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1 Introduction

We survey the results of Ajtai, Komolós and Szemerédi [1] on the longest path in a random graph.
An easy consequence of Stirling’s approximation is that(

n

k

)
k!
(α
n

)k−1
∼ nαk−1e−k2/2n.

Using this and the first moment method, one can show that a.a.s. the longest path in a random graph
with (1−ε)n2 edges (and in the directed case with (1−ε)n edges) is of length O(log n) for ε > 0. When
ε = 0 we get that the longest path in both directed and undirected graphs is of length O(

√
n log n).

The main result of their paper was that for some constant c, a random graph with (1 + ε)n2 edges
contains a path of length cn and analogously, the random directed graph with (1 + ε)n edges contains
a directed path of length cn with probability near 1. One may have noticed that we have not made
clear which model of random graphs these results hold for. In the original paper, the result is first
proven for Erdős-Renyi graphs Gn,p and the directed analogue Dn,p. By a standard coupling argument
they extend it to the uniform random graph models G′n,N and D′n,N where the number of edges N is
fixed. In this survey we will focus on the Erdős-Renyi models and omit the details of this coupling.
The proof of the main result relies on being able to construct Dn,p in a depth first search (DFS) like
manner. DFS is promising as it is likely to discover a linear path as opposed to breadth first search
like approaches which would likely construct the whole graph before it exceed depth Ω(logn). The
above graph process is analyzed by relating it to a Galton-Watson branching process and analyzing
that instead. The proof of the undirected case is a consequence of the directed. The result is obtained
by constructing a dense directed graph on a a collection of disjoint paths of the original undirected
graph, and connecting them by finding a long directed path in the auxilary graph.

2 Preliminaries

In the Gn,p model, the number of vertices n is fixed and each edge is sampled independently with
probability p. Dn,p is defined similarly except we now have directions (i.e. edge uv is different from
edge vu) so the potential number of edges is n(n− 1) while a Gn,p could have at most

(
n
2

)
.

2.1 Galton-Watson Branching Process

An intuitive description of this process is to consider the birth and death of particles. At time t = 0,
a single particle is born. At time t ≥ 1, each existing particles gives birth to some random number of
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children and then dies. To formalize this, let Z be a random variable on non-negative integers. Let
X0 = 1 and for t ≥ 1, let Xt denotes the random number of children born at step t where each particle
independently has Z children. Clearly X0 = 1 and X1 has the same distribution as Z. By a simple
induction on t, one can show that EXt = (EZ)t for t ≥ 1. Let E denote the event that Xt = 0 for
some t > 0, i.e., the event the process goes extinct, and let Q = Pr[E ].

Theorem 1. If EZ > 1 and Pr[Z = 0] > 0 then 0 < Q < 1.

Proof. Let ρj be the probability the process becomes extinct after at most j steps and note that ρj =∑∞
i=0 Pr[Z = i]ρij−1. Consider the probability generating function G(x) = ExZ =

∑∞
i=0 Pr[Z = i]xi.

It is easy to see that

• G(1) = 1 and G(0) > 0 as G(0) = Pr[Z = 0] > 0

• G is convex on (0, 1) since G′′(x) > 0 for all x ≥ 0 as Pr[Z = 0] > 0

• G′(1) =
∑∞

i=1 ix
i−1 Pr[Z = i]

∣∣∣
x=1

= EZ > 1.

From the above properties, it is clear the function G(x) − x has a unique positive root in (0, 1). We
will show that Q is this root. Observe that since ρn → Q and ρn = G(ρn−1), by continuity of G we
get Q = G(Q) as desired.

3 Directed Case

In what follows, fix the edge sampling probability p = α
n where α > 1 is a constant. We now present

the main theorem for the directed case.

Theorem 2. There are positive numbers c = c(α), K = K(α) and θ = θ(α) < 1 such that

Pr(Dn,p contains a directed path of length cn) ≥ 1−Kθn.

3.1 Directed Graph Process

To prove the above, we will consider the following graph process which generates Dn,p as well as the
desired long path. Fix an ordering v1, ..., vn of the vertices, let m = (1 − δ)n for some δ = δ(α) > 0
chosen later. We can think of the remaining δn vertices as the surplus.

