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ABSTRACT

We give a practical polling protocol that is immune to tampering
by either the pollster or the responder. It preserves responders’ pri-
vacy in the manner of Warner’s Randomized Response Technique,
is easily understood without any knowledge of cryptography, and
does not require the use of computers or other electronics. The
key is to use physical noisy channels commonly found in lottery or
game-show settings, which can deliver the desired properties with-
out relying on a mechanism which is unfamiliar to the responder.
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K.4.1 [Management of Computing and Information Systems]:
Public Policy Issues—Privacy

General Terms

Human Factors, Security

Keywords

Privacy, polling, randomized response technique

1. INTRODUCTION
In a typical poll, a pollster approaches a series of responders and

asks them a set of questions; the goal is to accurately determine
the distribution of answers in the overall population. As in the re-
lated field of voting, polling requires that all responses have equal
weighting, that the final tally be accurate, and that each individ-
ual response be kept private. However, there are also important
differences: the incorrect recording of an individual response is
permissable, so long as the final tally can provide statistically use-
ful polling data. Moreover, the informal nature of many polls pre-
cludes trusted third parties or scrutineers. These differences make
polling schemes both simple to implement and difficult to verify.
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While there are well-known methods for preserving the privacy
of poll responses, even in the absence of a trusted third party [9],
such methods traditionally either allow cheating by one or more
participants [9], or rely on mechanisms that are difficult for a layper-
son to understand and verify [1]. More recently, some promising
work by Moran and Naor [6] attempted to provide simple and se-
cure polling protocols, but the protocols only worked for very spe-
cific parameter choices; the generalized forms are too cumbersome
for ordinary polling use. In this paper we present a polling method
which acheives all of Moran and Naor’s desired properties, while
remaining easily generalized to a wider range of practical parame-
ter values.

1.1 The polling problem
Poll questions span many topics, but for those questions that are

sensitive in nature—for example, dealing with criminal, political,
or medical issues—it is particularly difficult to obtain correct re-
sults. In such a poll, the responder may feel embarrassed by her
true answer and choose instead to lie, thus distorting the poll. This
leads to undetected systemic measurement error regardless of the
sample size. To prevent this, pollsters attempt to provide some as-
surance of privacy. One simple method is an anonymous survey:
answers are submitted without identifiers, and their order is per-
muted before they are examined. However, it has been shown that
anonymous responses are still prone to underreporting of stigma-
tized groups or behaviours [8]. A better method is Warner’s Ran-
domized Response Technique (RRT) [9]. Here, a pollster wishes to
learn if a responder belongs to a stigmatizing group A, or the rest
of the population Ā. The responder is given a spinner which points
to A with probability p and Ā with probability (1 − p). Without
showing the spinner result to the pollster, the responder then an-
swers the question: “Do you belong to the group indicated on the
spinner?” Since p is known, the poll can be used to estimate π, the
true proportion of responders in A. At the same time, it is clear that
no matter what answer is given, the pollster cannot be certain as to
whether or not a particular responder belongs to A.

As p approaches 0.5, better privacy is afforded; however, it comes
at the cost of less useful data. Consequently, a larger sample size
and greater polling cost is required to accurately estimate π. When
p = 0.5 we have a random channel whose outputs have no statisti-
cal correlation to its inputs. Conversely, values of p near 1, by not
providing sufficient privacy to the responders, lead some of them to
falsify their responses. The goal is to use a value of p which is low
enough to encourage honest responses, yet high enough to bound
the confidence interval for π without undue cost. Many later varia-
tions of RRT have attempted to reduce the variance while preserv-
ing the privacy aspect [4, 5]. Unfortunately, reducing the variance
often comes at the expense of usability; extra rounds, asymmetry
and complicated calculations make the protocols harder to explain



and use. As the desired value of p will depend on the particulars of
the polling situation, we aim to provide a simple mechanism which
can be tuned to a wide variety of p values.

In general, schemes based on RRT effectively prevent the poll-
ster from cheating. Ideally, the pollster would be unable to learn
the true value of any response with probability higher than p. This
should be true even if she deviates from the protocol, aborts the
protocol after a certain step, or lies about the security properties
her system guarantees. In keeping with [6], we say that protocols
acheiving this goal are pollster immune. In a pollster-immune pro-
tocol, the only protocol properties that we expect a responder to
recognize are those that can be verified without any specialized
training or the use of a third party. Since it is trivial for a poll-
ster to mislead a layperson about the security properties present in
a piece of software, or the hardware on which it is running, we do
not consider protocols involving computers to be pollster immune.

