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Abstract—New contributors are critical to open source
projects. Without them, the project will eventually atrophy and
become inactive, or its experienced contributors will bias the
future directions the project takes. However, new contributors
can also bring a greater risk of introducing vulnerable code.
For projects that have a need for both secure implementations
and a strong, diverse contributor community, this conflict is a
pressing issue. One avenue being pursued that could facilitate
this goal is rewriting components of C or C++ code in Rust—
a language designed to apply to the same domains as C and
C++, but with greater safety guarantees. Seeking to answer
whether Rust can help keep new contributors from introducing
vulnerabilities, and therefore ease the burden on maintainers, we
examine the Oxidation project from Mozilla, which has replaced
components of the Firefox web browser with equivalents written
in Rust. We use the available data from these projects to derive
parameters for a novel application of learning curves, which
we use to estimate the proportion of commits that introduce
vulnerabilities from new contributors in a manner that is directly
comparable. We find that despite concerns about ease of use,
first-time contributors to Rust projects are about 70 times less
likely to introduce vulnerabilities than first-time contributors to
C++ projects. We also found that the rate of new contributors
increased overall after switching to Rust, implying that this
decrease in vulnerabilities from new contributors does not result
from a smaller pool of more skilled developers, and that Rust
can in fact facilitate new contributors. In the process, we also
qualitatively analyze the Rust vulnerabilities in these projects,
and measure the efficacy of the common SZZ algorithm for
identifying bug-inducing commits from their fixes.

I. INTRODUCTION

In every software project, some contributions are made by
first-time contributors—after all, every contributor, no matter
how experienced they are now, was at one time a first-
time contributor. Simultaneously, as a project gains users, the
direction development of the project takes gains importance.
In the case of security-critical software, such as web browsers
or privacy-enhancing technologies like Tor, this is even more
true, as the threats and risks users face can change over time
or vary between users.

One of the simplest ways to ensure that the users of a
project can continue to use and engage with the project as
they see fit is to maintain low barriers to entry for making
direct contributions to the project. When a small number of
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contributors wield the majority of development contributions,
the direction a project can take can suffer from a lack of
diversity. Project enhancements are less likely to be imple-
mented when “heroes” dominate development in open source
projects [1], and developers for projects such as the Tor Project
have struggled to secure funding for maintenance work that
is less attractive to traditional funding sources [26]. Allowing
those who are in a position to contribute their time and skills to
readily do so can help keep contributions diverse, and maintain
a healthy developer community that keeps the project going.

While allowing for new contributors to make their first
contributions is beneficial, it can also be difficult, even pro-
hibitively so, for project maintainers to achieve this goal. Work
by Eghbal observes that project maintainers are often reluctant
to engage in encouragement of new contributors:

... in speaking to maintainers privately, I learned
that these [new contributor] initiatives frequently
cause them to seize with anxiety, because such ini-
tiatives often attract low-quality contributions. This
creates more work for maintainers—all contribu-
tions, after all, must be reviewed before they are
accepted. Maintainers frequently lack infrastructure
to bring these contributors into a “contributor com-
munity”... [7, Introduction]

Eghbal further notes that security in particular can be
a challenge, since “...security vulnerabilities can be time-
consuming to manage, with little upside for the developer,
coupled with the fear of an extremely bad situation if they miss
something important” [7, 04: Work Required by Software]. In
practice, this manifests as most projects having a small number
of contributors contributing most commits, with one study
finding that one-time contributors, despite making up nearly
half of all contributors in a selection of open source projects,
contributed less than 2% of commits [20], another finding 77%
of examined open source projects followed an 80-20 rule (i.e.,
at least 80% of contributions were made by at most 20% of
contributors) [1], and many other similar results [25], [22].

In the aforementioned security-critical tools, this phe-
nomenon can again be even more true. The tools provided
are used in highly adversarial settings, where untrusted inputs
are commonly received remotely, and many attackers have a
vested, well-funded interest in compromise. As such, patches
from new contributors can truly require the greater scrutiny
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common to them. However, there are also problems with
relying on a small number of contributors for this scrutiny,
particularly in combination with concerns about homogeneous
funding models, which can bias shepherding contributions
towards the problems most relevant to that source of funding,
rather than what is most needed by the community (see, e.g.,
the aforementioned funding difficulties at the Tor Project).

Therefore, such projects would benefit from new techniques
for lowering the barrier to entry for contributing code to their
software. One potential avenue for lowering this barrier to
entry is taking software written in memory-unsafe languages,
and porting components or their entirety to Rust. Rust is a
newer systems programming language, with greater memory
safety guarantees than C or C++,1 as well as general language
design decisions that can reduce the incidence of vulnerabili-
ties of software written in it [13], [23]. While there have been
concerns about the use of Rust discouraging new contributors
to security-critical projects [8], the Tor Project has recently
claimed that the safety properties of Rust have helped make
new volunteer contributions more common [12]. We examine
here the question of whether new contributors are less likely
to contribute vulnerabilities when using Rust than C++.

To answer this question, we use the results of the Oxidation
project [18], which seeks to replace components of the Mozilla
Firefox web browser written in C++ with equivalent compo-
nents written in Rust. By using such components, we can
ensure that the comparisons made between the two implemen-
tations are as fair as possible for real-world projects, as they
are designed to be in-place replacements for their respective
role. The comparisons we make between the projects are
performed by estimating learning curves from extracted data
about vulnerabilities, and the commits that introduced them.
In the process, we improved the tools to extract such data, and
created a dataset that can be used and further contributed to
by future research.

