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ABSTRACT
This paper introduces the study of differentially private sub-

linear average degree approximation for graphs. In the non-

private setting, average degree can be approximated within a

ratio of (2+𝛼) by sampling𝑂 (
√
𝑛/𝛼) vertices for their degree

values. Under 𝜖-edge differential privacy, we achieve a ratio

of (2 + 𝛼 + 𝑂 ( 𝛼

𝜖
√
𝑛
)) with the same sub-linear complexity.

For graphs with max degree 𝐷 , we show a second algorithm

that has lower privacy loss with the same noise addition. We

also conduct an empirical study of the first estimator on a

real world dataset and obtain that the approximation ratio is

significantly better in practice.

1 INTRODUCTION
Analysis of graph-like data such as social network and finan-

cial transactions plays an important role in gaining business

insights and improving services. Two major issues arising in

practice are privacy and scalability. First, such datasets con-

tain sensitive information about individuals and thus require

privacy protection. Differential privacy [8, 9] has become

an appealing solution and has been extended to graph data

analysis [2, 3, 6, 7, 12, 13, 15]. However, these algorithms all

require parsing the entire graph, and thus they cannot easily

scale to networks with millions or billions of vertices.

In this work, we would like to design sublinear approxi-

mation algorithms that satisfy differential privacy for graphs

while offering accuracy guarantees. We assume the approx-

imation algorithms can only access the graph using APIs.

As each access just queries a vertex and its neighbors, it

would be expensive to access the entire graph. We first start

with a key parameter of large graphs, the average degree of a
undirected graph. There is a rich literature on estimating the

average degree in the non-private setting [5, 10]. These algo-

rithms access a sublinear number of vertices and aggregate

their degree information.

To make these algorithms differentially private, a simple

approach is to perturb noise to the final aggregate value with

Laplace mechanism [8]. This noise level is proportional to the

global sensitivity of the aggregate — the maximum change

in the aggregate when adding/removing/changing the sen-

sitive information in the graph. If the queried vertices are

correlated, then the global sensitivity can be very large and

thus a large amount of noise is required. Hence, we carefully

analyzed one of these algorithms, Feige’s (2 + 𝛼)-estimator

for average degree [10], and designed two algorithms that

achieves edge-differential privacy to protect the presence/ab-

sence of the edge information in the graph.

Our first algorithm keeps track the frequency of the ver-

tices being queried and provides a tight bound for the global

sensitivity of the final estimate of Feige’s algorithm. Feige’s

algorithm samples with replacement the vertices from the

graph, and hence some vertices may appear more than once.

By taking an appropriate sample size, the frequency of any

vertex is bounded by a constant so the global sensitivity

is relatively low on most iterations of the algorithm. Our

second algorithm directly analyzes the privacy loss through

sampling with replacement without keeping track of the fre-

quency of the sampled vertices at a given noise level. Unlike

prior work that studies the privacy amplification via sub-

sampling over tabular data [1, 4], the sampling process takes

place at vertices that are correlated by edges. In addition, in-

cluding/excluding a vertex results in different changes in the

aggregate in comparison to the absence/presence of an edge

for edge-DP. Thus, our second approach does not amplify

the privacy to the same extent as the sampling technique

over tabular data. We will leave the study of sampling over

complex data for the future.

A summary of our contributions is as follows:

• We introduce the study of differentially private sublin-

ear approximation algorithms for graphs.

• We demonstrate average degree can be computed with

an approximation factor of (2 + 𝛼 + 𝑂 ( 𝛼

𝜖
√
𝑛
)) using

𝑂 (
√
𝑛/𝛼) vertex degree queries under 𝜖-edge DP.

• We present a privacy analysis for sampling over graphs

with max degree 𝐷 and show it can achieve lower

privacy loss than the general case.

• Preliminary empirical study shows that our theoretical

work is practical on real data.

Organization. In section 2 we present background infor-

mation on both query complexity and differential privacy.

