list of ORs is sorted accord-
ing to some criterion (such as the opportunistic bandwidth measurement). If this list
is indexed from 0 to n − 1, then the router selected is that with the index bn · fs(x)c,
where x is selected uniformly at random from [0, 1), and fs is a family of functions

fs : [0, 1)→ [0, 1) given by fs(x) =

{
2sx−1
2s−1 , s 6= 0

x, s = 0
.

Configuring a higher value for s results in a selection prejudice towards routers with
higher ranking in the list. If s = 0, the router is chosen uniformly at random.

Murdoch and Watson [2008] compared the performance of four different Tor path
selection algorithms: the original uniform router selection, Tor’s current bandwidth-
weighted router selection, and Tunable Tor with the minimum suggested s for im-
proved anonymity (s = 1), and the maximum suggested s for improved performance
(s = 15). In their evaluations, they used two performance metrics: probability of path
compromise and network latency. They used queuing theory to model the latency ex-
pected with the different path selection algorithms.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:19

Their latency results demonstrated that Tor’s weighted bandwidth selection algo-
rithm provides improved performance over the other router selection algorithms. The
tuneable algorithm by Snader and Borisov was also found to degrade performance, as
if all clients choose to get higher performance, the fastest routers will be congested
and overloaded. Moreover, Tor’s weighted bandwidth selection algorithm also showed
improved anonymity against a node-rich and bandwidth-poor attacker. The reason is
that when higher-bandwidth nodes have a higher probability of being selected, the
algorithm deviates further from selecting malicious poor-bandwidth nodes. If the at-
tacker introduces a handful of high-bandwidth nodes, the authors found that Tuneable
Tor with s = 15 and the bandwidth-weighted algorithm yielded the worst compromise
rate compared to Tuneable Tor with s = 1, and the uniformly random selection of
routers.

7.2. Link-based Selection
Sherr et al.[2009] note a number of problems in the opportunistic bandwidth moni-
toring described above. Routers reporting the bandwidth of other monitored routers
can lead to two undesirable effects. First, routers can lie about the bandwidth of other
routers they report. Colluding malicious routers can report exaggerated bandwidth ca-
pabilities about members of their coalition. This problem, however can be addressed
using Eigenspeed [Snader 2010], which is Snader’s improved opportunistic bandwidth
measurement algorithm that is resilient in the face of malicious attacks. The second
problem that Sherr et al.point out is that for every router to report the performance of
other routers contacted means revealing information about established circuits, giving
the servers a more powerful global view of the network.

Alternatively, they propose replacing the opportunistic measured bandwidth in Tun-
able Tor with a link-based metric. Their observation is that choosing paths based on
link characteristics such as latency, jitter, or number of traversed Autonomous Systems
(ASes) can provide improved performance over node-based characteristics alone. Their
proposed link-based Tunable Tor takes place in two phases. In the first phase, the ini-
tiator generates various candidate paths, and then the end-to-end cost of each path is
computed according to the desired link-based metric. In the second phase, paths are
sorted according to their metric, and the Tunable Tor algorithm is used to trade off
between performance and anonymity.

One assumption made in the link-based router selection algorithm is that the ini-
tiator must maintain knowledge of the costs of the whole network, in order to be able
to compute the cost of the whole path. For example, if a user wishes to use latency as
a metric in constructing circuits, then it must measure the pairwise latency between
every two routers in the network. The cost of this measurement can outweigh the ben-
efits of exploiting link-based metrics. For that reason, Sherr et al.also propose the use
of a network coordinate system, a multi-dimensional space in which the distance be-
tween routers in the virtual coordinate corresponds to the metric utilized in the router
selection algorithm.

7.3. LASTor
Rather than using a network coordinate system that maintains the latency between
ORs as proposed by Sherr et al., LASTor [2012], proposed by Akhoondi et al., is a
weighted shortest path algorithm that makes routing decisions based on the geograph-
ical distance between the source and the destination. Such distance can be estimated
by exploiting geoIP databases to predict the set of ASes between any two IP addresses
rather than the precise route between them. The advantage of this over the approach
of Sherr et al.is that it only requires client-side updates rather than expensive router
updates. Similarly to the approach of Sherr et al., LASTor also protects clients from

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:20

observers at the AS level, as it implements a lightweight technique to reliably avoid
creating paths that have the same AS on the path between the client and its entry
guard and the path between the exit and the client’s destination.

Later research by Wacek et al.[2013] (Section 7.5), however, demonstrated that LAS-
Tor performs poorly when tested under a more realistic network setup.

7.4. Congestion-aware Router Selection at Clients
Wang et al.[2012] proposed a path selection algorithm that uses latency as an indi-
cator for circuit congestion. First, Tor’s default bandwidth-weighted router selection
algorithm is maintained to build circuits. Then, the proposed algorithm uses oppor-
tunistic and active-probing techniques to obtain latency measurements for circuits.
The client remembers the latency measurements for the individual routers, which can
be useful in two ways. First, if a client is using a congested circuit, it can switch to a
less-congested circuit. Second, the router selection algorithm is also modified to take
into account the latency measurements, in addition to the bandwidth, for candidate
routers chosen to build circuits.

7.5. Comprehensive Evaluation
Wacek et al.[2013] evaluate the performance and security of all router selection algo-
rithms described above. The authors use an emulated scaled-down Tor network that
realistically models the live Tor network. The authors then implement the router se-
lection algorithms and compare their performance in terms of throughput, time-to-
first-byte and average ping times. They also evaluate the anonymity of these algo-
rithms using the Gini coefficient, entropy, and compromise rate by an AS-level adver-
sary. The evaluation shows that the congestion-aware algorithm proposed by Wang et
al.outperforms other router selection algorithms without reducing anonymity. LAS-
Tor, on the other hand, provided the poorest performance among other algorithms, but
maintained high anonymity guarantees.

8. SCALABILITY
Improving the scalability of the Tor network has taken two approaches. The first ap-
proach is to replace the centralized design with a peer-to-peer design. The second di-
rection is to maintain the centralized design, but use PIR during circuit construction.
Below we survey those directions.

8.1. Peer-to-peer Approaches
8.1.1. Torsk. To solve scalability problems in Tor, Torsk [McLachlan et al. 2009] pro-

poses a decentralized circuit construction scheme that uses a combination of a DHT
structure for bootstrapping, and a buddy selection protocol for peer discovery. To boot-
strap, Tor’s directory authorities in Torsk are given the role of the Neighbourhood
Authority (NA), an entity responsible for issuing certificates to neighbors in the DHT
space when nodes join or leave the network. This allows bootstrapping to be a low-cost
operation, as new nodes are only required to generate a new ID and perform a lookup
on their ID to find the closest neighbor, as opposed to downloading the whole topology.
Next, the newly joining node contacts the NA, which takes the ID of the node and the
certificate of its closest neighbor to generate a new certificate for all affected neighbors.

Router selection is carried out as follows. First, every router uses the buddy selec-
tion protocol to find other random routers to consult during DHT lookups. Likewise,
a client uses the buddy selection protocol to begin a random walk in the network to
discover an entry guard. Next, for subsequent routers, the client uses the last OR on
the partially constructed circuit Ri to randomly find Ri+1 by consulting Ri’s previously
found lookup buddies. Finally, because lookups are loud (queries are broadcast to many

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:21

entities in the P2P network) and can reveal information about the constructed circuit,
cover traffic is also used to add noise in case lookups are profiled.

Despite this defence, it has been shown subsequently by Wang et al.[2010] that an
adversary with 20% compromised nodes can compromise 80% of the circuits. The rea-
son is that DHT lookups are loud and they allow an adversary to link what routers a
client is searching for.

8.2. A Scalable Centralized Approach: PIR-Tor
A major problem with the two above proposals is that the research community does not
currently have a solution for looking up information in a P2P network without reveal-
ing the lookup to many parties. However, private information retrieval (PIR) allows a
client to look up information in a client-server model without revealing any informa-
tion about what was being requested, even to the server itself. Therefore, PIR-Tor [Mit-
tal et al. 2011b] steps away from the P2P paradigm to address the scalability problem
in Tor, instead advocating for the use of PIR techniques in order for clients to be able
to download a small portion of the network view without hindering their anonymity by
revealing which portion. The current approach in Tor is for clients and routers to regu-
larly download the entire network state and then choose their desired records, a costly
operation and a significant contributor to Tor’s scalability problems. The advantages
of PIR-Tor over P2P designs is twofold. First, the client-server bootstrapping architec-
ture of Tor is preserved, making for an easier deployment path. Second, the security
guarantees of the system are easier to analyze than the above P2P designs.