1. Set v1 as root vertex and initialize m element set M = {v2, ..., vm+1}

2. Determine the random number Ch of children of v1 in M according to

λk = Pr(Ch = k) =

(
m

k

)
pk(1− p)m−k

3. Select k points at random from M for the children of v1 and then replace them in M with the
first k unused vertices

4. Recursively repeat on the first child until branch dies, then repeat on the sibling of the node
that went extinct and so on (Essentially a depth first search!)

5. If tree dies out, pick unused vertex with smallest index and restart the process until no vertices
remain unused

2



The reader may have noticed the above process has yet to construct Dn,p. Rather, it produces a
disjoint collection of directed trees. To guarantee a Dn,p we appropriately randomize the remaining
edges (i.e., edges between children, from one tree to another, from child to ancestor, etc). Note that
adding in these additional edges can only increase the length of the longest path.

Remark 1. The reason we sample from M is so that the distribution of the children does not change
from generation to generation in the corresponding branching process. Without such restriction, the
probability that v1 has k children is

(
n−1
k

)
pk(1 − p)n−1−k while the probability its child has l children

is
(
n−1−k

l

)
pl(1− p)n−1−k−l.

Let λ = mp = (1 − δ)α where we may later choose δ small so that λ > 1. Consider branching
process with branching distribution

λk = Pr(Ch = k) =

(
m

k

)
pk(1− p)m−k ∼ (mp)k

k!
e−mp =

λk

k!
e−λ.

At time t = 0 a single particle is born and gives birth to Ch many children and then dies. At each
t ≥ 1 each existing particle independently gives birth to Ch children and dies. At each level assign a
random order to the branches. Such ordering allows us to talk about the leftmost and rightmost child
of a point. Thus the notion of a ”leftmost infinite path” (LIP) is well defined (The LIP will be used
later to find our long path). We may now analyze the original graph process by instead studying a
collection of branching processes. We can couple the two processes so that when the branching process
goes extinct, the graph process also dies. If there are remaining unexplored vertices then we can start
another branching process until all the vertices in the original graph have been accounted for. The
branching process is an infinite process while the graph only has finitely many vertices. However, we
can show that with high probability a LIP exists and that we will find a long subpath of the LIP
well before we run out of points in the original graph.

3.2 Analysis of Branching Process

Let T denote the total population until extinction conditioned on the branching process dying. Let
T1, T2, ... be a sequence of independent random variables distributed according to T and define Sk =
T1 + ..+ Tk.

Claim 1. Pr(Sεn >
δ
2n) is exponentially small, where ε = ε(α, δ).

Claim 1 essentially says that the probability of using up more than half the surplus δn points in
the original graph is very low when we run εn branching process. Let Lk denote the number of points
to the left of LIP (including those on the path) up to level k. The next claim tells us we find the
desired long path well before we use up more than half the surplus points.

Claim 2. There exists c = c(α) > 0 such that Pr(Lcn >
δ
2n) is exponentially small.

The below claim basically says that the extinction probability is not too dependent on m which is
a function of n. This is just a technical detail to show that Qεn is small for large n.

Claim 3. For all m, the extinction probability Q = Q(λ,m) < Q0 = Q0(λ) < 1.

With the above claims we are now ready to prove the main theorem. The proofs of the claims can
be found in the next section.
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Proof of Theorem 2. By Claim 3 and independence of Ti, the first εn branching processes go extinct
with probability at most Qεn0 . Combining this with claim 1 and 2 by a union bound, we get that with
the desired exponential rate on the probability the following holds. There is an index j ≤ εn such
that T1, ..., Tj−1 are finite and Tj in infinite and at most δ

2n vertices were used in our corresponding

graph process up till this point. Also, at most δ
2n vertices of the original graph were used by taking

the points corresponding to the left of LIP (inclusive) at level cn. The subpath of LIP up till depth
cn corresponds to our desired long path in the original graph. Since we had a surplus of n−m = δn
vertices in the original graph process, where m is the size of the set M we sample from. We have not
used up all the surplus so the subpath is in fact a valid path in our original graph.

Remark 2. The 1 −Kθn bound, can be obtained by carefully going through the claims and keeping
track of the constants.

3.3 Proof of Claims

Proof of Claim 3. Let f(x) =
∑

k≥0 λkx
k be the probability generating function for Ch. Since

E[Ch] = λ > 1, by the same arguments used to prove theorem 1, we know that Q is the unique
root of the equation Q = f(Q) for 0 ≤ Q < 1. By the binomial theorem,

f(x) = (1− p+ px)m = (1− λ(1− x)

m
)m.

f(x) is monotone increasing in m since for C = λ(1− x) by AM-GM inequality

1 ·
(

1− C

m

)
...