Section 3 presents our algorithms with accuracy analysis for

the degree unbounded case and privacy analysis for both. In

section 4 we conduct a preliminary evaluation on the real

world dataset and section 5 discusses future directions.



2 BACKGROUND
We describe the background of average degree approxima-

tion and differential privacy.

Average Degree Approximation. For a undirected graph

𝐺 = (𝑉 , 𝐸) with𝑛 vertices,𝑉 denotes the set of vertices and 𝐸

denotes the set of edges in𝐺 . For a vertex 𝑣 ∈ 𝑉 , let deg𝐺 (𝑣)
denotes the degree of 𝑣 in 𝐺 . To efficiently approximate the

average degree of a large graph 𝐺 , ¯𝑑𝐺 = 1

𝑛

∑
𝑣∈𝑉 deg𝐺 (𝑣),

Feige [10] proposed an accurate estimator that samples with

replacement a sub-linear number of vertices 𝑆 and queries

their degree values. More specifically, the algorithm is de-

scribed as follows: first, choose a set 𝑆 by picking at random

𝑠 = 𝑂 (
√
𝑛

𝛼
) vertices; second, compute the average degree of

the vertices in 𝑆 : ¯𝑑𝑆 = 1

|𝑆 |
∑

𝑣∈𝑆 deg𝐺 (𝑣); repeat the above 𝑘
times and report the minimum of the second step, denoted

by
¯𝑑∗. This estimator has the following accuracy guarantee.

Theorem 1. Given a graph𝐺 with 𝑛 vertices, Feige’s algo-
rithm approximates the average degree with a factor of (2+𝛼)
with probability at least 5

6
by querying the degree value of

𝑂 (
√
𝑛

𝛼
) vertices in total, i.e.,

Pr[ ¯𝑑𝐺 < (2 + 𝛼) ¯𝑑∗] ≥ 5/6 and Pr[ ¯𝑑𝐺 > ¯𝑑∗] ≥ 5/6
where ¯𝑑∗ is the output of Feige’s algorithm and ¯𝑑𝐺 is the true
average degree of 𝐺 .

We can boost the success probability to at least 1 − 𝛿 by

running the above algorithm 𝑂 (log( 1

𝛿
)) times and taking

the median. The accuracy guarantee can be improved to

(1 + 𝛼) by querying neighboring information of the sampled

vertices [11]. As this leaks more information of the graph,

this paper first focuses on privatizing Feige’s algorithm.

Differential Privacy. Edge differential privacy (DP) [12, 15]
is an important variant of differential privacy for releasing

statistics of graphs in the literature. This privacy guarantee

aims to protect the edge relationship between vertices in

the graph. Let G𝑛 denote the set of 𝑛 vertex graphs. For any

𝐺,𝐺 ′ ∈ G𝑛 , we use the notation𝐺 ∼ 𝐺 ′ to denote that𝐺 and

𝐺 ′ differ on exactly one edge.

DEFINITION 1 (Edge Differential Privacy). A random-
ized algorithm 𝐴 is 𝜖-edge-DP if for all events 𝑅 in the output
space of𝐴, and for all graphs𝐺,𝐺 ′ ∈ G𝑛 with𝐺 ∼ 𝐺 ′ we have
Pr[𝐴(𝐺) ∈ 𝑅] ≤ 𝑒𝜖 Pr[𝐴(𝐺 ′) ∈ 𝑅] .

A classic method achieving edge-DP is the Laplace Mech-

anism [8, 9].

Theorem 2 (Laplace Mechanism). Let 𝑓 : G𝑛 → R be
any function. The global sensitivity of 𝑓 is defined as 𝐺𝑆 𝑓 =

max𝐺∼𝐺′ |𝑓 (𝐺) − 𝑓 (𝐺 ′) |. Then the algorithm 𝐴(𝐺) = 𝑓 (𝐺) +
𝐿𝑎𝑝 (𝐺𝑆 𝑓 /𝜖), satisfies 𝜖-edge-DP, where 𝐿𝑎𝑝 (𝑥 |𝑏) = 1

2𝑏
𝑒−
|𝑥 |
𝑏 .