The authors investigated two flavors of PIR techniques: computational PIR (CPIR)
and information-theoretic PIR (IT-PIR). For CPIR, some routers are selected to act
as the PIR servers. To build a circuit, a client contacts one of the CPIR servers to
perform two PIR lookups: one for a middle router and another for an exit router. On
the other hand, since IT-PIR requires the use of multiple servers (the privacy of a
user’s query is guaranteed if a threshold number of the IT-PIR servers do not collude),
IT-PIR server functionality can be implemented between a client and its entry guards.
This reduces the PIR lookup for each circuit to only one to lookup an exit node, while a
middle node can be retrieved by a normal lookup. Evaluation of PIR-Tor showed that
both techniques of PIR help reduce the communication overhead as the network scales.
However, only IT-PIR provides the same level of security of the current Tor network, as
the computational overhead of CPIR requires that clients reuse the retrieved routers
to build multiple circuits.

9. CIRCUIT CONSTRUCTION
We next survey several proposals that aim to improve the communication and compu-
tation overhead of Tor’s circuit construction algorithm.

9.1. Improved Diffie-Hellman Based Key Agreement
Øverlier and Syverson [2007] introduced four protocols that aim to reduce the commu-
nication and computation overhead of circuit construction in Tor. In their first protocol
(which is the basis for all their subsequent protocols), RSA encryption, which was used
for circuit construction prior to the current ntor protocol (described below), is replaced
with a DH key agreement in order to reduce the computational cost.

The second protocol uses the first protocol and creates a circuit by sending one com-
mand cell to build a circuit in one pass, which reduces communication costs at the
expense of forward secrecy. The insight of the third protocol is that since the link be-
tween the client and the first router is TLS encrypted, there is no need to use a DH
key agreement, but they can simply exchange symmetric keys.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:22

Finally, the fourth protocol proposes a new key agreement protocol using the
ephemeral keys of both the client and router and the long-term keys of the router.
The router RB publishes a long term key gb. When a client wants to establish a session
key with RB , it computes and sends an ephemeral public key gx to the server. Then,
the server computes the shared key (gx)b+y, and sends gy to the client, which computes
(gbgy)x.

Goldberg et al.[2011] demonstrate a Man-In-The-Middle attack against this fourth
protocol, and propose a fix they call ntor. In ntor, the shared key is computed as
H((gx)y, (gx)b) instead of (gx)b+y as above. Ace [Backes et al. 2012] was subsequently
proposed to slightly improve on the computational cost of ntor. The client sends
(gx1 , gx2) as an ephemeral key to the router, which responds with gy. The client and
router then compute the session key as (gb)x1(gy)x2 and (gx1)b(gx2)y, respectively. The
ntor protocol is currently employed in the Tor network.

9.2. Pairing-Based Onion Routing
Kate et al.[2007] propose replacing the circuit construction scheme in Tor with
a pairing-based onion routing (PB-OR) protocol that uses a pairing-based non-
interactive key agreement protocol. In order for their scheme to achieve unilateral
anonymity (meaning that the client authenticates a router without leaking the client’s
identity), they use an identity-based infrastructure. A trusted entity known as the pri-
vate key generator (PKG) takes a router’s well-known identity ID, and uses a master
key only known to the PKG to generate a private key d for the router. Clients, on
the other hand, can independently generate as many pseudonyms as they need, along
with the private keys corresponding to each pseudonym. Then, the client achieves
anonymity during the key agreement phase with routers by presenting a different
pseudonym with each router; routers use their private keys d to complete the key
agreement. Because the key agreement protocol is non-interactive, it significantly re-
duces the communication overhead of the circuit construction compared to Tor, and
it allows a circuit to be constructed in one pass. However, the PKG is able to decrypt
all messages encrypted for clients, a single-point-of-failure-problem. Also, to maintain
forward secrecy, routers are required perform costly communications with the PKG in
order to change their identity keys frequently.

9.3. Certificateless Onion Routing
Catalano et al.[2009] note the problems inherited from the use of a PKG in the PB-OR
scheme described above and propose to improve it by replacing the anonymous pairing-
based key agreement with an anonymous certificateless key agreement scheme. The
idea of this scheme is that a client obtains partial secret keys from the trusted entity
(key generation center KGC), from which he can compute public/secret key pairs PK
and SK. Therefore, the newly computed private key SK is not known even to the KGC,
and the pair PK/SK can be used to generate several pseudonyms as needed. The rest
of the protocol is very similar to that of PB-OR. Another advantage with this approach
is that routers can update their keys locally without contacting the KGC.

10. PASSIVE ATTACKS ON ANONYMITY
We next survey various attacks on Tor that aim to hinder the anonymity it provides
to users. In this section, we examine passive attacks that only require an adversary to
monitor, but not modify, Tor traffic.

10.1. AS-Level Adversary
Edman and Syverson [2009] argue that the security guarantees provided by Tor are
not as originally thought, especially in the face of an AS-level adversary. An AS is an

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:23

independent network under the control of an operator, and the Internet consists of a
number of interconnected ASes. If the same AS appears on the path between the client
and its entry guard and also appears on the path between the exit and the destination,
the AS can use traffic analysis to deanonymize the user.

To understand the threats of an AS-level adversary, the authors used available rout-
ing information databases (RIBs) in order to construct AS-level graphs that depict
ASes and their relationships and adjacencies using path inference algorithms. Then,
they used a shortest path algorithm to compute paths between the ASes. Experimental
results have shown that the probability that a single AS appears at the two ends of a
circuit can be as high as 20%. This probability can be slightly decreased using an AS-
aware or country-aware router path selection algorithm, such as LASTor. It is worth
noting that the modifications in the router selection algorithm of Tor, such as enforc-
ing a different /16 subnet for routers on a path, or the weighted bandwidth selection of
routers, have had small improvements in limiting the threat of an AS-level adversary.
For instance, the authors observed from their experiments that Tor’s weighted router
selection, with the different /16 subnets for routers enforced, had an end-to-end com-
promise rate of 17.8% with respect to the AS-level adversary, whereas uniform router
selection yielded a 20.4% compromise rate.

10.2. Website Fingerprinting
Recall that Tor’s anonymity protection fails against an adversary watching both the
client and also the exit point of her circuit. A website fingerprinting adversary, on
the other hand, only has to watch the client. As such, the client’s ISP or national
government is in an excellent position to mount this attack. To perform the attack, the
adversary observes the packet counts, directions, and timings between the client and
the anonymity system, and matches those against patterns indicative of particular
websites of interest, using various machine learning techniques.

In the context of Tor, Herrmann et al.[2009] was the first to test the effectiveness
of this attack against Tor. They used a multinomial Naive Bayes classifier, which was
trained using features that are based on the frequency distribution of IP packet sizes
and the flow direction. In a closed-world setting, where the classifier is trained to iden-
tify the website from a finite set of websites used for training, their classifier yielded
only 3% success rate on Tor, despite the fact that they achieved more than 90% ac-
curacy on SSH and VPN tunnels. The reason for the poor performance of this classifier
on Tor is that it relies on packet sizes as a classification attribute, while cell sizes are
fixed in Tor, resulting in nearly discrete distributions of packet sizes at the IP layer.

Panchenko et al.[2011] were able to increase the effectiveness of this attack using
a Support Vector Machines (SVMs) classifier, using features that are mainly based on
the volume, time, and direction of the traffic. In the closed-world setting (775 URLs),
the authors use the same dataset used by Herrmann et al.and increase the detection
rate to an alarming rate that exceeds 50%. Furthermore, the authors extend their
experiments to an open-world setting where the user can access any URL he chooses.
The attacker is assumed to be a regime that attempts to identify if a user is trying
to access a censored website, so the classification in this setting is binary: allowed or
prohibited website. Using different datasets for this setting, the authors are able to
show high positive rates that range between 56% to 73%.

Several subsequent papers [Dyer et al. 2012; Cai et al. 2012; Wang and Goldberg
2013; Wang et al. 2014] demonstrated that it is possible to increase the accuracy us-
ing different classification techniques. Furthermore, the website fingerprinting attack
was also applied in the domain of hidden services to deanonymize hidden services
and their clients [Kwon et al. 2015]. To combat the website fingerprinting attack, sev-
eral papers proposed and evaluated potential defenses [Dyer et al. 2012; Wang and

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:24

Goldberg 2013; Cai et al. 2014a; Nithyanand et al. 2014; Wang et al. 2014; Cai et al.
2014b]. For example, Wang et al.[2014] reduce website download traces to packet se-
quences with direction and timing information. Their defence has two phases. First,
the packet traces are clustered into a smaller number of anonymity sets, where ev-
ery set contains very similar packet traces. Second, within every anonymity set, the
authors find the shortest common supersequence (SCS), and pad all packet traces to
that SCS. The goal is to make packet sequences within any anonymity set look exactly
the same, while adding a minimum of overhead. In the live Tor network, one could
implement such a defence at a guard node, protecting the traffic between the client
and the guard node at a relatively low cost. However, to hedge against the guard node
itself being the website fingerprinting adversary, having the exit of a circuit perform
the defence, padding the traffic along the whole circuit from the exit all the way back
to the client, is a somewhat higher-security, but higher-cost, alternative.