We start by reviewing some related work in Section II,
which will provide some of the necessary background into the
terminology and techniques we use. Then, in Section III, we
describe the data sources, extraction techniques, processing,
and analysis methodology. We present the results of our
analysis in Section IV, and conclude in Section V. The scripts
and hand-annotated data necessary to reproduce our results are
publicly available.2

II. BACKGROUND AND RELATED WORK

A. Identifying Vulnerability Fixes

A well-known technique for identifying buggy changes is
SZZ [24]. While the original paper does not focus on vulner-
abilities, but instead bug-introducing changes, it is commonly
used as a technique for correlating bugs with the commits
that introduced them (in our case, commits known as VCCs—
Vulnerability Contributing Commits). In essence, the SZZ
algorithm consists of identifying relevant bugs, identifying
the fix commits associated with those bugs, then using the

1For the remainder of the paper, we will use C++ to concisely refer to C
as well.

2https://git-crysp.uwaterloo.ca/j3tracey/grading-on-a-curve

appropriate annotate command in the revision control system
(e.g., git’s annotate/blame) to identify the most recent
commits that modified the lines either modified by or adjacent
to the lines of the fix commit, and assigning those commits
as inducers. That is, for each removed line, and lines near a
line added or removed in the fix commit, find the most recent
commit that changed that particular line. From this, we obtain
a list of commits that nominally contributed to the bug, which
are called “fix-inducing” commits (in our case, they are also
the VCCs), and the information associated with those commits
(authors, times, histories, etc.).

While SZZ is a common approach for identifying commits
that introduced bugs, it is not without its shortcomings. For
one, the technique casts a wide net on blame—depending on
its configuration, it includes not only who wrote the lines
that were changed, but also any lines near it, as well as non-
semantic changes, such as variable renaming. Therefore, it is
likely that much of the data includes authors who were not at
all to blame for the introduction of the original vulnerability,
and simply modified code adjacent to where the fix was
applied, or refactored the code and preserved the bug [11],
[6].

Another major problem with this approach is that it is
not always the case that fixes are applied in the same place
where a bug was introduced [6]. Suppose, for example, as
part of a fix for the particular vulnerability, code needed to
be introduced that generated a compiler warning. As part
of the fixing commit, another part of the file needed to be
changed such that compiler warnings did not occur. While
changing this part of the file was ultimately necessary, none
of the code around this part of the file was ultimately to blame
for the original vulnerability—it was the lack of code added
that created the problem, not the code in that part of the file.
Therefore, the above approach erroneously marked the author
of this portion of the file as a contributor to the bug.

Various modifications to SZZ over the years have been made
to attempt to address some of these and similar shortcomings.
For example, if a fix commit also happens to add a comment to
some non-buggy code, a naive implementation may attribute
the adjacent unmodified lines, so better implementations are
syntax-aware [29]. Despite these changes, SZZ still has its
limits, but in any case, it remains one of, if not the most
popular technique for identifying bug-inducing commits.

Another approach, used specifically for identifying VCCs
and not general bugs, was used in the work of Meneely et
al. [14]. In this paper, the approach used was to examine
the vulnerability being fixed, write a script that would detect
that specific vulnerability, then bisect the revision control
system with said script to identify which commit introduced
it (commands such as git bisect will run the specified
script in a binary search pattern on revisions depending on
the result). This approach, while highly accurate in a certain
sense, requires understanding each vulnerability in the data
set being analyzed. In the case of the cited work, it took
three researchers “hundreds of man-hours over six months” to
analyze 83 vulnerabilities. Furthermore, it has a very narrow
definition of what introduced a vulnerability. Because the
vulnerability has to be exploitable, the buggy code could be
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hidden behind a feature flag while some feature is under
development, or be unexploitable until executed in a particular
way, and the bisection will detect the commit that exposed
the vulnerability rather than introduced it in the sense relevant
to code review. Ultimately, this technique was determined to
be a poor fit for our purposes, though we do use manual
identification of vulnerabilities (see Sections III-A2 and III-B).

The research of Perl et al. [19] aimed to provide a database
of vulnerabilities in open source projects, including Firefox,
but it appears to be no longer available. In any case, their
technique appears to closely match that of SZZ. In the
paper, they examined, among other questions, whether “new
committers are more likely to introduce security bugs than
frequent contributors”. They found that “new contributors”
are five times as likely to introduce vulnerabilities, though
they define “new contributor” by the fraction of commits to
the project overall—not, as one might expect, the number of
commits at the time the vulnerability was introduced.

B. Correlating Vulnerabilities with Contributor Experience

While there are many other papers that examine vulnera-
bilities, e.g., predicting or identifying parts of code liable to
have them [16], [28], most do not address the matter of their
relationship with the experience of the developer at the time
of introducing said vulnerability. Of those that do, most found
that there is some negative correlation between experience and
introducing vulnerabilities [4], [15], [19], though at least one
study found no strong correlation with bugs in general [21],
while another study found a small but positive correlation with
vulnerabilities in the use of Java cryptographic libraries [9,
III.B.1]. Rather than being contradictory, we believe these
results stem from the nature of vulnerabilities, and their
intersection with memory safety—for details, see our analysis
in Section IV-C.

C. Oxidation

Early in Rust’s history, it was adopted as a research project
by Mozilla as a means of looking into techniques for increas-
ing safety in systems programming languages [10]. The initial
flagship use of the language was an experimental web browser,
named Servo. As the language matured, Mozilla decided to
replace components of Firefox with equivalents written in Rust
(as well as write new components in Rust), a project named
Oxidation. As of this writing, 25 components are listed on the
Oxidation page as having been shipped [18].

This undertaking provides a useful source of data, since
it means we can compare the C++ and Rust versions of
each re-implemented component, and how they are developed,
directly. However, not all of these components are completely
germane to a study of vulnerabilities in systems languages. As
mentioned, some components are entirely new, and therefore
have no point of comparison. Similarly, some components
replaced original versions written in a memory-safe language
generally not considered a systems language (JavaScript), and
were replaced with Rust for reasons other than memory safety.
Finally, for our comparison, we require that there be at least

TABLE I
OXIDATION PROJECTS FOR WHICH WE WERE ABLE TO MAKE

COMPARISONS BETWEEN C++ ORIGINALS AND RUST REPLACEMENTS.