Algorithm 1 Private Average Degree Estimator

1: INPUT: Graph 𝐺 = (𝑉 , 𝐸), sampling parameters 𝑚,𝑘, 𝑠 , pri-

vacy budget 𝜖

2: Initialize 𝑓max = 0

3: for 𝑖 = 1, 2, . . . ,𝑚 do
4: for 𝑗 = 1, 2, . . . , 𝑘 do
5: 𝑆 𝑗 ← Sample with replacement 𝑠 vertices from 𝑉

6: Compute average degree
˜𝑑
𝑗
𝑖
=

∑
𝑣∈𝑆 𝑗

deg(𝑣)/𝑠
7: 𝑓new ← Frequency sum of top 2 frequent vertices in 𝑆 𝑗
8: 𝑓max ← max{𝑓max, 𝑓new}
9: end for
10:

˜𝑑𝑖 = min𝑗
˜𝑑
𝑗
𝑖

11: end for
12:

˜𝑑 = median𝑖 ( ˜𝑑𝑖 )
13: 𝐺𝑆 = (𝑓max)/𝑠
14: return ˜𝑑 + 𝐿𝑎𝑝 (𝐺𝑆/𝜖)

3 PRIVATE AVERAGE DEGREE
APPROXIMATION

Given a graph 𝐺 , we would like to design a sublinear al-
gorithm to approximate the average degree of 𝐺 with 𝜖-edge
DP. We first present a private estimator that works for gen-

eral graphs along with the privacy and accuracy analysis.

The second subsection is devoted to a similar estimator that

works on graphs with maximum degree 𝐷 . We provide a

tighter privacy analysis and obtain a privacy amplification

by sub-sampling like result for certain parameter ranges.

3.1 Average Degree for General Graphs
Our algorithm builds upon the average degree estimation

proposed by Feige (Section 2) as shown in Algorithm 1. The

algorithm takes theminimum of𝑘 estimates each obtained by

sampling with replacement and then repeats this procedure

𝑚 times and takes the median (Lines 2-12). We analyzes the

global sensitivity of the estimator by tracking the sum of the

first and second most frequent sampled vertices over all𝑚 ·𝑘
iterations (Lines 7,8,12). Then we add noise proportional

to the global sensitivity using Laplace Mechanism. Next,

we show this algorithm satisfies 𝜖-edge DP. The sensitivity

analysis is non-trivial since we are analysing the sensitivity

of the median of minimums of estimates. However, we show

that this does not change the global sensitivity value.

Theorem 3. Algorithm 1 satisfies 𝜖-edge-DP.

Proof. Recall that Algorithm 1 samples from the full set

of vertices 𝑉 ,𝑚 · 𝑘 times. We first analyze the sensitivity of

the final estimator
˜𝑑 when 𝑚 = 1 and 𝑘 = 1. Let 𝑆 be the

sample of size 𝑠 obtained from sampling with replacement,

the algorithm aggregates the degrees for this sample. We

would like to see the maximum change to the average degree

2



of 𝑆 when adding/removing an edge, i.e.,

𝐺𝑆 ˜𝑑
= max

𝐺∼𝐺′

����∑𝑣∈𝑆 deg𝐺 (𝑣) −
∑

𝑣∈𝑆 deg𝐺′ (𝑣)
𝑠

���� = 𝑓1 (𝑆) + 𝑓2 (𝑆)
𝑠

where 𝑓𝑖 (𝑆) is the frequency of the 𝑖𝑡ℎ most occurring vertex

in sample 𝑆 . Given that 𝐺 and 𝐺 ′ differ on some edge, the

global sensitivity corresponds to the casewhere one endpoint

is sampled 𝑓1 times and the other is sampled 𝑓2 times. For

any given sample 𝑆 , 𝐺𝑆 ˜𝑑
is easy to compute as 𝑓1 + 𝑓2.