11. ACTIVE ATTACKS ON ANONYMITY
In this section, we examine attacks by an adversary who can actively manipulate Tor
traffic, including active probing of the Tor network to discover side channels based on
throughput, latency, or congestion.

11.1. End-to-End Confirmation Attacks
Ling et al. [2013b] present various attacks to carry out end-to-end confirmation attack.
Those attacks assume that the adversary runs ORs under his control, and show how
an adversary can verify whether or not a circuit is using his malicious ORs at the
entry and the exit positions. The entry OR can duplicate, modify, insert, or delete data
cells from the OP TCP stream. Although such changes result in cell recognition errors
at the middle OR, it will still relay the cell to the exit, which will also experience
the cell recognition errors. Correlating the time at which the entry OR executed the
attack with the time the exit OR noticed the recognition errors allows the attacker
to link the source to the destination with very low false positives. A similar end-to-
end confirmation attack was crafted specifically to discover hidden services [Ling et al.
2013a].

By logging circuit failure rates through certain entry guards, an OP can easily notice
such malicious behavior. However, the cell counter-based attack [Ling et al. 2009] is
much harder to detect since the exit OR embeds a signal to the entry guard using the
number of cells transported in a TCP packet. For example, 3 cells (or 1 cell) received
in one packet correspond to binary 1 (or 0). While this approach is harder to detect,
it can also introduce more false positives for the adversary since the embedded signal
may be distorted at middle ORs due to congestion and network conditions. Combating
such attacks is a huge challenge since the design of Tor did not take them into account.
Similarly, end-to-end timing analysis attacks are an ongoing issue that we discuss in
Section 12.4.

11.2. Path Selection Attacks
11.2.1. Selective Denial of Service (SDoS). The SDoS [Borisov et al. 2007] attack works

by disrupting the reliability of the system with the goal of reducing its security. In this
attack, the attacker denies service to circuits that he cannot compromise (by appearing
at the two ends of a circuit). For example, if an entry guard is malicious, it will not allow
its client to have a reliable anonymous communication except if the exit router is also a
colluding node (an entry guard can determine if the exit node is a colluding node using
traffic analysis). A circuit is reliable if all routers are reliable and either all routers are
honest, or both the guard and the exit are compromised. Assuming all nodes are highly
reliable in the system, the adversary can compromise as many as 50% of the circuits

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:25

even when the fraction of dishonest nodes is as low as 20%. A possible countermeasure
is for OPs to maintain statistics about the failure rate of circuit construction and usage
through its entry guards and the selected ORs. Based on these statistics, OPs can avoid
entry guards that cause an alarming number of failed circuits.

11.2.2. Low-Resource Routing Attack. Bauer et al.[2007] exploit the path selection algo-
rithm of Tor to increase the probability of selecting malicious routers. The adversary
installs a number of low-resource nodes that falsely advertise high-bandwidth capabil-
ities. When clients establish circuits, they will be trapped into selecting the malicious
nodes with a higher probability because the router selection algorithm of Tor biases its
selection towards higher-bandwidth routers.

To increase the effectiveness of the attack, malicious nodes perform an SDoS attack
where they refuse to relay traffic unless they are able to control the entry guard and the
exit node of a circuit. The authors also describe an attack that enables the malicious
routers to confirm that they are controlling the entry and exit positions of a circuit.
To perform this attack, each malicious router logs some statistics and information
regarding its connection, such as the IP addresses and ports and some connection
timestamps, and reports the logs to a colluding centralized authority that runs the
circuit linking analysis in real time. Experiments on an isolated Tor network have
revealed the success of this attack. For example, if an attacker controls 10% of the
network, it can compromise as many as 47% of the circuits. While we expect that this
simple end-to-end confirmation attack would introduce high false positives if carried
out on the live Tor network, the adversary can resort to the more sophisticated end-to-
end confirmation attacks we surveyed in Section 11.1.

In 2009, Tor deployed bandwidth authorities whose duty is to collectively measure
the bandwidth of ORs. Those measurements are used to compute bandwidth weights
that are published in the consensus document (described in Section 2.1). While such
measurements provide a layer of protection against routing attacks, an adaptive mali-
cious OR might still be able to game the measuring authorities in order to exaggerate
its bandwidth.

11.2.3. Sniper Attack. The sniper attack [Jansen et al. 2014b] exploits Tor’s end-to-end
window-based flow control algorithm (discussed in Section 2.5) to successfully wage
a memory-exhaustion DoS attack, causing the Tor process either to be killed or to
deny clients from forming circuits. In the basic form of this attack, the attacker uses
his client to create a circuit through a malicious exit, placing the victim OR in the
entry position. When the malicious client signals the exit to download a large file,
the exit ignores Tor’s window-based throttling mechanism, and keeps sending even if
the window is empty. The malicious client does not read data from the entry, causing
the cells to pile up in the circuit queue at the target router, eventually exhausting
memory, and terminating the Tor process. In the more efficient form of the attack, the
adversary does not use a malicious exit, but sends circuit sendme messages at a rate
r that ensures that the circuit window does not exceed 1000 cells, a situation in which
the exit terminates the circuit. To measure r, the adversary uses another client (or
more), which builds another circuit through the same nodes and estimates the largest
r that does not cause the exit to terminate the circuit. To speed up the attack, one or
more clients can be used in parallel on the target. Jansen et al.show that this attack
can disable the top 20 exit routers in only 29 minutes.

The adversary can also use this attack to speed up deanonymization of a hidden
service (HS). The attacker deploys a guard and a rendezvous point (recall that this is
an OR that the client chooses as a meeting point, causing the HS to build a circuit to
it). The attacker uses his client to repeatedly request connections to the HS. Using a
previously proposed attack [Biryukov et al. 2013], the attacker can identify being one

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:26

hop away from the HS by sending a crafted signal from the rendezvous OR towards
the HS. That way, the attacker can identify all the guards of the HS. Next, the at-
tacker uses the sniper attack to disable them, causing the HS to choose a new guard.
Repeating this process increases the chances that the malicious guard is selected, and
thereby breaking the anonymity of the HS. As a countermeasure to this attack, Tor im-
plemented an out-of-memory circuit killer which is activated when memory becomes
scarce [Jansen 2016].

11.3. Side Channel Information Attacks
The goal of the throughput fingerprinting and the congestion attacks is to identify
the Tor routers in a circuit—which is often a first step in other attacks on Tor client
anonymity—or to compromise the unlinkability of streams, whereas the goal of the
network latency attacks is to directly reduce the anonymity set of clients.

11.3.1. Throughput Fingerprinting. One of the problems facing Tor is the heterogeneity of
its volunteer-provided resources. Circuits built through different ORs have distinctive
characteristics that can be enough to fingerprint the users building them. Mittal et
al.[2011a] present a number of attacks based on fingerprinting circuit throughput.
The insight of their attacks is that if two circuits share the same path or even just
the bottleneck node on the path, observations of their throughput would be highly
correlated. This allows an adversary to passively identify if two circuits share a sub-
path or a bottleneck. Also, an attacker can confirm if a specific router R carries a flow
f by probing R (measuring R’s throughput by creating a single-hop circuit through
it and transferring data) and computing the throughput correlation between f and
R. Furthermore, two separate malicious servers can confirm if two streams belong to
the same circuit. If they indeed belong to the same circuit, the adversary learns that
both streams belong to the same user. These attacks yield accurate results; however,
they are costly. The cost of the attack scales as Θ(N) for the probing operations, which
must be performed throughout the duration of the communication, where N is the
number of possible routers. Since this attack depends on identifying the throughput of
a circuit’s bottleneck, a possible countermeasure is for Tor to ease congestion by using
load-balancing techniques [AlSabah et al. 2013] or congestion control [AlSabah et al.
2011].