Component Original Replacement Replaced
MP4 parser stagefright mp4parse-rust 2016

Unicode encoder uconv encoding rs 2017
CSS styling style Stylo 2017

Rendering layers WebRender 2019
Encoding detect. chardet chardetng 2019

Hyphenation libhyphen mapped hyph 2020
MacOS audio cubeb audiounit cubeb-coreaudio-rs 2020
Color mgmt. qcms qcms 2020

one identified vulnerability in either the original C++ or Rust
equivalent.

Ultimately, we identified the components in Table I as valid
for comparison. Of those projects, all C++ versions are tracked
within the main Gecko repository (Gecko being the name for
the core of Mozilla’s projects, including Firefox), while all
Rust equivalents are tracked as their own projects, with the
exception of portions of WebRender that are used to bind to
the rest of the Gecko code, and Stylo, which was originally
a component of Servo, and is now primarily maintained in a
fork of Servo tracked in the main Gecko repository. Two C++

components, stagefright and libhyphen, were initially imported
from other projects (Android and Hunspell, respectively), then
tracked within the main Gecko repository, albeit with patches
frequently adapted from upstream.

As shown in Table I, Oxidation began shipping in release
versions of Firefox in 2016, and the most recent compara-
ble components were replaced in 2020. Since all measured
commits were authored since 2012 (see Section III-A1), this
means that the projects are studied over roughly comparable
development time frames (4–8 years for C++, and 3–7 years
for Rust).

III. METHODOLOGY

Because of the differences in how the components are
tracked, our methodology is split into a description of how
we extracted data from the original C++ code, and how we
extracted data from the Rust equivalents.

A. Data Extraction: Original Code

To analyze the data available from the original C++ projects,
we use two broad steps: first, we identify vulnerabilities in
the respective projects in Bugzilla, the issue tracking system
used for Mozilla projects; second, we manually identify which
commits, from the perspective of a code reviewer, introduced
the vulnerabilities in question.

1) Identifying vulnerabilities: Bugzilla3 is the primary
means of tracking issues and submitting changes to the Firefox
code base. With few exceptions, before any commit can
be added to the Firefox release branches, it must have an
associated bug on Bugzilla, identified with an integer ID
(though one bug may have several associated commits). These
bugs are classified into “products”, such as “firefox” for bugs

3Specifically, Mozilla’s instance of the Bugzilla product.
https://bugzilla.mozilla.org/
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only relevant to Firefox itself, “thunderbird” for Mozilla’s
mail client, and “core” for bugs in components shared across
products. Bugs are then further classified into “components”,
which approximately correspond to the scale of the com-
ponents that were replaced in the Oxidation project (e.g.,
“CSS Parsing”). Each bug then has some additional metadata,
including the “type” (e.g., “defect” or “enhancement”), the
branches affected, the priority, the severity, people assigned
to the bug, and “keywords” such as “crash” or “regression”.
Bugs can be commented on, and given attachments, usually
consisting of patches, reproduction scripts, or logs. Eventually,
one of these patch attachments is accepted by a reviewer, and
it is added as a commit to one or more branches. In the course
of a normal bug, at this point, a “status” field in the bug is
changed to “resolved”, and a “resolution” field changed to
“FIXED”.

Since 2012, Mozilla has tracked security bugs by adding
particular keywords to them. For our purposes, all of the
relevant security bugs can be found by searching for one of
the severity impact levels: sec-critical, sec-high, sec-moderate,
or sec-low. Prior to 2012, security bugs were tracked by
being in a “Security” component. This means we do not have
component information for security bugs from that time, so
we opt to exclude any bugs that were introduced before this
date. (One may think we could instead filter out bugs that
were identified prior to this date, but this would bias our
results by not being able to distinguish VCCs from that time
vs. non-VCCs. If we were to include only the commits that
were marked as VCCs from before 2012, this would exclude
the large number of non-VCCs from that time, biasing the
proportion of vulnerabilities per commit higher. If we were to
include all the other commits from before 2012, assuming they
were not VCCs, this would mean that vulnerabilities Mozilla
identified from that time would be left out, artificially lowering
the proportion of vulnerabilities per commit.)

To identify relevant vulnerabilities then, we use the Bugzilla
API to fetch all bugs with a security level keyword in the
component that most closely corresponds to the component
replaced as part of Oxidation. Once the IDs of the bugs are
found, we identify the comments on that bug that changed the
resolution to “FIXED”, extract the linked patches from them,
and find the patches’ commit messages in our local repository
(we do this rather than using the commit identifiers directly
since while Firefox uses the Mercurial revision control system
for development, our SZZ implementation is designed to work
with Git, which the Rust project replacements use, as does
Mozilla’s official Firefox mirror on GitHub). This provides us
with a set of fix commits. In some cases, this is sufficient,
but in cases where Oxidation replaced only a subset of the
component, we then perform additional filtering by the files
that were replaced, removing any bugs whose fix commits did
not touch the relevant files.

2) Identifying VCCs: Our initial attempt at VCC identifi-
cation made use of SZZ. We modified the open source SZZ
Unleashed implementation [3] to function with C++-syntax
aware diffs, allowing it to ignore comments, whitespace, and
preprocessor changes, and also modified it to ignore any
changes to non-C++ files. We also made various changes to

the behavior that we found were necessary to produce better
results; e.g., the upstream version only attributes commits
from lines removed/changed, but since vulnerabilities are often
caused by missing code, such as bounds checks, we also
attribute the commits that introduced the lines immediately
above and below any new lines in the fix commit.