Next, we analyze the case when 𝑘 ≥ 1 and 𝑚 = 1. Let

the set of samples obtained be 𝑆1, . . . , 𝑆𝑘 , where each sample

has 𝑠 vertices. Algorithm 1 computes
˜𝑑𝑖 , the average degree

of each 𝑆𝑖 , and then their minimum value
˜𝑑 = min𝑖

˜𝑑𝑖 . We

show that the maximum change to
˜𝑑 is still bounded by the

max𝑆𝑖 𝑓1 (𝑆𝑖 ) + 𝑓2 (𝑆𝑖 ) when adding/removing an edge.

Consider a pair of neighboring graphs𝐺,𝐺 ′ where 𝐺 ′ =
𝐺 +𝑠𝑡 for some edge 𝑠𝑡 . Let 𝑆𝑎 = argmin𝑆𝑖

∑
𝑣∈𝑆𝑖 deg𝐺 (𝑣) and

𝑆𝑏 = argmin𝑆𝑖

∑
𝑣∈𝑆𝑖 deg𝐺′ (𝑣). Then the difference between

estimators before normalizing is

|
∑
𝑣∈𝑆𝑎

deg𝐺 (𝑣)−
∑
𝑣∈𝑆𝑏

deg𝐺′ (𝑣) | =
∑
𝑣∈𝑆𝑏

deg𝐺′ (𝑣)−
∑
𝑣∈𝑆𝑎

deg𝐺 (𝑣)

≤
∑
𝑣∈𝑆𝑎
(deg𝐺′ (𝑣)−deg𝐺 (𝑣)) = 𝑓𝑠 + 𝑓𝑡 ≤ 𝑓1 (𝑆𝑎)+ 𝑓2 (𝑆𝑎) ≤ 𝑓max

where 𝑓𝑠 and 𝑓𝑡 denote the frequency of 𝑠 and 𝑡 in 𝑆𝑎 .

Last, we analyze when𝑚 ≥ 1 and 𝑘 ≥ 1. Similarly con-

sider neighboring graphs 𝐺 and 𝐺 ′. Fix the set of samples

(𝑆1,1, . . . , 𝑆𝑚,𝑘 ) , we obtain𝑚 minimum values (Line 10). Let

𝑎1, . . . , 𝑎𝑚 be the min values obtained by the algorithm on

𝐺 and let 𝑏1, . . . , 𝑏𝑚 be the min values obtained on 𝐺 ′. Let
𝑐 = max𝑆𝑖 𝑓1 (𝑆𝑖 ) + 𝑓2 (𝑆𝑖 ) = 𝑓max (line 8). Using the lemma 1

below, we get that 𝐺𝑆 ≤ 𝑓max as desired. Since we add noise

proportional to this on line 14, by theorem 2 we achieve the

desired 𝜖-edge DP. □

Lemma 1. Given sequences (𝑎𝑖 )𝑛𝑖=1
and (𝑏𝑖 )𝑛𝑖=1

where 𝑎𝑖 ≤
𝑏𝑖 ≤ 𝑎𝑖 + 𝑐 for some constant 𝑐 , then𝑚𝑒𝑑 (𝑏𝑖 ) −𝑚𝑒𝑑 (𝑎𝑖 ) ≤ 𝑐.

Next, we show the accuracy analysis of Algorithm 1.

Theorem 4. For constants 𝑚,𝑘 , by querying 𝑠 ≥ Ω(
√
𝑛

𝛼
)

vertices, Algorithm 1 returns a (2+𝛼+𝑂 ( 𝛼

𝜖
√
𝑛
))-approximation

of the average degree with high constant probability.