(
1− C

m

)
≤

(
1 +m(1− C

m)

m+ 1

)m+1

=

(
1− C

m+ 1

)m+1

.

Since f(x) ≤ e−λ(1−x) by the above properties, Q < Q0 < 1 for all m where Q0 is the unique
solution on (0, 1) to Q0 = e−λ(1−Q0). Equivalently, Q0 = x

λ where x is unique value in (0, 1) for which
xe−x = λe−λ. This is a well know fact and follows from some simple calculus. Let h(x) = xe−x−λe−λ
and note that h′(x) = (1 − x)e−x > 0 on [0, 1). Since h(0) < 0 and h(1−) = e−1(1 − λe−(λ−1)) > 0
and h is increasing on this interval, it follows that there is a unique solution on (0, 1).

Proof of Claim 1. We want to show that for the sum of independent Ti distributed according to T ,
Pr(T1 + ... + Tεn >

δ
2n) has an exponentially small tail. If the moment generating function function

E et0T ≤ K, where K > 0 depends only on λ and not m, then we may use the Chernoff method to
derive such tail. We will first derive the tail and then bound the MGF.

Let t > 0 and apply Markov’s inequality to get that

Pr(Sεn >
δ

2
n) = Pr[exp(tSεn) > exp(tδn/2)] ≤ E[exp(tSεn)]

exp(tδn/2)
.

By independence of Ti,

E[exp(tSεn)] =
εn∏
i=1

E exp(tT ) ≤ Kεn,

by taking t = t0 (t0 will be chosen later). Putting this together gives us Pr[Sεn >
δ
2n] ≤ Kεne−t0δn/2

and by picking ε small (in terms of α, δ), we can get the desired concentration bound.
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It remains to show that E[et0T ] ≤ K for some t0 = t0(λ) > 0 and K = K(λ) > 0. Let Q and f be
defined as it was in the proof of claim 3. Let T be the total population and tl = Pr[T = l], then we
have t0 = 0 and t∞ = 1−Q, and for l ≥ 1

tl =
∑
k=0

λk
∑

l1+...+lk=l−1:li≥1
tl1 · · · tlk .

Multiplying by xl and summing for l = 1, 2, ... we get that g(x) =
∑

l=1 tlx
l satisfies g(x) = xf(g(x)).

By the Lagrange Implicit Function theorem (a well known result in combinatorial enumeration), g(x) is

defined uniquely for x < 1 and so g(x) < Q. By continuity g(x) can be defined up to y0 = x0
f(x0)

∼ eλ−1

λ

where x0 = 1−p
(m−1)p is the maximum of x

f(x) under the assumption g < x0 Let T be the total population
conditioned on the process going extinct. Thus

tl = Pr[T = l] = Pr[T = l|T <∞] =
tl
Q

and ET = g′(1) = 1
1−f ′(Q) ∼

1
1−λQ where g(x) =

∑
l=0 tlx

l = g(x)/Q.

Since y0 ∼ eλ−1

λ , we pick t0 to be the value that makes et0 = y0 and so Eet0T = g(et0) = g(y0) =
x0
Q < 1

Q . Note that we are done as Q is an increasing function in m so 1
Q is bounded uniformly in m

as needed.

The proof of the following claim is quite similar to that of claim 1 so we just give a sketch proof.

Proof (sketch) of Claim 2. Let TL be the number of points in the union of all trees on the left of
LIP which start from the root and do not contain any edge from LIP. Clearly Lk is the sum of k
independent copies of TL. As seen above, it suffices to get a bound on the MGF of TL that does not
rely on m as we can then use Chernoff’s method to get the desired concentration bound. Let h(x)
be the generating function of TL and K < ∞ depending only on λ such that h(a) < K. Let the
distribution of TL be (h1, h2, ...), then h(x) =

∑
i=0 hix

i and by a similar argument to before we get
that for l ≥ 1

hl =
∑
k=0

λ′k
∑

l1+...+lk=l−1:lj≥1
tl1 · · · tlk

where λ′k is the probability that the node which is the root of an infinite path has k children strictly
on the left of LIP. Then λ′k = Qk

∑
j=k+1 λj and so

f(x) =
∑
k=0

λ′kx
k =

1− f(xQ)

1− xQ
.