11.3.2. Congestion Attacks. The first low-cost congestion attack on Tor was described by
Murdoch and Danezis [2005]. The adversary in this attack can be a malicious server
interested in learning the identities of its clients. When a client connects to the mali-
cious server, the server responds to the client with data modulated in a very specific
traffic pattern. The adversary then can learn the routers on the path by performing
probing tests on the suspected routers (using a client). Experimental results on live
Tor nodes showed that when a router in the client’s circuit is probed, that router ex-
hibited a probe latency that was highly correlated with the modulated traffic. The
authors witnessed a very high success rate with few false positives. This attack was
carried out in 2005, when Tor consisted only of 50 nodes, and was not as heavily used
as today.

Another congestion attack was introduced by Evans et al.[2009], who observed that
as the Tor network had grown over the years, the above attack of Murdoch and Danezis
had ceased to be effective. The goal of this attack is simply to identify the entry guard
of a client. The attack is carried out as follows: a client connects to a server using
a malicious exit router, which injects JavaScript code into the client’s requested web
page. Next, since many Tor users do not disable JavaScript, the script would generate
a signal with a specific pattern through the client’s circuit, and thereby keep it alive.
The attacker monitors the arrivals of the requests at the server, and records a baseline

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:27

latency. The attacker then constructs a long circuit (preferably high bandwidth) that
passes through the target suspected router many times. From the target router’s point
of view, this long path is multiple different circuits. Then, the long path circuit is used
to congest the target router and if the target router is indeed the client’s entry guard,
the malicious server will observe a correlation between the latency of the signal and
the duration of the congestion attack. We observe that congesting the entry router does
not require long paths, as the adversary can deploy a malicious client to perform the
sniper attack to congest various entry guards in parallel.

11.3.3. Network Latency. Hopper et al.[2010] present two attacks that aim to reduce the
anonymity of clients. In the first attack, known as the circuit linkability attack, two
malicious servers seek to find out if two different connections coming from one exit
router belong to the same client or not. The distribution of the latency of each connec-
tion is measured (from the common exit router to the client). If the attacker observes
the same distribution for the two connections, he assumes that the two connections
come from the same circuit.

The second attack aims to approximate a client’s location using a combination of
the Murdoch-Danezis low-cost congestion attack and a latency attack. First, when a
client is communicating through the Tor network, the congestion attack is carried out
in order to identify the routers used in the circuit, and in particular to identify the
entry guard of the client. The adversary’s next goal is to measure the latency between
the victim’s client and its entry guard. This can be estimated by using a colluding Tor
client to construct an identical circuit and measure the latency of the circuit to infer the
latency of the link in question. Both attacks presented in this work have been tested
and they both are successful in reducing the entropy of the anonymity set distribution.
The authors suggest that to mitigate such attacks, it may be necessary to introduce
artificial delays or use an enhanced path selection algorithm.

12. UNRESOLVED AND ONGOING ISSUES
In this section, we discuss a variety of open issues that call for further investigation
in Tor. We begin by discussing the threat of Tor-based botnets, and then look at on-
going work on blocking resistance. We outline open problems and unresolved issues
regarding hidden services, and argue for a more rigorous exploration for the timing
analysis problem in Tor. Finally, we present future directions needed to improve Tor’s
performance.

12.1. Botnets
Various types of botnets have been recently found hiding behind Tor [Constantin 2012;
Dunn 2013; Gottesman 2014]. Tor provides an attractive hideout for malware because
a C&C can be deployed as a hidden service with a specific onion address that other
bots are configured with, making the takedown operation difficult. Such botnets can
cause a significant degradation on the performance of Tor [Hopper 2014]. For example,
the 2013 Mevade/Sefnit botnet caused a spike (close to 600% increase) in the number
of clients, which overloaded the network by requesting C&C descriptors and creating
circuits. In fact, most hidden service queries and circuits might be related to botnets;
Biryukov et al.[2014] analyzed the popular hidden services by looking at how often
their descriptors are queried, and they found that the descriptors of the Skynet botnet
were the most popular.

Detecting and removing botnets is a difficult problem in anonymity networks like
Tor because (1) clients and hidden services are anonymized, and (2) traditional tech-
niques [Antonakakis et al. 2010; Antonakakis et al. 2012; Bilge et al. 2014] that rely
on detecting anomalies in DNS or IP traffic are not applicable to Tor since no DNS in-

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:28

teractions occur within Tor to locate the hidden services, and because IP addresses are
anonymized. Since only HSDir ORs are queried for the C&C hidden services’ descrip-
tors, one might consider monitoring the pattern and number of requests to HSDirs for
different onion addresses as an approach to identify malicious HS addresses. Once sus-
picious onion addresses are detected, their responsible HSDirs can stop serving their
descriptors; however, an attacker can embed his own HSDir OR to serve the descriptor
of his malicious domain.3 Furthermore, an attacker can periodically change the .onion
address to avoid detection.

To protect Tor from abuses by botnets and malware, Hopper [2014] considers vari-
ous approaches that are, on a high level, based on (1) increasing the cost of building
circuits, and (2) throttling circuit building requests. He concludes that further evalu-
ation is required before an approach is adopted, since those approaches can affect the
experience of legitimate users, and may have anonymity implications if not studied
carefully.

12.2. Blocking Resistance
Recall that The Tor Project introduced bridges as a means to resist the blocking of
access to the Tor network. Those bridges are run by volunteers from around the world
who can choose to keep their bridges private, where they only serve contacts in their
social network, or to publish their contact information to the bridge authorities, which
are servers responsible for distributing bridge information to Tor users worldwide.

When bridges were first introduced, bridge authorities would provide 3 bridges to
each 24-bit IP prefix each day from its https server, so that a censor could not sim-
ply ask for the list of all bridges and block them. Ling et al.[2012] showed that they
were able to harvest 2365 distinct bridge IPs during only 1 month. This was done by
requesting bridges by sending emails and contacting the https server from PlanetLab
nodes that have different /24 subnets; indeed, the Tor developers have documented 10
different ways for an attacker to enumerate bridges [Dingledine 2011]. As a response,
users are requested to solve CAPTCHAs before receiving bridge IPs from the https
server. While CAPTCHAs can slow down a bridge enumeration attack, alternative ap-
proaches should still be explored. This is a difficult problem: how can we distribute
bridges at faster rate for legitimate users while enforcing a slower rate for censors?

In addition to blocking by IP address, censors started blocking by traffic flows. ISPs
at censoring countries use DPI in order to identify Tor flows. For instance, the Great
Firewall of China (GFC) was able to identify Tor traffic because the list of ciphers
provided in its TLS Hello message is unique and fingerprintable [Winter and Lind-
skog 2012]. Various pluggable transports have been deployed to solve this problem by
transforming Tor flows to mimic other protocols [Moghaddam et al. 2012; Fifield et al.
2012; Dyer et al. 2013]. However, even with pluggable transports, it is still possible to
differentiate between real application traffic and a Tor-based imitation [Houmansadr
et al. 2013]. There is currently no evidence that censors are actively seeking to identify
pluggable transport traffic, and so users should be able to continue using them. That
said, research will be needed in the future to devise different approaches or make cur-
rent approaches more resistant to DPI.

Another form of blocking facing Tor users is employed by some content distribution
networks such as CloudFlare; users are inconvenienced by having to solve an endless
loop of CAPTCHAs, and are sometimes blocked by CAPTCHA server failures [Perry
2016]. Researching and adopting techniques from the anonymous blacklisting litera-
ture [Henry and Goldberg 2011] is a possible research direction to safely mitigate this
issue.

3Recall that the HSDir responsible for serving a specific descriptor is computed deterministically.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:29

12.3. Security of Hidden Services
Security improvements are needed for the design of hidden services in Tor. Biryukov et
al.[2013] demonstrate that it is possible to enumerate the onion addresses of hidden
services by deploying a hidden service directory, which is relatively easy to get, since
(at the time of writing) a router must have an uptime of only 25 hours to gain the “HS-
Dir” flag. This malicious directory will be responsible for any hidden service descriptor
with an ID that is close to its fingerprint. Furthermore, because descriptor IDs have
a validity period, the malicious directory will see new descriptors periodically. In fact,
the adversary can speed the attack by deploying multiple directories over different
regions of the DHT ring, or by changing the router’s fingerprint.

Not only is a directory able to enumerate onion addresses this way, but the attacker
will be able to track the popularity of certain hidden services based on clients’ request
statistics. Worse, a malicious directory can try to target a specific hidden service in
order to control its availability. To solve these problem, it is crucial to explore how
to qualify a router to be a directory. One naive approach would be to harden the re-
quirements needed to be a directory. Requiring more uptime increases the cost for the
adversary as the deployed router needs to spend bandwidth relaying traffic during its
uptime, but this can also slow honest routers from serving as directories. Exploring
these tensions is needed for successful utilization of hidden services. The Tor Project
is currently researching techniques to address those weaknesses in the HSDir sys-
tem. [Dingledine 2013]

Finally, another privacy and anonymity concern for hidden services is anonymous
payments. Many hidden services hinder their anonymity (and their clients’ anonymity)
by accepting donations and payments through the Bitcoin network. Since all Bitcoin
transactions are publicly available in a public ledger, known as the blockchain, they
may be traceable [Miers et al. 2013]. While there have been research proposals to make
Bitcoin anonymous [Miers et al. 2013; Ben-Sasson et al. 2014], those are not deployed
yet. There is a need to explore anonymous payment methods for hidden services.