Some investigation into the SZZ results indicated that the
precision of the technique was too low to fully trust. Another
possible source of of information on vulnerability introducers
is Mozilla’s Security Approval forms. In December of 2012,
Mozilla added a requirement that whenever a patch fixing a
sec-critical or sec-high bug was to be merged into a release
branch, rather than a development branch, a Security Approval
form must be filled out in the comments of the bug to
demonstrate that it would be done responsibly (so as to
avoid publishing patches that attentive attackers could use to
identify the vulnerability, and exploit it on still-vulnerable
branches—such Bugzilla bugs are kept private until some
time has passed). When a vulnerability only affects some
supported branches, one field of the form requires identifying
the Bugzilla ID of the bug whose associated patch made
the vulnerability exploitable. This allows reliably identifying
which branches require backporting the fix patch.

However, these forms do not align with what we are trying
to ascertain either, since for our purposes, the notion of a
VCC should be from the perspective of a code reviewer—the
VCC should be the commit where human interpretation of the
modified code would consider it to be a security flaw, not by
the code that enabled the vulnerability to be exploited in pro-
duction builds of Firefox. For example, many vulnerabilities
were hidden behind feature flags while new functionality was
under development, and therefore could not execute in normal
Firefox builds. In our analysis, these vulnerabilities would be
introduced when some C++ code was committed that, when
executed, could cause an exploit to succeed—not the commit
that flipped the feature flag that allowed the vulnerable code to
execute. Similar to the Meneely et al. method [14] described
in Section II-A, which relied on program execution to identify
VCCs, Mozilla’s Security Approval forms are concerned with
exploitability, not with the code review process that led to the
vulnerability.

Instead, we opted for a manual review of the issues in
question; i.e., we read the relevant information on the issue
tracker, understood what the vulnerability consisted of, then
went through the history of the files until we found a commit
that introduced the vulnerability from the perspective of a code
reviewer. It is our belief that fully automating this process
would be extremely difficult. In one case, we identified the
VCC as a commit adding a code comment claiming that a
particular structure was safely serializable, when it contained
fields that made this untrue. Such a change, in a vacuum, has
no effect on the behavior of the program—a well-written SZZ
implementation would ignore the comment, the Meneely et
al. method would never identify such a change as a VCC, and
the Mozilla Security Approval forms would never bother to
identify that particular change as relevant for backporting. For
the purposes of someone reviewing commits to the relevant
code, however, one would expect the reviewer of the commit
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adding the incorrect comment to identify that serialization is
not safe, not the reviewer of the commit later making use
of this documented claim that made such a mistake actually
exploitable.

Since we do have a working SZZ implementation tailored to
this case, and ground truth in the form of our manual review,
we have an opportunity to measure the efficacy of SZZ. The
comparison of the results of these two methods can be found
in Section IV-A2.

B. Data Extraction: Rust Equivalents

Unlike the original C++ components, most of the Rust
replacements created as part of Oxidation are not developed
in the same repository as Firefox, and they typically do not
use Bugzilla for tracking issues or contributions. Instead, each
project is maintained with varying degrees of independence
in individual GitHub repositories. Because of this relative
independence, vulnerability issues are not tracked with the
same procedures across projects, let alone with the same
methods as the original projects. As such, our procedures for
identifying vulnerabilities was ad-hoc, relying on whatever we
found to be most effective for each project. In practice, the
most useful resource was still Bugzilla, as bugs that manifested
as exploitable vulnerabilities in Firefox were tracked there, but
with the resolution being to use a sufficiently recent version
of the project that had addressed it, not fixing the code that
contained the vulnerability. Once we were able to identify such
a tracked bug, however, we could then investigate where the
relevant bug was tracked in the respective GitHub issue tracker
for that project.

Our methodology for identifying VCCs in the Rust projects
from that point on was similar to the procedure for identifying
VCCs in C++. Once the issues were identified, we used
information from the issue and its pull request (on GitHub) to
manually identify which commit introduced the vulnerability.
We provide additional analysis of these Rust vulnerabilities
and their causes in Section IV-A1.

C. Examining Experience

For our purposes, the matter of most importance is the
safety of contributions from first-time contributors. We there-
fore need some mechanism of quantifying the relationship
between experience and safety, so that it may be compared
across languages. To achieve this, we make use of established
research into learning curves [2], though used here for com-
paring properties of programming languages for the first time.
Learning curves are used to study the relationship between
experience—typically measured in some form of repetitions
or exposure to some task—and some other value—typically
an amount of time, or a probability of success/failure. Here,
we are studying the relationship between developer experience
with a particular project, and the probability of introducing
a vulnerability. In this work, we measure experience as the
number of commits the contributor made, at the time of the
contribution, to the project. (As such, “experience” here is
an analogue for familiarity with a codebase and development
practices for a project—not experience with the language

overall. This is a metric one would expect to correlate with
code quality, and makes particular sense for our purposes, as
not only is project data more accessible for researchers, it is
also what project maintainers would know when performing
code review of a merge request.) If the learning curve for a
project has a more negative slope than the learning curve of
another project, it indicates that contributors to this project
more quickly learn to avoid adding vulnerabilities than the
other project.4 More importantly for our purposes, if the y-
intercept of a project’s learning curve is lower than that of
another project, it indicates that first-time contributors to this
project are less likely to introduce vulnerabilities.

Of course, real world learning is more complicated than
simple, single-variable functional relationships; e.g., people
learn in different ways, forgetting and time between tasks
can be included into the model, and actual data is generally
noisy. Despite the shortcomings, learning curves have been
found to perform well in extremely diverse fields, including
in measuring performance of programming tasks [5]. In this
research, we opted to rely on what has historically been the
most popular learning curve model [2], [17], a power law of
the form

Pj = P1j
−`

where Pj is, in our context, the probability of a vulnerability in
a commit from a contributor’s jth commit, and ` is a “learning
rate” constant. P1 is the subject of our interest—the probability
a contributor’s first commit contains a vulnerability.

We should emphasize here that despite being a power law
that tells us probabilities, this is not a power law distribution.
The curve is not itself a probability distribution, and it will not
sum to 1; rather, it is a function that takes as inputs experience
values, and produces Bernoulli distributions.