By multiplying both sides by xl and summing we get that h(x) = xf(g(x)). Now we want to show
that for some a > 1,

h(a) = af(g(a)) = a
1− f(g(a)Q)

1− g(a)Q

is bounded uniformly in m. It suffices to show 1− g(a)Q is bounded away from 0, uniformly in m for
some a > 1. By the same arguments from claim 2, this holds as

g(y0)Q = x0 =
1− p
λ− p

<
1

λ
< 1, y0 ≥

eλ−1

λ
> 1

and so it is possible to bound the MGF.
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Remark 3. With a bit of calculus it can be shown that the optimal choice of δ = 1 − logα
α+1 gives us

that for c < (α−1)−logα
α+1 , Dn,α

n
has a cn path with probability at least 1 −Kθ(n). More on this can be

found in the original paper.

4 Undirected Case

The proof will follow a simple outline : First hide εn edges from Gn,p, and find a huge collection of
long disjoint paths in the rest of the graph. We then connect these paths using the hidden edges by
invoking the directed case theorem on an auxiliary graph.

4.1 Existence of long disjoint cycles

Lemma 1. In Gn,p, with p = c
n , c > 1 we have for sufficiently large n :

Pr(Gn,p is a forest) < 2
√
ntn.

Where t = t(c) = ce
1
2c
− c

2 < 1.

Proof. Let Gk(n) be the number of graphs with n labelled vertices consisting of k disjoint trees.

Pr(G(n,
c

n
) is a forest) ≤

n∑
k=0

Gk(n)pn−k(1− p)N−n+k

= pn(1− p)N−n
n∑
k=0

Gk(n)(
p

1− p
)k

To bound the Gk(n)tk sum, we will make use of the generating function for disjoint trees on n
vertices, given by :

∞∑
n=0

Gk(n)
xn

n!
=

(y − y2

2 )k

k!

where x = ye−y.
Multiplying every term by tk then adding we obtain:

∞∑
n=0

(
n∑
k=0

Gk(n)tk)
xn

n!

=

∞∑
k=0

(

∞∑
n=0

Gk(n)
xn

n!
)tk

=

∞∑
k=0

(
(y − y2

2 )k

k!
)tk

= et(y−
y2

2
)

Therefore we can bound every single term by the total sum, giving :

n∑
k=0

Gk(n)tk =
n!

xn
(

n∑
k=0

Gk(n)tk)
xn

n!
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≤ n!

xn
[
∞∑
n=0

(
n∑
k=0

Gk(n)tk)
xn

n!
] =

n!

xn
et(y−

y2

2
)

= n!(ye−y)−net(y−
y2

2
)

Where the inequality is valid for every t < 1 and y < 1. By a continuity argument we can push the
statement for y = 1, and then take t = p

1−p to obtain :

Pr(Gn,p is a forest) = pn(1− p)N−n
n∑
k=0

Gk(n)(
p

1− p
)k

≤ (
c

n
)n(1− c

n
)N−nn!ene

t
2

≤ cne
−c(N−n)

n n!(
e

n
)ne

n
2c
− 1

2

≤ cne
−cn
2 e
√
ne

n
2c e−

1
2

≤ 2
√
nαn

where α = ce
1
2c
− c

2 < 1.

Lemma 2. Given c > 1, there exists δ = δ(c), γ = γ(c), such that a.a.s Gn,p contains δn vertices
covered by disjoint cycles of lengths > γ log n.

(In fact, we may strengthen the theorem by proving that the statement holds not only a.a.s but
fails with exponentially small probability.)

Proof. Consider a collection of disjoint cycles maximal with respect to the total vertices covered, say
kn. This implies that Gn,p contains an induced forest of size (1 − k)n, found by simply deleting all
the vertices covered. Now since every subgraph of size n′ = n(1 − k) of Gn,p behaves like Gn′,p =

G(n′, (1−k)cn′ ), we can upper bound:

Pr(Gn,p contains a forest of size n′)

≤
(
n

n′

)
Pr(G(n′,

(1− k)c

n′
) is a forest)

≤
(

n

(1− k)n

)
2
√
n(1− k)αn(1−k)

≤ 2
√

1− k(
e

(1− k)
)(1−k)n

√
nαn(1−k)

Where α = α(1−k)c = (1− k)ce
1

2c(1−k)−
(1−k)c

2

∼ enf(k)

Where f(k) = 1
2c +−k log k + (1− k) log c− (1− k)2 c2 , obtained by simply grouping the exponents.