The attacks that RRT schemes generally fail to prevent are those
launched by the responder. Here, the responder attempts to corrupt
the poll results to suit her own ends. For example, if a political
poll is believed to have an impact on an upcoming election, re-
sponders may deviate from the protocol in an attempt to indicate
their preferred party with a probability higher than p, thus skewing
the results in that party’s favour. In Warner’s RRT, the responder
could simply ignore the spinner result and answer as if the higher
probability question had been asked. In other schemes, such as the
scratch-off cards in [6], it may be preferrable to observe the source
of randomness and abort the protocol if the random value gener-
ated is not to the responder’s liking. If a protocol defends against
all such attacks, we say that it is responder immune.

Although many polling protocols exist, we are not aware of any
that satisfy all of our desired properties: having a level of perceived
privacy comparable to RRT, having understandable instructions,
being pollster immune, being responder immune, and allowing a
responder to easily and independently verify each of these claims.
Moran and Naor developed two good attempts [6], but neither is
simultaneously pollster and responder immune, nor are they easy
to adjust to achieve an arbitrary value of p.

1.2 Our results
In this paper, we give a usable, understandable, pollster- and

responder-immune RRT protocol that can be generalized to a wide
range of p values. We explain how it satisifies each property in turn,
and how these properties can be verified intuitively by a responder
with little knowledge of probability theory, as well as verified rig-
orously by an auditor. The key is to use a physical noisy channel
whose randomness is not controlled by either party. In particu-
lar, we borrow the Plinko board from a popular American game
show (“The Price is Right”)—a random channel that is more famil-
iar and intuitive to responders than any cryptographic protocol we
have seen.

2. PLINKO BOARD DESIGN
The first step in this protocol is to design and create a Plinko

board that comes as close as possible to acheiving the desired value
of p. In this section we describe how to design such a board. Be-
fore we begin, we note that many mathematical analyses of Plinko
already exist online [2, 3]. However, these analyses focus on deriv-
ing the value of p in the board used on “The Price is Right”. We
require the opposite direction: given a target value of p, we show
how to build a Plinko board that acheives it.

For our purposes, a Plinko board is a symmetric arrangement of
rows of pegs. The pegs are spaced such that a chip passing between
any two adjacent pegs will land on a third peg and bounce in either
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Figure 1: Layout of a Plinko board with h = 2, w = 4, and d = 1.

direction with P [left] = P [right] = 0.5. All openings at the top of
the board are sealed except for two spaced equally about the cen-
tre. These slots correspond to positive and negative responses that
the responder can offer for the polling question. Openings exist at
the bottom of the board which allow chips to fall into two labelled
boxes, one for each of the left and right halves of the output open-
ings; see Figure 1 for an example of the layout.

In this discussion, let h be the height of the board, measured by
the number of pegs that a chip will hit on a single pass through the
machine; w be the width of the board, measured by the number
of open slots at the bottom of the machine (this number should be
even); and d be the distance between the two inputs, measured in
slots (adjacent slots have d = 1); note that in order to avoid having
an output slot in the centre of the board, h + d must be odd.

The following property can easily be seen to hold: if a chip in
the left input bounces right h+d+1

2
times, it will end up in an output

slot on the right half of the board; if it bounces right h+d−1
2

times,
it will end up in an output slot on the left half of the board. Of
course, if d > h, then the chip cannot switch sides, so we require
that d < h as well.

With this terminology, we now proceed to board design. Given
a target value p, our goal is to find a (d, h) pair such that P [left
output|left input] = p. We assume that w is large enough that any
chips striking the left side of the board and bouncing back towards
the center cannot then end up in the right output box, except with
insignificant probability. Thus, this problem is equivalent to finding
a pair (d, h) such that flipping h fair coins will yield h+d+1

2
or

more heads with probability p. This has a well-known solution:
approximate the binomial distribution of coin flips with the normal
distribution. For our purposes, we may use either premade charts or
mathematical software to find a value z such that P [measurement
on normal dist ≤ z] = p. Then, we scale the result for our Plinko
board. If x denotes the mean number of heads, and σ denotes the
standard deviation, then:

z =
h+d+1

2
− 1

2
− x

σ
=

h+d+1
2

− 1
2
− h

2
q

h
4

=
d√
h
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Figure 2: Our demonstration Plinko board. Its parameters are h =
7, w = 8, d = 2, and p = 0.773. Note the red chip falling through
a vertical channel before hitting the peg below.

Any near-solution to this equation with integer values for d and
h (of opposite parity) will yield a Plinko board with the desired
properties. We acknowledge a tradeoff here: in general, creating a
board realizing the desired p to a high degree of accuracy requires
a large h value. If this is not feasible, then a less accurate, smaller
board is possible. In particular, the boards described in Table 1 rep-
resent the easiest p values to achieve. Regardless of board height,
w should be chosen such that any chip striking an outer wall falls
into that side’s output bin with high probability.