Traditionally, the empirically estimated terms in the power
law learning curve (P1 and `) are found by taking the log
of the empirical data, giving data in the presumed form
logPj = log(P1) + ` log x, and performing a linear regres-
sion. Unfortunately for our purposes, but fortunately for the
security of Firefox, there are not enough vulnerabilities at
every experience level to perform such a regression (nearly
all experience levels have 0 vulnerabilities, and nearly all of
those that do will have 1). To accommodate this, we instead
look at cumulative data, which allows us to express it with
larger, more continuous values. However, we must express the
accumulated data in a form that accounts for the fact that
our empirical data is a result of a particular distribution of
experiences in the respective repository. To incorporate this
fact, we define V≤j =

∑j
k=1 Pkck, where ck is the number of

commits made with exactly k experience in the project (again,
defined as the number of commits the author has made to the
project), and V≤j is the expected number of vulnerabilities
from contributors with at most j experience. We also define
v≤j as the empirical value for V≤j (i.e., the actual number of
vulnerabilities at or below j experience).

4Note that this, like most actual learning curves, is inverted from the
colloquial sense of a “steep learning curve”.
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To estimate the P1 and ` parameters, we perform a gradient
descent search. We define our loss function for each experience
j as:

Lj(P1, `) = (V≤j − v≤j)
2 =

(
P1

j∑

k=1

ckk
−` − v≤j

)2

(with the total loss being the sum over all j).
We compute the gradient ∇Lj(P1, `) as:

∂

∂P1
Lj(P1, `) = 2(V≤j − v≤j)

j∑

k=1

ckk
−`

∂

∂`
Lj(P1, `) = 2(V≤j − v≤j)P1

j∑

k=1

−ckk−` log k

(where again, the gradient of the cumulative loss function is
summed over all j).

In practice, the search frequently found early local minima,
so an array of plausible starting values were used.

For the C++ projects, experience is counted over all of Fire-
fox. We believe this corresponds with how project maintainers
experience contributor experience; e.g., a contributor making
their first contribution to a particular component is likely to
be more trusted if they are a regular contributor to other
parts of Firefox than if they have never contributed at all.
However, if this not true, the bias would be towards greater
experience, which would lower the C++ P1 value (i.e., if this
assumption is false, then we can expect the real value of the
C++ P1 to be even higher than our results). The samples—i.e.,
the commits counted as either containing or not containing
vulnerabilities—however, are scoped to the files relevant to the
examined project. For the Rust components, which are mostly
developed as independent projects, experience is counted only
from the respective repository. For Stylo, we use all commits
to the Servo project (in a repository broken out from the Gecko
fork, and in the case of determining samples, again scoped to
the relevant files—see Section II-C for additional context). The
binding portions of WebRender tracked in Gecko are handled
in the same way as C++ projects. For all other Rust projects,
the git repository and project map one-to-one. For both C++

and Rust projects, merge commits are excluded as samples.

IV. RESULTS

A. Identified Vulnerabilities

A summary of the vulnerability counts themselves can be
found in Table II, which includes the number of samples
(i.e., the number of commits in the project), the number of
tracked issues identified as potentially fitting our criteria, and
the number of commits that could successfully be confirmed
to contain at least one C++ or Rust vulnerability (VCCs). In
the case of the C++ data, the gap between the number of
vulnerability issues and the number of VCCs is primarily from
bugs where the attributed commits were introduced prior to
when security vulnerabilities began being tracked, as described
in Section III-A1. The number of VCCs is greater than the
number of issues for the MP4 parser (i.e., stagefright) code
because of an issue fixing multiple vulnerabilities of a similar

form that were introduced in two independent commits. For
the Rust data, the gap (on a per-project basis) is mostly a result
of vulnerabilities that were introduced in C++ code used to in-
terface with Firefox. We also note the Rust project Crossbeam
at the bottom, which is not comparable, as it is a third-party
dependency (specifically, it is a library with a collection of
concurrency tools). It is included here because the noted vul-
nerabilities were tracked downstream by Mozilla, and because
Firefox’s C++ code typically “vendors” dependencies (i.e.,
imports libraries as code that become maintained by Mozilla,
rather than linking to externally maintained repositories—
as mentioned in Section II-C, this is how stagefright and
libhyphen were initially incorporated as Firefox components).
Therefore, even though we cannot compare Crossbeam with
any corresponding project, its vulnerabilities are nevertheless
noted, since, if there were equivalent vulnerabilities in C++,
they likely would have been in Firefox’s code, and possibly
tracked in one of the equivalent components we do compare
against. Put another way, not including such vulnerabilities
would allow one to nominally eliminate all Rust vulnerabilities
by moving all code, other than library imports, to third-party
dependencies.

Any component where the original and Rust project both
had no attributed vulnerabilities were left out of the analysis—
if there were vulnerabilities we could not include, there was
no way to create a fair comparison, and if there were no
vulnerabilities at all, then it indicated it was not a project
where security was prone to being a problem.

1) Rust Vulnerabilities: To provide more insight into the
nature of Rust vulnerabilities, we here detail some observed
properties of the 20 identified vulnerabilities. All vulnerabil-
ities are identified by their Bugzilla IDs: 1420001, 1557208,
1577439, 1593865, 1599181, 1602843, 1614971, 1622291,
1631232, 1637112, 1668514, 1680084, 1685145, 1694670,
1696312, 1700235, 1701834, 1716028, 1746545, 1758223.