Note that f(k) is monotone increasing, with f(1) = 1
2c > 0, and f(0+) approaching −∞, and

hence has a unique root x0 > 0. By choosing k < x0, we are then guaranteed that a.a.s Gn,p does not
contain an induced forest of size (1−k)n, hence a maximal disjoint union of cycles must cover at least
kn vertices.
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Now it remains to show that these cycles are likely to be big. We do so by proving that for any
ε > 0, there exists γ such that a.a.s no εn vertices in Gn,p are covered by cycles not exceeding γ log n.

Consider a decomposition of εn vertices into cycles not exceeding γ log n. We can model this
structure by an arrangement of the vertices and an index set, where vertices on the same cycle appear
in succession as a block following an arbitrary cycle direction, and the index set defines these blocks,
i.e. where every cycle ends. This gives an upper bound of (εn)!2εn on the number of ordered cycle
decompositions on εn vertices. Since we are interested in unordered decompositions and constrainted
by lengths smaller than γ log n, we know that we need at least εn

γ logn , hence the total number of
potential decompositions we are interested in cannot exceed

2εn(εn)!
1

( εn
γ logn)!

due to the possibility of rearranging at least εn
γ logn blocks in the permutations. Therefore :

Pr(εn vertices are covered by small cycles) ≤
(
n

εn

)
2εn(εn)! pεn

1

( εn
γ logn)!

≤ (
en

εn
)n(εnpe

− 1
γ )εn

= ((
e

ε
)εαe

− 1
γ )εn = o(1)

if γ is chosen small enough to guarantee ( eε )
εαe
− 1
γ < 1.

Therefore choosing δ = k − ε, where k < x0 and ε > 0 are arbitrary, we are guaranteed that at
least δn vertices are covered by disjoint cycles each of length ≥ γ log n.

4.2 Finding a long path

Consider a 3-step randomization process to generate Gn, c
n

, where every edge will appear first with

probability c′

n with 1 < c′ < c (call these Type 1 edges) and then with probability q had they not
already appeared (call these Type 2), where q is chosen so that the probability of every edge appearing
as a Type 2 is ε

n = c−c′
n . We will use Type 1 edges to find the big cycle cover and Type 2 edges to

connect the auxiliary graph.

Fix parameter θ < 1
4 . Since c′ > 1, we have proven that a.a.s G

n, c
′
n

contains at least δn vertices

covered by disjoint cycles each of length ≥ γ log n. Consider such a collection of cycles, and divide
each into arcs of length L, to obtain A1....An′ where n′ ∼ δn

L (L is a constant chosen so θ2δLε > 1) and
throw away potential leftover. Further divide each arc into 3 parts : head, middle and tail, respectively
of size θL, (1− 2θ)L, θL. Now consider the directed graph D on {1, ..., n′}, where we have a directed
edge from i to j if there is a Type 2 edge from a vertex in the head of Ai to a vertex in tail of Aj .

Notice that D behave like Dn′,p′ , since every directed edge independently has probability 1− (1−
ε
n)θl

2
, as there are θl2 potential pairings of head-tail vertices creating it, each appearing independently

with probability ε
n .

To invoke the result on the directed case for D, we need to show that p′ ≥ 1
n′ , which can be done

as follows :
p′ = 1− (1− ε

n
)θl

2

≥ (1− o(1))
εθ2L2

n
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∼ (1− o(1))
εθ2Lδ

n′

∼ (1− o(1))
β

n′

Where β = εθ2Lδ > 1 by our choice of L. Using the result on directed Dn,p, we can guarantee that
a.a.s there exists a directed path P in D covering at least xn′ vertices. Expanding this path in the
original graph by following its trajectory along the arcs from tail to head, we are guaranteed a.a.s a
path of length at least :

xn′(1− 2θ)L ∼ x(1− 2θ)δn = αn

which concludes the 2nd main result of the paper.

5 Conclusion

The technique used to derive the undirected case from the directed is worth learning as it is useful
and elegant. However, it is possible to derive the main result for the undirected case by directly
applying a branching process argument. In fact, for the undirected case, there is a much simpler proof
due to Krivelevich and Sudakov [2] which does not use branching process. Their proof also use the
DFS approach but is much shorter and is pretty self contained as it only relies on basic concentration
inequalities.
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