12.4. Traffic and Timing Analysis
One important research direction is to devise countermeasures for the end-to-end tim-
ing and traffic analysis attacks. While padding schemes have been proposed for general
low-latency mix networks [Shmatikov and Wang 2006; Wang et al. 2008], such solu-
tions are not effective in the context of Tor since an adversary can introduce timing
watermarks in the traffic [Houmansadr and Borisov 2013], by crafting a specific delay
pattern, or even by dropping packets. This led researchers to design countermeasures
for timing attacks for low-latency anonymity networks, an example of which is the
layered mesh topology [Feigenbaum et al. 2010], where the client constructs a circuit
with several entry nodes, several middle nodes, and a single exit node. The client sends
each cell to all entry routers. Each entry router then propagates the cells to all middle
routers, and so on. Cells have timestamps specifying when a router has to send the
cell to the next layer of routers. Finally, the last router on the path receives the cells
and sends the data to the destination. If the adversary delays a cell, another honest
router from the same layer (on a different path) will forward the replicated cell to the
next layer of routers on time. This reduces the probability that the delay will be vis-
ible when the cells arrive at the last router. The problem of this approach is its high
bandwidth and latency costs if adopted for Tor.

More approaches need to be explored and evaluated for Tor. A solution for this prob-
lem will provide a huge improvement for the anonymity of Tor and may help thwart
serious threats such as the AS-level adversary describe above, since it is also based on
end-to-end timing and traffic analysis.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:30

12.5. Performance
From previous discussions, it can be seen that, despite previous research proposals
(surveyed earlier), scalability problems are still lurking in the future of Tor. Proposed
P2P proposals can not be adopted because (1) their lookup process reveals circuit in-
formation, and (2) they are susceptible to attacks where the adversary controls a large
fraction of the network by introducing bogus nodes (using a botnet, for example). PIR
approaches look promising, but they still need further investigation. PIR-Tor, for exam-
ple, requires node reuse in its CPIR instantiation, lowering the security of Tor, while in
its IT-PIR instantiation, requires multiple guards for each user to act as PIR servers.
This creates tension with recent considerations to reduce the number of guards [Din-
gledine et al. 2014] to improve anonymity.

Providing incentives for users to run as routers can have a positive impact on scal-
ability and congestion. As discussed in Section 5.1, incentive-based proposals suffer
from shortcomings that need to be addressed. One promising direction is an approach
based on proof-of-bandwidth like torcoin [Ghosh et al. 2014], where routers are re-
warded with digital coins based on how much bandwidth they use relaying anonymous
traffic. One challenge for a proof-of-bandwidth protocol is performing secure bandwidth
measurements to ensure all network participants can easily verify that routers indeed
spend what they claim to spend.

Furthermore, while there have been several transport layer proposals that aim to
reduce congestion in Tor, it is still unclear what transport design provides the required
trade-off between anonymity and performance for Tor. There is a need to experimen-
tally compare the different transports under realistic user, network and traffic models
that can emulate the real Tor network. Once a transport design is identified, a deploy-
ment plan must be carefully crafted in order to gradually and smoothly upgrade the
network without denying service to its users.

13. CONCLUSION
In this paper, we identified key weaknesses in the design of Tor, the most widely
used anonymous communication network, and accordingly classified previous propos-
als that aim to improve it. Previous work in this area can be categorized to proposals
that aim to: (1) relieve network congestion (overlay and transport), (2) improve router
selection, (3) enhance scalability, (4) reduce the communication/computational cost of
circuit construction, and (5) improve its security. Within each of these categories, we
surveyed the literature and compared the available techniques and shed light on their
advantages and drawbacks in terms of anonymity, deployability and practicality. Fi-
nally, we discussed ongoing and unresolved issues that require further research and
investigation.

Acknowledgement
This work was made possible by NPRP grant 7-1469-1-273 from the Qatar National
Research Fund (a member of Qatar Foundation). The statements made herein are
solely the responsibility of the authors. The authors thank Prateek Mittal, Nikita
Borisov, Rob Jansen, other members of the Tor community, and the anonymous re-
viewers for their useful feedback regarding this paper.

REFERENCES
Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. 2012. LASTor: A Low-Latency AS-Aware Tor

Client. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco, Califor-
nia, USA. IEEE Computer Society, Washington, DC, USA, 476–490.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:31

Mashael AlSabah, Kevin Bauer, and Ian Goldberg. 2012. Enhancing Tor’s Performance Using Real-Time
Traffic Classification. In Proceedings of the 19th ACM Conference on Computer and Communications
Security (CCS ’12). ACM, New York, NY, USA, 73–84.

Mashael AlSabah, Kevin S. Bauer, Tariq Elahi, and Ian Goldberg. 2013. The Path Less Travelled: Over-
coming Tor’s Bottlenecks with Traffic Splitting. In Privacy Enhancing Technologies - 13th International
Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings. Springer, 143–163.

Mashael AlSabah, Kevin S. Bauer, Ian Goldberg, Dirk Grunwald, Damon McCoy, Stefan Savage, and Geof-
frey M. Voelker. 2011. DefenestraTor: Throwing Out Windows in Tor. In Privacy Enhancing Technolo-
gies - 11th International Symposium, PETS 2011, Waterloo, ON, Canada, July 27-29, 2011. Proceedings.
Springer Berlin Heidelberg, 134–154.

Mashael AlSabah and Ian Goldberg. 2013. PCTCP: Per-Circuit TCP-over-IPsec Transport for Anonymous
Communication Overlay Networks. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013. ACM, New York, NY,
USA, 349–360.

Mashael AlSabah and Ian Goldberg. 2016. Performance and Security Improvements for Tor: A Survey. Cryp-
tology ePrint Archive, Report 2015/235. (2016). http://eprint.iacr.org/.

Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feamster. 2010. Building a Dy-
namic Reputation System for DNS. In 19th USENIX Security Symposium, Washington, DC, USA, Au-
gust 11-13, 2010, Proceedings. USENIX Association, Berkeley, CA, USA, 273–290.

Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou II, Saeed Abu-Nimeh, Wenke Lee,
and David Dagon. 2012. From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Mal-
ware. In Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, August 8-10, 2012.
USENIX Association, Berkeley, CA, USA, 491–506.

Michael Backes, Aniket Kate, and Esfandiar Mohammadi. 2012. Ace: An Efficient Key-Exchange Protocol
for Onion Routing. In Proceedings of the 11th annual ACM Workshop on Privacy in the Electronic Society,
WPES 2012, Raleigh, NC, USA, October 15, 2012. ACM, New York, NY, USA, 55–64.

Kevin S. Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas C. Sicker. 2007. Low-
Resource Routing Attacks Against Tor. In Proceedings of the 2007 ACM Workshop on Privacy in the
Electronic Society, WPES 2007, Alexandria, VA, USA, October 29, 2007. ACM, New York, NY, USA,
11–20.

BBC News. 2007. Data disaster: Your Queries Answered. http://news.bbc.co.uk/2/hi/business/7105592.stm.
(November 2007). Accessed March 2015.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. 2014. Zerocash: Decentralized Anonymous Payments from Bitcoin. In 2014 IEEE Sym-
posium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society,
Washington, DC, USA, 459–474.

Leyla Bilge, Sevil Sen, Davide Balzarotti, Engin Kirda, and Christopher Kruegel. 2014. Exposure: A Passive
DNS Analysis Service to Detect and Report Malicious Domains. ACM Trans. Inf. Syst. Secur. 16, 4
(2014), 14.

Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp Weinmann. 2014. Content and Popularity
Analysis of Tor Hidden Services. In 34th International Conference on Distributed Computing Systems
Workshops (ICDCS 2014 Workshops), Madrid, Spain, June 30 - July 3, 2014. IEEE Computer Society,
Washington, DC, USA, 188–193.

Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. 2013. Trawling for Tor Hidden Services: De-
tection, Measurement, Deanonymization. In Proceedings of the 2013 IEEE Symposium on Security and
Privacy (SP ’13). IEEE Computer Society, Washington, DC, USA, 80–94.