First, there is a notable distinction for what qualified as a
vulnerability in a C++ or Rust project. In Rust, there exists
a notion of “soundness”, which is a guarantee that all code,
excluding lines explicitly annotated as “unsafe”, cannot have
undefined behavior [27]. That is, soundness implies that if
some Rust code does not make use of the unsafe keyword,
and it compiles, then the code is well defined. Soundness
bugs, then, are bugs that allow this guarantee to be violated in
some way—e.g., a bug that allows some safe code written
in a particular way to cause a null pointer to dereference
somewhere. In the Rust ecosystem, soundness bugs are largely
treated as security vulnerabilities, as they can violate the
memory safety of the language, which can in turn be used
to exploit traditional memory safety vulnerabilities. C++, being
memory-unsafe, does not have an equivalent notion—it is akin
to marking nearly all code as unsafe, since any API (functions,
methods, constructors, etc.) that makes use of a pointer to
access memory can trivially be made undefined by supplying
it an invalid pointer. It is therefore worth noting that many Rust
vulnerabilities would likely not be considered vulnerabilities at
all had they been written in C++, since the vulnerability tracked
is merely stating that it is, e.g., possible to use a library in such
a way that it would allow memory corruption, and not that
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TABLE II
SAMPLE SIZE (COMMITS IN PROJECT), VULNERABILITY ISSUES, AND VALID VULNERABLE COMMITS FOR C++ AND RUST PROJECTS. EMPTY CELLS ARE

INVALID TO COUNT AGAINST THE TOTAL, E.G., BECAUSE THERE WERE NO VCCS IN EITHER THE C++ OR RUST VERSIONS OF THE PROJECTS; SEE
SECTION IV-A

C++ Projects Rust Projects

samples
(commits)

Bugzilla
security
issues

positives
(VCCs)

samples
(commits)

Bugzilla
security
issues

positives
(VCCs)

MP4 parser 776 16 17 910 0 0
Unicode encoder 337 5 1 879 0 0

CSS styling 3152 11 9 5764 8 5
Rendering 6177 21 19 7011 7 7

Encoding detection — 2 0 — 0 0
Hyphenation 164 2 2 50 0 0

MacOS audio 134 1 1 841 2 2
Color management — 7 0 — 1 0

Crossbeam — — — — 2 —
Total 10740 65 49 15455 20 14

the library had actually been used in such a way that memory
corruption could occur in execution. Regardless, we treat such
vulnerabilities the same as any other, since the subject under
study is not whether code is exploitable in practice, but the
impact the threat of vulnerabilities has on accepting code
from new contributors—a project maintainer is tasked with
managing reports of vulnerable code, not exploits themselves.
In our data set, three vulnerabilities were explicitly tracked
as soundness bugs, including both Crossbeam vulnerabilities
(1668514, 1716028), and one in WebRender (1685145).

In three cases, a vulnerability was introduced that had
existed in the C++ equivalent being replaced. Two of these
vulnerabilities were found in the Rust code, and only then
was the same or a very similar vulnerability found to have
existed in the C++ code as well. In the case of 1614971,
this fix was backported, and so is tracked as both a C++ and
Rust vulnerability in our data, but in the case of 1622291,
the fix was never backported, and so is only counted as a
Rust vulnerability in our data. The remaining vulnerability
(1420001) was fixed in the C++ code, and never existed in the
Rust code’s original context in Stylo, but was reintroduced
in Firefox as a result of Firefox’s configuration. Because
most C++ vulnerabilities were memory-safety vulnerabilities
(at least 87% in our data), and Rust is a memory-safe language,
it is expected that most C++ vulnerabilities would not translate
into identical Rust vulnerabilities.

Six vulnerabilities involved some form of direct interac-
tion with C++ code (1557208, 1577439, 1593865, 1614971,
1622291, 1758223), functionality known as Foreign Function
Interfacing (FFI). In every case, this was caused by a race
condition with C++ threads. These races typically occurred
during browser shutdown, while freeing all resources, and four
of these vulnerabilities were determined by Mozilla developers
to be unlikely to be exploitable in practice, but were tracked
as security vulnerabilities to err on the side of caution.

Seven vulnerabilities were in the parsing of web page
content or its rendering. Three of these (1599181, 1602843,
1680084) were in the parsing and sanitizing of CSS copied and
pasted by the user. An additional three involved the rendering
of the page escaping certain sandboxing assumptions, such
as the ability to render invalid graphics data (1637112) or to

render page contents outside the page boundaries (1700235,
1701834). The seventh (1631232) involved an error in the
implementation of a garbage collector for CSS rules.

Only two bugs do not fit into at least one of the above
descriptions. An example of a bug that could occur regardless
of language choice, the VCC introducing 1746545 modified
a build script (written in Rust) to add a -ffast-math
compiler flag to a compiler invocation, which then had the
unforeseen effect of the compiler optimizing out checks in the
source code for run-time floating point errors. Conversely, the
other bug, 1696312, occurred as a result of unsafe code added
for higher performance memory caching—the sort of unsafe
code invocation future compiler optimizations or language
features could hopefully obviate.

2) SZZ: For our comparison with SZZ, we did not constrain
ourselves to the commits that were valid for comparison with
Rust, but instead included all VCCs we identified (e.g., VCCs
from before 2012 are included). SZZ attributed a total of
130 commits over 43 issues, with a maximum of 14 commits
attributed to one issue, versus 77 commits over 54 issues from
our manual review, with a maximum of 4 commits attributed
to one issue. 31 of these commits were attributed by both SZZ
and our manual review. In 11 issues, SZZ attributed the same
set of commits our manual review identified. In 5 issues, SZZ
attributed a strict subset of the commits our manual review
identified. In 12 issues, SZZ attributed a strict superset of
the commits our manual review identified. In 2 other issues,
SZZ attributed a non-zero intersection of commits our manual
review identified. Together, this means SZZ has a non-zero
intersection with our manual review in 30 issues, or 70% of the
issues it was able to attribute a non-zero number of commits.
This makes SZZ significantly better than random guessing,
but especially with the 26% rate of total matching per-issue,
24% rate of matching per-commit, and lower rate of overall
resolution of issues to attributed commits, the validity of SZZ
for any research continues to require justification on a case-
by-case basis, as previously established in the literature [6],
[11], [29].