It should be noted that the normal approximation is very accurate
for h ≥ 10. For small values, the binomial distribution can be used
directly. Table 1 shows several small combinations of d and h, and
the resulting p values.

Finally, we note that once the parameters have been determined,
the actual board construction is quite inexpensive. We created a
sample board with p = 0.773 for less than $100 CDN, including
the acrylic cover and a large stack of chips; a photo of our Plinko
board can be seen in Figure 2. There are also companies specializ-
ing in custom-built Plinko boards for higher-cost, lower-effort con-
struction [7].

3. SECURITY PROPERTIES
Assuming that a board has been constructed with a known value

of p, we next discuss its proper use. The output boxes are locked
and firmly attached to the board. A rigid, transparent cover is at-
tached to the front of the machine; plexiglass or acrylic are ap-
propriate materials for the cover. There should be a large pile of
chips which are not easily distinguishable. For each responder, the
pollster first explains the protocol to her, along with simple expla-
nations of the privacy it affords. Next, he gives her an even number
of chips and a marker. She may then mark a single chip as the
“true” chip; all others become “test” chips instead. She then pro-
ceeds to the Pinko board and drops the chips into the machine one
at a time. The marked side of the true chip should face inward, so
anyone watching the board cannot distinguish the true chip from
the test ones. We let b be the true answer of the responder: 1 if
placed in the left input, 0 if placed in the right input. After several
runs of the protocol, the pollster opens the output boxes and counts
the number of marked chips in each. Let us call the total number of
marked chips n, and the total in the left output box n1.

We claim that this protocol is both pollster and responder im-
mune. First we first consider a dishonest responder.

3.1 Responder Immunity
A dishonest responder attempts to change the parameter p in an

attempt to skew the results of the poll. Note that we cannot prevent
her from decreasing p; she may always set b equal to the result of
flipping a weighted coin that lands on heads with probability 1 >
q ≥ 1/2, which will give an output distibution of (pq+(1−p)(1−
q), (1−p)q+(1− q)p) instead of (p, 1−p). This has the effect of
decreasing the weight of the responder’s answer. Instead, we call
a protocol responder immune if we prevent her from increasing p
towards 1 (and so increasing her answer’s weight). Consider the
steps taken by the responder.

First, she takes a pile of chips and marks one. If she marks some
other number of chips instead, this will throw off the final count; n
will not correspond to the number of responders. In this case, the
pollster can discard the results so far and start again. Note that if
a large amount of cheating takes place, the pollster can potentially
open the boxes after every responder. Then all honest responses are
kept and dishonest ones discarded.

Next, she drops chips into the board one at a time. If she at-
tempts to insert a paper clip or other object into the machine to
force her chips along a certain path, this will be easily detected by
the pollster, who watches the responder precisely to detect this type
of action. If she puts all of her chips in one input, puts the chips
in backwards, or otherwise exposes the value b, she does not dis-
rupt the final tally. Having inserted a chip, she may watch it move
through the board, but she may not affect its course. If, for exam-
ple, she attempts to tilt the machine to one side to force a particular
result, this will be apparent to the pollster, who will then discard
the result. Other tampering, such as inserting a chip in the middle
of the board, is prevented by the transparent cover.

3.2 Pollster Immunity
For proving that our scheme is pollster immune, the dishonest

pollster’s goal is to learn a responder’s true answer with probability
higher than p. We allow the pollster to deviate from the protocol or
lie to the responder. We do not allow the pollster to interfere with
the Plinko board while the responder is passing chips through it,
though he may watch the proceedings.

First of all, the operation of the Plinko machine is simple enough
that lying about either its security properties or the appropriate
procedure should be unconvincing. For example, if the pollster



Height of Plinko Board (h)

2 3 4 5 6 7 8 9 10 11 12 13

d

1 0.750 — 0.688 — 0.656 — 0.637 — 0.623 — 0.613 —
2 — 0.875 — 0.812 — 0.773 — 0.746 — 0.726 — 0.709
3 — — 0.938 — 0.891 — 0.855 — 0.828 — 0.806 —
4 — — — 0.969 — 0.938 — 0.910 — 0.887 — 0.867
5 — — — — 0.984 — 0.965 — 0.945 — 0.927 —
6 — — — — — 0.992 — 0.980 — 0.967 — 0.954

Table 1: Probability p for Plinko boards with small parameter values. “—” indicates a configuration that does not satisfy the requirements
that d + h is odd and that d < h.

claimed that only the true chip should be inserted into the machine,
it should be obvious that this allows the pollster to observe the bit
b directly. Any such deception should, with high probability, result
in the responder refusing to use the board entirely.