Henry Blodget. 2007. Compete CEO: ISPs Sell Clickstreams For $5 A Month. http://seekingalpha.com/
article/29449-compete-ceo-isps-sell-clickstreams-for-5-a-month. (March 2007). Accessed March 2015.

Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. 2007. Denial of Service or Denial of
Security?. In Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS
2007, Alexandria, Virginia, USA, October 28-31, 2007. ACM, New York, NY, USA, 92–102.

Torsten Braun, Christophe Diot, Anna Hoglander, and Vincent Roca. 1995. An Experimental User Level
Implementation of TCP. Technical Report RR-2650. INRIA. http://hal.inria.fr/inria-00074040

Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014a. CS-BuFLO: A Congestion Sensitive Website Fin-
gerprinting Defense. In Proceedings of the 13th Workshop on Privacy in the Electronic Society (WPES
’14). ACM, New York, NY, USA, 121–130.

Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014b. A Systematic Approach to
Developing and Evaluating Website Fingerprinting Defenses. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14). ACM, New York, NY, USA, 227–238.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:32

Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching from a Distance: Website
Fingerprinting Attacks and Defenses. In Proceedings of the 19th ACM Conference on Computer and
Communications Security (CCS ’12). ACM, New York, NY, USA, 605–616.

Dario Catalano, Dario Fiore, and Rosario Gennaro. 2009. Certificateless Onion Routing. In Proceedings of
the 2009 ACM Conference on Computer and Communications Security, CCS 2009, Chicago, Illinois,
USA, November 9-13, 2009. ACM, New York, NY, USA, 151–160.

David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Commun.
ACM 4, 2 (February 1981), 84–90.

Jen Christensen. 2008. FBI Tracked King’s Every Move. http://edition.cnn.com/2008/US/03/31/mlk.fbi.
conspiracy/. (December 2008). Accessed March 2015.

Lucian Constantin. 2012. Tor network used to command Skynet botnet. http://www.techworld.com/news/
security/tor-network-used-command-skynet-botnet-3415592/. (December 2012). Accessed March 2015.

George Danezis, Claudia Dı́az, and Carmela Troncoso. 2007. Two-Sided Statistical Disclosure Attack. In
Privacy Enhancing Technologies, 7th International Symposium, PET 2007 Ottawa, Canada, June 20-
22, 2007, Revised Selected Papers. Springer, 30–44.

George Danezis, Roger Dingledine, and Nick Mathewson. 2003. Mixminion: Design of a Type III Anonymous
Remailer Protocol. In 2003 IEEE Symposium on Security and Privacy (S&P 2003), 11-14 May 2003,
Berkeley, CA, USA. IEEE Computer Society, Washington, DC, USA, 2–15.

Tim Dierks and Eric Rescorla. 2008. RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2.
http://www.ietf.org/rfc/rfc5246.txt. (August 2008). Accessed March 2015.

Roger Dingledine. 2011. Research Problems: Ten Ways to Discover Tor Bridges. https://blog.torproject.org/
blog/research-problems-ten-ways-discover-tor-bridges. (October 2011). Accessed March 2015.

Roger Dingledine. 2013. Getting the HSDir flag should require more effort. https://trac.torproject.org/
projects/tor/ticket/8243. (2013). Accessed March 2015.

Roger Dingledine, Nicholas Hopper, George Kadianakis, and Nick Mathewson. 2014. One Fast Guard for
Life (or 9 Months). https://www.petsymposium.org/2014/papers/Dingledine.pdf. (July 2014). Accessed
March 2015.

Roger Dingledine and Nick Mathewson. 2006. Anonymity Loves Company: Usability and the Network Ef-
fect. In Workshop on the Economics of Information Security. 547–559.

Roger Dingledine and Nick Mathewson. 2015. Tor Protocol Specification. https://gitweb.torproject.org/
torspec.git/tree/tor-spec.txt. (2015). Accessed March 2015.

Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The Second-Generation Onion Router.
In Proceedings of the 13th USENIX Security Symposium, August 9-13, 2004, San Diego, CA, USA.
USENIX Association, Berkeley, CA, USA, 303–320.

John Dunn. 2013. Mevade botnet miscalculated effect on Tor network, says Damballa. http://www.techworld.
com/news/security/mevade-botnet-miscalculated-effect-on-tor-network-says-damballa-3468988/.
(September 2013). Accessed March 2015.

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012. Peek-a-Boo, I Still See You:
Why Efficient Traffic Analysis Countermeasures Fail. In IEEE Symposium on Security and Privacy, SP
2012, 21-23 May 2012, San Francisco, California, USA. IEEE Computer Society, Washington, DC, USA,
332–346.

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2013. Protocol Misidentification
Made Easy with Format-Transforming Encryption. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013. ACM, New
York, NY, USA, 61–72.

Matthew Edman and Paul F. Syverson. 2009. As-Awareness in Tor Path Selection. In Proceedings of the
16th ACM Conference on Computer and Communications Security, CCS 2009, Chicago, Illinois, USA,
November 9-13, 2009. ACM, New York, NY, USA, 380–389.

Aled Edwards and Steve Muir. 1995. Experiences Implementing a High Performance TCP in User-Space. In
Proceedings of the conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’95). ACM, New York, NY, USA, 196–205.

Nathan S. Evans, Roger Dingledine, and Christian Grothoff. 2009. A Practical Congestion Attack on Tor
Using Long Paths. In 18th USENIX Security Symposium, Montreal, Canada, August 10-14, 2009, Pro-
ceedings. USENIX Association, Berkeley, CA, USA, 33–50.

Stephen Farrell and Hannes Tschofenig. 2014. IETF BCP 188: Pervasive Monitoring Is an Attack. (May
2014). Accessed March 2015.

Nick Feamster and Roger Dingledine. 2004. Location Diversity in Anonymity Networks. In Proceedings of
the 2004 ACM Workshop on Privacy in the Electronic Society (WPES ’04). ACM, 66–76.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:33

Joan Feigenbaum, Aaron Johnson, and Paul F. Syverson. 2010. Preventing Active Timing Attacks in Low-
Latency Anonymous Communication. In Privacy Enhancing Technologies, 10th International Sympo-
sium, PETS 2010, Berlin, Germany, July 21-23, 2010. Proceedings, Vol. 6205. Springer, 166–183.

David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Dan Boneh, Roger Dingledine, and
Phillip A. Porras. 2012. Evading Censorship with Browser-Based Proxies. In Privacy Enhancing Tech-
nologies - 12th International Symposium, PETS 2012, Vigo, Spain, July 11-13, 2012. Proceedings, Vol.
7384. Springer, 239–258. DOI:http://dx.doi.org/10.1007/978-3-642-31680-7 13

John Geddes, Rob Jansen, and Nicholas Hopper. 2013. How Low Can You Go: Balancing Performance
with Anonymity in Tor. In Privacy Enhancing Technologies, Emiliano De Cristofaro and Matthew
Wright (Eds.). Lecture Notes in Computer Science, Vol. 7981. Springer Berlin Heidelberg, 164–184.
DOI:http://dx.doi.org/10.1007/978-3-642-39077-7 9

John Geddes, Rob Jansen, and Nicholas Hopper. 2014. IMUX: Managing Tor Connections from Two to Infin-
ity, and Beyond. In Proceedings of the 13th annual ACM Workshop on Privacy in the Electronic Society
(WPES ’14). ACM, New York, NY, USA.

Mainak Ghosh, Miles Richardson, Bryan Ford, and Rob Jansen. 2014. A TorPath to TorCoin:
Proof-of-Bandwidth Altcoins for Compensating Relays. http://www.robgjansen.com/publications/
torpath-hotpets2014.pdf. (July 2014). Accessed March 2015.

Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu. 2011. Anonymity and One-way Authentication in Key
Exchange Protocols. University of Waterloo Technical Report CACR 2011-05. (May 2011).

Deepika Gopal and Nadia Heninger. 2012. Torchestra: Reducing Interactive Traffic Delays Over Tor. In
Proceedings of the 11th annual ACM Workshop on Privacy in the Electronic Society, WPES 2012, Raleigh,
NC, USA, October 15, 2012. ACM, New York, NY, USA, 31–42.

Yotam Gottesman. 2014. RSA Uncovers New POS Malware Operation
Stealing Payment Card & Personal Information. https://blogs.rsa.com/
rsa-uncovers-new-pos-malware-operation-stealing-payment-card-personal-information/. (January
2014). Accessed March 2015.

Larry Greenemeier. 2006. VA Secretary Comes Under Fire At House And Senate Data Theft Hearings. http:
//www.informationweek.com/va-secretary-comes-under-fire-at-house-a/188500312. (May 2006). Ac-
cessed March 2015.