While we do not make any specific quantitative claims about
the causes of the discrepancies between the two, common
causes seemed to match known problems with SZZ: improper
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attribution to cosmetic or other unrelated changes, and bugs
induced by not adding code to some other location in the
repository, so that the fix was applied in an area untouched by
the inducer.

B. Learning Parameters

The results of our gradient descent can be seen in Fig-
ures 1 and 2, where the empirical relationship between project
commits and vulnerability count is plotted against what is
predicted by our model, while Figure 3 shows the respective
learning curves. (Note that Figures 1 and 2 are not directly
comparable, as the number of commits, ck, differ—e.g., a
project with many first time contributors would bias the
expected vulnerabilities at j = 1 higher, regardless of the true
value of P1.) The upper and lower error bounds in all three
figures correspond to the bounded sensitivity of the model—
i.e., the maximum difference any single false positive or
negative could shift the best fit. In practice, this corresponds to
counting a non-VCC with experience 1 as a VCC or counting
the lowest experience VCC as a non-VCC, for the upper and
lower bounds, respectively. These error bounds appear tight,
especially in Figure 3, as should be expected—even though
there are relatively few vulnerabilities in absolute number, the
relevant files collectively have tens of thousands of commits to
them, each of which is included as data in our models. That is,
the best fit parameters are over a distribution with low (but far
from negligible) probability over most of its realistic domain,
but with an extremely high number of samples, ultimately
resulting in a good estimate of the desired parameters. Or,
put simply, if the real values were far larger or smaller than
our estimates, we would expect to see far greater or fewer
vulnerabilities over those tens of thousands of commits, with
high probability.

With the given parameters, the gradient descent procedure
found that the best fit parameters for the C++ data gives an
intercept P1 = 0.04± 0.01 and a learning rate of ` = 0.347±
0.001, for a learning curve of P = 0.04j−0.347, while with
the Rust data, P1 = 0.0006± 0.0003 and ` = −0.1± 0.1, for
a learning curve of P = 0.0006j0.1.

C. Analysis

a) First-time Rust contributions were significantly safer
than their C++ equivalents: The y-intercepts of the two
learning curves imply that for Oxidation projects, a first-time
contributor to a C++ project was approximately 70 times as
likely to introduce a vulnerability as a first-time contributor
to an equivalent Rust project. This provides strong evidence
that even if one were to accept that Rust is a more difficult
language to learn than C++, it can still provide a sizable net
benefit to new contributors to such projects.

b) Memory safety may change the fundamental relation-
ship between experience and vulnerabilities: Aside from the
implications of the respective P1 values, the difference in
learning rates is also of note. While the C++ projects have
a typical (albeit slow) learning rate, the learning rate of the
Rust projects is negative (i.e., experience is raised to a positive
power). The phenomenon is robust—flipping the sign of the
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Fig. 1. C++ contributor experience vs. the number of vulnerabilities intro-
duced. Each dot is the number of vulnerabilities introduced by the set of
commits that are some author’s jth or lower commit to the project.
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Fig. 2. Rust contributor experience vs. the number of vulnerabilities intro-
duced. Each dot is the number of vulnerabilities introduced by the set of
commits that are some author’s jth or lower commit to the project.

best-fit ` from negative to positive (though a still very small
value) would require adding at least three 1-experience VCCs
to the Rust data set; i.e., a 21% overall increase in vulner-
abilities, all concentrated at the absolute lowest experience
value (a very unlikely phenomenon). A negative learning rate
is highly unusual for most contexts, as it means the probability
of an error is positively correlated with experience. For our
data, this means that while C++ developers become less likely
to contribute a vulnerability in any particular commit the
more commits they have already made, a Rust developer is
more likely to contribute a vulnerability as they gain more
experience with a project. This counter-intuitive phenomenon
has some precedence: as mentioned in Section II-B, a study
on the use of cryptographic libraries in Java found a similar
small positive correlation [9, III.B.1], while other studies found
the expected negative correlation with other C++ projects [4],
[15]. From this, an explanation presents itself: since the largest
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Fig. 3. The C++ and Rust learning curves. Pj is the probability a commit
from an author with j experience will introduce a vulnerability.

class of vulnerabilities are memory safety bugs, which can be
overlooked even in simple code, these vulnerabilities mask
the more general phenomenon of vulnerabilities that are more
likely to present themselves in innately challenging parts
of the code. For example, while at least 87% of the C++

vulnerabilities we identified were bugs derived from memory
unsafety (and even more were only vulnerabilities because of
memory unsafety; e.g., integer overflows), the majority of vul-
nerabilities found in the Rust projects were in interfacing with
C++ code or the implementation of a language parser—both
notoriously difficult problems (see Section IV-A1). Because of
this difficulty, new contributors are less likely to make changes
to these parts of the code, making what vulnerabilities that
do occur positively correlated with expertise and experience.
Similarly, usage of cryptographic libraries in Java (a memory-
safe language) would also be more prone to vulnerabilities
in more difficult parts of the code that are likely the domain
of experienced developers. While this notion of complexity
is subjective, we expect there would be little contention to
the claim that newer contributors prefer and are generally
encouraged to focus on starting with simpler contributions.

c) Future work may yield better results: That the learn-
ing rate of the C++ projects is larger than the learning rate
of the Rust projects means these lines intersect, meaning
the models project a quantity of experience (around 18,000
commits) for which a C++ developer will be less likely to
introduce a vulnerability than an equivalently experienced
Rust developer. That the learning rates are of different signs
means the models project a level of experience where a Rust
developer will be more likely to introduce a vulnerability
than any C++ developer, though the value is astronomically
large (around 1018 commits). In practice, we believe that
such crossovers are unlikely, and instead point to limitations
of the power law model. While we could try many other
models of learning curve, concerns of overfitting and multiple
comparisons would need to be addressed, so we leave as future
work analysis that would start with causal explanations for
why a particular model would be a better representation of

the underlying phenomenon. Until such research occurs, it is
of course worth keeping in mind that very few developers
create 18,000 commits in any project over its lifetime (the
only contributor with more than 18,000 commits in any of the
repositories examined was a bot), and no project will ever see
1018 commits.