Proof. (Sketch) Fix the randomvertex samples 𝑆1,1, ..., 𝑆𝑚,𝑘 ,

where 𝑆𝑖, 𝑗 are all sampled with replacement from 𝑉 . From

the proof of theorem 3, we know 𝐺𝑆 ˜𝑑
=

𝑓max

𝑠
. By a balls in

bins argument combined with union bound over 𝑉 and the

𝑚 · 𝑘 samples, we can show that Pr[𝑓max ≤ 𝑟 ] = 1 − 𝑜 (1) for
some 𝑟 = 𝑂 (1). Assuming the above holds, by distribution

of Laplace noise we get that

Pr[| ˆ𝑑 − ˜𝑑 | > 𝑡] ≤ exp

(
− 𝜖𝑡

𝐺𝑆 ˜𝑑

)
= exp

(
−𝜖𝑡
√
𝑛

2𝑟𝛼

)
.

Let 𝑡 = 𝑂 ( 𝑑𝛼
𝜖
√
𝑛
), by triangle inequality, 𝑑 ≤ (2+𝛼 +𝑂 ( 𝛼

𝜖
√
𝑛
)) ˆ𝑑

with the desired probability. □

3.2 Average Degree for 𝐷-Bounded Graphs
Note that the Feige’s approximation algorithm is a sampling

algorithm. For tabular data, it is well known that sampling

helps privacy amplification [1, 4]. However, proving general

privacy amplification for edge-DP is non-trivial. When sam-

pling vertices, the resulting structure is a table of vertices,

but is not necessarily a meaningful graph. This is unlike the

classic privacy amplification results for tabular data as the

sub-sampled database is still a valid database in the same

domain. This fact is needed when trying to reduce the con-

ditioning of the frequency of an element in the sample. We

demonstrate a work around that allows us to show a single

estimate gets privacy amplification so long as the graph has

max degree 𝐷 .

Theorem 5. Given set 𝑆 of size 𝑠 is uniformly sampled with
replacement from 𝑉 , the estimator 𝐴𝑆 =

∑
𝑖∈𝑆 𝑑𝑖 (𝐺)

𝑠
+ 𝐿𝑎𝑝 (𝑏)

satisfies
(
𝑠 ln

(
1−2/𝑛+2𝑒

𝐷
𝑠𝑏 /𝑛

1−2/𝑛+2𝑒−
𝐷
𝑠𝑏 /𝑛

))
-edge DP.

Proof. (Sketch) Let 𝐺 = (𝑑1, ..., 𝑑𝑛) and 𝐺 ′ = (𝑑 ′1, ..., 𝑑 ′𝑛)
be neighbouring degree sequences and without loss of gen-

erality assume |𝑑𝑛−1 − 𝑑 ′𝑛−1
| = 1 and |𝑑𝑛 − 𝑑 ′𝑛 | = 1. For a

set 𝑆 sampled with replacement, let 𝑓𝑖 denote the frequency

of element 𝑖 in 𝑆 . Also, let 𝑆𝑠−𝑘 denote the event that 𝑠 − 𝑘
sampled vertices are from {1, ..., 𝑛 − 2} and we let the event

𝑓𝑛−1 + 𝑓𝑛 determine the rest of the behaviour of the sample.

Observe that for any output 𝑟 ,

Pr𝑆,𝐴 [𝐴𝑆 (𝐺) = 𝑟 |𝑓𝑛−1 + 𝑓𝑛 = 𝑘]
Pr𝑆,𝐴 [𝐴𝑆 (𝐺) = 𝑟 |𝑓𝑛−1 + 𝑓𝑛 = 0]

=

∑
𝑆𝑠−𝑘 Pr[𝐴𝑆 (𝐺) = 𝑟 |𝑓𝑛−1 + 𝑓𝑛 = 𝑘, 𝑆𝑠−𝑘 ] Pr[𝑆𝑠−𝑘 ]∑
𝑆𝑠−𝑘 Pr[𝐴𝑆 (𝐺) = 𝑟 |𝑓𝑛−1 + 𝑓𝑛 = 0, 𝑆𝑠−𝑘 ] Pr[𝑆𝑠−𝑘 ]