Larry Greenemeier. 2008. Security Breach: Feds Lose Laptop Containing Sensitive Data — Again. http://
www.scientificamerican.com/article.cfm?id=security-breach-lost-laptop. (March 2008). Accessed March
2015.

Ryan Henry and Ian Goldberg. 2011. Formalizing Anonymous Blacklisting Systems. In 32nd IEEE Sympo-
sium on Security and Privacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA. 81–95.

Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website Fingerprinting: Attacking Pop-
ular Privacy Enhancing Technologies with the Multinomial Naive-bayes Classifier. In Proceedings of the
2009 ACM Workshop on Cloud Computing Security (CCSW ’09). ACM, New York, NY, USA, 31–42.

Nicholas Hopper. 2014. Challenges in Protecting Tor Hidden Services from Botnet Abuse. In Proceedings of
Financial Cryptography and Data Security (FC’14). Springer, 316–325.

Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. 2010. How Much Anonymity Does Network
Latency Leak? ACM Trans. Inf. Syst. Secur. 13, 2, Article 13 (March 2010), 28 pages.

Amir Houmansadr and Nikita Borisov. 2013. The Need for Flow Fingerprints to Link Correlated Network
Flows. In Privacy Enhancing Technologies - 13th International Symposium, PETS 2013, Bloomington,
IN, USA, July 10-12, 2013. Proceedings, Vol. 7981. Springer, 205–224.

Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. 2013. The Parrot Is Dead: Observing Unobserv-
able Network Communications. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley,
CA, USA, May 19-22, 2013. IEEE Computer Society, Washington, DC, USA, 65–79.

Rob Jansen. 2016. New Tor Denial of Service Attacks and Defenses. https://blog.torproject.org/blog/
new-tor-denial-service-attacks-and-defenses. (2016). Accessed January 2016.

Rob Jansen, John Geddes, Chris Wacek, Micah Sherr, and Paul F. Syverson. 2014. Never Been KIST: Tor’s
Congestion Management Blossoms with Kernel-Informed Socket Transport. In Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014. USENIX Association, Berkeley,
CA, USA, 127–142.

Rob Jansen and Nicholas Hopper. 2012. Shadow: Running Tor in a Box for Accurate and Efficient Exper-
imentation. In 19th Annual Network and Distributed System Security Symposium, NDSS 2012, San
Diego, California, USA, February 5-8, 2012. The Internet Society.

Rob Jansen, Nicholas Hopper, and Yongdae Kim. 2010. Recruiting new Tor Relays with BRAIDS. In Pro-
ceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010. ACM, New York, NY, USA, 319–328.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:34

Rob Jansen, Nicholas Hopper, and Paul F. Syverson. 2012. Throttling Tor Bandwidth Parasites. In 19th
Annual Network and Distributed System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5-8, 2012. The Internet Society.

Rob Jansen, Aaron Johnson, and Paul F. Syverson. 2013. LIRA: Lightweight Incentivized Routing for
Anonymity. In 20th Annual Network and Distributed System Security Symposium, NDSS 2013, San
Diego, California, USA, February 24-27, 2013. The Internet Society.

Rob Jansen, Andrew Miller, Paul Syverson, and Bryan Ford. 2014a. From Onions to Shallots: Rewarding
Tor Relays with TEARS. https://petsymposium.org/2014/papers/Jansen.pdf. (July 2014). Accessed April
2015.

Rob Jansen, Florian Tschorsch, Aaron Johnson, and Björn Scheuermann. 2014b. The Sniper Attack: Anony-
mously Deanonymizing and Disabling the Tor Network. In 21st Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2013. The Internet
Society.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2007. Pairing-Based Onion Routing. In Privacy
Enhancing Technologies, 7th International Symposium, PET 2007 Ottawa, Canada, June 20-22, 2007,
Revised Selected Papers. Springer, 95–112.

Jeremy Kirk. 2013. Passwords reset after Pony botnet stole 2 million credentials. http://www.pcworld.com/
article/2069260/passwords-reset-after-pony-botnet-stole-2-million-credentials.html. (December 2013).
Accessed March 2015.

Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas. 2015. Circuit Finger-
printing Attacks: Passive Deanonymization of Tor Hidden Services. In 24th USENIX Security Sympo-
sium (USENIX Security 15). USENIX Association, Washington, D.C., 287–302. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/kwon

Zhen Ling, Junzhou Luo, Kui Wu, and Xinwen Fu. 2013a. Protocol-level hidden server discovery. In INFO-
COM, 2013 Proceedings IEEE. 1043–1051. DOI:http://dx.doi.org/10.1109/INFCOM.2013.6566894

Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Weijia Jia, and Wei Zhao. 2013b. Protocol-level Attacks
Against Tor. Comput. Netw. 57, 4 (March 2013), 869–886.

Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. 2009. A New Cell Counter Based
Attack Against Tor. In Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS ’09). ACM, New York, NY, USA, 578–589. DOI:http://dx.doi.org/10.1145/1653662.1653732

Zhen Ling, Junzhou Luo, Wei Yu, Ming Yang, and Xinwen Fu. 2012. Extensive Analysis and Large-Scale
Empirical Evaluation of Tor Bridge Discovery. In Proceedings of the IEEE INFOCOM 2012, Orlando,
FL, USA, March 25-30, 2012. IEEE Computer Society, Washington, DC, USA, 2381–2389.

Mary Madden. 2014. Public Perceptions of Privacy and Security in the Post-Snowden Era. http://www.
pewinternet.org/2014/11/12/public-privacy-perceptions/. (November 2014). Accessed March 2015.

Nayantara Mallesh and Matthew Wright. 2010. The Reverse Statistical Disclosure Attack. In Information
Hiding, Rainer Böhme, Philip Fong, and Reihaneh Safavi-Naini (Eds.). Springer Berlin / Heidelberg,
221–234.

Nick Mathewson. 2010. Split relay and link crypto across multiple CPU cores. https://trac.torproject.org/
projects/tor/ticket/1749. (2010). Accessed February 2016.

Damon McCoy, Kevin S. Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas C. Sicker. 2008. Shining
Light in Dark Places: Understanding the Tor Network. In Privacy Enhancing Technologies, 8th Inter-
national Symposium, PETS 2008, Leuven, Belgium, July 23-25, 2008, Proceedings. Springer, 63–76.

Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim. 2009. Scalable Onion Routing with
Torsk. In Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS
2009, Chicago, Illinois, USA, November 9-13, 2009. ACM, New York, NY, USA, 590–599.

Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. 2013. Zerocoin: Anonymous Distributed
E-Cash from Bitcoin. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,
May 19-22, 2013. IEEE Computer Society, Washington, DC, USA, 397–411.

Prateek Mittal and Nikita Borisov. 2009. ShadowWalker: Peer-to-peer Anonymous Communication Using
Redundant Structured Topologies . In Proceedings of the 16th ACM Conference on Computer and Com-
munications Security (CCS ’09). ACM, New York, NY, USA, 161–172.

Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and Nikita Borisov. 2011a. Stealthy Traffic
Analysis of Low-Latency Anonymous Communication using Throughput Fingerprinting. In Proceedings
of the 18th ACM conference on Computer and Communications Security (CCS ’11). ACM, New York, NY,
USA, 215–226.

Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Goldberg. 2011b. PIR-Tor:
Scalable Anonymous Communication Using Private Information Retrieval. In Proceedings of the 20th

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:35

USENIX Conference on Security (SEC’11). USENIX Association, Berkeley, CA, USA, 31–31. http:
//dl.acm.org/citation.cfm?id=2028067.2028098

Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Goldberg. 2012. SkypeMorph:
Protocol Obfuscation for Tor Bridges. In Proceedings of the 19th ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012. ACM, New York, NY, USA,
97–108.

Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. 2003. Mixmaster Protocol - Version 3. IETF
Internet Draft. (2003). http://www.eskimo.com/∼rowdenw/crypt/Mix/draft-moeller-v3-01.txt

W. Brad Moore, Chris Wacek, and Micah Sherr. 2011. Exploring the Potential Benefits of Expanded Rate
Limiting in Tor: Slow and Steady Wins the Race with Tortoise. In Proceedings of the 27th Annual
Computer Security Applications Conference (ACSAC). ACM, New York, NY, USA, 207–216.

Steven J. Murdoch and George Danezis. 2005. Low-Cost Traffic Analysis of Tor. In 2005 IEEE Symposium
on Security and Privacy (S&P 2005), 8-11 May 2005, Oakland, CA, USA. IEEE Computer Society, Wash-
ington, DC, USA, 183–195.