It is worth noting that the empirical data will undercount
the number of vulnerabilities in the low-experience portion of
the learning curve, precisely because of the phenomenon we
are trying to address: contributions from new contributors tend
to receive greater scrutiny and more thorough inspection than
those from contributors with recognized experience. The goal
of this extra scrutiny is, at least in theory, to attempt to level
the learning curve to horizontal, and to make all contributions
ultimately as safe as feasible. As one might expect, and shown
in the above results, such a goal is not always achieved, but
it is worth keeping in mind how this weighs on the data.
Fortunately, this extra scrutiny is generally only applied to
the very low experience portion of the learning curve; most
of the curve will have the a typical amount of scrutiny, and
since all portions of the curve are given equal weight when
performing the gradient descent, we expect this bias to have
minimal effect on our results. Namely, while this phenomenon
will cause an unfortunate observable discrepancy between
empirical low-experience vulnerability proportions and what
our model predicts, when this is precisely the experience levels
we are most concerned with, the goal is to extrapolate what
those values would be without this extra scrutiny, making such
a divergence expected.

Finally, there is some limitation to these results in that they
all come from Oxidation projects. One-to-one replacements of
C++ projects in Rust are rare, and it is fortunate we have such
a high-quality point of comparison. Ideally, we would also
compare widely used or scrutinized C++ projects that were
based on original Rust projects, but this is unlikely to happen
in practice, as there is little to no advantage to doing such a
rewrite, let alone deploying it. Should such projects come to
exist, though, they could prove useful to validate these results.

D. The Prevalence of New Contributors

Given the above results, natural questions to ask are whether
the reduced prevalence of vulnerabilities in contributions from
new contributors increased the rate of new contributors in
practice, or whether Rust simply acted as its own filter and
reduced the rate of new contributors entirely. The former
is difficult to say, given the number of factors aside from
security that can make Rust attractive to potential developers.
However, we can confirm the latter is not the case. In Figure 4,
we compare the distribution of experience to commits, ck in
Section III-C, in absolute and proportional terms—i.e., the
number of commits made to C++ and Rust Oxidation projects
(in the examined time frame) by contributors with at most j
experience, and the fraction of commits made by contributors
with at most j experience. The figures clearly show, in both
absolute and relative terms, the Rust projects have more low-
experience contributors than the C++ projects they replaced.
We can therefore safely say that Rust has not been preventing
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new contributors, and it is unlikely that the observed effects on
safety of contributions from new contributors are the result of a
smaller pool of select developers. It is possible Rust developers
are more experienced with programming in general, but this is
immaterial for the problem being addressed—the goal is not
to accept contributions from individuals new to programming,
but to allow new contributors to the project to more easily
contribute.

V. CONCLUSION

In this paper, we examined the effect of choice of program-
ming language on the likelihood of new contributors intro-
ducing vulnerabilities, using a novel application of learning
curves. While previous research has mentioned concerns over
the difficulty of learning Rust perhaps presenting a barrier
towards its adoption (specifically when used as a means of
increasing the security of applications) [8], our work shows
that the reality is complicated, and gives evidence to the
claims made by the Tor Project that Rust can help new
contributions [12]. Namely, while it may still be true that
Rust may feel like a more difficult language to learn, in at
least some ways, new contributors actually benefit from its
adoption, with their first contributions being less than 2%
as likely to introduce vulnerabilities as C++, and first-time
contributors appearing at a notably higher rate in the projects
examined. Such safety could potentially lead to less work for
maintainers, and empower a wider and more diverse body of
contributors to submit changes that are important to them.
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[24] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When

Do Changes Induce Fixes? In MSR ’05: Proceedings of the 2005
International Workshop on Mining Software Repositories, pages 1–5,
New York, NY, USA, 2005. ACM.

[25] Igor Steinmacher, Igor Wiese, Ana Paula Chaves, and Marco Aurélio
Gerosa. Why do newcomers abandon open source software projects? In
2013 6th International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE), pages 25–32, 2013.

[26] Tor Project. Tor Bug Smash Fund. https://blog.torproject.org/
tors-bug-smash-fund-help-tor-smash-all-bugs/, August 2019. Accessed
2023-06-06.

[27] Unsafe Code Guidelines working group. Unsafe Code Guidelines
Reference. https://rust-lang.github.io/unsafe-code-guidelines/glossary.
html#soundness-of-code--of-a-library, 2023. Accessed 2023-06-06.

[28] James Walden, Jeff Stuckman, and Riccardo Scandariato. Predicting
Vulnerable Components: Software Metrics vs Text Mining. In 2014
IEEE 25th International Symposium on Software Reliability Engineer-
ing, pages 23–33, Nov 2014.

[29] Chadd Williams and Jaime Spacco. SZZ Revisited: Verifying When
Changes Induce Fixes. In Proceedings of the 2008 workshop on Defects
in large software systems (DEFECTS 2008), pages 32–36. Association
for Computing Machinery, 2008.

11

https://wiki.mozilla.org/Oxidation
https://www.rust-lang.org/
https://blog.torproject.org/tors-bug-smash-fund-help-tor-smash-all-bugs/
https://blog.torproject.org/tors-bug-smash-fund-help-tor-smash-all-bugs/
https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#soundness-of-code--of-a-library
https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#soundness-of-code--of-a-library

	Introduction
	Background and Related Work
	Identifying Vulnerability Fixes
	Correlating Vulnerabilities with Contributor Experience
	Oxidation

	Methodology
	Data Extraction: Original Code
	Identifying vulnerabilities
	Identifying VCCs

	Data Extraction: Rust Equivalents
	Examining Experience

	Results
	Identified Vulnerabilities
	Rust Vulnerabilities
	SZZ

	Learning Parameters
	Analysis
	The Prevalence of New Contributors

	Conclusion
	References