Next we assume that the pollster faithfully gives instructions, yet
still wishes to cheat. Suppose that he modifies the Plinko board
such that the pegs do not cause left bounces and right bounces
equally often, or so that one bounce affects the next. In this case,
the deception may be detected by the test chips; the responder
should only be convinced of the correctness of the machine if the
bounces correspond to her intuition of how they should behave. If
this testing is necessary, the responder can save the true chip and a
single test chip until the end, observing all of the other test chips
before committing to a value of b. If the responder puts the last two
chips in opposite inputs, the pollster still learns nothing about b.

4. ESTIMATING π

In terms of estimating π, our Plinko board works identically to
Warner’s original spinners. Given groups A and Ā, then with prob-
ability p the responder answers the question “Do you belong to
group A?”, and the chip travels from an input slot to the corre-
sponding most likely output slot. With probability (1 − p), the
responder actually answers the question “Do you belong to group
Ā?”. Therefore, we may estimate π using the same formulae as
Warner [9]. If there are n responders, and n1 chips in the “Yes”
output, then:

π̂ =
p − 1

2p − 1
+

n1

(2p − 1)n

V arπ̂ =
1

n

»

1

16(p − 1/2)2
− (π − 1/2)2

–

= Vr + Vs

where Vr = (p−1/2)−2
−4

16n
is the variance due to the randomness

in the Plinko board, and Vs = π(1−π)
n

is the usual variance due to
sampling.

All RRT-based schemes estimate π based on the assumption that
all answers are truthful. Here, using a Plinko board instead of a
spinner works to make that assumption more reasonable, but it does
not alter the analysis. As in [9], we observe that larger values of p
lead to lower values of Vr, and thus tighter confidence intervals;
however, larger values of p also offer less privacy to participants,
and thus suggest a lower likelihood of participants being truthful
in their responses. For example, with our sample board (d = 2,
h = 7) having p = 0.773, a result of n1 = 375 “Yes” outputs
out of n = 1000 samples yields a 95% confidence interval for π
of 27% ± 5.5%. The same results on a board with d = 6 and
h = 7 (and so p = 0.992) would give a 95% confidence interval of
37% ± 3.0%.

5. CONCLUSIONS
We have presented a secure scheme for in-person polling by

using a physical noisy channel to permit the observed polled re-
sponses to vary from their original values. We used a Plinko board
to implement this noisy channel; it is sufficiently simple and fa-
miliar so that its security properties are highly intuitive, and lies
about its properties are easy to detect. We gave methods for con-
structing a Plinko board for a desired probability of switching the
response, using it to conduct a poll, and using the results to esti-
mate the percentage of the population that gave each answer. We
have shown how to estimate the variance of our answer, which al-
lows the pollster to compute confidence intervals and estimate the
sample size required. We constructed a demonstration board and
found the construction to be simple and inexpensive.

Finally, we note that although our method works well when the
pollster and responder are in the same physical location, it does
not have a clear parallel for polls conducted over the phone or by
mail. In this case, it is more difficult to find reliable sources of
randomness beyond the control of either party, and we leave this as
future work.

Acknowledgements

We thank Kevin Henry for assisting with the design and construc-
tion of our Plinko board, and Chris Hughes for photographing it.
We gratefully acknowledge the support of NSERC and MITACS
for funding this research.

6. REFERENCES
[1] Andris Ambainis, Markus Jakobsson, and Helger Lipmaa.

Cryptographic randomized response techniques. CoRR,
cs.CC/0302025, 2003.

[2] Amy Biesterfeld. The Price (or Probability) Is Right. Journal of
Statistics Education, 9(3), 2001.

[3] Susie Lanier and Sharon Barrs. Plinko: Probability from a tv game.
http://mathdemos.gcsu.edu/mathdemos/plinko/. Accessed August
2009.

[4] N. S. Mangat. An improved randomized response strategy. Journal of
the Royal Statistical Society. Series B (Methodological), 56(1):93–95,
1994.

[5] N. S. Mangat and R. Singh. An alternative randomized response
procedure. Biometrika, 77:439–442, 1990.

[6] Tal Moran and Moni Naor. Polling with Physical Envelopes: A
Rigorous Analysis of a Human-Centric Protocol. Advances in
Cryptology - EUROCRYPT 2006, pages 88–108, 2006.

[7] PromoQuip. Plinko boards specs and online ordering.
http://www.promoquip.com/plinko.htm. Accessed August 2009.

[8] N. J. Scheers and C. Mitchell Dayton. Improved Estimation of
Academic Cheating Behaviour Using the Randomized Response
Technique. Research in Higher Education, 26(1):61–69, March 1987.

[9] Stanley L. Warner. Randomized Response: A Survey Technique for
Eliminating Evasive Answer Bias. Journal of the American Statistical

Association, 60(309):63–69, March 1965.