Steven J. Murdoch and Robert N. M. Watson. 2008. Metrics for Security and Performance in Low-Latency
Anonymity Systems. In Privacy Enhancing Technologies, 8th International Symposium, PETS 2008,
Leuven, Belgium, July 23-25, 2008, Proceedings. Springer, 115–132.

Steven J. Murdoch and Piotr Zielinski. 2007. Sampled Traffic Analysis by Internet-Exchange-Level Adver-
saries. In Privacy Enhancing Technologies, 7th International Symposium, PET 2007 Ottawa, Canada,
June 20-22, 2007, Revised Selected Papers. Springer, 167–183.

Kate Murphy. 2012. How to Muddy Your Tracks on the Internet. http://www.nytimes.com/2012/05/03/
technology/personaltech/how-to-muddy-your-tracks-on-the-internet.html? r=0. (May 2012). Accessed
March 2015.

Tsuen-Wan Ngan, Roger Dingledine, and Dan S. Wallach. 2010. Building Incentives into Tor. In Financial
Cryptography and Data Security, 14th International Conference, FC 2010, Tenerife, Canary Islands,
January 25-28, 2010, Revised Selected Papers. Springer, 238–256.

Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A Bespoke Website Fingerprinting Defense.
In Proceedings of the 13th Workshop on Privacy in the Electronic Society (WPES ’14). ACM, New York,
NY, USA, 131–134.

Michael F. Nowlan, David Isaac Wolinsky, and Bryan Ford. 2013. Reducing Latency in Tor Circuits with Un-
ordered Delivery. In Presented as part of the 3rd USENIX Workshop on Free and Open Communications
on the Internet. USENIX Association, Berkeley, CA.

Lasse Øverlier and Paul F. Syverson. 2006. Locating Hidden Servers. In 2006 IEEE Symposium on Security
and Privacy (S&P 2006), 21-24 May 2006, Berkeley, California, USA. IEEE Computer Society, Washing-
ton, DC, USA, 100–114.

Lasse Øverlier and Paul F. Syverson. 2007. Improving Efficiency and Simplicity of Tor Circuit Establishment
and Hidden Services. In Privacy Enhancing Technologies, 7th International Symposium, PET 2007 Ot-
tawa, Canada, June 20-22, 2007, Revised Selected Papers, Vol. 4776. Springer, 134–152.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011. Website Fingerprinting in
Onion Routing Based Anonymization Networks. In Proceedings of the 10th annual ACM workshop on
Privacy in the electronic society, WPES 2011, Chicago, IL, USA, October 17, 2011. ACM, New York, NY,
USA, 103–114.

Mike Perry. 2016. The Trouble with Cloud Flare. https://blog.torproject.org/blog/trouble-cloudflare. (2016).
Accessed May 2016.

Andreas Pfitzmann and Marit Hansen. 2008. Anonymity, Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management — A Consolidated Proposal for Terminology. http://dud.inf.
tu-dresden.de/literatur/Anon Terminology v0.31.pdf. (February 2008). Accessed March 2015.

Jean-François Raymond. 2000. Traffic Analysis: Protocols, Attacks, Design Issues, and Open Problems. In
Proceedings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity
and Unobservability. Springer-Verlag, LNCS 2009, 10–29.

Joel Reardon and Ian Goldberg. 2009. Improving Tor using a TCP-over-DTLS Tunnel. In 18th USENIX Se-
curity Symposium, Montreal, Canada, August 10-14, 2009, Proceedings. USENIX Association, Berkeley,
CA, USA, 119–134.

Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. 1998. Anonymous Connections and Onion
Routing. IEEE Journal on Selected Areas in Communications 16, 4 (1998), 482–494.

Douglas Rushkoff. 2012. Will Your Internet Provider Be Spying on You? http://www.cnn.com/2012/07/06/
opinion/rushkoff-online-monitoring/. (July 2012). Accessed March 2015.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

:36

Juha Saarinen. 2014. First Shellshock Botnet Attacks Akamai, US DoD Networks. http://www.itnews.com.
au/News/396197,first-shellshock-botnet-attacks-akamai-us-dod-networks.aspx. (September 2014). Ac-
cessed March 2015.

Symantec Security. 2014. Apple IDs Targeted by Kelihos Botnet Phishing Campaign. http://www.symantec.
com/connect/blogs/apple-ids-targeted-kelihos-botnet-phishing-campaign. (September 2014). Accessed
March 2015.

Micah Sherr, Matt Blaze, and Boon Thau Loo. 2009. Scalable Link-Based Relay Selection for Anonymous
Routing. In Privacy Enhancing Technologies, 9th International Symposium, PETS 2009, Seattle, WA,
USA, August 5-7, 2009. Proceedings. Springer, 73–93.

Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing Analysis in Low-Latency Mix Networks: Attacks and
Defenses. In Computer Security - ESORICS 2006, 11th European Symposium on Research in Computer
Security, Hamburg, Germany, September 18-20, 2006, Proceedings, Vol. 4189. Springer, 18–33.

Robin Snader. 2010. Path Selection for Performance- and Security-Improved Onion Routing. Ph.D. Disserta-
tion. University of Illinois at Urbana-Champaign.

Robin Snader and Nikita Borisov. 2008. A Tune-up for Tor: Improving Security and Performance in the Tor
Network. In Proceedings of the Network and Distributed System Security Symposium, NDSS 2008, San
Diego, California, USA, 10th February - 13th February 2008. The Internet Society.

Can Tang and Ian Goldberg. 2010. An Improved Algorithm for Tor Circuit Scheduling. In Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA,
October 4-8, 2010. ACM, New York, NY, USA, 329–339.

The Tor Project. 2015a. Tor Metrics Portal: Network. https://metrics.torproject.org/networksize.html?graph=
networksize&start=2014-12-08&end=2015-03-08. (October 2015). Accessed March 2015.

The Tor Project. 2015b. Tor Metrics Portal: Network. https://metrics.torproject.org/torperf.html. (October
2015). Accessed March 2015.

Florian Tschorsch and Björn Scheurmann. 2011. Tor is Unfair — And What to Do About It. In Proceedings
of the 36th IEEE Conference on Local Computer Networks (LCN). IEEE Computer Society, Washington,
DC, USA, 432–440.

Camilo Viecco. 2008. UDP-OR: A Fair Onion Transport Design. http://www.petsymposium.org/2008/hotpets/
udp-tor.pdf. (July 2008). Accessed March 2015.

Chris Wacek, Henry Tan, Kevin S. Bauer, and Micah Sherr. 2013. An Empirical Evaluation of Relay Se-
lection in Tor. In 20th Annual Network and Distributed System Security Symposium, NDSS 2013, San
Diego, California, USA, February 24-27, 2013. The Internet Society.

Qiyan Wang, Prateek Mittal, and Nikita Borisov. 2010. In Search of An Anonymous and Aecure Lookup:
Attacks on Structured Peer-to-Peer Anonymous Communication Systems. In Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010. ACM, New York, NY, USA, 308–318.

Tao Wang, Kevin S. Bauer, Clara Forero, and Ian Goldberg. 2012. Congestion-Aware Path Selection for Tor.
In Financial Cryptography and Data Security - 16th International Conference, FC 2012, Kralendijk,
Bonaire, Februray 27-March 2, 2012, Revised Selected Papers, Vol. 7397. Springer, 98–113.

Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014. Effective Attacks and
Provable Defenses for Website Fingerprinting. In Proceedings of the 23rd USENIX Security Symposium,
San Diego, CA, USA, August 20-22, 2014. USENIX Association, Berkeley, CA, USA, 143–157.

Tao Wang and Ian Goldberg. 2013. Improved Website Fingerprinting on Tor. In Proceedings of the 12th
annual ACM Workshop on Privacy in the Electronic Society, WPES 2013, Berlin, Germany, November 4,
2013. ACM, 201–212.

Wei Wang, Mehul Motani, and Vikram Srinivasan. 2008. Dependent link padding algorithms for low latency
anonymity systems. In Proceedings of the 14th ACM Conference on Computer and Communications
Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008. ACM, 323–332.

Philipp Winter and Stefan Lindskog. 2012. How the Great Firewall of China is Blocking Tor. In 2nd
USENIX Workshop on Free and Open Communications on the Internet, FOCI ’12, Bellevue, WA, USA,
August 6, 2012. USENIX Association, Berkeley, CA, USA. https://www.usenix.org/conference/foci12/
workshop-program/presentation/winter

Matthew K. Wright, Micah Adler, Brian Neil Levine, and Clay Shields. 2004. The Predecessor Attack: An
Analysis of a Threat to Anonymous Communications Systems. ACM Trans. Inf. Syst. Secur. 7, 4 (2004),
489–522.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 201X.