≤ max

𝑆𝑠−𝑘

Pr[𝐴𝑆 (𝐺) = 𝑟 |𝑓𝑛−1 + 𝑓𝑛 = 𝑘, 𝑆𝑠−𝑘 ] Pr[𝑆𝑠−𝑘 ]
Pr[𝐴𝑆 (𝐺) = 𝑟 |𝑓𝑛−1 + 𝑓𝑛 = 0, 𝑆𝑠−𝑘 ] Pr[𝑆𝑠−𝑘 ]

= max

𝑆𝑠−𝑘

Pr[𝜂 = 𝑟 −
∑

𝑖∈𝑆 𝑑𝑖 (𝐺)
𝑠

|𝑓𝑛−1 + 𝑓𝑛 = 𝑘, 𝑆𝑠−𝑘 ]
Pr[𝜂 ′ = 𝑟 −

∑
𝑖∈𝑆′ 𝑑𝑖 (𝐺)

𝑠
|𝑓𝑛−1 + 𝑓𝑛 = 0, 𝑆𝑠−𝑘 ]

≤ 𝑒
𝑘𝐷
𝑠𝑏

The last inequality above follows as |∑𝑖∈𝑆 𝑑𝑖−
∑

𝑖∈𝑆′ 𝑑𝑖 | ≤ 𝑘𝐷

where 𝑆 ′ differ from 𝑆 in all first k degrees.

For 𝑘 = 0, 1, ..., 𝑠 , let

𝑝𝑘 = Pr[𝑓𝑠 + 𝑓𝑡 = 𝑘] =
(
𝑠

𝑘

) (
2

𝑛

)𝑘 (
1 − 2

𝑛

)𝑠−𝑘
𝑞𝑘 = Pr

𝑆
[𝐴𝑆 (𝐺) ∈ 𝑅 |𝑓𝑛−1 + 𝑓𝑛 = 𝑘]

𝑞′
𝑘

= Pr

𝑆
[𝐴𝑆 (𝐺 ′) ∈ 𝑅 |𝑓𝑛−1 + 𝑓𝑛 = 𝑘] .

Observe that 𝑞0 = 𝑞′
0
. Note that we have show 𝑞𝑘 ≤ 𝑒

𝑘𝐷
𝑠𝑏 𝑞0

for each 𝑘 , we have the following inequality.

3



Figure 1: Average degree estimated by Algorithm 1 at different privacy levels. From left to right are results for
epsilon values 0.1, 0.01, and 0.001 shown respectively.

Pr

𝑆
[𝐴𝑆 (𝐺) ∈ 𝑅] =

𝑠∑
𝑘=0

𝑝𝑘𝑞𝑘 ≤
𝑠∑

𝑘=0

(
𝑠

𝑘

) (
2

𝑛

)𝑘 (
1 − 2

𝑛

)𝑠−𝑘
𝑒

𝑘𝐷
𝑠𝑏 𝑞0

= 𝑞0

(
1 − 2/𝑛 + 2𝑒

𝐷
𝑠𝑏 /𝑛

)𝑠
.

Similarly, we can show 𝑞′
𝑘
≥ 𝑒

𝑘𝐷
𝑠𝑏 𝑞′

0
= 𝑒

𝑘𝐷
𝑠𝑏 𝑞0 and so

Pr

𝑆
[𝐴𝑆 (𝐺 ′) ∈ 𝑅] ≥ 𝑞0

(
1 − 2/𝑛 + 2𝑒

−𝐷
𝑠𝑏 /𝑛

)𝑠
.

By combining both inequalities above and taking log, we can

get the privacy loss of the estimator 𝐴𝑠 in the theorem. □

If
𝐷
𝑠𝑏
≤ 1, the privacy loss of the estimator 𝐴𝑠 is

𝑠 ln

(
1 − 2/𝑛 + 2𝑒

𝐷
𝑠𝑏 /𝑛

1 − 2/𝑛 + 2𝑒−
𝐷
𝑠𝑏 /𝑛

)
≤ 8𝐷

𝑏𝑛
.

The above estimator and the one from Algorithm 1 both add

noise 𝐿𝑎𝑝 (𝑏) for some 𝑏. To achieve 𝜖-edge-DP, the above

estimator sets 𝑏 = 8𝐷
𝜖𝑛

v.s. Algorithm 1 which sets 𝑏 =
𝑓max

𝜖𝑠

where 𝑠 = 𝑂 (
√
𝑛

𝛼
). There are cases where the new analysis for

𝐷-bounded graphs yields a much lower privacy loss, up to a

(1/
√
𝑛) factor improvement. Another interesting property

of this approach is that the noise is not dependent on the

frequency of elements in the sample. This leads to a much

simpler algorithm. Future work will explore generalizing

this approach to handle other estimators and preforming an

accuracy analysis similar to that of Algorithm 1.

4 PRELIMINARY RESULTS
We present the evaluation results of our private average

degree estimator (Algorithm 1) on real world dataset. This

dataset is collected from LiveJournal [14], a free on-line blog-

ging community where users declare friendship each other.

The largest connected component of this undirected network

is used for our evaluation. It consists of close to 4 million

nodes with an average degree of 17.35.

In our experiments, we ensure that Algorithm 1 queries a

sublinear number of vertices. We choose 𝑠 ∈ {100, 500, 1000,

2500, 5000, 10000}, 𝑚 ∈ {1, 3, 5, 10, 15, 20}, 𝑘 ∈ {10}, and

𝜖 ∈ {0.1, 0.01, 0.001}. The default values of 𝑠,𝑚, 𝑘, 𝜖 are

10000, 5, 10, and 0.1 respectively. By fixing all of the param-

eters except one, we observe its effect on the estimation

accuracy. We run Algorithm 1 for each setting 50 times and

plot the distribution of those 50 iterations on box plots.

Figure 1 shows how the estimates of private and non-

private estimators are distributed as 𝑠 increases, with𝑚 = 5

and 𝑘 = 10 fixed. The theoretical upper and lower bounds,

which are
ˆ𝑑∗ (true average degree) and ˆ𝑑∗/2 for this (2 + 𝛼)-

approximation, are also displayed.

We observe that when 𝑠 increases, the estimate becomes

more accurate. Even when the privacy budget is tight, for

example 𝜖 = 0.001, we can still obtain an accurate estimate

if 𝑠 is above
√
𝑛 (2,000 for this dataset). Another interesting

observation is that adding some differential privacy noise

helps improve the accuracy of the estimates. For example,

when 𝜖 = 0.1 and sample size = 1000, the private estimator

sometimes actually gives more accurate results than the non-

private estimator. This is because the sampling algorithm

underestimates the average degree. When positive noise

from the Laplace mechanism is added to the estimate, we

can have estimates closer to the true average degree.

Due to space constraint, we leave the evaluation results of

our second estimator (Section 3.2) and the parameter study

of both algorithms over different datasets to the full paper.

5 DISCUSSION
In this section we discuss some of the future directions for

this line of work. First, our current privacy amplification for

𝐷 bounded graphs has a factor 𝐷 which can be quite large.

We would like to explore removing this dependence on 𝐷

to get a tighter privacy analysis. It would also be interest-

ing to generalize the analysis to achieve a general privacy

amplification lemma for sampling over complex private enti-

ties. Average degree is the simplest parameter to study and

it is of interest to make private, the sub-linear algorithms

for triangle counting and various other subgraph counts. In

future work, it will be interesting to study Node-DP as the

sensitivities of these estimators is much larger.
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